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ABSTRACT 
 

Norwegian industries are constantly assessing new technologies 

and methods for more efficient and safer maintenance in the aqua 

cultural, renewable energy, and oil and gas industries. These 

Norwegian offshore industries share a common challenge: to 

install new equipment and transport personnel in a safe and 

controllable way between ships, farms and platforms. This paper 

deploys the Moving Frame Method (MFM) to analyze ship 

stability moderated by a dual gyroscopic inertial device. The 

MFM describes the dynamics of the system using modern 

mathematics. Lie group theory and Cartan’s moving frames are 

the foundation of this new approach to engineering dynamics. 

This, together with a restriction on the variation of the angular 

velocity used in Hamilton’s principle, enables an effective way 

of extracting the equations of motion. This project extends 

previous work. It accounts for the dual effect of two inertial disk 

devices, it accounts for the prescribed spin of the disks.  It 

separates out the prescribed variables. This work displays the 

results in 3D on cell phones. It represents a prelude to testing in 

a wave tank. 

NOMENCLATURE 
[ ] :D  Structured angular velocity matrix 

 :E   Frame Connection matrix 

:e   Frame  

  :F  Force and moment list 

 * :F  Essential generalized force 

:g   Gravity 

:H   Angular momentum 

  :H  Generalized momenta 

3 :dI I  3x3 identity matrix 

( )
:cJ


 3x3 mass moment of inertia matrix 

:K   Kinetic energy 

:L   Lagrangian 

  :L  Linear momentum    

[ ] :M  Mass matrix 
*[ ] :M  Reduced mass matrix 

*[ ] :N  Reduced non-linear velocity matrix 

:q   Generalized coordinates 

:q   Generalized velocity 

:q   Generalized acceleration 

:R   Rotation matrix 

:r   Absolute position vector 

:s   Relative position vector 

:U   Potential energy 

  :X  List of velocities 

:W  Virtual work 

:   Variation of frame connection matrix 

mailto:trstoraas@gmail.com
mailto:Brekkeseim@gmail.com
mailto:trry@hvl.no
mailto:tjm@hvl.no


 6 Copyright © 2019 by ASME 

:X  Virtual generalized displacement 

:X  Variation of the generalized rates 

 

INTRODUCTION 
 

The largest industries in Norway concern the sale of oil and gas; 

the second largest concern the associated service and supply 

industry. These industries have grown significantly since the 

discovery of oil, ca. 1969.  

 

In addition, Norway deploys windfarms and fish farms. These 

emerging markets have induced a demand for more advanced 

ships, as shown in Figure 1.  

 

Finally, though the oil and gas supply has stagnated, there still 

exists in operation, a vast variety of ships outside the Norwegian 

coastline. These are still in use, but for other purposes such as 

windmill installation and maintenance, as shown in Figure 2.  

 

The space industry has for years used gyroscopes [1] to adjust 

the attitude of spacecrafts. In later years this technology has also 

been used in the maritime sector [2] with great success.  

 

The goal of this research is to demonstrate how the Moving 

Frame Method can facilitate the analysis of the forces required 

to stabilize such ships when they are deleteriously affected by 

wave motion.  

 

 

 
 

FIGURE 1. Ship with a crane for loading and offloading in an 

offshore environment. [3] 

 

 

FIGURE 2. Ship servicing a windmill, different methods for 

stabilization are currently used in todays marked. [4] 

 

This work builds upon previous work [5]. However, here we 

show a method to explicitly account for the prescribed motion, 

and conduct a full 3D analysis, while displaying all results in 3D 

on cell phones. 

 

 

OVERVIEW OF THE MOVING FRAME METHOD 
 
Élie Cartan (1869-1951) [6] assigned a reference frame to each 

point of an object under study (a curve, a surface, Euclidean 

space itself).  Then, using an orthonormal expansion, he 

expressed the rate of change of the frame in terms of the frame.  

The MFM leverages this by placing a reference frame on every 

moving link.  However, then we need a method to connect 

moving frames.  For this, we turn to Sophus Lie. 

 

Marius Sophus Lie (1842-1899) developed the theory of 

continuous groups and their associated algebras.  The MFM 

adopts the mathematics of rotation groups and their algebras, yet 

distils them to simple matrix multiplications.  However, then we 

need a simplifying notation.  For this, we turn to Frankel. 

 

Ted Frankel [6] developed a compact notation in geometrical 

physics.  The MFM adopts this notation to enable a methodology 

that is identical for both 2D and 3D analyses. The notation is also 

identical for single bodies and multi-body linked systems.  In 

turn, this uplifts students’ understanding from the conceptual to 

the pragmatic, enabling them to analyze machines of the 3D 

world.   

 

The reader may find an introduction to the undergraduate and 

graduate Moving Frame Method, along with a pedagogical 

assessment in Impelluso [8].  In the following section, we 

summarize the MFM. 

 

To the center of mass 
( )c 

of each body-α , we attach a Cartesian 

coordinate system ( ) ( ) ( ) ( ) ( )

1 2 3       TCs t s s s
   =  where the 

superscript α is defined as a direction of either 1, 2 or 3. We use 

directional derivatives along the coordinate functions to create 

an associated basis frame ( )

( )i

is






=


e  

 

To obtain an inertial frame, we select one of the moving frames 

and define the inertial at the start of the analysis: 

 

    ( ) ( ) ( )

1 2 3 1 2 3(0) (0) (0)= =I I I I   
e e e e e e e               (1) 

 

The translation of body-α with respect to the inertial frame 
I

e

is expressed as: 

 
( ) ( )( ) ( )= I

c ct x t 
r e                                 (2) 

 

Throughout this document we will use “s” for coordinates in the 

moving frame and “x” for the coordinates in the inertial frame. 
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The rotation of the moving frame   
e in relation to the inertial 

frame   I
e is expressed as: 

 
( ) ( ) ( ) ( )= It R t
 

e e                             (3) 

Where 
( ) ( )R t

is a 3x3 matrix, and a member of the Special 

Orthogonal Group SO(3), thus: 

( ) ( )( )
1

( ) ( )( )
−

=
T

R t R t 
                (4) 

 

Assert the rate of change of Eqn (3) as: 

   
( ) ( ) ( ) ( )= It R t
 

e e                           (5) 

 

Substituting 
I

e into (5) by using Orthogonality, provides: 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )=e e
T

a
t t R t R t

 
                   (6) 

 

Define angular velocity matrix 
( )

( )t


 as the skew form: 

 

( ) ( )( ) ( )( ) ( ) ( )
T

t R t R t
   =                      (7) 

 

Thus: 

( ) ( ) ( ) ( ) ( )
( )t t t

 
=e e                        (8) 

 

Next, we combine this information and exploit the Special 

Euclidean Group, SE(3).  This approach was first used by 

Murakami [9, 10].   

 

We create two frame connections by structuring together the 

frame and its location and relating them as per: 

 
( ) ( ) ( ) ( )( ) ( ) ( )

( )I

Ct t E t
  

=e r e 0               (9) 

 

In (9) we assert the relationship between the frame connections, 

through a frame connection matrix, ( )
( )E t


, where: 

 

( ) ( )( ) ( )

( )

1 30 1
( ) C

T

x

R t tx
E t

 
  

=  
 

                    (10) 

 

Equation (9, 10) recapitulates Eqn. (2) and (3) 

 

Continuing to relative motion, the rotation of body-(α+1) in 

relation to the previous body-(α) becomes: 

 
( 1) ( ) ( 1/ )( ) ( )t R t   + +=e e                     (11) 

 

Furthermore, we can assert the position by first moving to the 

(α) frame and, in the (α) frame, to the (α+1) frame : 

 
( ) ( )1/( 1) ( )( ) ( )

++ = +r r sc ct t t
  

                     (12) 

 
( ) ( )1/( 1) ( ) ( )( ) ( ) ( )

++ = +r r ec ct t t s t
   

              (13) 

As an aside, assert the closure property of the SO(3) group.  

Thus: 

 
( 1) ( ) ( 1/ ) ( 1)( ) ( ) ( ) ( )+ + += =I It R t R t R t    

e e e                (14) 

 

We now assemble this information we have gathered so far and 

structure a 4x4 relative frame connection matrix ( ) ( )1/
E t

 + : 

 

( ) ( )
( ) ( ) ( ) ( )1/ 1/

1/

0 1

+ +
+

 
=  
 

R t s t
E t

   
 

                         (15) 

 

With this structure, we can assert: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )1/ 1/

1 1

0 1

+ +
+ +

 
 
  

=e r e rC Ct t t t
R t s t

   
   

 (16) 

 

This equation recapitulates (11) and (13).  

 

Finally, the closure property of the SE(3) group still holds: 

 
1) ) 1/( )( (

( ) ( ) ( )
+ +

=E t E t E t
   

                        (17) 

 

Also note that this matrix is a member of the SE(3) and its 

inverse is known analytically. 

 

We now apply our foundation to the analysis of a ship stabilizer, 

repeating some of this work as we traverse the links. 

 

KINEMATICS OF THE STABILIZATION SYSTEM 
 

 

 

 
 

 

 

FIGURE 3. Ships with dual gyro  

Figure 3 presents the system modeled for this task. There are two 

gyroscopic assemblies located at an equal distance from the 

center of mass of the ship.  

 

The gyroscopic assembly consists of a spinning rotor that is 

driven around its vertical 3-axis. The spinning rotor is placed in 
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a gyro gimbal that nutates the gyro around the port-to-starboard 

2-axis. The shared 1-axis runs stern to bow.  

 

Figure 4 presents a close up of the two gyro assemblies, with 

moving frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. Dual Gyro with Fames 

 

 

Kinematics of body-1: The ship 

 

We use the first body frame (that for the ship) to assert the inertial 

frame at the start of the analysis (this is merely a pedantic 

assertion). 

 
(1) (0)=I

e e                              (18) 

 

We define a full rotation matrix for body(1) (ship) rotation:  

 

      

(1) (1) (1)

11 12 13

(1) (1) (1) (1)

21 22 23

(1) (1) (1)

31 32 33

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

R t R t R t

R t R t R t R t

R t R t R t

 
 

=  
 
 

                 (19) 

 

The frame connection matrix for the first body contains data for 

both rotation and translation from the inertial frame: 

  

     

(1)(1)
(1)

1 3

( ) ( )
( )

0 1

C

T
x

R t x t
E t

 
=  
  

                (20) 

 

Next, we obtain the derivative of the connection matrix: 

 

( ) ( )
( ) ( ) ( ) ( )1 1

1

1 30 0

c

T

x

R t x t
E t

 
=  
  

                      (21) 

 

The inverse of the connection matrix is analytically known: 

 

( ) ( ) ( )
1

(1) (1)(1) (1) (1)
1

(1)

1 3
1 3

( ) ( ) ( ) ( ) ( )
( )

0 1 0 1

−
−

   − = = 
      

T T

C C

T
T

x
x

R t x t R t R t x t
E t

(22) 

 

Next, we desire to express the rate of change of the frame and 

location in terms of the same frame connection structure: 

 

( ) ( )( )
1

(1) (1) (1) (1) (1) (1)( ) ( ) ( ) ( ) ( ) ( )c ct t t t E t E t
−

=e r e r     (23) 

 

For notational simplification, the product of ( )( )
1

(1)E t
−

 and 

( )(1)E t is defined as the time rate of the frame connection 

matrix 
(1)Ω : 

 

( ) ( ) ( )( ) ( )
1

(1) (11 )
−

 t E t E t                        (24) 

Thus: 

 

( ) ( )(1) (1) (1) (1) (1)( ) ( ) ( ) ( ) ( )c ct t t t t= e r e r           (25) 

 

( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 1

1

1 30 0

 
  =
 
 

T T

c

T

x

R t R t R t t
t

x
         (26) 

 

This matrix provides information about the linear and angular 

velocities of the coordinate frame attached to the ship. The sub-

matrix in the upper left corner of 
(1)Ω is a skew-symmetric 

angular velocity of the frame:  

 

( ) ( ) ( )( ) ( ) ( )1 1
( )

T

R Rt t t


 =                  (27) 

This matrix represents the time rate of the coordinate frame in its 

own frame: 

 
1 1

3 2

1 1 1 1 1

3 1

1 1

2 1

0

0

( ) 0

t t

t t t t t

t t

t


 

  

 

e e e     (28) 

 

Associate the column components to the moving frame to assert 

the angular velocity vector: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

1

1

1

2

1

3

 
 
 =
 
 
 

1 1
ω e t

t

t

t

t







                       (29) 
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Extract the linear velocity for the ship is expressed in the inertial 

frame: 

 
( ) ( ) ( ) ( )1 1I

C Ct x t=r e                            (30) 

Kinematics of the body-2: The first gimbal 

 

At this point, there will be two gyroscopic structures.  They will 

differ only insofar as their placement.  The formulation, however, 

is the same.  To reduce the length of this paper, we focus on the 

first system: the first gimbal and first rotor 

 

We attach a coordinate frame 
(2) ( )te  to the center of mass of 

gyro 1, (1)C  of the link: 

 

( )(2) (2) (2)(2)
1 2 3( ) ( ) ( ) ( )t t t t=e e e e                   (31) 

 

We find the relative position from 
(1) ( )te  to 

(2) ( )te  by first 

translating from the center of mass ( )sC  of the ship, to the center 

of mass of gyro 1 (1)C . We will also put a frame, 
(2) ( )te at the 

frame holding gyro 1. The frame will rotate to induce a moment 

on the boat.  The translation is in the 3-direction (Naturally, for 

the second stability disk the coordinates will simply negate):  

 

1 1

(1) (1)

(1)

0

( ) ( ) 0

 
 

= =  
 
 

c ct s t

l

e es                      (32) 

 

The frame that holds the gyro, ( )(2) te rotates around the second 

axis. Which gives the following frame relations: 

 

(2) (1) (2/1) (1)

cos ( ) 0 sin ( )

( ) ( ) ( ) ( ) 0 1 0

sin ( ) 0 cos ( )

 
 

= =
 
 − 

t t

t t R t t

t t

 

 

e e e      (33) 

 

The relation between the first and second frame connections is 

expressed using the relative frame connection matrix ( ) ( )2/1
E t

and: 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2 1 1 2/1

=C Ct t t t E te r e r          (34) 

 

We obtain this frame connection matrix by taking each of the 

steps described above: translating distance (1)l  from the ship 

frame without rotation, then rotating the gyro 1 frame: 

 

( ) ( )
( ) ( ) ( ) ( ) ( )

2/12/1
2/1

2/1 3 1 3

3 1 3
1 3

0
 

0 1 0 10 1

C C

T T
T

x
x

R t s I s R t
E t

    
 = =   
       

   (35) 

 

The second frame is related to the inertial through the absolute 

connection matrix ( ) ( )2
E t : 

( ) ( ) ( )(2) (2) (1) (2/1) (2)( ) ( ) ( ) ( ) ( )I I
ct t E t E t E t= =e r e 0 e 0      

(36) 

We assert: 

( ) ( )
( ) ( ) ( )2 (2)

2

1 30 1

C

T

x

R t x t
E t

 
=  
  

                    (37) 

Multiplying together the rotation matrix from frame 1, ( )(1)R t  

and frame 2, ( )(2/1)R t  gives us the absolute orientation of frame 

2, ( )(2) te :  

 
( ) ( ) ( ) ( ) ( ) ( )2 1 2/1

R t R t R t=                     (38) 

 

Adding the translations from the first and second frame provides 

the absolute translation from the inertial: 

 

 
( ) ( ) ( ) ( ) ( )2 2 11

C C Cx R t s x= +                        (39) 

 

The frame connection matrix, its inverse and derivative are used 

to calculate the time rate of the frame connection matrix, 
(2)Ω . 

From this we extract the angular velocity vector of the gyro 1 

frame: 

 

( )(2) (2/1) (1) (2/1)( ) ( ) ( ) ( )
T

t R t t t  = +              (40) 

 

The tower rotates about the shared common axis of the ship: 
(1) (2)

2 2( ) ( )t te e . Thus, the relative angular velocity vector 

(2/1) ( )t   can be expressed by ( ) 2
et , where (0 1 0)Te =

2 : 

 

( ) ( )(2) (2/1) (1)

2

(2)( ) ( ) ( )
T

t R t t t e  = +                 (41) 

 

The linear velocity vector of the second body from the inertial 

frame is extracted from the expression for the time derivative of 

the frame: 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )2

t t t t t= 
2 2 2 2

C C
e r e r              (42) 

 

This provides:   

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )
1

1

2 1 2/1 2

11 1

T

C C

C

T

C

x t R t R t s t

R t s t x t





=

+ +

            (43) 

 

Kinematics of body-3: The first rotor 
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We construct the relative frame connection matrix. The third 

frame has the same center as the second frame, and therefore we 

find simply the following: 

 
(3/2)

(3/2)

1 3

( ) 0
( )

0 1T
x

R t
E t

 
=  
  

                (44) 

 
(3/2) ( )E t , we use this to relate the precession and spin of the 

gyro disc, as shown here:  

 ( ) ( )(3) (3) (2) (2) (3/2)( ) ( ) ( ) ( ) ( )c ct t t t E t=e r e r    (45) 

 

Now that we have the relative connection matrix, we assert the 

absolute frame connection using the relations:  

 
(3) (2) (3/2)

(1) (3/2)(1) (2/1) (1)

1 31 3

( ) ( ) ( )

( ) 0( ) ( ) ( ) ( )

0 10 1

C

TT
xx

E t E t E t

R tR t R t R t s t

= =

   
   
     

      (46) 

 

We compute the equation above and obtain: 

 
(2/1) (1)(1) (2/1) (3/2) (1)

(3)

1 3

( ) ( ) ( ) ( ) ( )
( )

0 1

C C

T
x

R t R t R t R t s x t
E t

 +
=  
  

      (47) 

 

We assert the inverse: 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
(3)

(2/1) (1)(3/2) (2/1) (1) (3/2) (2/1) (1) (1)

1 3

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1

T T T T T T

C C

T
x

E t

R t R t R t R t R t R t R t s x t

−

=

 
− + 

 
  

(48) 

 

We assert the rate of change of 
(3) ( )E t : 

 

(2/1) (1)(3) (1)
(3)

1 3

( ) ( ) ( )
( )

0 0

C C

T
x

R t R t s x t
E t

 +
=  
  

             (49) 

 

We know that 
(3) ( )R t  is the same as: 

 
(3) (1) (2/1) (3/2)

(1) (2/1) (3/2) (1) (2/1) (3/2)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

R t R t R t R t

R t R t R t R t R t R t

= +

+
      (50) 

 

 

Now we have all the elements that are necessary to find the 

absolute time rate of frame connection for the spin of the gyro 

disc, “the third body”, 
(3) ( ) t : 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )3 3 3 3

= Ct t t t t
C

3
e r e r       (51) 

 

Out from the above we can extract out the formulas for angular 

and linear acceleration: 

 

( ) ( )

( )

(3/2) (2/1) (1)

(3/2) (2/1) (3/2)

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

T T

T

R t R t t
t t

R t t t



 

 
+ 

=  
 +
 

(3) (3)
ω e        (52) 

  

( )(2/1) (1)(1) (1)( ) ( ) ( ) ( )C Ct R t s t x t= − +e
(3) I
Cx           (53) 

 

Relationship between Gyro-1 and Gyro-2   

 

We have now found the movement and all the equations needed 

from the gyro to continue with generalized coordinates, B-matrix 

and to move on to kinetics.   

 

To cancel out the moment created when accelerating and 

decelerating the disc we use 2 gyroscopes with opposite spin. 

They will move in a mirrored way to create the precession 

around the same axis. Beside the gyros being inverse of each 

other they are identical. As a result of this we can use the same 

equations for gyro 2 as for gyro 1 but with new frame numbers.  

So 
(2)E becomes 

(4)E , 
(3)E = 

(5)E ,  
(2/1)E = 

(4/1)E  and 
(3/2)E = 

(5/4)E .  

 

The difference between the two gyros is found in the coordinate 

values, but the work up is the same: 

 

1

(1)

0

( ) ( ) 0ct s t

l

 
 

= =  
 − 

1

(1) (1)

c
s e e  

  

GENERALIZED COORDINATES 
 

We now relate the established Cartesian coordinates to certain 

Generalized coordinates. Before continuing, we make some 

assumptions to simplify this process. First, we assume the boat 

is stationary; i.e., the center of mass of the boat does not translate 

in any direction. Second, we assume the discs are already 

spinning at a constant rate when analysis begins. Third, we 

assume there is no resistance on the disk, meaning there is no 

motor needed to maintain the constant velocity of the rotors. 

These assumptions reduce the number of Generalized 

coordinates and allows us to use the Method of Prescribed Rates. 

 X(t)  denotes the Cartesian velocities, q(t) denotes the 

essential generalized velocities, while r(t) denotes the 

generalized velocities that are not essential: 
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 

(1)

(2)

(2)

(3)

(3)

(4)

(4)

(5)

(5)

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )

C

C

C

C

t

x t

t

x t

X t t

x t

t

x t

t











 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

    

(1)

(2)

(4)

(t)

q(t) (t)

(t)

 
  

  
 
  

     
(3)

(5)
r(t)

  
  

  

    (54) 

 

The relationship between these data structures is obtained 

through the B-matrix and C-matrix as follows: 

 

       ( ) ( ) ( ) ( ) ( )X t B t q t C t r t= +        (55) 

 

The number of rows of the B-matrix is equal to the number of 

Cartesian velocities, while the number of columns is equal to the 

number of Essential Generalized velocities. In this case, the size 

of the B-matrix will be 9 × 3: 

 

 

3 3

(1) ( 2 /1)

( 2 /1)

2

(1) ( 2 /1)

( 3 / 2 ) ( 2 /1) ( 3 / 2 )

2

(1) ( 4 /1)

( 4 /1)

2

(1) ( 4 /1)

5 / 4 ) ( 4 /1) ( 5 / 4 )

2

0 0

- ( ) 0 0

( ( )) 0

- ( ) 0 0

( ( )) ( ( )) ( ( )) 0

- ( ) ( ) 0 0

( ( )) 0

- ( ) 0 0

( ( )) ( ( )) 0 ( ( ))

=

e

e

e

e

x

C

T

C

T T T

C

T

C

T T T

I

R t S

R t

R t S

B R t R t R t

R t S t

R t

R t S

R t R t R t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

      (56) 

 

Where 
3x3I ,  

3x30 , 
2e and 

( 1) ( ) ( 1/ )( ) ( )+ +=c ct s t   
s e  (which 

is found in the C-matrix) is given as: 

 

3 3

1 0 0

0 1 0

0 0 1

xI

 
 

=
 
  

,          
3 1

0

0 0

0
x

 
 

=  
 
 

,              
2

0

1

0

e

 
 

=  
 
 

,              
3

0

0

1

e

 
 

=  
 
 

  

 

The C-matrix is constructed in a similar manner. Number of rows 

corresponds to number of Cartesian velocities, while the number 

of columns is equal to the number of Generalized velocities. In 

this case a 9 × 2 matrix:    

 

 

3 1 3 1

3 1 3 1

3 1 3 1

3 1 3 1

3
3 1

3 1 3 1

3 1 3 1

3 1 3 1

3
3 1

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0

eC

e

 

 

 

 



 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                           (57) 

 

KINETICS   
 

Application of Analytical Mechanics 

 

We begin by defining a Lagrangian as the difference between the 

kinetic and potential energy:        

 

( ) ( ) ( )( ) ( ) ( )( ), ( ) ( ), ( ) ( )q t q t K q t q t q tL U  = −
       (58) 

 

Define the Action as the definite integral of the Lagrangian 

function over time:    

 

( )
1

0

( ) ( ), ( ),

t

t

A tq t q tL t d= 
                  (59) 

Hamilton’s principle states that “the motion of a system occurs 

in such a way that the definite integral A becomes a minimum 

for arbitrary possible variations of the configuration of the 

system, provided the initial and final configurations of the 

system are prescribed” [11]. This means that the equations of 

motion can be obtained by setting the variation of the Action 

equal to zero:      

 

( )
1

0

( ) 0( ), ( ),

t

t

qL q t t t dt =                (60) 

 

To include the non-conservative forces, we exploit the extension 

of Hamilton’s Principle, known as the Principle of Virtual Work.  

Here, we formulate the Lagrangian as dependent only on the 

kinetic energy.  We will account for all other forces (conservative 

or non-conservative) as work, on the right side.  From this point 

onwards, we omit the dependencies of position and velocity for 

ease of notation.        
1 1

0 0

( ) ( )( )  ( )

t t

t t

K t dt W dt t  = −                       (61) 

The kinetic energy of each body in the system is expressed by 

the angular momentum HC
.(α.)

(t), and linear momentum LC
.(α.)

(t): 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )C C Ct t H t t J t     = =H e e          (62) 

 
( ) ( ) ( ) ( )( ) ( ) ( )I I

C C Ct L t m x t   = =L e e                 (63) 

 

Here, JC

.(α.)
represents the moment of inertia matrix for body α. 

The total kinetic energy of a body α with the frame placed at the 

center of mass is defined as:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
( )

2
=  + r L ω HC C CK t t t t t    

             (64) 

For the whole system, the total kinetic energy is expressed in 

matrix form as:  

    
1

( ) ( ) ( )
2

T

K t  = X t M X t                  (65) 

 

The masses and moments of inertia for each body is contained in 

the generalized mass matrix [M]: 
 

 

(1)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(2)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(2)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(3)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(3)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

C

3

C

3

C

J

m I

J

m I

JM  =  

       

       

       

       

       

 

(4)

3 3 3 3 3x3 3 3 3 3 3 3

(4)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(5)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(5)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3

C

3

C

m I

J

m I

J

    

       

       

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(66) 

To continue, define virtual rotational displacement δπ(α)(t) is the 

un-skewed form of δπ(α)(t) ⃡           , which is defined as the product of the 

transpose and the variation of the rotation matrix:  

 

( )( ) ( ) ( )( ) ( ) ( )
T

R Rt t t   =                      (67) 

 

Compare this Eqn. (74) with Eqn. (12).   With this, we structure 

the virtual generalized displacements {δ X̃(t)}:  

 

 

( )

( )

( )

( )

( )

1

2

2

5

5

( )

( )

( )
( )

( )

( )

C

C

t

x t

t
X t

x t

t












 
 
 
 
 

=
 
 
 
 
 
 

                               (68) 

 

Next, the variation of the velocities is called the virtual 

generalized velocities {δ Ẋ(t)}: 

 

 

(1)

(2)

(2)

(5)

(5)

( )

( )

( )

( )

)

( )

(

C

Cx

t

t

t
t

t

t

x

X












 
 
 
 

=  
 
 
 
 
 

                               (69) 

 

For the linear displacement, the variation of the derivative is 

equal to the derivative of the variation:  

( ) ( )( ) ( )C C

d
 x t  = x t

dt

                                  (70) 

 

However, there is a restriction on the variation of the angular 

velocity, as proven by Murakami [11]: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
d

t  = t  + t t
dt

                        (71) 

The last two equations are written in compact form as: 

 

     ( ) ( ) [ ] ( )X t X t D X t  = +                 (72) 

 

Where [D] is a skew symmetric matrix that contains the angular 

velocity matrices for each frame:  

 

 

(1)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(2)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(3)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

D  =  







       

        

       

        

       

3 3 3 3 3 3 3 3 3x3 3 3 3 3 3 3 3 3

(4)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

(5)

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





       

       

        

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

    (73) 

 

The variation of the kinetic energy is thus expressed as:  

 

    ( ) ( ) ( )
T

K t  = X t M X t                            (74) 

 

Next, we need the forces and moments acting on the different 

bodies of the system. They are expressed in a single column 

matrix {Q(t)}. We note that the rotors spin in opposite directions, 

such that the moments acting on the buoy from the generator will 

be cancelled out. This is a major advantage of having two 

gyroscopes instead of one.  
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 

(1) (1)

(1)

(2) (2)

(2)

(3) (3)

(3)

(4)

(4)

(5)

(5)

3

(2) (4)

2 2

3

(2)

2

( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

( )
( )

( )

( )

( )

( )

( )

I I

C b

C

I

C

C

I

C

C

I

C

C

I

C

C

I

w

w g g

g

F t F t + F - m ge

M t M t M t e M t e

F t m ge

M t M t e

F t -m ge
Q t  =  = 

M t

F t

M t

F t

M t

 
 

+ + 
  −
 

− 
 
 
 
 
 
 
 
 
  
 

(4)

(5)

3

3

(4)

2

3

0

( )

0

g

m ge

M t e

m ge

 
 
 
 
 
 
 
 
 
 

− 
 −
 
 −
 
 
 

   (75) 

 

Here, -m(α)ge3 is the gravitational force at the center of mass. 

Fw
I (t) and Fb

I (t) are the wave forces and buoyancy forces, 

respectively. Mw(t) is the moment induced by waves, and 

Mg
 (α)(t)e2  is the moment from the motors that are attached to the 

discs.  

 

The virtual work done by the generalized forces can then be 

expressed as: 

 

   ( ) ( )
T

W X t Q t =                               (76) 

 

The B-matrix that relates the Cartesian velocities  ( )X t to the 

essential generalized velocities  ( )q t , also relates the virtual 

generalized displacements ( )X t to the essential virtual 

displacements ( )q t :  

 

    ( ) ( ) ( )X t B t q t =                              (77) 

 

The transpose of the above is used to rewrite equation (18): 

 

   *( ) ( )
T

W q t F t =                             (78) 

 

Where the essential generalized forces * ( )F t are defined as:  

 

     * ( ) ( ) ( )
T

F t B t Q t=                             (79) 

We now insert the expressions obtained for the variation of the 

kinetic energy and the virtual work into the integral equation (61)  

 

        ( )
1

0

*( ) ( ( ) () ) 0 

t
T

t

T

 q t F tX t dtM X t  + =      (80) 

 

 
 
 
 

Equation of motion  
 

After performing integration by parts on (80), and accounting for 

zero virtual displacement at the endpoints, we obtain a second 

order coupled differential equation:   

 

       * * *( ) ( ) ( ) ( ) ( ) ( ) ( )M t q t N t q t F t T t r t     + = −         (81) 

 

Where the following terms are defined: 

 

    ( ) ( ) ( )
T

M t B t M B t                    (82) 

 

       ( )( ) ( ) ( ) ( ) ( )
T

N t B t M B t D t M B t    +       (83) 

 

    ( )    ( )( )( ) ( ) ( )
T

T t B t M C t D t M C t     +         (84) 

 

Solving (81) with respect to the list of generalized accelerations 

{q̈(t)}, yields: 

 

       ( )
1

* * *( ) ( ) ( ) ( ) ( ) ( ) ( )
−

     = − −     q t M t F t T t r t N t q t
(85) 

 

 

Reconstructing the Rotation Matrix and Numerical 

Integration 

 

As the boat rotates due to the motion of the ocean, its rotation 

matrix is changing. Hence, the rotation matrix must be updated 

at each time-step of the analysis. From the definition of skew-

symmetric angular velocity we state the following: 

 

( )(1) (1) (1)( ) ( )=R t R t t                           (86) 

 

This is a coupled differential equation in matrix form. For the 

special case of a case of a constant angular velocity matrix, 0 , 

we propose the following solution:  

 

( )(1) (1)
0( ) (0)expR t R t=

                     (87) 

 

From here we can use the Taylor series for sin and cosine:  

 

( ) ( )
2

0 0
0 0 0

0 0

exp( ) sin 1 cost I t t
 


 

 + + − 
 
 

 
 

(88) 

 

Thus, assuming an initial rotation matrix, ( )(1) 0R , we obtain 

the following rotation matrix from the angular velocity matrix: 
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( ) ( )
2

(1) (1) 0 0
0 0

0 0

( ) (0) sin 1 cosR t R I t t
 

  
 = + + − 

  
  

 
 

   

(89) 

 

We will assume that during the numerical integration of the 

equations of motion t to t + t, that the angular velocity is 

constant. While this is not the case here, it can be applied to each 

individual time step of the Runge-Kutta (RK4) integration. 

Therefore, we adopt the mid-point integration method using the 

mean value of the angular velocity, ( 2)t t +  : 

 

( )( 2) ( ) ( ) 2t t t t t  +  = + +               (90) 

Essentially, after coming out of each time step, we will have a 

new omega. We use that newfound expression and compute an 

assumed constant angular velocity matrix by averaging. We then 

use that constant value to reconstruct the rotation matrix: 

 

( )

( )( )

0
0

(1) (1)
2

0
0

( )
sin ( )

( )
( ) ( )

( )
1 cos ( )

( )

t t
I t t t

t t
R t t R t

t t
t t t

t t





 + 
+ +  

+  
+  =  

  + 
+ − +     +   







    (91) 

 
The target of this research has been to demonstrate the power of 

the moving frame method.  Furthermore, we showed how the 

MFM simplifies the calculations of an advanced problem to a 

level that is accessible to undergraduate students (who conducted 

this work). It is also another pass at earlier work using MFM to 

model gyroscopic stabilization [13].  

 
SIMPLIFICATION OF MODEL 
 

Some simplifications are still necessary.  

 

We do not allow the boat to translate on the surface of the sea. 

We do allow changes its pitch, yaw and roll.  As a simplification 

of the wave moment, we apply a sinusoidal moment around the 

axis from bow to stern, to represent waves. 

 

We modeled the geometry of the boat as a cuboid, with a 

diagonal moment of inertia matrix.  We neglect buoyancy and 

gravity.  

 

PARAMETERS USED 
 

We used the following parameters: 

 

Mass boat:                                                                       10000 kg  

Mass gyro 1:                                                                       500 kg 

Mass gyro 2:                                                                       500 kg 

Length boat:                                                                           50 m 

Width boat:                                                                              5 m 

Length from cm to gyro 1, 
1cS :                                              1 m 

Radius gyro 1 ring:                                                               0.5 m 

Radius gyro 1 disk:                                                               0.5 m 

Length from cm to gyro 2, 
2cS :                                              1 m 

Radius gyro 2 ring:                                                               0.5 m 

Radius gyro 2 disk:                                                               0.5 m 

Gyro 1 spin rate:                                                           20000 RPM 

Gyro 2 spin rate:                                                          -20000 RPM 

Numerical integration:                                 Runge Kutta 4th order 

 
3D VISUALIZATION AND WEBGL  
 
To both give a better visualization of the calculations and to 

demonstrate how suitable MFM is for programming, we created 

a 3D simulation with Web Graphics Library (WebGL). WebGL 

is a JavaScript interface for rendering interactive 2D and 3D 

computer graphics. WebGL is compatible with most of the major 

web browsers such as Chrome, Firefox, Safari, and Opera. In 

addition, it is free and can be used without the need for plugins. 

It does so by introducing an API which closely conforms to 

OpenGL ES 2.0, thus being compatible with HTML5.    

 

The reader my visit the website here on cell phones. 

 

http://home.hib.no/prosjekter/dynamics/2019/stability/ 

 

Figure 5 presents a view from above the bow, but looking down 

and toward the stern, with no wave moment and no gyro action. 

FIGURE 5: Above the bow        FIGURE 6: WebGL interface 

 

To observe motion of the 3D-models, tick off the checkboxes for 

Spin 1 & 2, Gyro 1 & 2 and damping on the interface, shown in 

Figure 6. 

 

Spin 1 and 2 activates the spin of the inertial disks of gyro 1 and 

2. Gimbal 1 and 2 activates the gimbal precession torque of gyro 

1 and 2.   

 

Adjust the wave force and spin rate anywhere from 0-1, where 1 

equal 20000 RPM and then press start to initiate the test. To 

adjust any of these values, simply press reset and then set them 

to desired value and then run the code again by pressing start.  

 

Figure 7 presents the behavior of the boat with wave moments 

turned on, but with no gyroscopic action.  The boat rolls. 

http://home.hib.no/prosjekter/dynamics/2019/stability/
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FIGURE 7. No gyro action 

 

   FIGURE 8: One gyro acting 

 

Figure 8 presents the results with only one gyro action.  The 

view is directly overhead.  It shows a non-existent roll, but a 

visible yaw.  Finally, Figure 9 shows both gyros acting with 

wave motion.  There is both nonexistent roll and yawing. 

 

 

 

 

 

 

 

FIGURE 9. Both gyros active. 

 
DISCUSSION AND RESULTS  
 
We have obtained the equations of motion for the boat, under 

gyroscopic action and wave moments, using the MFM. We have 

solved them using numerical integration and has thus shown the 

potential of the MFM to calculate gyroscopic wave stabilization. 

We have also demonstrated how gyroscopic stabilization can 

greatly reduce the roll movement created by waves.  

 

Different from last year’s project [13], we decided to use a 

different numerical method due to its proven inaccurate 

calculations. This inaccuracy caused the ship to move 

uncontrollably and sink after a few seconds. Based on what we 

discovered form last year, we decided to go for RK4. This choice 

has proven to be a much more stable way of executing the 

calculations used to visualize the spin and moments shown on 

our WebGL page.  

 

CONCLUSION AND FUTRE WORK 
 
The Moving Frame Method has been proven highly effective to 

model the movement and forces created by a gyroscopic 

stabilizing system. We have also discovered how well suited this 

method is for programming. The future possibilities for MFM in 

control languages is significant. A stabilizing program that 

doesn’t just react against forces acting on the vessel but one that 

anticipates the forces before they happen. If one were to add a 

crane on the boat, one could then simulate the motion from the 

crane and what effect it will have on the vessel and compensate 

for this in real time with the inertial disks.  

 

To make the analysis more realistic buoyancy forces can be 

added. Buoyancy will act as damping force and through the 

mechanics of hydrostatics and ship stability, it will stabilize the 

boat at a growing rate as the boat pitches and rolls. This though, 

requires gravity, but gravity will also add to the realism of the 

simulation. We will also confirm these calculations with 

experimental analyses in the HVL wave tank.  
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FLOW CHART 
 

At the start of the semster we were tasked with creating a GANTT-form. This is a flow chart that shows wich tasks that are going to be  

worked at what time, and how much time we assigne the different tasks.    

This has helped us tremendously, as it have given us an very helpful overview of the tasks at hand. It have been  

helpful to see what work is to be done, and what we are done with. 

 

Since the beginning we have tried to follow the chart as acurate, as we could. We soon realized that there were tasks we had given to  

little time, or tasks that went more effectively  then anticipated. 
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