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ABSTRACT 
 

Norway conducts operations on a variety of structures in the 

North Sea; e.g. oilrigs, monopole windmills, subsea trees. These 

structures often require subsea installation, observation, and 

maintenance. A remotely operated vehicle (ROV) can assist in 

these operations.  Automation of intended motion is the desired 

goal. This paper researches the motion of an ROV induced by 

the motion of the robotic manipulators, motor torques, and added 

mass of fluid. This project builds upon a previous project that 

had one robotic arm; this time, there are two, but the method is 

unchanged.  Furthermore, this work explores both the patterns in 

addressing such challenges, and an improved integration 

scheme.  In fact, this paper demonstrates the ease with which the 

method is extensible.  Notable is that this work represents an 

international collaboration between an engineering school in 

Norway and one in the US.  This work invites further research 

into improved numerical methods, solid/fluid interaction and the 

design of Autonomous Underwater Vehicles (AUV).  AUVs 

beckon an era of Artificial Intelligence when machines think, 

communicate and learn. Rapidly deployable software 

implementations will be essential to this task.  This paper 

demonstrates the MFM clears the path toward such technological 

innovations. 

NOMENCLATURE 

{ }M   Mass matrix 

*{ }M   Reduced Mass matrix 

*{ }N   Reduced non-linear velocity matrix  

q   Generalized coordinates 

q   Generalized velocity 

q   Generalized acceleration 

R   Rotation matrix 

r   Absolute position vector 
s   Relative position vector 

U   Potential energy 

{ }X   List of velocities 

   Variation 

W   Virtual work 

    Variation of frame connection matrix  

X
•

  Variation of the generalized rates   

X   Virtual generalized displacement 

X   Virtual generalized velocity 
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mailto:tjm@hvl.no


 2 Copyright © 2019 by ASME 

q   Virtual essential generalized displacement  

  Virtual rotational (skew symmetric)  

   Time rate of frame connection matrix  
   Angular velocity vector  

   Skew symmetric angular velocity matrix  

3 , dI I   3 × 3 identity matrix 

( )

CJ 
  3 × 3 mass moment of inertia matrix  

K  Kinetic energy 

L   Lagrangian  

 

INTRODUCTION 
 

Engineering background 

 

The Norwegian oil adventure began in 1969 with the discovery 

of one of the world’s largest oil fields at sea, Ekofisk. This 

discovery precipitated a need for the development of new 

technology but within the fabric of Norwegian life such as safety 

and sustainability.  Norwegians realized that remotely operated 

vehicles could overcome the challenges of hazardous 

environments.   

 

The US Navy provided some of the first remotely operated 

vehicles (ROV) in the 1960’s. In later years, the ROV has 

become an important tool within a number of fields such as the 

aquaculture and marine industry. 

 

Today the ROVs are often custom made, making them especially 

applicable to specific tasks and situations. Some design elements 

are common, such as umbilical cables, multiple cameras, and one 

or two robotic arms [1]. Additionally, the frame contains 

thrusters to enable the ROV to move. However, vehicles 

designed for a specific task are often susceptible to rapid changes 

in their environment such as forces that alter that designed 

trajectory. 

 

FIGURE 1. Typical ROV 

Operating conditions expose the ROV to several different forces 

such as currency, buoyancy, and waves [2, 3, 4]. These forces 

affect the motion of the ROV, causing it to translate and rotate. 

Consequently, there is a significant increase in the risk of wear 

and damage on the ROV, and possible failure to achieve its goals. 

A pilot often manually operates the ROV to mitigate the risk of 

damage. The pilot continuously corrects the position and 

orientation of the vehicle. It is important to understand how the 

forces affect the motion of the ROV in order to correct the 

movements instantaneously. This is more effective than 

adjusting the ROV after the movement has already occurred.   

However, the incipience of smart machines and artificial 

intelligence beckons a more efficient and readily programmable 

means of predicting motion. 

 

In this paper, an analysis of the forces and the resulting motions 

of the ROV will extend the work of a previous paper [5].  As 

important, we will introduce and deploy a new approach to 

dynamics: the Moving Frame Method.   

 

The Moving Frame Method 

 

This paper leverages its analysis of the new Moving Frame 

Method (MFM), as applied to multi-body systems. 

 

Élie Cartan (1869-1951) [6] assigned a reference frame to each 

point of an object under study (a curve, a surface, Euclidean 

space itself).  Then, using an orthonormal expansion, he 

expressed the rate of change of the frame in terms of the frame.  

The MFM leverages this by placing a reference frame on every 

moving link.  However, then we need a method to connect 

moving frames.  For this, we turn to Sophus Lie. 

 

Marius Sophus Lie (1842-1899) developed the theory of 

continuous groups and their associated algebras.  The MFM 

adopts the mathematics of rotation groups and their algebras, yet 

distils them to simple matrix multiplications.  However, then we 

need a simplifying notation.  For this, we turn to Frankel. 

 

Ted Frankel [7] developed a compact notation in geometrical 

physics.  The MFM adopts this notation to enable a methodology 

that is identical for both 2D and 3D analyses. The notation is also 

identical for single bodies and multi-body linked systems.  In 

turn, this uplifts students’ understanding from the conceptual to 

the pragmatic, enabling them to analyze machines of the 3D 

world.  An introduction and pedagogical assessment may be 

found in the work of Impelluso [8].  Allow us to introduce the 

MFM. 

 

The MFM has been used elsewhere.  The MFM has been used to 

model how to stabilize ships at sea [9].  The MFM has been used 

to model Gyroscopic wave energy [10].  Finally, it has also been 

used to model a one-arm ROV [11]. 

 

This current study is new for several reasons.  In this project, we 

demonstrate that the MFM and its notation, presents such simple 

commonalities, that the aforementioned domain areas are all 

modeled similarly.  In this way, we continue the path to a 

common code.  Furthermore, we demonstrate that a simple 

algebraic notation extends a 1-arm ROV model to a 2-arm 

model.  In addition, we use a new numerical integration scheme.  

Finally, we show that the MFM makes international 

collaborations feasible, for this current work was conducted by a 

team of students in Bergen, Norway and New York City. 
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GENERAL INTRODUCTION TO MFM: SE(3) 
 

A general multi-body system consists of multiple linked bodies. 

With = 1, 2, 3, … as a superscripts for bodies, each individual 

body is endowed with its own moving Cartesian coordinate 

system: 

 

 ( ) ( ) ( ) ( )

1 2 3( ) ( ) ( )( )
T

cs tt s st ts   =                    (1) 

 

We define a body frame by partial derivatives of the coordinate 

functions: 

 

   ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 1 2 3( ) ( ) ( ) / / /t t t s s s     =      e e e           (2) 

Thus, ( )( ) ( ) ( ) ( )

1 2 3( ) ( ) ( ) ( )t t t t   =e e e e is a time-dependent 

moving frame, associated with the () moving body.  Subscripts 

1, 2, and 3 represent three orthogonal directions. 

 

When necessary, we derive an inertial frame at the start of the 

analysis from the first body: 

 

   ( ) ( ) ( )

1 2 3 1 2 3(0) (0) (0)I I I   =e e e e e e                  (3) 

 

Kinematics of frames in general 

 

Initially, we allow a body to translate.  We designate the center 

of mass of the boat with subscript-C.  We use the inertial frame 

when assessing the translation of the first body. We represent this 

first translation with “x,” reserving “s” for position vectors 

formulated in moving frames: 

 
( ) ( )( ) ( )I

c ct x t =r e                                   (4) 

 

In Equation (4) the frame is placed as a row vector before the 

components. With the use of this notation, the rotation matrices 

are viewed as matrix operators on columns of components [7].  

The vector 
( 1/ ) ( )cs t +

represents the position to the center of mass 

( 1) ( )c t +
 a child body from the center of mass 

( ) ( )c t
of the 

parent body.  We express this vector in the parent frame as: 

            

 
( 1/ ) ( ) ( 1/ )( ) ( ) ( )c ct t s t    + +=s e                          (5) 

 

Combined with the vector to locate the parent body from the 

inertial frame, the absolute location of the child frame is:  

 

( )( 1) ( ) ( ) ( 1/ ) ( )( ) ( )c c ct tt t s    + += +r r e                     (6) 

 

To orient the moving frame, we use 
( ) ( )R t

, a  3 3  rotation 

matrix 
( ) ( )R t

. This notation expresses the rotation of body

vector-basis 
( ) ( )t

e from inertial vector-basis 
( )I

e : 

 
( ) ( ) ( )( ) ( )It R t =e e                                     (7) 

 

The vector-basis 
( 1) ( )t+

e  and the relative rotation of a body

( 1) + , is given by a relative rotation matrix 
( 1/ ) ( )R t +

 as: 

 
( 1) ( ) ( 1/ )( ) ( ) ( )t t R t   + +=e e                              (8) 

 

This can also be expressed in the inertial frame by utilizing the 

group nature of SO(3): 

( 1) ( ) ( ) ( 1/ ) ( ) ( 1/ )( ) ( ) ( )( )I It R R tt R t     + + += =e e e               (9)                  

The inverse of a rotation matrix is the transpose (a property of 

SO(3)):  

( ) ( )
1

( ) ( )( ) ( )
T

R t R t −

=                               (10) 

The time rate of frame rotation is: 

 
( ) ( ) )  ( ) (= I Rt t 

e e                                     (11) 

By post-multiplying both sides of equation (7) with ( )( ) ( )
T

R t

(exploiting the orthogonality of SO(3)), and inserting the result 

in (11) we find:  

 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )  =
T

t t t tR R   
e e                      (12) 

 

We define the skew-symmetric angular velocity matrix.  We note 

that this element is a member of the associated algebra, so(3):  

 

( )

( ) ( )

3 2

( ) ( ) ( ) ( ) ( )

3 1

( ) ( )

2 1

( ) ( )

( ) ( ) ( ) ( ) ( )

0

0)

0

( ( )

T

R

t t

t t t t t

t

R

t

 

    

 

 

  

 

 −
 

= = − 
 − 

     (13) 

 

We can now write Equation (12) as:  

 
( ) ( ) ( )( ) ( ) ( )=t t t  e e                                 (14) 

 

Thus, we have now obtained the time rate of frame rotation in its 

own frame.   The skew-symmetric angular velocity matrix is 

isomorphic to angular velocity vector, when we associate the 

components with the moving frame: 

 
( )

1

( ) (α) ( )

2

( )

3

( )

( ) ( ) ( )

( )

t

t t t

t



 









 
 

=  
 
 

e                         (15)           

The powerful distinction now, from the current pedagogy, is 

that the frame is time dependent. 
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Frame Connections Matrices 

 

In this section, we group the rotation and displacement in one 

structure which we designate as a homogeneous transformation 

matrix. Denavit and Hartenberg [12] used such homogenous 

transformation matrices, but did not recognize at the time that 

such transformations were members of the Special Euclidean 

Group denoted as SE(3). The MFM recognizes and exploits the 

algebra, se(3), associated with the group SE(3).  A more thorough 

development of the theory is found in reference [13]. 

 

The body-  frame connection is the combination of the frame 

and its location, expressed as: 

 

( )( ) ( )( ) ( )t t 
re                                 (16) 

 

The inertial frame connection, where bold 0 identifies the 

origin, is expressed as: 

 

( )I
e 0                                       (17) 

We define by a frame connection matrix 
( )E 

that accounts for 

both the rotation and translation: 

 
( ) ( )

( )

1 3

( ) ( )
( )

0 1

c

x

R t x t
E t

 


 
=  
 

                           (18) 

 

As a result, we may state: 

           

  ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) 0 ( )It t t E t  =e r e                  (19) 

 

The notation recovers in (19) and (18) Equation (4) and (7).   

 

The relation between the child body ( 1) + frame and the parent 

body- -frame is expressed by the relative connection matrix 
( 1/ ) ( )tE  +

 

 

( ) ( )( 1) ( 1) ( ) ( ) ( 1/ )( ) ( ) ( ) ( ) ( )t t t t E t     + + +=e rr e       (20)        

 

Where: 
( 1/ ) ( 1/ )

( 1/ )

1 3

( ) ( )
( )

0 1

c

x

R t s t
E t

   
 

+ +

+
 

=  
 

                    (21) 

 

Equation (21) and (20) recovers (6) and (8). 

 

 
 
 
 
 
 
 

2-ARM ROV ANALYSIS 

 
FIGURE 2. Model system description 

 
The analysis commences with the first component in a linked 

structure: the frame of the ROV. From the ROV, we progress 

systematically to the first arm’s proximal and distal link.  Then, 

we return to the ROV and progress to the second arm.  We assign 

a Cartesian coordinate frame to each component.  We number the 

frames in ascending order, starting with the ROV and up to the 

second, distal, arm as the third frame. The following section 

contains a general overview of the MFM as applied to linked 

systems. 

In Figure 2, the initial (2) axis is vertical; the initial (3) axis is 

directed along the links, and the (1) axis conforms to the right 

hand rule. 

The frame connection matrix, 
(1) ( )E t , for the ROV includes 

the rotation matrix 
(1) ( )R t  and the position 

(1) ( )cx t   

(1) (1)

(

1 3

1) ( )
( )

0

( )

1x

cR t x t
E t

 
=  
 

                            (22) 

We obtain the time derivative of the frame connection matrix by 

taking the time derivative of each term: 

(

1 3

1) (1)

(1) ( ) ( )
(

00
) c

x

R t x t
E t

 
=  
 

                            (23) 

As a member of SE(3), the inverse of the frame connection 

matrix is analytically known: 

( ) ( ) ( )(

1

(1) 1) (1)
1

3

(1)

0

( ) ( ) ( )
( )

1

T T

x

cR t R t x t
E t

−  −
 =
  

              (24) 

We express the rate of change of the frame connection, in terms 

of the same frame connection.  Thus, we progress:  

( ) ( )(1) (1) (1)( ) ( ) 0 ( )I

ct t E t=e r e                     (25) 

( ) ( )( )
1

(1) (1) (1) (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( )c ct t t t E t E t
−

=e r e r     (26a) 

We define the product of ( )
1

(1) ( )E t
−

and 
(1) ( )E t  the time rate of 

the frame connection matrix, as  
(1) ( )t : 
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( )
1

(1) 1 1( ) ( ) ( )t E t E t
−

 =                          (26b) 

Thus: 

( ) ( ) ( )(1) (1) (1) (1) (1)( ) ( ) ( ) ( )c ct t t t t= e r e r              (27) 

When multiplying Eq. (26), we obtain the following: 

( ) ( )(1) (1) (1) (1)

1

( )

3

1 ( ) ( ) ( ) ( )
( )

0 0

T T

c

x

R t R t R t x t
t

 
  =
  

          (28) 

(

1 3

(1) 1)
(1) ( ) ( )

( )
00 x

ct v t
t

 
 =  

  

                          (29) 

This matrix provides information about the linear and angular 

velocities of the coordinate frame attached to the ROV.   

Thus, we can recover equations the following: 

( )(1) (1) (1)( ) ( ) ( )
T

t R t R t =                                 (30) 

(1) (1) (1) (1)( ) ( ) ( )I

C C Ct v t x t= =r e e                                (31) 

Kinematics of the second body: the proximal link, first arm 

The first link of the robotic arm is the second body of the system. 

Attach a coordinate frame 
(2) ( )te to the center of mass 

(1)C of the 

link:  

( )(2) (2) (2) (2)

1 2 3( ) ( ) ( ) ( )t t t t=e e e e                    (32) 

We affirm the relative position from  
(1) ( )te  to 

(2) ( )te by first 

translating from the center of mass 
(1)C of the ROV to the joint 

where the rotation happens. This translation from 
(1)C to the joint

1J is obtained by moving in the 3-direction, half the total length 

of the ROV:  

(1) (1) (1) (1)

(1)

/ 3

( ) ( ) 0

/ 2

j j

h

t s t

l

 
 

= =  
 
 

s e e                         (33) 

At the first joint, the rotation happens about the second axis (we 

are restricting this model to a revolute joint), which gives the 

following frame relation and rotation matrix about the shared 2-

axis:  

(1) (1)

(2) (1) (2/1) (1)

(1) (1)

cos ( ) 0 sin ( )

( ) ( ) ( ) ( ) 0 1 0

sin ( ) 0 cos ( )

t t

t t R t t

t t

 

 

 
 

= =  
 − 

e e e
           (34) 

Finally, we obtain the last translation from the joint 1J  to the 

center of mass of the first link by moving in the 3- direction, half 

the total length of the first link. We express this translation using 

the 
(2)

e -frame:  

(2) (2) (2) (2)

(2)

0

( ) ( ) ( ) 0

/ 2

c ct t s t

l

 
 

= =  
 
 

s e e                      (35) 

We express the structural relation between the first and second 

frame connections using the relative frame connection matrix 
(2/1) ( )E t :  

( ) ( )(2) (2) (1) (1) (2/1)( ) ( ) ( ) ( ) ( )c ct t t t E t=e r e r                (36) 

We obtain this frame connection matrix by taking each of the 

steps described above: translating half the length of the ROV 

without rotation, rotating at the joint without translation, and 

finally translating half the length of the first link without rotation:  

( )

( )(

1 3

1 3 1 3

2/1(2/1)
(2/1)

2(1) 2/1)

1 3

( ) ( )
( )

1

0

( ) 0

0 01 1

0

1

x

c

x x x

c

j

R t s t
E t

I s R t I s

 
=  
  

    
=     

      

             (37) 

We carry out this matrix multiplication and obtain:  

( )2(2/1) (2/1) (1)
(2/1)

3

( ) ( )
( )

0 1

c j

T

R t R t s s
E t

 +
=  
  

                  (38) 

The second frame connection is related to the inertial frame 

connection through the absolute frame connection matrix 
(2) ( )E t : 

( ) ( ) ( )(2) (2) (1) (2/1) (2)( ) ( ) 0 ( ) ( ) 0 ( )I I

ct t E t E t E t= =e r e e  (39) 

(2) ( )E t is of the form: 

(2) (2)

(2)

1 3

)(
(

) (
)

0 1

c

x

R x t
E

t
t

 
=  
 

                        (40) 

When multiplying the above marices we obtain the following: 

( )( )

(2) (1) (2/1)

2(2) (1) (2/1) (1)

( )

(

( ) ( )

) ( ) ( )c c j

R R t R

x t R s

t t

tt R s= +

=
                   (41) 

As with the ROV, the frame connection matrix, its inverse and 

derivative are used to calculate the time rate of the frame 
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connection, 
(2) ( ) t . From this, the rates are extracted. 

(2) ( )t  

are the components of the angular velocity matrix of the first link 

of the arm:  

( )(2) (2/1) (1) (2/1)( ) ( ) ( ) ( )
T

t R t t t  = +                  (42) 

We desired to simplify this. The rotation of the first link relative 

to the ROV body happens about one single axis, according to Eq. 

(34). Thus, the last term in (42) can be expressed by: 
(1)

2 ( )te  , 

where  

2

0

1

0

e

 
 

=  
 
 

                                       (43) 

Thus: 

( ) ( ) ( )) (

2

(2) (2/1 1) )(1( ) ( )
T

t R t t e t = +                 (44) 

And: 

( )( ) ( ) ( )

( )( ) ( )

(2)

2(1) (2/1) (2/1) (1) (1) (1)

2(1) ( )12/

2

1) (

( )

( ) ( ) ( ) ( ) ( )

( ) ( )

T TT

c j

T

c

v t

R t R t s R t R t s t

R t R t s te 



=

  
+ +  

  
 
 
 

  

(45) 

Kinematics of the second body: the distal link, first arm 

The second link of the arm is the third body of the system. Attach 

the next frame
(3) ( )te , to the center of mass. 

( )(3) (3) (3) (3)

1 2 3( ) ( ) ( ) ( )t t t t=e e e e                     (46) 

Again, we choose a simplification and assume a revolute joint 

enables the rotation about the shared 1st axis. Thus, the rotation 

matrix of the third frame from the second is a standard matrix:  

( )(3/2) (2) (2)

(2) (2)

1 0 0

0 cos ( ) sin ( )

0 sin ( ) cos ( )

R t t t

t t

 

 

 
 

= −
 
  

                        (47) 

Continuing, we obtain the third frame from the second by 

translating the second half of the length of the first link (in the 

second frame), then rotating at the joint, and finally translating 

half the length of the second link to the center of mass 
(3)C  (in 

the third frame) we designate these translations as:  

( ) ( ) ( )(2) (2) (2) (2)

(2)

0

0

/ 2

j jt t s t

l

 
 

= =  
 
 

s e e                     (48a) 

( ) ( ) ( )(3) (3) (3) (3)

(3)

0

0

/ 2

c ct t s t

l

 
 

= =  
 
 

s e e                     (48b) 

The frame connection matrix that relates the two frames 

becomes:  

( )

( )(

1 3 1 3 1

3(2) (3/2)

(3/2)

33/2) (3

3

/2) )

1

(

3

2

0

( ) 0
( )

1 1 1

( ) ( )

0

1

0

0

x x x

x

j c

c j

I s R t I s
E t

R t R t s s

    
=     

      

 +
=  
  

             (49) 

We can now establish the relative frame connection matrix
(3/2) ( )E t : 

( ) ( )(3) (3) (2) (2) (3/2)( ) ( ) ( ) ( ) ( )c ct t t t E t=e r e r               (50) 

We can then establish the absolute frame connection matrix 
(3) ( )E t   

( ) ( )

( )

(3) (3) (1) (2/1) (3/2)

(3)

( ) ( ) 0 ( ) ( ) ( )

0 ( )

I

c

I

t t E t E t E t

E t

=

=

e r e

e
         (51) 

(3) ( )E t is the absolute frame connection matrix of the third frame 

from the inertial and is on the form:  

(3) (3)

(

1 3

3) ( )
( )

0

( )

1x

cR t x t
E t

 
=  
 

                            (52)  

By multiplying the matrices in the above equation, one can 

obtain the absolute rotation 
(3) ( )R t  and position 

(3) ( )cx t of the 

third frame from the inertia: 

(3) (1) (2/1) (3/2)( ) ( ) ( ) ( )R t R t R t R t=                         (53)  

( )( )
( )( )

3(3) (1) (2/1) (3/2) (2)

2(1) (2/1) (1) (1)

( ( ) ( )( ) )

( ) ( ) ( )

c c j

c j

x st tt R t R R s

R t R t s R t s

= +

+ +

                    (54)  

Through further manipulations similar to the previous links, we 

obtain the rates for the second link. The angular velocity vector 

of the third frame is:  



 7 Copyright © 2019 by ASME 

( ) ( )

( )

(3) (3/2) (2/1) (1)

(3/2) (1) (2)

2 1

( ) ( ) ( ) ( )

( ) ( ) ( )

=

+ +

T T

T

t R t R t t

R t e t e t

 

 

                 (55) 

The linear velocity vector of the third frame from the inertial: 

( )( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

(3)

3(1) (2/1) (3/2) (3/2) (2/1)

(1) (2/1) (2) (2/1) (1)

2(1) (2/1) (2/1) (1) (1)

(1) (2/1) (3/

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T
T T

c

T T

j

T TT

c j

v

R t R t R t s R t R t

R t R t s R t t

R t R t s R t R t s

R t R t R



=

 
+ 

 
 + +
 
 

+ 
 

( )( ) ( )

( ) ( )( )

( )( )

32) (3/2)

(1)

2

2(1) (2/1) (2) (1) (2/1)

3(1) (2/1) (3/2) (2)

1

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
T

c

TT

j c

T

c

t s R t
e t

R t R t s R t R t s

R t R t R t s e t





 
+ 

+ 
 +
 

 
 
 

(56) 

We still desired to simplify this. The rotation of the both links 

relative to the ROV body happens about one single axis each, 

and we use this: 

(3/2) (2)

1

(2/1) (1)

2

( ) ( )

( ) ( )

t e t

t e t

 

 

=

=
                               (57) 

 

Kinematics of the fourth body: proximal and distal arm 

 

The entire second arm has the same notation as the first. Only 

difference will be the translation between the frames from center 

of mas of the boat, to the first link: 

( ) ( ) ( )(3) (1) (3) (1)

(1)

/ 3

0

/ 2

j j

h

t t s t

l

− 
 

= =  
 
 

s e e                   (58) 

The other difference will be the notational designation of the 

angles, wich will be notated as 
(1) ( )t and 

(2) ( )t . This give us 

the following omegas and xdot for the first link: 

( )(4) (4/1) (1) (1)

2( ) ( ) ( )
T

R t t e t  = +                   (59)  

( )( ) ( ) ( )

( )( )

(4)

4(1) (4/1) (4/1) (1) (3) (1)

4(1) (4/1) (1)

2

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T TT

c j

T

c

v t

R t R t s R t R t s t

R t R t s e t





=

  
+ +  

  
 
 
 

 

(60) 

Then, the distal link: 

( ) ( )

( )

(5) (5/4) (4/1) (1)

(5/4) (1) (2)

2 1

( ) ( ) ( ) ( )

( ) ( ) ( )

=

+ +

T T

T

t R t R t t

R t e t e t

 

 

                      (61) 

( )( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

(5)

5(1) (4/1) (5/4) (5/4) (4/1)

(1) (4/1) (4) (4/1) (1)

4(1) (4/1) (4/1) (1) (3)

(1) (4/1) (5/

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T
T T

c

T T

j

T TT

c j

v

R t R t R t s R t R t

R t R t s R t t

R t R t s R t R t s

R t R t R



=

 
+ 

 
 + +
 
 

+ 
 

( )( ) ( )

( ) ( )( )

( )( )

34) (3/2)

(1)

2

4(1) (4/1) (4) (1) (4/1)

5(1) (4/1) (5/4) (2)

1

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
T

c

TT

j c

T

c

t s R t
e t

R t R t s R t R t s

R t R t R t s e t





 
+ 

+ 
 +
 

 
 
 

         

(62) 

GENERALIZED COORDINATES   

The first goal is to exploit a minimal set of generalized 

coordinates.  To do this, we must find a more efficient means to 

express Eqs. (30), (31) (44), (45), (55), (56), (59), (60), (61) and 

(62). We have so far established generalized Cartesian velocities 

stated in a 27x1 column matrix  ( )X t  in (X) (wherein, each 

individual term represents three components). 

 

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(5)

(5)

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )

C

C

C

C

t

x t

t

x t

X t t

x t

t

x t

t











 
 
 
 
 
 
 
 
 
 
 
 
 
 

          
 

(1)

(1)

(2)

(1)

(2)

( )

( )

( ) ( )

( )

( )

 
 
 
 =
 
 
 
 

t

t

q t t

t

t











             (63) 

However, these can be expressed by the translational velocity 

and angular velocity 
(1) ( )t  of the ROV,the angular speed of the 
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gimbal ( )t  and angular speed of the disk ( )t  . We refer to 

these as the essential generalized velocities. They are represented 

in a 5x1 column matrix  ( )q t  as shown in Eq. (63). By means 

of Eqs. (30), (31) (44), (45), (55), (56), (59), (60), (61) and 

(62).we relate the generalized velocities linearly with the 

essential generalized velocities using: 

    ( ) ( ) ( )X t B t q t=                              (64a) 

 

 ( )B t  represents a 27x7 matrix whose non-zero entries are: 

( )

( )

( )

( )

3 1 3 1 3 1 3 1

21 22
3 1 3 1 3 1

(2/1)

2
3 1 3 1 3 1

41 42 43
3 1 3 1

(3/2)

51 2 1
3 1 3 1

61 64
3 1 3 1 3 1

(4/1)

2
3 1 3 1 3 1

81 84 85
3 1 3 1

(5/4)

91 2 1
3 1 3 1

0 0 0 0

0 0 0

( ) 0 0 0

0 0

( ) 0 0

0 0 0

( ) 0 0 0

0 0

0 0 ( )

T

T

T

T

B

I

B B

R t e

B B B

B R t e e

B B

R t e

B B B

B R t e e

   

  

  

 

 

  

  

 

 











= 


















 
 
 
 
 
 



               (64b) 

Block terms are defined in the appendix 

 

We now set aside this B matrix and turn to kinetics. Until 

otherwise noted, we will return to considering the generalized 

Cartesian velocities,  ( )X t , and hold the essential generalized 

velocities,  ( )q t , in abeyance until they are needed. 

 

KINETICS 
 

Kinetic energy K includes translation energy and rotational 

energy regarding each center of mass.  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

2

T T

C C CK x m x J       = +         (65) 

 

We use this in Hamilton’s Principle, reformed as the Principle of 

Virtual work with all work (conservative and non-conservative) 

on the right side and where the Lagrangian (and its variation) 

now consists only of the kinetic energy of translation and 

rotation. 

 ( ) ( )
1 1

0 0

( ) ( )

t t

t t

K t dt W t dt  = −                          (66) 

Variations 

We will need to take derivatives in the “direction” of the 

variation. The directional derivatives with   are called the 

Gâteaux-derivatives in the functional space theory.  The position 

vector 
( )

c


r  is expressed as 

( ) ( )I

c cx =r e .This enables us to 

express the variation of the translation of a body-α from an 

inertial frame. Noting that 0I =e , we find: 

( ) ( )I

C Cr e x  =                                      (67) 

The commutativity of mixed partials readily holds for 

translational velocity and one obtains the obvious: 

( ) ( )( ) ( )C C

d
x t x t

dt

  
 

=  
 

                             (68) 

However, the variation of the angular velocity is restricted in 3D 

space. This was found by Murakami[10] and independently by 

Holm [14]. First, we define the following term: 

( )( ) ( )( ) ( ) ( ) ( )=
T

t R t R t                             (69) 

Equation (69) term does not exist in is unvaried form. It defines 

the virtual frame-rotation vector δπ(α), in the same way as the 

angular velocity matrix defined the angular velocity in Eq. (13): 

 
( ) ( ) ( )( ) ( ) ( )t t t   = e                               (70) 

By ensuring the commutativity of mixed partials (time and 

variation with regard to the directional derivative of the variation 

parameter), we arrive at a restriction. We find that the variation 

of the angular velocity depends on the virtual frame rotation, 

referred to as restricted variation of virtual angular velocity: 

( ) ( ) ( )     = +                                (71) 

Moment versus virtual rotation represent a natural pair. They are 

conjugate to the moment M expressed with the body frame. 

Moment versus virtual rotation is a natural pair: Hamilton’s 

principle, which yields Euler’s equation. This was the weakest 

point in the classical multibody dynamics. Wittenburg [15, 16] 

postulated the principle of virtual power to use the weighted form 

of Euler’s equation by the virtual angular velocity.  However, 

moment and omega define the power, not the work. This was the 

weakest point in the classical multibody dynamics and the MFM 

has now rectified this. To take the variation we collate the 

unrestricted virtual generalized displacements  X : 

 

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(5)

(5)

x

x

x
X

x

x






















 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

                                   (72) 

The next step is to structure the relationships in Eq. (68) and (70). 

To accomplish this, we first define a system which consists of 

block matrices on the diagonal, and zero elsewhere. 
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The diagonals contain the skew symmetric angular velocity 

matrix of each body, with zero elsewhere as follows 

 

  (1) ( ) (5)

3 3 3 3 3 3
0 ( ) 0 ( ) 0 ( )i

diagonal
D t t t  

  

 =
 

           (73) 

 D  is skew symmetric. Thus:    
T

D D= − . Continuing, we 

combine (X) and (X) into one equation is as follows: 

    
• 

= + 
 

X X D X                           (74) 

Finally, there is one important issue. The system generalized 

velocity  ( )X t and the essential generalized velocity  ( )q t

are linearly related through the  ( )B t -matrix (X). In the same 

way, since they represent derivatives, the same B matrix relates 

the virtual generalized displacements and the essential 

generalized coordinates. 

 

    ( ) ( ) ( )X t B t q t =                           (75) 

 

Principle of virtual work 

 

Hamilton’s Principle is for a system with conservative force. 

Engineers, however, developed the Principle of Virtual Work that 

includes non-conservative forces. However, to use it, we ignore 

the potential energy and absorb all applied forces into the Work 

done on the system. We obtain the variation of the Lagrangian: 

 

( )    ( ) ˆ =
T

L X t M X t                                  (76) 

 

We obtain the variation of the work, W , done by  ( )F t : 

   ( )
T

W X F t =                                  (77) 

 

For the applied forces, we have: 

 

 

(1) (1)

2

(1) (1)

2

(2) (2)

2

(2) (1) (2)

2 1

(3) (3)

2

(3) (2)

1

(4) (4)

4

(4)

(5)

(5)

( )

( ) ( )

( )

( ) ( ) ( )

( )
( )

( ) ( )

( )

( )

( )

( )

I I

C b

C m

I

C

C m m

I

C

C m

I

C

C

I

C

C

F t F m ge

M t M t e

F t m ge

M t M t e M t e

F t m ge
F t

M t M t e

F t m ge

M t

F t

M t

  −
 

− 
  −
 

− 
  −
 = =
 
 

− 
 
 
 
 
 

4 (5)

5 4

(5)

4

(5)

4

( ) ( )

( )

m m

m

M t e M t e

m ge

M t e

 
 
 
 
 
 
 
 
 
 
 
 −
 

− 
 
 

         (78) 

 

We interpret these forces as follows: 

 
I

bF =  Force from buoyancy 

(1)

2m ge =  Gravitational force on ROV main body 

(1)

2( )mM t e− =  Reverse moment on ROV caused by the first 

motor 
(1)

2( )mM t e =  Forward moment on the proximal arm by the first 

motor 
(2)

2m ge− =  Gravitational force on the first link of the arm 

(2)

1( )mM t e− =  Reverse moment on distal arm caused by second 

motor 
(2)

1( )mM t e =  Forward moment on distal arm caused by second 

motor 
(3)

2m ge− =  Gravitational force on the second link 

(4)

4m ge− =  Gravitational force on the third link 

(5)

4( )mM t e− =  Reverse moment on proximal arm by the third 

motor 
4

5( )mM t e =  Forward moment on proximal arm by the third 

motor 
(5)

4m ge− =  Gravitational force on the fourth link  

(5)

4( )mM t e =  Forward moment on distal arm by the fourth motor 

 

The final form of the variation of the action becomes:  

 

        ( )
1

0

( ) ( ) ( ) ( ) 0

t
TT

t

X t M X t X t F t dt + =       (79) 

 

Equation of motion 

 

By making all the substitutions and carrying out the calculus of 

variations, one obtains the following (where steps are skipped 

and only critical plateaus provided): 

 

Define the following: 

 

      *( ) ( ) ( )
T

M t B t M B t                            (80) 

 

         ( )*( ) ( ) ( ) ( ) ( ) ( )
T

N t B t M t B t D t M B t  + 
         (81) 

 

     *( ) ( ) ( )
T

F t B t F t=                              (82) 

 

       *( ) ( ) *( ) ( ) *( )M t q t N t q t F t+ =             (83) 

 

The result is a series of five coupled homogenous differential 

equations. 
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Updating the ROV’s rotation matrix 

 

The rotation matrices for the two arms are standard, due to the 

derivation from revolute joints. However, we must know the 

rotation matrix of the ROV for several reasons. First, it is 

required I the updating of the B matrix. Second, it is required to 

apply added mass forces. Finally, we need it for visualization.  

 

We must reconstruct the rotation matrix of the ROV from the 

angular velocity. We must compute the rotation matrix 
(1) ( )R t  

by solving the following equation: 

 
(1) (1) (1)( ) ( )=R t R t                                (84) 

 

Let us assume for a moment that (1) ( )t is constant and is 

designated as 0 . Then, with initial value (0)R , the solution is: 

 
(1)

0( ) (0)exp( )R t R t=                               (85) 

 

There does exist a known analytical, closed form solution to Eq. 

(84), but only for cases in which 0  is constant. It derives from 

the Cayley Hamilton Theorem and is known as the Rodriguez’ 

rotation formula to obtain a series expansion of the exponential 

of a matrix. 

0

`0

2

0

0

( )
sin( ( ) )

( )
( ) ( )

( )
(1 cos( ( ) ))

( )

d

t t
I t t t

t t
R t t R t

t t
t t t

t t











 + 
+ +  

+  
+  =  

 +  
− +    +   

          (86) 

 

The difficulty is that we do not have a constant angular velocity 

matrix. However, we can approximate its constancy in each time 

step of the numerical integration.  

 

In principle, one need only average this over two-time steps 

using a central difference approximation. However, for ease of 

first pass coding, we violate this rule by assuming a constant 

value at the start of each time step: 

 

( / 2) ( ( ) ( / 2)) / 2t t t t t  +  + +                   (87) 

 

COLLABORATION 
 

This paper is the result of a collaborative research effort between 

a group of students from Western Norway University of Applied 

Sciences in Bergen, Norway and another group of students from 

the Cooper Union in New York, USA. 

 

Approach 

 

Both groups of students are locally mentored, but they share their 

questions, knowledge and insights via email and skype. The goal 

has been to independently extract the equations of motion for a 

double-armed ROV.   

 

 

 

Implementation 

 

The Norway team implements the integration of the equations of 

motion and visualization of the ROV motion in JavaScripts and 

WebGL [17].  The Cooper team focuses on implementation in 

Python.   While the Norway team is engaged in a similar project 

for a crane on a ship and is implementing an automated approach 

to the B assembly, the team in NYC has independently arrived at 

the same point.  Clearly, this new method has opened vistas for 

advanced dynamics work and international collaboration at the 

undergraduate level 

 

The MFM is new.  Companies or Universities may wonder why 

the need to switch methods.  We assert that this project was 

conducted by undergraduate students.  The MVM enables 

advanced work in dynamics while encouraging collaboration. 

 
RESULTS AND DISCUSSION 
 
The goals of this project were at the intersection of research and 

education.  This project represented an ambitious attempt to do 

three things at once: 1) initiate a collaboration between a school 

in NYC and in Norway, 2) conduct a first international senior 

design project with diverse students, and 3) advance ongoing 

research into ROV dynamics.  We did not completely succeed.  

We affirm that students at both schools were able to secure the 

equations of motion of the ROV system, under applied driving 

torques on a dual arm system; and this was the most essential 

aspect of the research facet. The MFM is new, yet consistent.  

Last year’s simpler project secured the equations and develop the 

3D code for one arm, conducted at one school in a longer time 

frame.  The reader may view last year’s site: 

 

http://home.hib.no/prosjekter/dynamics/2019/ROV 

 

This year, we are not able to confirm coding success.  Despite an 

ongoing bug in both visualization codes (one, which we expect 

to be found, mostly likely within a few weeks—as is often the 

case—and, if so, we will report that web site), both teams 

reported positive impressions from this collaborative project. 

After all, the primary focus of this work was education, 

collaboration and dissemination of a new method.   

 

The MFM is daunting on first appearance. A casual reader 

immediately feels secure in the notation and methodology: one 

in which the notation for 2D and 3D, single bodies and multi-

bodies is identical; however, that impression belies potential 

coding complexities.  All members of this project—advisors and 

students—bear some responsibility for not anticipating the 

coding complexities.  

 

http://home.hib.no/prosjekter/dynamics/2019/ROV
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The project was successful in that the students at Cooper Union 

took one approach after working out the critical B matrix.  They 

discovered a process to automate the construction of the B 

matrix.  They attempted to code the results in Python.   

 

The students at HVL took a second approach, after securing the 

B matrix.  They attempted to code the results in Javascript. 

 

The Cooper students report that the collaboration has been an 

invaluable addition to their education. In particular, the 

Norwegian students, being older and farther along in their 

education, were able to convey new insights into the MFM 

methodology. In addition, the Cooper students felt that the 

Norwegian students seemed to have a more practical real-world 

understanding of the MFM and dynamics. The students, 

however, rose above their concerns.  It must be stated that the 

Norwegian students were working under the guidance of one of 

the developers of the MFM.  As a result of these experiences, the 

Cooper students have been inspired to travel and study abroad.  

All the students report having been inspired by this project and 

the collaboration—and this is our definitive success.   

 

We will attempt this again.  In today’s world-wide community, 

international collaborations are equally as critical as new 

approaches to engineering. We have learned that a collaborative 

international bachelor project requires more intervention and 

guidance from the faculty, than a normal project.  During the 

Utah IMECE conference, members from both teams will meet 

and discuss a more organized approach for next year’s projects.  

 

APPENDIX 
 

( )( ) ( ) ( )2(1) (2/1) (2/1) (1) (1)

21 ( ) ( ) ( ) ( )
T TT

c jB R t R t s R t R t s
 

= + 
 

(88) 

 

( )( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

3(1) (2/1) (3/2) (3/2) (2/1)

(1) (2/1) (2) (2/1)

41

2(1) (2/1) (2/1) (1) (1)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

T
T T

c

T T

j

T TT

c j

R t R t R t s R t R t

B R t R t s R t

R t R t s R t R t s

 
+ 

 
 = +
 
 

+ 
 

 

(89) 

 

( ) ( )(3/2) (2/1)

51 ( ) ( )
T T

B R t R t=                     (90)  

 

( )( ) ( ) ( )4(1) (4/1) (4/1) (1) (3)

61 ( ) ( ) ( ) ( )
T TT

c jB R t R t s R t R t s
 

= + 
 

(91) 

 

( )( ) ( ) ( )

( ) ( )

( )( ) ( ) ( )

5(1) (4/1) (5/4) (5/4) (4/1)

(1) (4/1) (4) (4/1)

81

4(1) (4/1) (4/1) (1) (3)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

T
T T

c

T T

j

T TT

c j

R t R t R t s R t R t

B R t R t s R t

R t R t s R t R t s

 
+ 

 
 = +
 
 

+ 
 

(92) 

 

( ) ( )(5/4) (4/1)

91 ( ) ( )
T T

B R t R t=                      (93) 

 

( )( )2(1) (2/1)

222 ( ) ( )
T

cB R t R t s e=                     (94) 

 

( )( ) ( )

( ) ( )( )

3(1) (2/1) (3/2) (3/2)

42 2

2(1) (2/1) (2) (1) (2/1)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
T

c

TT

j c

R t R t R t s R t
B e

R t R t s R t R t s

 
+ 

=  
 +
 

    (95) 

 

( )( )3(1) (2/1) (3/2)

43 1( ) ( ) ( )
T

cB R t R t R t s e
 

=  
 

            (96) 

 

( )( )4(1) (4/1)

64 2( ) ( )
T

cB R t R t s e=                     (97) 

 

( )( ) ( )

( ) ( )( )

3(1) (4/1) (5/4) (3/2)

84 2

4(1) (4/1) (4) (1) (4/1)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T
T

c

TT

j c

R t R t R t s R t
B e

R t R t s R t R t s

 
+ 

=  
 +
 

 (98) 

 

( )( )5(1) (4/1) (5/4)

85 1( ) ( ) ( )
T

cB R t R t R t s e
 

=  
 

           (99) 
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