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ABSTRACT 
 
A Knuckle Boom Crane is a pedestal-mounted, slew-bearing 
crane with a joint in the middle of the distal arm; i.e. boom. This 
distal boom articulates at the 'knuckle (i.e.: joint)' and that allows 
it to fold back like a finger. This is an ideal configuration for a 
crane on a ship where storage space is a premium. This project 
researches the motion of a ship mounted knuckle boom crane to 
minimize the pendulum motion of a hanging load. To do this, the 
project leverages the Moving Frame Method (MFM).   The MFM 
draws upon Lie group theory—SO(3) and SE(3)—and Cartan’s 
Moving Frames. This, together with a compact notation from 
geometrical physics, makes it possible to extract the equations of 
motion, expeditiously. The work reported here accounts for the 
masses and geometry of all components, interactive motor 
couples and prepares for buoyancy forces and added mass on the 
ship. This research solves the equations numerically using a 
relatively simple numerical integration scheme. Then, the 
Cayley-Hamilton theorem and Rodriguez’s formula reconstructs 
the rotation matrix for the ship. This work displays the motion 
on 3D web pages, viewable on mobile devices. 
 

NOMENCLATURE 
 
  B-Matrix 

  Combined angular velocity matrix 

:  Generalized force 

:  Force and moment list 
  Angular momentum 
:  3x3 Mass moment of inertia matrix 

  Mass matrix 

  Reduced mass matrix 

  Reduced non-linear velocity matrix 
  Generalized position 

:  Generalized velocity variable list 

:  Generalized acceleration variable list 

  Virtual work 
:  Velocity list 

:  Virtual displacements 

  Variation of frame connection matrix 

  Virtual rotational displacement 
  Time rate of the frame connection matrix 
  Angular velocity vector 
  Skew-symmetric angular velocity matrix 
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INTRODUCTION 
 

Engineering Background 
 
 

FIGURE 1. Knuckle boom crane on a ship [1] 
 
The knuckle boom crane is a pedestal-mounted, slew-bearing 
crane with a joint in the middle of the boom. A knuckle boom 
crane is ideal on big vessels, like Inspection, Maintenance and 
Repair (IMR) vessels, where storage space is a premium. 

 
During offshore operations harsh weather conditions may occur. 
IMR vessels are equipped for this kind of weather. Most cranes 
have active heave compensation (AHC), which adjusts the 
hanging cable to keep the load stable despite motion of the ship, 
but AHC is used when the load is beneath the surface of the 
water.  There is a need for more accurate control of suspended 
objects; and, thus, for the analysis of crane-induced ship motion. 
 
A control system would sense motion in the ship due to waves 
and wind, and keep the crane tip in a set position. 
 
This could prove beneficial in many scenarios at sea. Examples 
of scenarios may be: deployment of a load close to platform 
during high waves or when loading from one vessel to another.  
 
GOALS 
 
As a research paper, this project wants to model and do the 
calculations, in realistic dimensions, for a knuckle boom crane 
on a vessel. And with this, eventually make a control system for 
a knuckle boom crane to reduce pendulum motion. The work in 
this paper is built upon previous work by Jardim, et. Al. [3] by 
adding an extra boom to the crane. 
 
As a pedagogical paper, it introduces the MFM.  The MFM 
obviates complexities introduced by an injudicious use of vector 
algebra in 3D dynamics. 
 
The work will demonstrate how the 3D web can enhance 
engineering analyses with visualization.  
 
With this in mind, we first introduce the Moving Frame Method. 
 
 

THE MOVING FRAME METHOD 
 
Élie Cartan (1869-1951) [4] assigned a reference frame to each 
point of an object under study (a curve, a surface, Euclidean 
space itself). Then, using an orthonormal expansion, he 
expressed the rate of change of the frame in terms of the frame.  
The MFM leverages this by placing a reference frame on every 
moving link.  However, then we need a method to connect 
moving frames.  For this, we turn to Sophus Lie. 
 
Marius Sophus Lie (1842-1899) developed the theory of 
continuous groups and their associated algebras.  The MFM 
adopts the mathematics of rotation groups and their algebras, yet 
distils them to simple matrix multiplications.  However, then we 
need a simplifying notation.  For this, we turn to Frankel. 
 
Ted Frankel [5] developed a compact notation in geometrical 
physics.  The MFM adopts this notation to enable a methodology 
that is identical for both 2D and 3D analyses. The notation is also 
identical for single bodies and multi-body linked systems.  In 
turn, this uplifts students’ understanding from the conceptual to 
the pragmatic, enabling them to analyze machines of the 3D 
world.   
 
The MFM greatly ensures a consistency of notation across sub-
disciplines of dynamics, it greatly simplifies the complexity of 
dynamics. The notation remains consistent from introductory to 
advanced analysis, from 2D to 3D, and from single-body to 
multi-body analysis. In this paper, we apply the MFM to a linked 
multi-body system. Impelluso [6] conducted a pedagogical 
assessment that also introduces the method. Allow us to 
summarize the MFM. 

 
THE MODEL  
 

FIGURE 2. Model and frames of the ship 
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FIGURE 3. Model and frames of the knuckle boom crane 
 
Overview of the Moving Frame Method 
 
The analysis commences with the first body, the ship itself. From 
the ship, there is a systematic progression to the tower of the 
crane (red), then to the crane’s main boom (blue) and finally to 
the crane’s outer boom (yellow). We supply each body with a 
Cartesian frame (five frames in total when including the inertial 
frame). We number the frames in ascending order, starting with 
the ship and ending at the knuckle part of crane.   
 
The multi-body system consists of four linked bodies. The ship 
is body 1, the tower of the crane is body 2, the main boom is 
body 3 and the outer boom is body 4. Each individual body is 
endowed with its own moving Cartesian coordinate system: 

, where the superscript  = 1, 2, 3 or 4. 

 
Next, a body frame is defined by partial derivatives of the 
coordinate functions, wherein each basis vector is tangent to the 

coordinate function  .  Thus, we obtain the following 

moving frame 
 

                 (1) 
 

Equation (1) represents a time-dependent moving frame, 
associated with the moving body. 

 
When necessary, we deposit an inertial frame from the first body, 
at the start of the analysis : 
 

                  (2) 
 
General Introduction to the kinematics of frames. 
 
Consider the translation of a body, stated in an inertial frame. We 
use “x” to represent coordinates assessed from an inertial frame, 
reserving “s” for position coordinates assessed from moving 
frames. 

 

                             (3) 
 
Equation (3) presents the basis to the left of the components and 
changes the order of the traditional notation that places the basis 
on the right. With this notation, we view the rotation matrices as 
matrix operators on columns of components.   

The vector  represents the distance between the center 
of mass   of a child body and the center of mass   
of the parent body.  This vector is expressed in the parent frame: 
            

                          (4) 
 

To locate the absolute location of a center of mass on a child 
body, we first proceed to the parent in the inertial frame and then 
accumulate the distance to the child, in the parent frame: 
 

                    (5) 
 

To orient the moving frame, a   rotation matrix  

expresses the rotation of the body-α vector-basis  from 

inertial vector-basis : 
 

                              (6) 
 
The vector-basis  and the relative rotation of a body-

(α+1), is given by a relative rotation matrix  as: 
 

                       (7) 
 
By utilizing the group nature of SO(3), this can also be expressed 
in the inertial frame: 
 

       (8) 
 
 
Frame Connections Matrices and SE(3) 
 
This section combines both the rotation and displacement in one 
expression. By structuring rotation and translations together, one 
obtains a homogeneous transformation matrix. Denavit and 
Hartenberg [7] were the first to use homogenous transformation 
matrices, but they did not recognize at the time that such 
transformations were members of the Special Euclidean Group, 
denoted as SE(3). A more thorough development of the 
following theory is found in reference [8]. 
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We define a frame connection as a combination of the frame’s 
orientation and position:  
 

           (9) 
 

We define a frame connection matrix .  Let  represent 

a  column zero vector. Let  denote the column 
coordinates with respect to the inertial frame.  Thus: 
 

                         (10) 

 
With this frame connection matrix, we relate the moving and 
inertial frame connections: 
 

  (11) 
 
The relation between the child (α+1)-frame and the parent body-
𝛼-frame is expressed using the relative frame connection matrix 

: 
 

          (12) 

 
Thus, we can assert: 
 

        (13)  
  

This recapitulates Eqns. (8) and (5). 
 
Finally, in adherence with group theory, the absolute frame 
connection matrix of the (α+1)-body is the product of the 
absolute frame connection matrix of the preceding body-α and 
the relative frame connection matrix for the two bodies; and is a 
member of SE(3): 
  

                  (14) 
 
With this foundation, we now apply this work to the analysis of 
the knuckle boom crane. 
 
 

KINEMATICS OF SHIP/CRANE SYSTEM 
 
Kinematics of Body-1: the ship 
 
The ship is the first body in this system. Its frame connection 
matrix , which includes the rotation matrix  and 

the inertial-frame coordinates of the position , is: 
 

                       (15) 

 
This frame connection matrix relates the position and orientation 
of the ship frame to the inertial frame connection in the following 
way:  
 

  (16) 

 
Inserting into Eq. (16) yields: 
 

        (17) 

 
Equation (17) recapitulates Eq. (3) and (6). 
 
The inverse of the frame connection matrix is known: 
 

      (18) 

 
Next, we obtain the time derivative of the frame connection 
matrix by taking the time derivative of each term: 
 

                        (19) 

 
Thus, by taking the time derivative of Eq. (16), we find: 
 

                (20) 

 
We next desire to express the rate of change of the frame and 
location in terms of the same frame connection structure.   
 

      (21) 
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For notational purposes, the product of  and 

is defined as the time rate of the frame connection matrix : 
 

                         (22) 

Thus: 
 

          (23) 

 
We obtain, upon inserting Eq. (18) and (19) in (22): 
 

          (24) 

 
This matrix provides information about the linear and angular 
velocities of the coordinate frame attached to the ship. The sub-
matrix in the upper left corner of is a skew-symmetric 
angular velocity of the frame:  
 

                     (25) 

 
This matrix represents the time rate of the coordinate frame in its 
own frame: 
 

 (26) 

 
By un-skewing the angular velocity matrix into a column and 
associating the components as coordinates of the same frame, 
one obtains the angular velocity vector of that frame: 
 

                              (27) 

 
We express the linear velocity for the ship in the inertial frame: 
 

       (28) 

 

Kinematics of Body 2 – Tower 
 
We attach a coordinate frame  to the center of mass  
of the tower: 

               (29) 

We find the relative position from the origin of  to the 

origin of  by first translating from the center of mass  
of the ship, to the joint where the rotation happens, then rotating 
to obtain the new orientation, and finally translating from the 
joint to the center of mass  of the link. 
 
The first translation from to the joint is obtained by 
moving in all three directions.  

                 (30) 

At the first joint, the rotation happens about the third axis.  The 
following frame rotation relation describes this motion: 
 

  (31) 

 
The last translation from the joint  to the center of mass of 
the second body is obtained by moving in the 2- and 3-direction 
up to center of mass of the tower. This translation is expressed 
using the -frame: 

                    (32) 

 
We express the relation between the first and second frame 
connections using the relative frame connection matrix :  
 

      (33) 

 
We obtain this frame connection matrix by taking each of the 
steps described above: translating all three distances up to the 
joint without rotation, rotating at the joint without translation, 
and finally translating up the center of mass of the tower without 
rotation: 
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         (34) 

 
The second frame is related to the inertial through the absolute 
connection matrix : 

  
    (35) 

         

                          (36) 

 
When multiplying the above matrices, we obtain: 
  

                                                    (37)   
 

                                 (38)          
 
The frame connection matrix, its inverse and derivative are used 
to calculate the time rate of the frame connection matrix, . 
From this we extract the angular velocity vector of the tower: 
 

 (39) 
 

The tower rotates about the shared common axis of the ship: 
. Thus, the relative angular velocity vector  

can be expressed by , where . 
 

  (40) 
 

The linear velocity vector of the second body from the inertial 
frame is extracted from the expression for the time derivative of 
the frame: 
 

          (41) 

           (42) 

 

Kinematics of Body 3 – Main Boom 
 
The second link of the crane is the third body of the system. The 
frame  is attached to the center of mass :  
 

                 (43) 

 
The third frame is obtained from the second frame, by translating 
to the joint between the tower and the main boom, then rotating 
at the joint, and finally translating to the center of mass of 
the main boom. The frame connection matrix which relates the 
two frames becomes: 
 

       (44) 

 

       (45) 

 
Here is the rotation matrix for the relative rotation of the 
third frame, from the second frame, which happens about the 1-
axis only: 
 

       (46) 

 
The translation from the center of mass of the second body 
to the joint connecting the second and third body is , and the 
translation from the joint to the center of mass of the third body 
is : 

                        (47) 

 

                       (48)  

The frame can be related to the preceding frame  by the 
frame connection matrix . It can also be related to the 
inertial frame by using all the preceding frame connection 
matrices: 
 

         (49) 

       (50) 
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The absolute frame connection matrix of the third frame from the 
inertial:  

                             (51)  

 
By multiplying out the matrices in the above equation, one can 
obtain the absolute rotation  and position  of the third 
frame from the inertia:  
 

                  (52) 
 

       (53) 

 
Through further calculations similar to the previous links, the 
rates for the arm is obtained. The angular velocity vector of the 
third frame is: 
 

  (54) 

 
The linear velocity vector of the third frame from the inertia: 
 

  (55) 

 
 
Kinematics of Body 4 – Outer Boom 
 
The third link of the crane is the fourth body of the system. The 
frame  is attached to the center of mass :  
 

                 (56) 

 
We obtain the fourth frame from the third frame, by translating 
to the joint between the main boom and the outer boom, then 
rotating at the joint, and finally translating to the center of mass 

of the outer boom. The frame connection matrix which 
relates the two frames becomes: 
 

       (57) 

 

           (58) 

 
Here is the rotation matrix for the relative rotation of the 
third frame, from the second frame, which happens about the 1-
axis only: 
 

            (59) 

 
The translation from the center of mass of the third body to 
the joint connecting the third and fourth body is , and the 
translation from the joint to the center of mass of the fourth body 
is : 

                        (60) 

 

                   (61)  

 
The frame can be related to the preceding frame  by the 
frame connection matrix .  It can also be related to the 
inertial frame by using all the preceding frame connection 
matrices: 
 

         (62) 

 

        (63) 

 
The absolute frame connection matrix of the fourth frame from 
the inertial:  

                    (64) 

 
By multiplying out the matrices in the above equation, one can 
obtain the absolute rotation  and position  of the third 
frame from the inertia:  
 

           (65) 
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         (66) 

 
Through further calculations similar to the previous links, the 
rates for the arm is obtained. The angular velocity vector of the 
third frame is: 
 

         (67) 

 
The linear velocity vector of the third frame from the inertia: 
 

       (68) 

 
 
All equations needed for the kinematics analysis are now 
obtained: Eq. (27), (28), (40), (42), (54), (55), (67) and (68). 
 
 
GENERALIZED COORDINATES 
 
Despite the fact that we formulated our results for a translation 
of the boat, we will ignore translations in this analysis.   
 
The velocities and angular velocities for all three bodies are 
gathered in a 21 x 1 matrix . These are referred to as 
Cartesian velocities on the left in Eqn. (69): 
 

                          (69) 

The constrained generalized coordinates can be expressed, 
through the degrees of freedom, by an independent set of 
essential generalized coordinates in the 6×1 matrix: . 

The Cartesian velocities and essential generalized velocities are 
related linearly through the 21 x 6 matrix : 

                                                       (70) 

In the following, note that: 

                    (71) 

Thus, the cells of matrix  are constructed from the 
velocities and angular velocities from all three elements: 
 

       (72) 

The full equations for the B-matrix are listed in the appendix. 
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KINETICS OF SHIP/CRANE SYSTEM 
 
At this point, we turn to kinetics.  Rather than redevelop the 
foundational theory, we must summarize, due to space 
limitations. 
 
The critical point is that we define a Virtual Rotation 
Displacement as follows 
 

                     (73) 

 and  are variations from the existing terms 
and . But is only a definition, as 

does not exist. The virtual generalized displacement  is 
a  matrix: 

                         (74) 

 
The commutativity of the mixed partials produces the following. 
 

                                                      (75) 

 
The variation of the angular velocity  is restricted.  
Previous work by Murakami [7] and D. Holm [8] provide the 
following form for the restriction on the variation of the angular 
velocity. 

              (76) 

Equation (75) and (76) can be written in a compact matrix form 
and is expressed as follows: 

                                        (77) 

The skew-symmetric matrix [D] is expressed as:  

   (78) 

Finally, the variation of kinetic energy: 

                     (79) 

Continuing, the ship is exposed to forces and moments due to 
waves, buoyancy, and gravity. The second, third and fourth body, 
the tower, main boom and outer boom, are subjected to gravity 
and motor moments. Reverse moments from the motors which 
turn the links are applied to the ship and crane, due to Newton’s 
third law of action and reaction. The forces  are 
summarized as follows:  

 

           (80) 
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The superscript I in and , indicates that the components 
of the forces are expressed in the inertial frame.  
 
Continuing, the coefficient matrix  which relates the 
generalized velocities in Eq.(70), also relates the generalized 
displacements  and the essential virtual displacements 

[6]:  

                        (81) 

Proceeding with the virtual work done by the physical forces, 

where moments and  are the conjugate pair: 

                         (82) 

    (83) 

Defining and : 
 

                          (84) 
 

        (85) 

 

We obtain: 

                 (86) 

By using the essential generalized velocities, the above equation 
sets the mathematical model for deriving the equations of motion 
for the crane and ship. The equation will be solved using numeric 
integration methods.  
 
SIMPLIFICATION OF MODEL 
 
To simplify the calculations, wave forces are neglected and  
buoyancy is ignored. The ship is assumed to be stationary and 
will only rotate about its mass center.  
 

RECONSTRUCTION OF ROTATION MATRIX 
 
The rotation matrix of the ship at each time step must be known 
since the terms appear explicitly in the B-matrix. Thus, the 
rotation matrix must be computed, and the following 
equation solved: 

 
               (87) 

 
Analytically, with initial value  the solution is: 
 

                  (88) 
 
The Caley-Hamilton theorem is used in the derivation of the 
Rodrigues’ rotation formula to reduces a series expansion of the 
exponential of a matrix to a close analytical form. The 
Rodrigues’ rotation formula admits for a closed expression for 
the matrix expansion. This is in turn used to reconstruct the 
unknown rotation matrix of the ship. A derivation of this can be 
found in [9]. 
 
This will only valid for constant angular velocities.  In principle, 
one only need to average this over two time-steps using a central 
difference approximation.  However, for ease of first pass 
coding, this rule will be violated by assuming a constant value at 
the start of each time step.  The goal here is a qualitative and 
visualized result. 
 
RESULTS 

Parameters Used 
 
Mass of ship:     

Mass of tower:      

Mass of main boom:      

Mass of outer boom:    
 

 to  in x-axis:     
 to  in y-axis:    

 to  in z-axis:    

 to in y-axis:    

 to  in z-axis:    

to  in y-axis:    

to  in z-axis:    

 to in y-axis:    

 to  in z-axis:    
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to  in y-axis:    

to  in z-axis:    

 to in y-axis:    

 to  in z-axis:    
 
Width of ship:     
Length of ship:     
Max. height of ship:     
 
Torque applied to tower:    

Torque applied to M.B.:    

Torque applied to the O.B.:  
Dampening factor:   Ns/m 
 
Damping 
 
Wave and buoyancy forces are a part of the equation of motion. 
However, as a simplification of this first pass, we neglected 
them. Instead, we applied simple damping to reduce the pitch, 
roll and the yaw of the ship.  
 
Numerical Integration 
 
We numerically integrate using the Runge-Kutta method to solve 
the differential equations for the position of the arms and the 
body. 
 
 
3D VISUALIZATION AND WEBGL 
 
WebGL (Web Graphics Library) is a JavaScript interface for 
rendering interactive 2D and 3D computer graphics. WebGL is 
compatible with most of the major web browsers such as 
Chrome, Firefox, Safari, and Opera. In addition, it is free of cost 
and can be used without the need for plugins. It does so by 
introducing an API which closely conforms to OpenGL ES 2.0, 
thus being compatible with HTML5.  
 
The webpage was designed with checkboxes for Motor 1, Motor 
2, Motor 3 and damping. The ship has full 3D-rotation, hence a 
movement made by the crane will affect the behavior of the ship 
in all axes. 
 
Each motor has been checked to observe qualitative responses. 
The qualitative responses were in accordance with what would 
be expected from a physical model, thus the 3D-simulation 
seems realistic.   
 
It is critical to note that the authors are not pushing a software 
system. WebGL is easy to code and is free.  The MFM makes 
dynamics easy to code.  The computations run on cell phones.   

The reader may proceed to this link on a laptop or mobile device 
and experiment: 
 

http://home.hib.no/prosjekter/dynamics/2019/knuckle/ 
 

CONCLUSION AND FUTURE WORK 

This paper presented a qualitative confirmation of behavior and 
accuracy through a 3D simulation using the MFM. The 
simulation showed the dynamics of the ship and knuckle boom 
crane in motion. This is required when the control system is to 
be developed, which will be part of the future of this project.  
 
Viscosity, drag, and buoyancy were substituted with a generic 
dampening factor. We included wave moments and added mass. 
 
The structure of the moving frame-method enables an easier and 
more compact way to adapt linked dynamics problems into code.  
 
As the two lead authors are undergraduates, an underlying goal 
of this work has also been to demonstrate that the MFM 
empowers student understanding of dynamics.  
 
Finally, Artificial Intelligence is the study of “intelligent agents”: 
the study of any device that perceives its environment and takes 
actions that maximize its chance of success at some goal.  At this 
time, “device” is restricted to mean “computers.” However, 
today’s mechanical machines think (with onboard CPUs) and 
communicate (with network cards). Soon, with biologically 
inspired neural networks, machines will learn.  In anticipation of 
this, simulations of mechanical systems (dynamics) will enhance 
adaptive machine learning.  The Moving Frame Method is 
unique in that it is eminently programmable and rapidly 
deployed in new settings, obviating the need for legacy 
implementations of multi-body dynamics codes extant today. 
Thus, the next step in this work is to add learning modules to the 
evolving software so that ships with onboard sensors can take 
action depending on conditions or expected conditions from 
learned behavior. 
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