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ABSTRACT 
 
This research models the energy extracted by gyroscopic wave 
energy converters, to assess their use to provide supplementary 
power to fish farms and lighting on oilrigs. This project 
implements the Moving Frame Method (MFM) in dynamics to 
model the power generated from a gyroscopic wave energy 
converter. The MFM leverages Lie Group Theory, Cartan’s 
moving frames and a new notation from the discipline of 
geometrical physics. This research extends previous work by 
incorporating two inertial disks to counter the inducement of 
yaw, and it improves the numerical integration scheme. 
Furthermore, it makes use of a coherent data structure founded 
in the Special Euclidean Group, and it defines the initial disk spin 
as a prescribed variable.  It accounts for the prescribed variables 
by modifying the equations of motion.  Finally, it conducts an 
analysis of the generated energy which accounts for generator 
moments.  After obtaining the suite of descriptive equations of 
motion, this project integrates them using the Runge-Kutta 
method. Finally, a simplified 3D simulation is made using the 
Web Graphics Library to improve the readers’ intuitive 
understanding of the device.  
 
NOMENCLATURE 
 

a: Wave amplitude 
[B]: Transformation matrix to generalized coordinates 
[C]: Transformation matrix for prescribed rates 
d(β): Width of the gimbals 
[D]: Combined angular velocity matrix 
e: Unit basis vector 
E: Frame connection matrix 

{F}: Force and moment list 
{F*}: Generalized force and moment list 

g: Gravitational acceleration 
H: Angular momentum 
I3: 3×3 Identity matrix 
J: 3×3 Mass moment of inertia matrix 
K: Kinetic energy 
L: Linear momentum 
L: Lagrangian 
m: Mass 

[M ]: Mass matrix 
[M*]: Reduced mass matrix 
Mg Generator Counter Torque  

[N*]: Reduced non-linear velocity matrix 
Pgyro: Generated power by the gyroscopes 
q(t): Generalized coordinates  

{q̇(t)}: Generalized velocity list 
{q̈(t)}: Generalized acceleration list 
{ṙ(t)}: Generalized prescribed velocity list 

R: 3×3 Rotation matrix 
T: Wave period 

[T*]: Reduced velocity matrix for prescribed rates 
W: Negative work function 
δW: Virtual work 

{δẊ }: Virtual Cartesian velocities 
{δX෩ }: Virtual Cartesian displacements 
ρ(γ): Radius of the disks 
Ω: Time rate of the frame connection matrix 
ω: Angular velocity components 
ω⃖ሬ⃗ : Skew-symmetric angular velocity matrix 
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INTRODUCTION 
 

Norway’s 2030 Agenda presents 17 Sustainable Development 
Goals (SDGs) as a transformative global roadmap for national 
and international efforts aimed at eradicating extreme poverty 
while protecting planetary boundaries and promoting prosperity, 
peace and justice.  This project addresses three of these 17 goals: 
affordable and clean energy, industry innovation and 
infrastructure, and sustainable cities and communities.   
 
The world’s energy consumption is concentrated along the 
coastlines, where the population density is highest [1]. Norway’s 
coast line and connection with the North Sea gives ample 
opportunity for exploiting wave energy. The Norwegian 
Government has expressed a desire to move Norway in a more 
environmentally friendly direction over the next 30-50 years [2]. 
Norway already has a long history of utilizing hydro power for 
most of its power consumption. This project seeks to expand on 
the opportunities for environmentally friendly power generation. 
 
One way to extract power from waves is to make use of the 
gyroscopic effect.  The gyroscopic wave energy converter 
captures this nutation through a generator. Several such 
connected buoys can create a “farm”, with the intention of 
increasing power output. Possible uses are; fish farms, offshore 
weather stations, subsea equipment, and supplemental power for 
oilrigs.  
 
Aaron Goldin in 2004 [3] and Kanki in 2006 [4], demonstrated 
the validity of the gyroscopic ocean wave energy converter. 
Aaron, demonstrated a small-scale prototype. Kanki built a full-
scale model that captured 20 kW in 2006 and 50 kW in 2012.  
 
This work builds upon previous work [5]. However, here we 
show a method to explicitly account for the prescribed motion, 
and conduct a full 3D analysis, while displaying all results in 3D 
on cell phones. 
 
 
THE MOVING FRAME METHOD 
 
Élie Cartan (1869-1951) [6] assigned a reference frame to each 
point of an object under study (a curve, a surface, Euclidean 
space itself). Then, using an orthonormal expansion, he 
expressed the rate of change of the frame in terms of the frame.  
The MFM leverages this by placing a reference frame on every 
moving link. However, then we need a method to connect moving 
frames.  For this, we turn to Sophus Lie. 
 
Marius Sophus Lie (1842-1899) developed the theory of 
continuous groups and their associated algebras. The MFM 
adopts the mathematics of rotation groups and their algebras, yet 
distils them to simple matrix multiplications.  However, then we 
need a simplifying notation.  For this, we turn to Frankel. 
 

Theodore Frankel (1929-2017) [7] developed a compact notation 
in geometrical physics. The MFM adopts this notation to enable 
a methodology that is identical for both 2D and 3D analyses. The 
notation is also identical for single bodies and multi-body linked 
systems. In turn, this uplifts students’ understanding from the 
conceptual to the pragmatic, enabling them to analyze machines 
of the 3D world.   
 
The reader may find an introduction to the undergraduate and 
graduate Moving Frame Method, along with a pedagogical 
assessment in Impelluso [8]. In the following section, we 
summarize the MFM. 
 
GENERAL PRINCIPLES OF THE MFM 
 
At the center of mass of each body D we place a time-dependent 
moving frame: 

� �( ) ( ) ( )
1

( )
2 3( ) ( ) ( ) ( )t t t tD D DD  e e e e  (1) 

In the previous, e is a unit vector and the subscript denotes the 
direction.  Set t = 0 to define and deposit an inertial frame from 
a moving frame:  

� � � �( ) ( ) ( )
1 2 3 1 2 3(0) (0) (0)I I I I D D D  e e e e e e e  (2) 

Define the absolute position vector rC
(α)(t) of a frame as a 

translation from the inertial frame eI: 
( ) ( ) ( ) ( )I
C Ct txD D r e  (3) 

We use xC
(α)(t) to represent the coordinates of the distance from 

the inertial frame to the center of mass of a body (subscript C), 
expressed in the inertial frame.  Assert the relative position 
vector of a frame (α + 1) from another frame (α) by sC

(α+1/α)(t).  
Express this relative translation in the D-frame:  

( 1/ ) ( ) ( 1/ )( ) ( ) ( )C Ct t tsD D D D D� � es   (4) 

By adding the absolute position vector of the D-frame  rC
(α)(t) and 

the relative position vector sC
(α+1/α)(t), we obtain the absolute 

position vector of the (α + 1) frame: 
( 1) ( ) ( ) ( 1/ )( ) ( ) ( ) ( )C C Ct t t s tD D D D D� � �r r e  (5) 

Let us now turn our attention to frame orientations.  We use a 
rotation matrix, a member of the Special Orthogonal Group 
R ∈ SO(3), to relate the orientation of a moving frame to an 
inertial frame:  

( ) ( ) ) ( ) (It tRD D e e  (6) 

The relative rotation of a frame (α + 1) from another frame (α) 
can be written as: 

( 1) ( ) ( 1/ )( ) ( ) ( ) t t R tD D D D� � e e  (7) 
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The orientation of body (α + 1) can be expressed in the inertial 
frame by inserting equation (6) into (7) and exploiting the closure 
property of the SO(3) Group: 

( 1) ( ) ( 1/ ) ( 1)( ) ( ) ( ) ( ) I It Rt t tR RD D D D D� � �  e e e  (8) 

The inverse of a rotation matrix is the transpose (a property of 
SO(3)): 

� � � �1( ) ( )( ) ( )
T

R t R tD D�
  (9) 

The time rate of frame rotation is: 
( ) ( ) ) ( ) (I Rt tD D e e� �  (10) 

We use (9) in (6) to formulate the inertial frame in terms of the 
moving frame and then substitute the result into (10) to obtain:  

� �( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 
T

t tR Rt tD D D D e e� �  (11) 

The time rate of frame rotation is now expressed in its own 
frame.  
 
We define the skew-symmetric angular velocity matrix.  We note 
that this element is a member of the associated algebra, so(3): 

� �
( ) ( )
3 2

( ) ( ) ( ) ( ) ( )
3 1

( ) ( )
2 1

0
 

(

(
0

( ) )
( ) ( ) ( ) ( )

0
( )

( ) )

T
R R

t t
t t t t t

t t

D D

D D D D D

D D

Z Z
Z Z Z

Z Z

ª º�
« »  �« »
« »�¬ ¼

HJJJJJJG
�  (12) 

We can now rewrite equation (11) as:  
( ) ( ) ( )( ) ( ) ( )t t tD D DZ e e

HJJJJJJG
�  (13) 

The skew-symmetric angular velocity matrix is isomorphic to 
the same frame to the angular velocity vector of that frame: 

( )
1

( ) ( ) ( )
2
( )
3

( )
( ) ( ) ( )

( )

§ ·
¨ ¸

 ¨ ¸
¨ ¸
© ¹

α

t
t t t

t

D

D D

D

Z
Z
Z

eZ  (14) 

 
Kinematics of SE(3)  
 
Continuing, we desire to combine the rotational and translational 
data of a frame (α), in one structure.  We define the 4×4 absolute 
frame connection matrix (a member of the Special Euclidean 
Group).  We note that E ∈ SE(3). 

( ) ( )
( )

3

( ) ( )
)

0
( 

1
C

T

t t
t

R x
E

D D
D ª º

 « »
¬ ¼

 (15) 

We define an inertial frame connection.  This consists of the 
frame and its position, represented as:  

� � � �1 2 3 I I I Ie 0 e e e 0  (16) 

Similarly, we represent the moving frame connection as:  

� � � �( ) ( ) ( ) ( ) ( ) ( )
1 2 3( )) ( ()( ) ( () )C Ct t ttt tD D D D D D e r e e e r  (17) 

We relate the inertial frame connection (16) and the moving 
frame connection (17) by utilizing the absolute frame connection 
matrix (15): 

� � � �( ) ( ) ( )( ) ( ) ( ) I
Ct t E tD D De r e 0  (18) 

The relative frame connection matrix is defined as:  
� �1/ ( 1/ )

( 1/ )

3

( ) ( ))
0 1

(
� �

� ª º
 « »
¬ ¼

C
T

R sE t tt
D D D D

D D  (19) 

We use equation (19) to express the relationship between two 
moving frames, (D + 1) and (α):  

� � � �( 1) ( 1) ( ) ( ) ( 1/ )( ) ( ) ( ) ( ) ( )C Ct t t t E tD D D D D D� � � e r e r  (20) 

Equation (20), with its defining element (19), recapitulates 
equations (5) and (7).  
 
The absolute frame connection matrix of body (D + 1) can be 
found as the product of the absolute frame connection matrix of 
body (α) and the relative frame connection matrix that relates 
them (as a result of the closure property of the SE(3) group): 

( 1) ( ) ( 1/ )( ) ( ) ( )E t tE E tD D D D� �  (21) 

 
KINEMATICS OF THE WAVE ENERGY CONVERTER 

 
Figure 1 – Schematic of the GWEC 

First Frame – The Buoy 
 
We place the first moving frame e(1)(t) at the center of mass of 
the buoy. At t = 0 we deposit an inertial frame from the first 
frame:  

(1) (0) Ie e  (22) 

The frame connection matrix for the first frame contains the data 
for rotation and translation from the inertial frame: 
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(1) (1)
(1)

3

( ) ( )
( )

0 1
C

T

R x
E

t t
t

ª º
 « »
¬ ¼

 (23) 

We express the relationship between the buoy frame and the 
inertial frame as:  

� � � �(1) (1) (1)( ) ( ) ( ) I
Ct t E te r e 0  (24) 

Next, we take the time rate of the frame connection: 

� � � �(1) (1) (1)( ) ( ) ( ) �� � I
Ct t E te r e 0  (25) 

The time rate of the frame connection matrix Ė(1)(t) is found by 
taking the time derivative of each data block: 

(1) 1

3

( )
(1) ( ) ( )

(
0

)
0

ª º
 « »
¬ ¼

�
� �c

T

R xt
tE

t
 (26) 

We will also need the inverse of the frame connection matrix, 
which is expressed as (due to E ∈ SE(3)): 

� � � � � �(1 (1) 1) (1)
(1

3

) ( ) ( ) (

1

)
( )

0

� ª º�
« » 
« »¬ ¼

T T

C

T

R R x
E

t t t
t  (27) 

We use (27) in (24) to formulate the inertial frame connection in 
terms of the moving frame connection and then substitute the 
result into (25) to obtain:  

� � � � � �(1) (1) (1) (1) (1) (11 )( ) ( ) ( ) ( ) ( ) ( )C Ct t t t t tE E
�

 e r re ���  (28) 

We define the absolute time rate of frame connection matrix for 
the first body Ω(1) as the product of ൫E(1)(t)൯

-1
 and Ė(1)(t).  We 

note that Ω ∈ se(3) (the algebra associated with the SE(3) group): 

� �� �(1) (1) ( )1 1 ( ) Ω E tE t
�

 �  (29) 

As a result, we can rewrite equation (28) as:  

� � � �(1) (1) (1) (1) (1)( ) ( ) ( ) ( ) ( )C Ct t t t t: e r e r� �  (30) 

Ω(1) multiplied out in matrix from:  

� � � �(1) (1) (1) (1)
)

3

(1 (

0 0

( ) ( ) ) ( )
T

C

T

T

R R R xΩ t t t tª º
« » 
« »¬ ¼

� �
 (31) 

We recognize the expression in the upper left corner to be the 
same as (12), so we rewrite: 

� �(1) (1) (1
(1

3

)
) ( ) ( ) (

0 0

)C

T

T

R xΩ tt tZª º
« » 
« »¬ ¼

HJJJJJG

�
 (32) 

From equation (30), we extract:  
)(1) (1) (1 () )( ( )t t tZ e e

HJJJJJG
�  (33) 

The angular velocity vector of the first frame is then, as shown 
earlier with (14):  

1
1

2

( )

(1) (1) (1

3

)

(1)

( )
( ) ( ) ( )

( )

§ ·
¨ ¸

 ¨ ¸
¨ ¸
© ¹

t
t t t

t

Z
Z
Z

eω  (34) 

The second equation extracted from equation (30) is:  

� �(1) (1) (1) (1)( ) ( ) ( ) ( ) � �
T

C CRt t t x tr e  (35) 

Thus, assert the translational velocity as: 
(1) (1)( ) ( ) � �

I
C Ct x tr e  (36) 

 
Second and Fourth Frame - The Gimbals 
 
The buoy, rocked by waves, provides the precession.  The disk 
(in the next sub-section) provides the spin.  We now focus on the 
nutation of the gimbals that the generator captures. First, to 
reduce this paper’s length, the following equations represent 
both gimbals. Here (E ) represents frame 2 (first gimbal frame; 
e.g., left in figure 1) and 4 (second gimbal frame; right). 
At the center of mass of the gimbals, we place a moving frame 
e(β)(t). To get from the first frame (the buoy frame) to the (E )-
frame, move a distance l in the e1

(1)- direction, then a distance h 
in the e3

(1)- direction.  The relative position vector sC
(β/1)(t) of the 

(E )-frame is expressed in the first frame as:  
( /1)

( /1) (1) ( /1) (1)

( /1)

( ) ( ) ( ) ( ) 0
§ ·
¨ ¸

  ¨ ¸
¨ ¸
© ¹

C C

l
t t s t t

h

E

E E

E

s e e  (37) 

The orientation of this second frame is obtained from the first 
buoy frame by a nutation θ(β)(t) about the common 2-axis (it is 
this nutation we desire to capture): 

( ) ( )

( ) (1) ( /1) (1)

( ) ( )

cos ( ) 0 sin ( )
( ) ( ) ( ) ( ) 0 1 0

sin ( ) 0 cos ( )

t t
t t R t t

t t

E E

E E

E E

T T

T T

ª º
« »  « »
« »�¬ ¼

eee  (38) 

We now have the information we need to construct the relative 
frame connection matrix: 

( /1) ( /1)
( /

3

1)

0 1
( )

( )
ª º

 « »
¬ ¼

C
T

R s
E

t
t

E E
E  (39) 

E(β/1)(t) relates the first frame and gimbal frames as shown: 

� � � �( ) ( ) (1) (1) ( /1)( ) ( ) ( ) ( ) ( )C Ct t t t E tE E E e r e r  (40) 

To relate the gimbal frames to the inertial frame, we need the 
absolute frame relation matrix E(β)(t), which is found as shown 
in (21), but expressed fully as:    
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(1) (1) ( /1 )
( ) (1) ( /1)

) ( /1

3 30 1
( ) ( ) ( )

( ) (
0

)
1

( ) C C
T T

R x R s
E

tt
E E

t
t t tE E

E Eª º ª º
  « » « »

¬ ¼ ¬ ¼
 (41) 

Multiplied out:  
(1) ( /1) (

)
1) ( /1) (1)

3

( ( ) ( ) (
0

( )
1

)
( ) C C

T

R R R s x
E

t t t t
t

E E
E ª º�

 « »
¬ ¼

 (42) 

The inverse:  

� �
� � � � � � � � � �

1

( /1) (1) ( /1) (1) (1) ( /1) (1)

( )

3

( )

( ) ( ) ( ) ( ) ( ) (

1

)

0

T T T T

C C

T

E

tR tR R R R s x

t

t t t tE E

E

E

�
 

ª º� �
« »
« »¬ ¼

 (43) 

The rate of change:  
(1) ( /1) (1) ( /1) (1) ( /1) (1

)

3

(
)

0
( ) ( ) ( ) ( ) ( ) ( )

( )
1

C C
T

R R R Rt
t

R xt t t t t
E

sE E E
E ª º

 « »
¬

�

¼

�
�

� � � �  (44) 

We can now find the absolute time rate of frame connection 
matrix Ω(β)(t) by multiplying (43) and (44).  We then use the 
result to relate the time rate of change to the moving frame:  

� � � �( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) � �C Ct t t t tE E E E E:e r e r  (45) 

From (45) we extract the angular velocity vectors, and linear 
velocity vectors of the gimbals in the inertial frame, respectively: 

� �� �( ) ( ) ( /1) (1) ( /1)( ) ( ) ( ) ( ) ( )
T

t t R t t tE E E EZ Z �eZ  (46) 

� �� �(( ) (1 1(1) /1 ))( ) ( ) ( ) ( )I
CC CR st t txtEE Z � �er
HJJJJG

� �  (47) 
 
Third and Fifth Frame – The Disks  
 
In this section, (γ) represents frames 3 and 5: the body frames for 
the disks. The (γ)-frame is located at the center of mass of the 
spinning disk, which is placed at the same location as the gimbal 
frame. Hence, there is no translation, and sC

(γ/β)(t) is zero. The 
(γ)-frame will rotate from the (E )-frame around the third axis, 
by the angle ϕ(γ)(t): 

( ) ( )

( ) ( ) ( / ) ( ) ( ) ( )

cos ( ) sin ( ) 0
( ) ( ) ( ) ( ) sin ( ) cos ( ) 0

0 0 1

t t
t t R t t t t

J J

J E J E E J J

I I
I I

ª º�
« »  « »
« »¬ ¼

e e e  (48) 

We construct the relative frame connection matrix: 
( / )

( / )

3

( )
0

( )
0
1

ª º
 « »
¬ ¼

TE
tR

t
J E

J E  (49) 

E(γ/β)(t) relates the disk and gimbal frames as shown:  

� � � �( ) ( ) ( ) ( ) ( / )( ) ( ) ( ) ( ) ( ) C Ct t t t E tJ J E E J Ee r e r  (50) 

At this point we need to establish the absolute frame connection 
matrix E(γ)(t). This is done using the procedure found in (21).  

(1) ( /1) (1) ( /1) (1) ( /

( ) (

3 3

)

)

) ( /( ) ( ) ( )

( ) ( ) ( ) ) 0
0

(
1

) (
1 0

  

ª º ª º�
« » « »
¬ ¼ ¬ ¼

C C
T T

E

t

E E

R R R x

t t

t s R

t

t t t

J E J E

E E J E  (51) 

Multiplying these matrices yields the following result: 
(1) ( /1) ( / ) (1) ( /1) (1)

3

( ) ( ) ( ) )
0 1

( ) ( ( )
( ) C C

T

R R R R s x
E

t t t t t
t

E J E E
J ª º�

 « »
¬ ¼

 (52) 

Now we take the inverse of E(γ)(t): 

� � � � � � � �

� � � � � � � �

( / ) ( /1) (1)1

3

( / ) ( /1) (1) (1) (

( )

/1) (1)

( ) (

(

0

1

) ( )( )

( ) ( ) ) ( ) ( )

T T T

T

T T T

C C

R R RE t t tt

t t t t txR R R R s

J E E

J E E E

J � ª
« 
«¬

º� �
»
»¼

 (53) 

Next, we find the rate of change of E(γ)(t): 
( ) (1) ( /1) (1)

( )

30
( ) ( ) ( )

( )
0

ª º�
 « »
¬ ¼

�
� � �C C

T

tR R xt t
E

s
t

J
J

E

. (54) 

Where Ṙ(γ)(t) is given as: 
( ) (1) ( /1) ( / )

(1) ( /1) ( / ) (1) ( /1) ( / )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

R R R R
R R

t t t t
t t t t RtR tR R

J E J E

E J E E J E

 �

�

� �

� �
 (55) 

We find the absolute time rate of frame connection for the third 
and fifth body Ω(γ)(t) by mulitplying (53) and (54):  

� � � �( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )C Ct t t t tJ J J J J: e r e r� �  (56) 

From (56) we extract the angular and linear velocity vectors of 
the disks, respectively: 

� � � �
� �

( ) ( )

( /1) ( / ))

( / ) ( /1) (1)

( /

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

§ ·
¨ ¸ ¨ ¸¨ ¸
©

�

� ¹

T T

T

t t
t

R t
t

tR t t

RJ E E

J E J

J J

E E

Z

Z Z
eZ  (57) 

� �(( ) (1)(1) /1 (1))( ) ( ) ( ) ( ) � �
HJJJJG

� �
I

CC CR s xt t t tEJ Zr e  (58) 

 
Generalized Coordinates 
 
To simplify the dynamics for the GWEC, we relate the already 
established Cartesian coordinates to certain generalized 
coordinates needed for the kinetics. Before continuing, we make 
some additional assumptions. First, we assume the buoy is 
stationary; i.e., the center of mass of the buoy does not translate 
in any direction. Second, we assume the disks are already 
spinning at a constant rate when analysis begins. Third, we 
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assume there is no resistance on the disks meaning there is no 
motor needed to maintain the constant velocity of the disks. 
 
{Ẋ(t)} denotes the Cartesian velocities, {q̇(t)} denotes the 
generalized velocities, while {ṙ(t)} denotes the generalized 
velocities that are prescribed.       

^ ` ^ `

(1)

(2)

(2)

(3) (1)
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(3) (2)
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(4)(4)
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{ ( )}
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x t

t
x t t
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x t

t

q t
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T
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Z

­ ½
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° °
° °
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­ ½° °
­ ½° °° °{ {® ¾ ® ¾ ® ¾
¯ ¿° ° ° °

¯ ¿° °
° °
° °
° °
° °
¯ ¿

{

�

�
�

�� �
�

��

�

�  (59) 

The relationship between these data structures is obtained 
through the B-matrix and C-matrix as follows:       

^ ` > @^ ` > @^ `( ) ( ) ( ) ( ) ( )X t B t q t C t r t �� � �  (60) 

The number of rows of the B-matrix is equal to the number of 
Cartesian velocities, while the number of columns is equal to the 
number of generalized velocities. In this case, the block size of 
the B-matrix will be 9×3 (time dependencies are omitted due to 
space restrictions):  
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 (61) 

Where I3, 0
3×1

, e2 and e3 (found in the C-matrix) is given as: 

3 2 33 1

1 0 0 0 0 0
0 1 0 , 0 0 , 1 , 0
0 0 1 0 0 1

I e e
u

ª º § · § · § ·
¨ ¸ ¨ ¸ ¨ ¸« »    ¨ ¸ ¨ ¸ ¨ ¸« »
¨ ¸ ¨ ¸ ¨ ¸« »¬ ¼ © ¹ © ¹ © ¹

 (62) 

The C-matrix is constructed in a similar manner. Number of rows 
corresponds to number of prescribed Cartesian velocities, while 
the number of columns is equal to the number of generalized 
velocities. In this case a 9×2 matrix:   

> @
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eC

e

 
(63) 

 
KINETICS OF THE WAVE ENERGY CONVERTER 
 
Application of Analytical Mechanics 
 
We begin by defining a Lagrangian as the difference between the 
kinetic and potential energy: 

� � � � � �( ) ( ) ( )( ), ( ), ( ), ( ), ( ),q t q t t K q t q t t q t tL UD D D �� �  (64) 

Define the Action as the definite integral of the Lagrangian 
function over time: 

� �
1

0

( ) ( ), ( ),
t

t

A tq t q tL t dD ³ �  (65) 

Hamilton’s principle states that “the motion of a system occurs 
in such a way that the definite integral A becomes a minimum for 
arbitrary possible variations of the configuration of the system, 
provided the initial and final configurations of the system are 
prescribed” [9]. To obtain the equations of motion, we would set 
the variation of the Action equal to zero: 

� �
1

0

( ) 0( ), ( ),
t

t

qL q t t t dtDG  ³ �  (66) 

However, we must first deal with the non-conservative forces.  
To include the non-conservative forces, we exploit the extension 
of Hamilton’s Principle, known as the Principle of Virtual Work.  
Here, we formulate the Lagrangian as dependent only on the 
kinetic energy.  We will account for all other forces (conservative 
or non-conservative) as work, on the right side.  From this point 
onwards, we omit the dependencies of position and velocity for 
ease of notation. 

1 1

0 0

( ) ( )( )  ( )
t t

t t

K t dt W dt tD DG G �³ ³  (67) 

The kinetic energy of each body in the system is expressed by 
the angular momentum HC

.(α.)(t), and linear momentum LC
.(α.)(t): 
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( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )C C Ct t H t t J tD D D D D DZ  H e e  (68) 

( ) ( ) ( ) ( )( ) ( ) ( )I I
C C Ct L t m x tD D D D  L e e �  (69) 

Here, JC
.(α.)represents the moment of inertia matrix for body α. 

The total kinetic energy of a body α with the frame placed at the 
center of mass is defined as:  

^ `( ) ( ) ( ) ( ) ( )1( )
2 C C CK tD D D D D � � �r L ω H�  (70) 

For the whole system, the total kinetic energy is expressed in 
matrix form as:  

^ ` > @^ `1( ) ( ) ( )
2

T
K t  = X t M X t� �  (71) 

Where the generalized mass matrix [M] contains the masses and 
moments of inertia for each body: 

> @
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The variation of the kinetic energy is expressed as:  

^ ` > @^ `( ) ( ) ( )
T

K t  = X t M X t  G G � �  (73) 

At this point, we need to find an appropriate expression for the 
virtual Cartesian velocities {δ Ẋ(t)}: 
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 (74) 

For linear velocities, the variation of the time derivative is equal 
to the time derivative of the variation:  

( ) ( )( ) ( )�C C
d x t  = x t
dt

D DG G  (75) 

For angular velocities, however, there is a restriction as proven 
by Murakami [7]: 

� � � �( ) ( ) ( ) ( ) ( ) ( )

un un
( ) ( )

T Tdt  = R R + t R R
dt

D D D D D DGZ G Z G
HJJJJJJG

 (76) 

Here, the subscript “un” means that the matrix is un-skewed into 
a column vector. Time dependencies on the rotation matrices are 
omitted due to space restrictions. Moving on, we define the 
Virtual Cartesian displacements {δ X෩(t)}: 

^ `
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Making use of previous three equations, (74) may now be 
written in compact form as: 

^ ` ^ ` ^ `( ) ( ) [ ] ( )dX t X t D X t
dt

G G G �� � �  (78) 

Where [D] is a skew symmetric matrix that contains the angular 
velocity matrices for each frame:  

> @

(1)

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

(2)

3 3 3 3 3 3 3 3

3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

(5)

3 3 3 3 3 3 3 3 3 3

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0

0 0 0 0 0 0

0 0 0 0 0

D    

Z

Z

Z

u u u u

u u u u u

u u u u

u u

u u u u u u

u u u u u

ª º
« »
« »
« »
« »
« »{ « »
« »
« »
« »
« »
« »¬ ¼

HJJG

"

"

HJJJG

"

# # # %

HJJJG

 (79) 

With the virtual kinetic energy established, we move on the 
virtual work. We begin by defining the forces and moments 
acting on the different bodies of the system as {F(t)}:  
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 (80) 

Here, −m(α)ge3 is the gravitational force at the center of 
mass. Mw(t) is the moment induced by waves, and Mg

 (β)(t)e2  is 
the moment from the generators that are attached to the gimbals. 
We note that the disks spin in opposite directions, such that the 
moments acting on the gimbals from the generator will be 
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cancelled out. This is a major advantage of having two 
gyroscopes instead of one. 
 
We express the virtual work done by the forces and moments as: 

^ ` ^ `( ) ( )
T

W X t F tG G �  (81) 

In so doing, we note that to obtain the variation of the work from 
the moments, the moments and the virtual rotation terms, are 
conjugate to each other. 
 
The B-matrix that relates the Cartesian velocities {Ẋ(t)} to the 
generalized velocities {q̇(t)}, also relates the virtual Cartesian 
displacements {δ X෩(t)} to the virtual generalized displacements 
{δ q(t)}:  

^ ` > @^ `( ) ( ) ( )X t B t q tG G �  (82) 

The transpose of the above is used to rewrite equation (81): 

^ ` ^ `*( ) ( )TW q t F tG G  (83) 

Where the generalized forces ൛F*(t)ൟ are defined as:  

^ ` > @ ^ `* ( ) ( ) ( )TF t B t F t  (84) 

By inserting the expressions obtained for the variation of the 
kinetic energy and the virtual work into equation (67), we obtain 
the basis for the equation of motion:  

^ ` > @^ ` ^ ` ^ `� �1

0

*( ) ( ( ) () ) 0 
t

T

t

T
 q t F tX t dtM X t GG �  ³ � �  (85) 

 
Equation of Motion  
 
After performing integration by parts on (85), and accounting for 
zero virtual displacement at the endpoints, we obtain a second 
order coupled differential equation:   

^ ` ^ ` ^ ` ^ `* * *( ) ( ) ( ) ( ) ( ) ( ) ( )M t q t N t q t F t T t r t
ª º ª º ª º�  �¬ ¼ ¬ ¼ ¬ ¼�� � �  (86) 

Where the following terms are defined: 

> @ > @> @( ) ( ) ( )
ª º {¬ ¼
TM t B t M B t  (87) 

> @ > @ > @> @> @� �( ) ( ) ( ) ( ) ( )TN t B t M B t D t M B t
ª º ª º{ �¬ ¼ ¬ ¼
�  (88) 

> @ > @> @> @( ) ( ) ( )
ª º {¬ ¼
TT t B t D t M C  (89) 

Solving (86) with respect to the list of generalized accelerations 
{q̈(t)}, yields: 

^ ` ^ ` ^ ` ^ `� �* * *( ) ( ) ( ) ( ) ( ) ( ) ( )
T

q t M t F t T t r t N t q t
ª º ª º ª º � �¬ ¼ ¬ ¼ ¬ ¼�� � �  (90) 

This list of five equations, one for each generalized coordinate, 
will be integrated numerically using the method of Runge-Kutta. 
 
RESULTS 
 
Preparation for Analysis  
 
With the necessary equations of motion secured, we proceed to 
analyze the power generated by the GWEC. A generator is 
attached to each of the two gimbals. We will perform the 
proceeding calculation on the first gyroscope, and assume that it 
is located in the centre of mass of the buoy, such that 
sC

(β/1)(t) = 0. We begin by investigating the simplified equation 
of motion for the first gimbal, found in (90):  

� � � � � �
� �

2(3) (1) (2) (3) (3) (1) (2)
g 3 1 3 1

(2)
(2) (3)
2 3
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4

2
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M J J

J J

Z T I Z T
T

§ ·� � �¨ ¸
© ¹ 

�

�

��  (91) 

The numerator on the right-hand side of (91) consists of three 
terms. Mg is the counter torque in the generator, and is assumed 
to be constant. The next term depends on the angular velocity of 
the disk and is therefore a result of the gyroscopic effect. The 
third term accounts for oscillation effects of the buoy. In this pass 
we ignore the last term, as we are only interested in the 
gyroscopically generated power, and not the total generated 
power. Moving on, we define θ̈gyro

(2)
 as the gimbal’s angular 

acceleration caused by gyroscopic effects: 

� �� �
� �
(3) (1) (2) (3)

g 3 1(2)
gyro (2) (3)

2 3

2 cos

2
C

C C

M J

J J

Z T I
T

� �
{

�

�
��  (92) 

The mass moments of inertia are given by: 
(2) (2) (3) (3) (3)

(2) (3)
2 3,

12 2C C
m d mJ J U U

   (93) 

Where d(2)is the width of the gimbal, and ρ(3) is the radius of the 
disk. In order to approximate the angular velocity of the buoy 
ω1

(1) , we assume that its motion is tangent to the wave profile, 
and that deep-water wave conditions apply. Thus,  we obtain the 
following simplified angular velocity, in accordance with Rios & 
Murakami [10]: 

3
(1)

1
2 2cosa t
T g T
S SZ

§ ·§ · § · � ¨ ¸¨ ¸ ¨ ¸
© ¹ © ¹© ¹

 (94) 

Where a is the wave amplitude, T is the wave period, and g is the 
gravitational acceleration. Next, we turn to the generation of 
power. The power produced by the first gyroscope is given by: 

(2)
gyro,1 g gyro( ) ( ) �P t M tT  (95) 

Where θ̇gyro
(2)

(t) is found as the integral of (92) with respect to 
time. The power produced by both gyroscopes is the sum of the 
power generated in each gyroscope:  
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(2) (4) (2)
gyro g gyro g gyro g gyro( ) ( ) ( ) 2 ( ) �  �� � �P t M t M t M tT T T  (96) 

Here we notice the advantage of having two gyroscopes instead 
of one. The total power output is doubled. This shows how 
gyroscopic wave energy can easily be scaled to produce large 
amounts of power. Also, the two gyroscopes are spinning in 
equal but opposite directions. This eliminiates the unwanted 
yaw-motion that arises due to the gyroscopic effect.  
 
Numerical Integration 
 
In order to solve the equations of motion, we apply numerical 
methods. More specifically, we use a Matlab function called 
ode45. This integration scheme is based on the method of Runge-
Kutta. The results will shortly be presented through plots. The 
parameters used in this process are listed in the table below: 
 

Mass of the gimbals ( )m E  75 kg 
Width of the gimbals ( )d E  0.85 m 
Mass of the disks ( )m J  750 kg 
Radius of the disks  ( )JU  0.60 m 
Angular velocity of disks ( )JI�  5000 rpm 
Gravitational acceleration g  9.81 m/s2 

Wave amplitude a  3 m 
Wave period T  4 s 
Counter torque in the generator gM  8250 Nm 

Table 1 – Integration Parameters  

Only the parameters that are directly influencing the plots are 
listed in this table. The parameters have been determined to 
maximize power output, while staying within reasonable limits.  
 
DISCUSSION 
 
In order to create reasonable plots we had to find the optimal 
relationship between disk angular velocity and counter torque. 
We chose an angular velocity of 5000 rpm, and adjusted the 
generator moment subsequently. From (96) we see that the 
generated power is proportional to the counter torque. 
Furthermore, a large counter torque is needed to constrain the 
angular displacement of the gimbals. On the other hand, if the 
counter torque is bigger than the torque created by the gyroscope, 
the gimbals are unable to move.  The figure below shows that the 
chosen counter torque is close, but not equal, to the maximum 
values of the gyroscopically induced moment.  The sinusoidal 
curve is the gyroscopically generated moment, corresponding to 
the second term of the numerator in (92). The stippled line is the 
counter torque Mg in the generator.  
 

 
Figure 2 – Gyroscopic Torque 

Next, we move on to the angular displacement of the gimbals. 
Here you can see a perioidic oscillating curve. As the counter 
torque increases, the smoothness of the curve increases, but at 
the same time the angular displacement is decreased.  This curve 
is obtained by numerical integration of the gimbal equation of 
motion, found in (92). 

 
Figure 3 – Gimbal Angular Displacement 

The angular velocity is also found by numerical integration of 
the gimbal equation of motion.  The angular velocity of the 
gimbal is very important in relation to the generated power.  

 

Figure 4 – Gimbal Angular Velocity 
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After the kinematical plots we turn our attention to the generated 
power.  As mentioned, we assigned a previously selected value 
for Mg, and got θ̇gyro

(2)
(t) from the numerical integration of the 

gimbal equation of motion.  The plot below shows the absolute 
value of the power produced using equation (96), as both 
clockwise and counter-clockwise rotation of the gimbal will be 
assumed to generate power. The stippled line shows the average 
generated power. With the selected integration parameters, this 
GWEC will on average produce 1250 W, with a peak power 
output of roughly 10 kW.  

 
Figure 5 – Generated Power 

Integration of the generated power with respect to time gives us 
the generated energy.  We use a Matlab function called cumtrapz, 
which approximates the accumulative integral of a function 
using the trapezoidal method.  This cumulative plot shows how 
more and more energy is generated as the buoy is oscillating on 
the waves.   

 
Figure 6 – Generated Energy 

WebGL and visualization 
 
To help visualize the GWEC, a simplified simulation                    
has been made using WebGL. The simulation is available at: 
http://home.hib.no/prosjekter/dynamics/2019/gyro/. Figure 7  
shows the GWEC from the same perspective as figure 1.  
 

 
Figure 7 – Illustration of the 3D Simulation 

CONCLUSION AND FUTURE WORK 
 
In this project the power of the Moving Frame Method has been 
demonstrated by deriving the equations of motion for a 
gyroscopic wave generator. The equations were solved 
numerically and the results represented as plots. This project 
builds on, and extends previous work [5], by incorporating two 
spinning disks to reduce yaw-motion and increase power output, 
doing a full 3D analysis, while accounting for the prescribed 
rotations, and visualizing the results on a 3D web page. 
Additionally, a more compact and coherent notation was 
achieved by utilizing the Special Euclidean Group SE(3) to 
handle rotations and translations. Moreover, the angular rates of 
the disks were prescribed, which greatly simplified the analysis 
as we did not have to account for the time the disks would take 
to spin up. A simplified 3D-model was created in WebGL to 
illustrate the motion, and concept of the GWEC. 
 
In future work there would be of interest to account for 
hydrostatic bouancy, added mass, and translation of the buoy. 
There is also great potential in improving the behavior of the 
generator to allow for a more efficient extraction of power, in 
addition to more accurate control of the gimbals movements.     
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FLOW CHART 

Here we present the Gantt-form we created at the start of the semester. The green cells show what we planned to 
work on each week. The red cells show what we had to finish that week, while the yellow cells indicate an 
individual study week. Due to unforeseen incidents, we had some difficulties with following the planned 
progress in February and March, but with increased we effort we caught up with the schedule and finished in 
time.  

This form helped us structure our workflow and was of great use throughout the project.  

 

 



 

  



 

 


