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ABSTRACT This paper reviews the use of outlier detection approaches in urban traffic analysis. We divide
existing solutions into two main categories: flow outlier detection and trajectory outlier detection. The first
category groups solutions that detect flow outliers and includes statistical, similarity and pattern mining
approaches. The second category contains solutions where the trajectory outliers are derived, including off-
line processing for trajectory outliers and online processing for sub-trajectory outliers. Solutions in each
of these categories are described, illustrated, and discussed, and open perspectives and research trends are
drawn. Compared to the state-of-the-art survey papers, the contribution of this paper lies in providing a
deep analysis of all the kinds of representations in urban traffic data, including flow values, segment flow
values, trajectories, and sub-trajectories. In this context, we can better understand the intuition, limitations,
and benefits of the existing outlier urban traffic detection algorithms. As a result, practitioners can receive
some guidance for selecting the most suitable methods for their particular case.

INDEX TERMS Urban traffic analysis, outlier detection, machine learning, data mining.

I. INTRODUCTION
Recent advances in high-precision GPS technologies and
infrastructure have made our cities smarter. Urban traffic
analysis is one of the most attractive applications in a smart
city [1], [2]. One of the main applications of urban traffic
analysis lies in detecting anomalies from the traffic data.
A useful way of detecting anomalies in urban traffic data is
by utilizing outlier detection techniques. An outlier is defined
as an observation (or a set of observations) which appears
to be inconsistent with the remainder of that set of data [3].
Outlier detection has been intensively studied in recent
decades [3]–[8], and an interesting recent survey which
reviews existing outlier detection methods can be found
in [9].

This paper presents a comprehensive overview of the
existing urban traffic outlier detection algorithms. We split
existing approaches into two main categories: flow outlier
detection and trajectory outlier detection. The first one aims
at detecting flow outliers, including statistical, similarity,
and pattern mining approaches. The second category aims at
detecting trajectory outliers and includes offline processing
for trajectory outliers and online processing for sub-trajectory

outliers. Solutions in each category are described, illustrated,
and discussed, and open perspectives and research trends in
this area are depicted. Compared to previous review papers,
this paper provides a deep analysis of all kinds of urban traffic
applications, including flow values, segment flow values,
trajectories, and sub-trajectories. This allows us to clearly
understand the merits and limitations of each urban traffic
outlier detection algorithm. Consequently, mature solutions
could be derived for intelligent transportation engineering.

A. PREVIOUS REVIEW PAPERS
This section summarizes survey papers from the literature
that are relevant to this one, clarifies the differences, and
makes a position for the contribution of this paper. This
survey paper is composed of two main topics: outlier detec-
tion algorithms and urban traffic data mining. In the fol-
lowing section, we review some existing surveys of these
topics. Schubert et al. [10] introduced the locality notion
in identifying outliers. By defining the context and model
functions, this notion represents locality. The context func-
tion outputs the set of reference objects that are relevant to
judging the outliers, and the model function is the sequence
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of tasks applied to the reference objects aiming to determine
whether the given object is outlier or inlier. A special case
of locality has been shown on video temporal streams data.
Zheng [11] reviewed detecting outliers, anomalous trajecto-
ries, sub-trajectories, finding noise points in the whole set
of trajectories, and the identification of anomalous events
in trajectories including accidents, controls, protests, sports,
celebrations, disasters, and other events. Feng and Zhu [12]
proposed a general framework of trajectory data mining,
including preprocessing, data management, query process-
ing, trajectory datamining tasks, and privacy protection. They
also discussed some existing applications such as path dis-
covery, location/destination prediction, movement behavior
analysis, group behavior analysis, urban service, and making
sense of trajectories. Gupta et al. [13] provided an inter-
esting survey that discussed techniques for the detection of
temporal outliers. This survey organized a discussion about
different types of data, presented various outlier definitions,
and discussed various applications for which temporal outlier
techniques have been successfully employed (environmental
sensor networks, trajectory, biological, astronomy, and web
data). Zheng et al. [14] presented a general urban comput-
ing framework, which was composed of four steps: urban
sensing, urban data management, data analytics, and service
providing. i) Urban sensing aims to capture people’s mobility
using GPS sensors or their mobile phone signals. ii) Urban
data management employs powerful indexing structures to
store the spatio-temporal information obtained in the first
step. iii) Data analytics are able to identify and extract useful
patterns, such as clusters and outliers. This step benefits from
the indexing structures done in the previous step. iv) The
service providing goal is to interpret the obtained information
and send it to the transportation authority for dispersing
traffic and diagnosing anomalies. Chen et al. [15] reviewed
existing flow outlier detection approaches, including the
statistics-based approach, the distance-based approach, and
the density based local outlier approach. Moreover, a com-
parative study was performed using Nanjing urban traffic
data by considering two dimensions: travel time and traf-
fic flow data. The results revealed that classical outlier
detection algorithms were useful in detecting urban traffic
flow outliers. Bhowmick and Narvekar [16] presented exist-
ing works dealing with trajectory outliers in urban traffic
data. They classified the existing trajectory outlier detection
approaches according to the method used in the processing
step. The approaches used for classification were distance-
based, density-based, andmotifs-based outliers. Djenouri and
Zimek [17] sketched some existing urban traffic flow outlier
detection algorithms by analyzing locality notion proposed
in [10].

Compared to the existing surveys, ours is the first one
that does so comprehensively. All the other works have been
limited to only some categories of outlier detection (statisti-
cal, similarity, or pattern mining), or even to some category
of urban traffic outliers (flows or trajectories). Compared to
those dealing with flow outliers, ours differs by dealing with

both flow values and segment flow values. Compared to those
dealing with trajectory outliers, ours differs by dealing with
both trajectories and sub-trajectories.

B. TAXONOMY AND PAPER ORGANIZATION
Figure 1 outlines the taxonomy of the urban traffic outlier
detection algorithms presented in this paper. They are sep-
arated into two categories. Flow outlier detection aims to
identify outliers from urban flow data, including 1) statisti-
cal, 2) similarity, and 3) pattern mining methods. The sec-
ond category is trajectory outlier detection where clustering
and similarity approaches are used to derive outliers. This
includes trajectory outliers using offline processing and sub-
trajectory outliers using online processing. Based on this
taxonomy, the rest of the paper is organized as follows:
Section 2 defines the background and concepts used in the
paper. Section 3 presents approaches related to flow out-
lier detection algorithms. Section 3.1 presents the statistical
approaches, Section 3.2 presents the similarity approaches,
Section 3.3 presents the pattern mining approaches, and
Section 3.4 gives an illustration of flow outlier detection
algorithms. In Section 4, we show the trajectory outlier
detection algorithms, and offline processing is presented in
Section 4.1, online processing presented in Section 4.2, and
Section 4.3 gives an illustration of trajectory outlier detection
algorithms. Section 5 discusses the merits and limitations of
the works presented in this paper. Section 6 concludes the
paper and points out a few future directions for research.

FIGURE 1. Taxonomy of urban traffic outlier detection algorithms.

II. PRELIMINARY
Before reviewing the existing approaches, we first introduce
some basic definitions in urban traffic analysis.
Definition 1 (Flow Values): Consider the set of flow val-

ues F = {F1,F2, . . . ,F|F |}, each Fi contains the number of
objects captured in the time stamps [i, . . . , i+ 1].
Definition 2 (Road Network): A road network is modeled

as a directed graph G = (V ,E), where V refers to the
vertex set representing crossroads and E refers to the edge
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set representing road segments. Each edge eji ∈ E denotes a
road segment from vertex vi to vj.
Definition 3 (Segment Flow Values): We consider a seg-

ment flow value So,d to represent the flow values between the
site o and the site d for a given time period. We also define
the set of all segment flow values S = {So,d | ∀(o, d) ∈ V 2

},
where V is the set of sites defined in Def. 2.
Definition 4 (Trajectory): A raw trajectory is a list of point

locations t = {p1 → p2 . . . → pn} with time stamps,
obtained by localization techniques such as GPS. n is the
number of sampled points in the trajectory. Each point pi
is composed by < xi, yi, tsi >, where xi is the longitude
position, yi is the latitude position, and tsi is the time stamp
that the trajectory t attends to point pi for all i ∈ [1, . . . , n].
We also note T = {t1, t2, . . . , t|T |} as the set of all trajectories
captured in the given time period.
Definition 5 (Sub-Trajectory): Consider a trajectory ST =
{pi1 → pi2 . . . → pim} that is defined as sub-trajectory of t
in Def. 4, and denoted as s � t , where 1 ≤ i1 < . . . ≤ n.
We also note S = {s1, s2, . . . , s|S|} as the set of all trajectories
captured in the given time period.
Definition 6 (Outlierness): Let D = {d1, d2, . . . , d|D|} be

the dataset of a given problem: (F for flow values, S for
segment flow values, T for trajectories, and ST for sub-
trajectories).

Consider a score function, defined as follows:

Score : D → R (1)

di 7→ Score(di). (2)

The outlier and the inlier sets are defined as follows:{
O = {di | ∀dj ∈ I , Score(di) ≥ Score(dj)}
I = D/O.

FIGURE 2. Outlierness illustration in Odense, Denmark.

Consider the flow values of Figure 2. This figure shows
the flow values of the Anderupvej location at the city of
Odense in Denmark on a Monday (17/04/2017). Each flow
was determined every 15minutes. The flowsmarked by small
red circles are considered outliers.

III. FLOW OUTLIER DETECTION ALGORITHMS
Figure 3 shows the overall framework of the existing flow out-
lier detection algorithms. Flow outlier detection algorithms
are generally composed of four main steps: i) Urban sens-
ing and data acquisition: This first step aims to capture the
data related to urban traffic flow by deploying sensors, GPS
devices, and other IT infrastructures. ii) Data collection: The
captured data is then collected and organized according to
the application used (flow values or segment flow values).
iii) Outlier detection: The data collected are then used to
find outliers. Three main approaches have been used to find
outliers: statistical, similarity, and pattern mining. iv) Output:
Three kinds of outliers could be identified by the existing flow
outlier detection algorithms: single flow outliers, congested
roads, and interaction between road outliers. This section
reviews existing flow outliers detection algorithms.

FIGURE 3. Flow outlier detection framework.

A. STATISTICAL APPROACHES
Statistical analysis models such as the Gaussian aggregation
model [18], principle component analysis [19], stochastic
gradient descent [20], and Dirichlet Process Mixture [21], are
based on the fact that in general, inlier flows follow some
statistical process represented by an alternative hypothesis
and the outlier flows deviate from this statistical mechanism
and respect to the null hypothesis. For detecting outliers
in large-scale urban traffic data, Ngan et al. [22] proposed
a Dirichlet Process Mixture Model (DPMM). The set of
all flow values F = {f1, f2, . . . , f|F |} is projected into a
n-dimensional space, where the ith dimension is defined by
the flow values {fi, . . . , fi+w}, where w is the window length
projection such as (1 ≤ w ≤ |F | and n = |F | + w).
The n dimensions are then entered in a Principal Component
Analysis (PCA) kernel to reduce and transform the traffic data
space into a two-dimensional (2D) (x, y) coordinate plane.
In this step, the covariance matrix among the variables of
the n dimensions is computed, and the Eigenvalues are then
determined and sorted from the highest to the lowest. This
provides the dimensions in the order of significance. The
two highest significance dimensions are considered while the
rest are ignored. The obtained flow vector represented by
the two dimensions is injected into the Dirichlet process to
detect flow outliers. Thus, the clusters are estimated using
G ∼ DP(H, α), with α being the concentration parameters,
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and H is the hypothesis base distribution defined by H =
{φ. Eµ}, φ, and Eµ are the mixture density covariance and the
mixture weights of the data, respectively. The clusters with a
high number of flow values are considered as normal, and
the other clusters are labeled as outliers. Lam et al. [23]
proposed aKernel SmoothingNaive Bayes (KSNB) approach
to automatically determine any errors as well as abnormal
traffic in data from Hong Kong. The authors assumed that
inlier flow values followed a kernel smooth distribution. The
KSNB model automatically determines regions formed by
kernel distributions and then considers them as inliers. In con-
trast, any flow value outside of those regions is considered
to be an outlier. The kernel estimator for the set of flow
values F is defined as 1

|F |

∑|F |
i=1 K (F − Fi), with K (F) =

1
2φ e
−0.5F2

. Kingan and Westhuis [24] presented a Regression
model for Average Daily Traffic (RADT). A set of flows F
represented by annual average daily traffic was constructed.
The best-fit-least-squares line through the set of flows F ,
and during the time T , was given as F̂ = mT + b, where

m =
∑|F |

i=1(Ti−T̄ )(Fi−F̄)∑|F |
i=1(Ti−T )

and b = F̄ − mT̄ , where F̄ and

T̄ are the average of the flows (
∑|F |

i=1 Fi
|F | ) and the average of

the time (
∑|F |

i=1 Ti
|F | ), respectively. The standard deviation was

then computed by sd =
√∑|F |

i=1(F̂ − F)
2. The score of each

flow value Fi was determined by the function Score(Fi) =√
[F̂ − ˆ(F/F)]tT tT [F̂ − F̂i]. If the score of Fi is greater

than 1, then it is considered an outlier, otherwise, it is con-
sidered a normal flow value.

Turochy and Smith [25] proposed a Multivariate Statistical
Quality Control (MSQC) approach for traffic congestion out-
lier detection. This approach took other traffic variables that
contributed to the congested case, such as the average speed,
and the occupancy rate, instead of using a single variable
represented by the flow values. For more details about how
to compute these variables, we refer the readers to [26].
The historical traffic flows T are fitted to the F-distribution
F|T |,|T |−p(α), where p is the number of variables (in this case
is set to 3), and α is the confidence significance level. When
the new observation flows x = {xflow, xspeed , xoccupancy} are
detected, T with the corresponding x are projected to the
F-distribution with the α value. If the alternative hypothesis
is accepted then x is considered as normal flow, otherwise,
the score of x is computed as: Score(x) = (x− x̄)T S−1(x− x̄)
where S is the covariance matrix defined by (x − x̄)(x − x̄)t .
If the score is greater than the cutoff threshold, then x is
considered to be an outlier, otherwise, it is a normal flow.
Park et al. [27] proposed a Multiple Blocks on Multivariate
Statistical Quality Control (MB-MSQC) approach to deal
with the variability problem of flow during the hours of
the day. For example, in almost all urban cities, there is an
increase in traffic between 6:00 to 9:00 and 16:00 to 19:00.
Thus, the set of flow values is grouped into five distinct
blocks: (B1: 00:00 to 6:00, B2: 6:00 to 9:00, B3: 9:00 to 16:00,
B4: 16:00 to 19:00, and B5: 19:00 to 00:00). Afterwards,

the MSQC proposed in [25] is independently applied on each
block of flows. This algorithm has been tested on traffic
data from San Antonio and Austin, USA. According to the
authors, the results revealed the superiority of MB-MSQC
compared to MSQC in terms of precision.

B. SIMILARITY APPROACHES
The approaches in this section use distance measures and
neighborhood computation methods to find outliers [3], [4].
In general, the inlier flows produce dense regions whereas the
outlier flows have less dense neighborhoods. Dang et al. [28]
proposed a kNN-based approach for flow outlier detection
named kNN-F. It adapts the kNN outlier algorithm presented
in [3]. As input, it has the set of flows, the number of neigh-
borhoods k , and the ε threshold. It also uses an internal data
structure represented by a vector dist to store the distance
values. First, the distance between every two pairs of flow
values is determined. The distance value between each flow
fi and its k th nearest neighbor is then selected. If this value
exceeds the ε threshold, then fi will be considered to be an
outlier, otherwise, it will be considered an inlier. Tang and
Ngan [29] proposed density-based bounded LOF (BLOF).
This is an adapted version of the LOF algorithm [4]. It has
as input the set of flow values and the number of neighbors k .
It also uses an internal data structure represented by a vector
kNN to store the k nearest neighbors of each flow value fi.
First, the local reachability density (lrd) of each fi (see Eq. 3)
is calculated. Second, the k nearest neighbor of fi is given
and stored in the kNN vector. Then, the sum of all lrd of all
neighbors of fi over the lrd of fi is calculated. The LOF value
is determined using Eq. 4. If this value exceeds 1, then fi is
considered an outlier, otherwise, it is considered an inlier.

lrdk (p) = 1/(

∑
o∈kNN (p)

reachk (p, o)

k
) (3)

Note that reachk (p, o) = max{d(p, o), dk (o)}, d(p, o) is
the distance between the flow values p and o and dk (o) is the
distance between the flow value o and its k nearest neighbor.

LOFk (p) =
1
k
×

∑
o∈kNN (p)

lrdk (o)
lrdk (p)

(4)

Munoz-Organero et al. [30] proposed a distance-based
algorithm called Center of Sliding Window (CSW) to detect
abnormal driving locations caused by a particular traffic con-
ditions such as traffic lights, street crossings, or roundabouts.
The aim was to filter outlier driving points related to random
traffic conditions such as traffic jams from infrastructural
road elements. The sliding windows of n flow vectors with
their speed and acceleration are created, and the center flow
vector f̄i in each sliding window swi is considered as ref-
erence flow. The Mahalanobis distance is used to compute
the similarity between the jth flow vector f ji and the center
flow vector f̄i for the sliding window swi as d(f

j
i , f̄i) =√

(f ji − f̄i)
TCov−1(f ji , f̄i) where Cov(f ji , f̄i) is the covariance
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matrix of the vectors f ji and f̄i. Single flows are captured
each second for 20 seconds. Then, dense flows with high
similarity values are considered inliers and the others are
detected as outliers. Shi et al. [31] proposed a dynamic spatio-
temporal approach called Dynamic Spatial and Temporal
Flows (DSTF) to detect local anomalies in spatio-temporal
flow data. The flows are captured by considering the direction
flows of the set of segment roads S. Each road segment si is
denoted by (v1i , v

2
i , li), where v

1
i is the starting point of si, v2i

is the ending point of si, and li is the length of si. The spatial
neighbors of si, denoted as SN (si) are deducted as SN (si) =
{sj|v2i = v1j }. The dynamic neighborhood structure is then
designed by computing the similarity between the spatio-
temporal flows of each road segment si and each element sj
on its spatial neighbors SNi by:{

|avgi − avgj| |avgi − avgj| > ε

ε Otherwise

where avgi is the average unit journey flow of vehicles
through the road segment si and ε is the similarity threshold.
The kNN outlier is then used to detect segment road outliers,
where k here represents the cardinality of each spatial neigh-
borhood set SN (si).

Cheng et al. [32] presented a Self-Organizing Map for
Road Flows (SOM-RF). The flows of each road data from
Bejing City were collected and transformed to a time series.
The Self-Organizing Map (SOM) algorithm [33] is then used
to cluster road flows into groups. The weights in the input
layer of the map are initialized with regards to the input
pattern X , where each xi represents the time series of the
ith road flow. The distance between the input patterns X
and the weight wj is determined as dj = ||x − wj|| =√∑n

i=1 (xi − wij)
2. At each step of the algorithm, the winner

with the minimum distance is selected and considered an
inlier. Afterwards, the weights connecting the input layer to
the winning node and its neighborhoods are updated for the
next iteration t + 1 according to the following learning rule,
wij(t+1) = wij(t)+α(t)[xi−wij(t)]. α(t) is the neighborhood
size decreased with the iteration algorithm t . This process is
repeated until weights have stabilized. All winning nodes are
considered inliers, and the others are outliers.

C. PATTERN MINING APPROACHES
The aim of pattern mining approaches such as Apriori [34]
and FP-growth [35] are to analyze the flow values. Other
useful data structures are extracted in the pre-processing step,
such as the flow segment, the segment-route matrix, traffic
volumes, jams, and incidents. The aim is to extract relevant
patterns form these different urban traffic data variables.
The process starts by transforming the urban traffic database
into a transactional database T = {t1, t2, . . . , tm}, and the
possible urban traffic variables into the set of items I =
{i1, i2, . . . , im}. A pattern P is a subset of I and it is said to
be of size k if it contains k items. The relevance of a given

pattern is calculated using different measures: support [34],
and interestingness [36]. The support of a pattern P is the
ratio between the number of transactions containing P and
the number of all transactions |T | without a loss of general-
ity. The frequent pattern mining-based problem consists of
extracting all frequent patterns from T , i.e, enumerating all
patterns having a support that is no less than a user-defined
minsup threshold. The discovered patterns are then used to
find anomalies such causal interaction, congested patterns,
hot spot detection, and so on. In the following, we present the
most relevant works of urban traffic outlier detection using
the pattern mining process, including two real applications:
causal interaction and congested pattern.

Liu et al. [37] introduced the problem of causal interac-
tion in urban traffic data, i.e., the discovery of relationships
among the detected outliers. The authors proposed a new
algorithm called Causal Interaction in Outlier Flows (CI-
OF). Flow segments are first created from the urban traffic
database. Each segment that relates the site origin o and
the site destination d at time window wi is represented by

< So,di , s1i =
So,di
So,∗i

, s2i =
So,di

S∗,di
>. So,di represents the flow

value between the site o and the site d at time window wi.
So,∗i is the sum of all flow values at windowwi by considering
the site o as the origin. S∗,di is the sum of all flow values
at window wi by considering the site d as the destination.
The distortion function is then computed between all segment
flows in all time windows w = {w1,w2, . . . ,wn} to find tem-
poral outliers for two sites o, and d as Distort(o, d,wi,wj) =√
(So,di − S

o,d
j )2 + (s1i − s

1
j )

2 + (s2i − s
2
j )

2. The score of the
flow segment is determined as Score(o, d,w) =

∑n
i=1∑n

j=1,j 6=i(
Distort(o,d,wi,wj)−min

max ), where min = min{Distort(o,
d,wi,wj) | i = [1, . . . , n], j = [1, . . . , n]}, and max =
max{Distort(o, d,wi,wj) | i = [1, . . . , n], j = [1, . . . , n]}.
Segment (o, d) is considered an outlier if the score is greater
than a given threshold. Afterwards, the outlier trees are built,
where each tree contains flow segments from top k outliers
for different time windows. For a given tree, a node x is a
child of node y if and only if the segment (x, y) belongs to
the top k outliers. Association rule mining is then applied
to find frequent sub-structures from the forest of the outlier
trees. Each tree is considered to be one transaction, where the
nodes of the trees are considered items. The association rules
discovered represent the different causal interactions between
the extreme sites.

Pang et al. [38] developed the Pattern Mining for Spatio-
Temporal Outlier Detection (PM-STOD) approach. In this
method, the city is partitioned into grids and the number
of taxis is recorded for each grid cell by using the GPS
device. The Likelihood Ratio Test (LRT) [39] is used to
identify outlier regions, where each region is composed of the
adjacent grid cells. Afterwards, a pattern mining approach is
proposed to study the interaction between the outlier regions.
Regarding the patterns discovered from the outlier regions,
two kinds of outliers can be identified: emerging outliers and

12196 VOLUME 7, 2019



Y. Djenouri et al.: Survey on Urban Traffic Anomalies Detection Algorithms

persistent outliers. The flow value of each grid cell in the
emerging region outliers is greater than the flow values of
all neighborhood regions. However, the flow value of each
grid cell in the persistent region outliers is higher than the
flow values of the remaining regions. The flow values of
the persistent outlier regions are increased over time and an
upper bounding strategy for both outliers are derived. Accord-
ing to the authors, using Beijing taxi data, PM-STOD was
able to detect regions with emerging and persistent outliers.
Chawla et al. [40] suggested DM-TF, a data mining-based
approach to detect anomalous behaviors from the traffic flow.
This approach focuses on analyzing traffic between regions,
rather than the entire flows. It builds two matrices. The first
one is a segment-route matrix A(m× r) with m segment flow
and r routes. Each entry Ai,j is equal to 1 if the segment
flow i is across the route j, otherwise, it is 0. It then builds
matrix segment flow noted L(m × n), where each row Li
represents the segment flow values of each segment i during
a time window w = {w1,w2, . . . ,wn}. Patterns describing
routes that have caused anomalies are extracted by applying
the pattern mining approach presented in [41] on the two
matrices A and L. This approach has been tested on a real
world Beijing transportation dataset. The results revealed that
this strategy reduces the computational cost of the causal
interaction model. In addition, it can identify the most impor-
tant routes that cause abnormal traffic.

To understand the traffic congestion in urban cities,
Inoue et al. [42] presented an FP-growth for Congested Pat-
terns (FP-growth-CP) algorithm for discovering frequent pat-
terns. The traffic data is considered to be a transactional
database, where each row traffic data represents one trans-
action, and each variable flow, such as flow values, speed,
and densities, represents one item. The state of the conges-
tion (true or false) is also added to each row in the trans-
actional database. Afterwards, the FP-growth algorithm is
adopted by extracting only the closed frequent patterns that
efficiently represent the transactional database. The aggre-
gation function is also used to extract only the association
patterns with only the congestion state as a consequence part.
This algorithm has been tested on traffic data from Okiwara,
Japan. The results indicated that higher dependencies exist
between speed-density and speed-flow variables and the con-
gested state value. The results also revealed that by using the
aggregation function and the closed property, only relevant
patterns could be discovered with reduced computational
time. Nguyen et al. [43] proposed an STCTree algorithm
inspired by frequent patternmining to predict frequent spatio-
temporal congested sites and causal relationships among
them from traffic data streams. In this algorithm, an efficient
tree structure is employed that is permitted to deal with a
large traffic network with respect to the data stream process-
ing constraint. The algorithm starts by building a forest of
congested sites where each tree in the forest is presented by a
list of connected congested sites. If the congestion time of s1
succeeds the congestion time of s2 then the site s1 is a child of
the site s2. It should be noted that the given site is considered

to be congested if the flow values in this site are greater than
a user’s threshold for a specified time. Afterwards, the sites
on each tree are considered as an item sets, and the Apriori
algorithm is then applied to determine frequently congested
sites. The ith transaction is represented by the ith tree, and the
items of this transaction are the congested sites that belong
to the associated tree. The frequently congested sites that are
discovered of all trees are used to determine the frequent trees
of the congested site. Thus, two trees are combined if there
are frequently congested sites belonging to both trees. This
process is repeated until no possible combinations can be
made. In the end, two possible patterns are identified: i) The
set of frequently congested sites in the urban network traffic,
and ii) the set of all the frequent trees of congested sites
captured in the successive time period.

D. ILLUSTRATIVE EXAMPLE
In this section, we show how the flow outlier detection algo-
rithms work. Two algorithms in particular will be illustrated.
The first one is kNN-F [28], which focuses on single flow
outliers. The second one is CI-OF [37], which focuses on
the interaction between road outliers. Starting with kNN-F,
shown by Figure 4(a), the k neighbors (k is set to 2) of
each flow are returned by computing the Euclidean distance
between the given flow and all the remaining flows. The score

FIGURE 4. Flow outlier detection illustration. (a) kNN-F illustration.
(b) CI-OF illustration.
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of each flow is its distance with the k th neighbor. Finally,
the flow outliers are returned by setting the ε threshold to 5.
The flows outliers are {f1 = 23, f8 = 70, andf9 = 23}.
Concerning the second algorithm (CI-OF), as illustrated by
Figure 4(b), the algorithm starts by constructing the segment
flows during different time windows W (the window size
is set to 3). The score of each segment flow is computed
and only the segment flow outliers are returned: a− > b,
a− > c, b− > d , and b− > g. Two trees are built from
these outliers, and the first tree propagates the segment flow
outliers initially started in node a. The second tree propagates
the segment flow outliers initially started in the node b.
From these two trees, frequent pattern mining is performed
to extract the frequent segment outliers by considering the
minimum support, set to 100%. The resulted frequent patterns
are {ab}. That means segment a− > b causes the other
segment flow outliers. Thus, if we are to analyze the flows
in the road network illustrated by Figure 4(b), we first have
to analyze the flows between nodes a and b.

IV. TRAJECTORY OUTLIER DETECTION ALGORITHMS
Figure 5 presents the overall framework of the existing tra-
jectory outlier detection algorithms. Generally, the trajectory
outlier detection algorithms are decomposed into three main
steps: i) Preprocessing: Preprocessing is aimed at collecting
the trajectories database and information related to the road
network of the urban city. The mapping function allows gen-
eration of the mapped trajectory database. ii) Outlier detec-
tion: The mapped trajectory database is entered to the outlier
detection algorithms, including clustering, density, and dis-
tance approaches, to find trajectory outliers. iii) Output visu-
alization: After finding outliers, visualizing tools are needed
to show the trajectory outliers to the user. In this context, two
kinds of outliers are discovered. Only the trajectory outliers
could be detected by applying offline processing. However,
by applying online processing, the sub-trajectory that caused
outlierness may be identified. In this section, both offline and
online approaches will be reviewed.

FIGURE 5. Trajectory outlier detection framework.

A. OFFLINE PROCESSING
Zhang [44] proposed a graph-based method, called MoNav-
TT, for detecting two levels of taxi trip outliers in a large
scale urban traffic network using NAVTEQ street map and
the MoNav algorithm [45], that implements an efficient Con-
traction Hierarchy based on the shortest path computation
algorithm and a spatial join algorithm to snap pickup and
drop-off locations. Given a taxi trip database T, each row
in the database represents one taxi trip that contains the
following features: pickup location, pickup time, drop-off
location, drop off time, and the recorded distance of the
trip by the taxi driver. We also arrange a street network,
called S, with N nodes and M edges. The method follows
two stages: The first stage matches both the pickup and drop-
off locations of each trip to their nearest street segments
by computing the similarity between the trip features (the
pickup and drop-off locations) and the street network S. The
taxi is considered a Level I outlier if the distance value is
greater than distance threshold D. The remaining trips are
assigned to the node in the closer pickup or drop-off node in
the street network S. The second stage computes the shortest
paths using the MoNav algorithm for each unique pickup
up and drop-off node pair. The computed shortest path dis-
tances are then compared with the recorded distances. If the
computed distances are greater than W times longer than
the recorded distances, then the trip is marked as Level II
outlier. The algorithm has been tested on 166 million taxi
trips in New York City (NYC). By setting D = 200 feet
and W = 2 in MoNav-TT, among the 166 million taxi trip
records, approximately 2.5 million (1.5%) pickup or drop-
off locations could not be matched to a street segment of the
NAVTEQ street map dataset and were identified as Level I
outliers.While the majority of these outliers could be induced
by GPS device errors, some of them may be associated with
the incompleteness of street networks, e.g., picking up and
dropping off at private land parcels. Similarly, 18,000 were
identified as Level II outliers.

Kong et al. [46] proposed a long-term traffic anomaly
detection (LoTAD) approach. This method consists of the
following steps: i) TS-segments Creation: The aim of this
step is to create the TS-segments database from both the bus
trajectory and the bus station line databases. Each bus line
blk is represented by a matrixM k , where each element aki,j is a
couple (xi,j, yi,j) that denotes the average velocity and average
stop time, respectively, at road segment TSi during the time
slot tj belonging to [jθ, (j + 1)θ ], where θ is the duration of
each time slot (θ is fixed to one hour by the authors). The

average velocity xi,j is calculated by xi,j =
∑

tr∈TSi
(Wi×tr .x)
|TSi|

.
tr is all the trajectories that belong to the same TS-segment.
tr .x is the velocity of the trajectory tr . Wi is the weight
coefficient assigned to the road segment TSi. This weight
represents the importance of the road segment TSi in the set
of all road segments (for instance, it represents the number of
buses that cross the road segment TSi). |TSi| is the number of
trajectories that belong to the road segment TSi. The average
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stop time yi,j is calculated by yi,j =
∑

tr∈TSi
(
∑
p∈tr p.ts
|tr| )

|TSi|
. |tr|

is the number of points in the trajectory tr . p.ts is the stop
time in the point p. ii) Anomaly Index Computation: In this
step, the Anomaly Index (AI) of the road segments is derived.
The density of each road segment TSi is first computed by

densityi =
∑

l 6=i,k 6=i e
−(

dl,k
di

)2 . It should be noted that dl,k
is the Manhattan distance [47] between the road segments
TSl and TSk . di is the Manhattan distance between the road
segment TSi and all the remaining road segments. The LOF
algorithm is then applied by computing the lrd and LOF
values of each road segment based on the density values
determined above. Instead of classical LOF that fixes 1 as
the anomalies threshold, here, the threshold is fixed by the
average of the sum of all densities of all road segments. In the
end of this step, the set of anomaly road segments is obtained.
iii) Traffic Anomaly Regions: In this step, the regions are
first extracted by applying the k-means algorithm [48] on the
bus station line database, where each cluster is considered a
region. Based on the previous step, the anomaly score of each
region is determined as Score(ri) =

∑
TS∈ri LOF(TS). The

scores obtained are sorted in descending order, and the top n
regions having high scores are considered as outliers, where
n is the user parameter.

Jie et al. [49] proposed Time-dependent Popular Routes
based trajectory Outlier detection (TPRO). It finds time-
dependent outliers by using the popular routes for each time
interval. The popular routes are first retrieved, where each
popular route ri has a weight wit that represents its popularity
during the given time interval δt = [t, t+1]. The trajectories
dataset 6 is then divided into groups G = {G1,G2, . . . ,Gk},
where each group contains trajectories having the same
source and destination points in the given time interval δt .
Formally, we obtain that: ∀(6i, 6j) ∈ 62, (Pi1.S1 = Pj1.S1)∧
(Pili .Sli = Pjlj .Slj ) ∧ ((Pili .Tli − Pi1.T1) ∈ δt) ∧ ((Pjlj .Tlj −

Pj1.T1) ∈ δt) ⇒ G6i = G6j 6i is a time-ordered sequence
of road network locations (Pi1,P

i
2, . . . ,P

i
li ), such that li rep-

resents the number of locations of the trajectory Sigmai,
and each location P is represented by (S,T ). S is a spatial
coordinate and T is the sampling time. G6i is the group ID
of the trajectory6i. The representative trajectory, noted Ḡi of
the ith groupGi, is then compared with the top l popular roads
noted R = {r1, r2, . . . , rl} using the edit distance during the
interval time δt as Score(Ḡi,R) =

∑l
j=1 wjt × edit( ¯Gi, rj).

edit(Ḡi, rj, n) = min{edit(Ḡi, rj, n − 1} + MC(Ḡi, rj, n, 0),
MC(Ḡi, rj, n) is the mapping cost of the point Pin in the
trajectory Ḡi to the point P

rj
n in the road rj. If the score of

the representative trajectory Ḡi is greater than θ threshold,
than all trajectories of the cluster Gi are considered outliers.
An improved version of TPRO, Time-dependent Popular
Routes based Real-time trajectoryOutlier detection (TPRRO)
is proposed in [50]. The aim of the TPRRO is to detect outlier
trajectories from new trajectories set 6new. It employs effi-
cient data structures called Time-dependent Transfer Index
(TTI) to record which trajectory has passed through which

location at which time. It maps each new trajectory 6new
i

on the grid-partitioned road network. It builds a B-tree like
structure called transfer B-tree in each grid. Transfer B-tree
records which trajectory has passed through this grid at which
time period. TPRRO is able to map in real time the new
trajectories on the grid of road network using TTI. Instead of
computing the similarities between the top k popular routes
as in TPRO algorithm, only the similarity between each6new

i
and the top l popular grids of the road network are calculated
to determine the score of 6new

i using the same score function
as TPRO.

Zhang et al. [51] proposed the Isolation-Based Anoma-
lous Trajectory (iBAT) algorithm. It is composed of two
main steps: pre-processing and anomaly detection. i) Pre-
processing step: It first constructs the taxi trajectories from
GPS traces, divides the city map into grid-cells of equal
sizes, and groups all trajectories crossing the same source-
destination cell-pair, where each trajectory is represented
by the set of sequences of traversed cells; Then it builds
frequently traversed cells using an inverted index mecha-
nism [52]. ii) Anomaly detection step: Instead of using a
distance or density measure, the ‘‘few and different’’ prop-
erties of anomalous trajectories are exploited. By exploring
different locations or same locations with different orders,
anomalous trajectories are few in number and different from
the majority. The idea is to attempt to find a separate way
for anomalous trajectories from the rest of ‘‘many and sim-
ilar’’ trajectories by applying the adapted Isolation Forest
(iForest) [53]. A random tree is generated by dividing the
trajectories until almost all of them are isolated. This gen-
eration produces a shorter path for anomalous trajectories
which are isolated faster than normal trajectories isolated
in a longer path. The outlier score of each trajectory t is
computed as Score(t) = 2−

N
c(N ) , where N is the number

of cells used for isolating t , and c(N ) represents the path
length of unsuccessful searches in a binary search tree and
it is computed as C(N ) = 2H (N − 1) − 2(N − 1)/N . Note
that H (i) is the harmonic number that can be estimated as
ln(i)+ 0.57727566 (Euler’s constant).
Lv et al. [54] proposed a Prototype BasedOutlier Detection

(PBOTD) approach with the aim of understanding the histor-
ical trajectory database for identifying outlier taxi trajecto-
ries. The set of routes R is first grouped using the medoids
algorithm [55]. Choosing medoids instead of k-means is due
to the difficulty of computing the mean trajectories. The k
initial centers are determined using the selection function S,
such as S(rj) =

∑|R|
i=1

d(rj,ri)∑|R|
l=1 d(ri,rl )

, where d(ri, rj) is the edit

distance between two routes ri and rj [56]. The top k routes
that minimize the function S are considered as initial centers
of the clusters. As in medoids, the routes are assigned to the
nearest center and the sum of distances is calculated from
all routes of the same cluster to update the center of each
cluster by the route having a minimum value. This process
is repeated until the sum of distances from all routes to their
centers does not change. After the clustering step, the set of
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the centers of the clusters are considered as Representative
Routes: RR = {r1, r2, . . . , rk}. For each new trajectory t ,
its score is computed based on routes in RR as Score(t) =
min{d(ri, t)|ri ∈ RR}. d(ri, t) is the edit distance between
route i and the trajectory t . If the score of t is greater than
a similarity threshold, then the trajectory t is an outlier,
otherwise, it is considered a normal trajectory.

Zhou et al. [57] proposed Outlier Trajectory Detection
approach for identifying Unmetered Taxi Frauds (OTD-
UTF). A taximeter database is collected where each record
is a tuple < id, st, et >. id is the TaxiID, st is the start time
of the metered trip, and et is the end time of the metered trip.
The trajectory database is matched to identify whether each
point in the trajectories database is a metered or unmetered
point. Thus, a point pij of the trajectory ti is metered if there is
an entry in the taximeter database where id = i and time(pij) ∈
[st, et]. A trajectory ti is a fraud trajectory if and only if for
each point pij ∈ ti is an unmetered point. The process starts
by finding the trajectory outliers using a stochastic gradient
model [58]. From the trajectory outliers, the fraud trajectories
are identified by matching each point in the trajectory outlier
with the taximeter database. OTD-UTF has been tested on
real big databases including 154 million taxi records from a
large city in China. The results revealed that the trajectory
frauds are due to huge demands of taxis in congested areas,
where taxis could be bringing more than one passenger for
the same trip.

Kumar et al. [59] developed the Clustering for Improved
Visual Assessment Tendency (ClustiVAT) approach to detect
trajectory outliers. The clustering of trajectories is performed
using the iVAT algorithm [60] by proposing a two-stage clus-
tering procedure. The first step uses a non-directional sim-
ilarity measure to group the trajectories according to which
trajectories follow similar paths but have opposite starting
and/or ending points, and assigned them to the same group.
The second step uses directional similarity for each cluster
generated to separate the trajectories going in opposite direc-
tions. From the clusters of trajectories, the set of trajectory
outliers are obtained by identifying trajectories that are too far
from other trajectories in the same cluster, or by identifying
clusters that have too few a number of trajectories.

B. ONLINE PROCESSING
Chen et al. [61] proposed Isolation-Based Online Anoma-
lous Trajectory (iBOAT) algorithm. This algorithm aims to
find anomalous taxi sub-trajectories in real time. It is used
to automatically detect fraud implications by rapacious taxi
drivers who take unnecessary detours during trips. When
the outlier sub-trajectory is determined, the notification of
possible fraud can be suggested, even if the taxi is still in use.
iBOAT is divided into two main steps: i) Preprocessing: The
city area is broken down by a function noted λ : R2

→ G,
that maps real locations (x, y) to matrix grid cells G (the
grid cells size that gives the best accuracy is chosen in the
experiment and set to ‘‘250 meter * 250 meter’’). The set

of the historical trajectories T are grouped according to the
source-destination pairs and the time of the occurrences, and
then mapped to T ′, where t ′i = λ(ti) for all i ∈ [1, . . . , |T |].
ii) Processing: When the new trajectory arrives, the points
on the sub-trajectories that cause the outlierness are detected
by using theadaptive working window strategy. For each new
grid cell point gi in the new trajectory tnew, the support
of the sub-trajectory < g0, g1, . . . , gi > is computed by
|H (Ti,<g0,g1,...,gi>)|

|Ti|
, such as H (T , t) = {tk ∈ T |∀i, j ∈

[1, . . . , |t|]2, It (gj) > It (gi) ⇒ Itk (gj) > Itk (gi)}. It (gi) is the
index of the grid cell point gi in the trajectory t . If its value
is less than the threshold θ , then grid cell point gi is added
to the set of anomalous grid cell points O, otherwise, the set
of historical trajectories used to process tnew is pruned for the
next grid cell point gi+1 by Ti+1 = H (Ti, < g0, g1, . . . , gi >).
This process is repeated until all the points of tnew are pro-
cessed. In the end, the outlier score of tnew is computed by
score(tnew,O) =

∑|O|
i=1 Support(Ti, < g0, g1, . . . , gi >) +∑|O|−1

i=1 distance(gi, gi+1), where Support(T , t) =
|H (T ,t)|
|T | .

Lee et al. [62] proposed TRAjectory Outlier Detection
(TRAOD). It deals with the angular the sub-trajectory outlier
detection problem, where the direction of anomalous sub-
trajectories differ from those of neighboring sub-trajectories.
The whole process of the algorithm exploits the partition
and detect strategy. Each trajectory ti, in the set of all tra-
jectories T , is partitioned into different line segments noted
t-partitions, where P(ti) is the set of all t-partitions of the tra-
jectory ti. In this step, a base unit approach is applied, where
the partitions are defined as the smallest meaningful unit of
a trajectory in a given application. After determining the par-
titions of each trajectory, the detection step is performed by
computing the adjusting coefficient (notated as adj) of each t-
partition L ik of the trajectory ti as adj(L

i
k ) =

(
∑

tr density(L
r
k ))/|T |

density(Lik )

where density(L ik ) = |
⋃

tr {L
r
k |distance(L

r
k ,L

i
k ) ≤ radius}|,

for a radius user‘s threshold. If this value is greater than 1,
the t-partition is considered an outlier, otherwise, it is a nor-
mal t-partition. Note that if the density of the given t-partition
is equal to 0, it is considered an outlier without computing the
adjusting coefficient value. The particularity of this algorithm
consists in the distance computation between two t-partitions.
The projection and the angular dimensions are incorporated.
The starting points and the ending points are s1, s2 e1, and e2
of the two t-partitions L1 and L2. Consider that x and y are the
projection points of the starting point s1 and e1 onto L2. The
distance is given as Distance(L1,L2) = a2+b2

a+b +min{a, b} +
c ∗ Sin(θ ). a is ||x − s1||, b is ||y− e1||, c is ||y− e1||, and θ
is the smallest positive intersecting angle between L1 and L2.
Yu et al. [63] developed Point-Neighbor based Trajectory

Outlier (PN-Outlier). The aim is to find sub-trajectories out-
liers during a time window. It is based on point-neighbors
principle, where the sub-trajectory neighbor set for each
sub-trajectory is computed using the point neighbors set of
each point in this sub-trajectory. First, the neighbor set N i

j ,
of each point pij, belongs to the trajectory ti for a given
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threshold r , and is computed as N i
j = {p

l
j |distance(p

i
j, p

l
j) ≤

r}. Afterwards, the score of each sub-trajectory ti is given by
Score(ti) = |{pij||N

i
j | ≥ k}|. k is the neighbor points count

threshold. If this score exceeds the θ threshold, then ti is an
inlier, otherwise, it is an outlier.

Yu et al. [64] developed Trajectory-Neighbor based Tra-
jectory Outlier (TN-Outlier). The aim is to find the sub-
trajectories outliers during a time window W . It is based
on trajectory-neighbors principle, where the sub-trajectory
neighbors set for each sub-trajectory is determined. First,
the neighbor function is defined between the jth point of
ti and tl for a given threshold r as Neighbor(pij, p

l
j) =

1 if distance(pij, p
l
j) ≤ r , 0, otherwise. Afterwards,

the score of each sub-trajectory ti is given by Score(ti) =
|{tj|

∑W
s=1 Neighbor(p

i
s, p

j
s) ≥ k}|. k is the neighbor sub-

trajectories count threshold. If this score exceeds θ threshold,
then ti is an inlier, otherwise, it is an outlier.

Wu et al. [65] presented the Driving Behavior-based Tra-
jectory Outlier Detection (DB-TOD) approach. The set of
historical trajectories is first matched to the road network
of the city according to the source and destination points.
The probabilistic learning model described by the maxi-
mum entropy inverse reinforcement [66] is then used to
transform the mapped trajectories into historical action tra-
jectories. Thus, each road segment is regarded as a state,
the different road decisions such as turning left, turning right,
on moving straight forward are regarded as actions, and the
drivers are considered agents. Afterwards, the learning model
is launched to estimate the cost of historical trajectories
cost(ri) = 2T fri , where fri =

∑
a∈ri fa. The aim is to

learn the 2T and fa variables. For a new sub-trajectory t ,
the probability P(t) is computed based on the set of action
historical trajectories T as P(t) = exp(−cost(t))∑

t′inT exp(−cost(t ′))
. If the

probability value is greater than a probability threshold then
it is an outlier, otherwise, it is a normal sub-trajectory.

Mao et al. [67] proposed the Trajectory Fragment Outlier
(TF-Outlier) method with the goal of determining the sub-
trajectory outlier in a streaming way. In this approach, the set
of trajectory fragments are derived. Each fragment tf ij of the
trajectory ti =< pi1, p

i
2, . . . > is composed by a line segment

of two consecutive points (pij, p
i
j+1). The LOF algorithm is

used to determine the fragment outliers, where the local
difference density is used rather than the local reachability

density as: ldd(f ij ) =
|N (tf ij )|∑

tf ∗j ∈N (tf ij )
distance(tf ij ,tf

∗
j )
,where tf ∗j is the

fragment neighbor of tf ij , and distance(tf
i
j , tf

∗
j ) is the distance

between the fragment tf ij and tf ∗j , computed as in [62]. The
Local Anomaly Factor is then computed rather than the LOF

value as: LAF(tf ij ) =

∑
tf ∗j ∈N (tf ij )

ldd(tf ij )

ldd(tf ∗j )

|N (tf ij )|
. If the LAF value is

greater than the local outlier threshold, then the trajectory ti
is an outlier in the fragment tf ij . This process is repeated for
all fragments in all trajectories.

Yu et al. [68] suggested Trajectory Outlier Detection based
on Common Slices Sub-sequences (TODCSS) approach for

discovering sub-trajectory outliers. For each trajectory ti, a set
of trajectory slices are generated where each jth slice sl ij is
obtained by connecting consecutive line segments having the
same direction. A new definition of the sub-trajectory outlier
is given based on the slice outlier. A trajectory slice is a
slice outlier if the number of its neighbors is less than the
given threshold. The neighbors refer to the other trajectory
slices within a small distance from it. In addition, the distance
between two slices sl ik of the trajectory ti and sl

j
k of the trajec-

tory tj is determined by the number of common segments of
both slices. Experiments performed on San Francisco urban
traffic data revealed that TODCSS benefits from the slices
definition in identifying the sub-trajectory outliers.

C. ILLUSTRATIVE EXAMPLE
In this section, we demonstrate how the trajectory outlier
detection algorithms work. In particular, two algorithms will
be illustrated. The first one is iBAT [51], which performs
the offline processing and detecting of the trajectory outliers.
The second one is TROAD [62], which performs online
processing and extracting sub-trajectory outliers. Starting
by illustrating iBAT, consider the set of trajectories T =
{t1, t2, . . . , t7} illustrated by Figure 6(a). Each trajectory is
represented by the set traversed points from the set of all
points P = {p1, p2, . . . ,P10}. The isolation tree is built, and
the point p4 is divided by the trajectory database into two
subsets. The first subset {t1, t2, t3, t4, t5}, added in the left
child for the node labeled by 4, traverses point p4 at the time
window w4, whereas the second subset {t6, t7}, does not tra-
verse the point p4 in the time windoww4, and will be added in
the right child for the same node. The anomalous trajectories
are ranked regarding the isolation level as (t6, t7, t3, t4, t1, t5).
Next, concerning the second algorithm, TROAD, three trajec-
tories are assumed: {t1, t2, t3}, as illustrated by Figure 6(b).
TROAD first partitions these trajectories into t-partitions as:
i) t1: (L11 , L

1
2 , L

1
3 , L

1
4 ), ii) t2: (L

2
1 , L

2
2 , L

2
3 , L

2
4 ), and iii) t3: L

3
1 , L

3
2 ,

L33 , L
3
4 . The density of the t-partitions of all the trajectories is

then computed. For instance, the density of the t-partition L11
is equal to 0 because it is different from L21 and L31 , while the
density of the t-partition L13 is equal to 2 because it is similar
to L23 and L

3
3 . The t-partitions with a density of less than 1 are

considered outliers. The anomalous sub-trajectories are then
extracted as the following: i) For t1: (L11 , L

1
2 ), ii) For t2: (L

2
2 ),

and iii) For t3: (L32 ).

V. DISCUSSIONS
Table 1 presents the merits and limitations of the existing
urban outlier traffic data algorithms. As shown in the previous
sections, we classify the urban outlier traffic algorithms into
two groups according to the task employed.

Algorithms in the first group aim to find flow outliers, and
these include three categories: i) Statistical approaches are
fas, but very sensitive to the outliers, and it is not easy to
find the corresponding distribution of the given traffic flow
data. ii) Similarity approaches use neighborhood computation
to find outliers. This helps to increase the accuracy of such
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TABLE 1. Discussion of existing urban outlier traffic data algorithms.

FIGURE 6. Trajectory outlier detection illustration. (a) iBAT illustration.
(b) TRAOD illustration.

approaches, however, they ignore the correlations between
flow data and are only able to find single flow outliers. iii) Pat-
tern mining approaches consider the correlation between the
flow outliers. This helps to extract useful patterns and deals
with two exciting applications: causal interaction and con-
gested patterns. Nevertheless, these approaches are highly
time consuming because they require multiple scans of the
flow database.

The second task of the existing urban outlier traffic data
algorithms is finding trajectory outliers. These approaches
can be divided into two categories: i) Offline processing aims
to find trajectory outliers after constructing the entire trajec-
tory database. They are fast compared to those of the second

category but they are only able to find trajectory outliers and
not the part that is causing the outlierness. ii) Online process-
ing deals with sub-trajectory outliers, i.e., they are able not
only to find the trajectory outliers but also the sub-trajectories
that cause the anomalies. These approaches extract outliers in
online processing and require a large amount of time to update
the output for each new sub-trajectory data.

From this literature review of existing urban outlier traf-
fic algorithms, many directions for future research can be
suggested:

1) Improving the run-time performance of existing pattern
mining approaches by adapting the recent pattern min-
ing approaches [69], [70] in the mining process.

2) Some existing applications could be improved such hot
spot and crime detection by considering the correlation
between single flow outliers.

3) The existing algorithms find only single flow outliers
in a specific time, and it is necessary to deal with other
patterns such as constructing the distribution of flows in
a given time measurement and finding the distribution
of flows that deviate from the normal distribution of
flows in a given period time. For example, finding all
anomalous distribution of flows from 7:00 to 9:00 every
Monday day in a given year.

4) Improving the runtime performance of the online
algorithms to find sub-trajectory outliers by adapting
computational intelligence approaches and high perfor-
mance computing.

VI. CONCLUSION
Outlier detection algorithms have been largely used in urban
traffic data for a long time. Solutions to urban outlier detec-
tion are divided into two main categories: flow outlier detec-
tion and trajectory outlier detection. Flow outlier detection
groups solutions that detect flow outliers, and include the
following approaches: 1) Statistical approaches which apply
and combine the classical statistical model, and reach their
limits because it is not straightforward to approximate the
traffic flow values to the corresponding distribution. 2) Sim-
ilarity approaches aim to explore neighborhood computation
methods to determine dense regions in the traffic flow space.
These approaches are efficient in terms of computational
time, however, they ignore dependencies and relations that
exist between traffic data. This issue is solved by 3) Pattern
mining approaches investigate frequent pattern mining on
traffic flow values data. Such approaches solve the correlation
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problem observed in the previous approaches, however, they
are highly time consuming, especially for large traffic flow
data. The second category groups solutions where the trajec-
tory outliers are derived, and include the following processes:
1) Offline processing aims to extract trajectory outliers and is
fast, but only considers whole trajectory databases. 2) Online
processing aims to find the sub-trajectory outliers, and these
approaches require a large amount of computational time for
processing to update the output for each new sub-trajectory
data. This paper ends in Section V with a summary of the
most relevant lessons we concluded from this survey and
the future direction of research trends in this arena. While
the application of outlier detection reaches high efficiency in
its traditional domains such as traffic networking, intrusion
detection, and image processing, the use of outlier detection
in urban traffic data is still in its infancy. We have seen only
the tip of the iceberg, and further investigation is required in
every direction, including computational intelligence, opti-
mization, and high performance computing to attend to the
sophisticated solutions that are suitable for smart city appli-
cations.
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