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Abstract: Privacy-preserving data mining (PPDM) has become an interesting and emerging topic
in recent years because it helps hide confidential information, while allowing useful knowledge to
be discovered at the same time. Data sanitization is a common way to perturb a database, and thus
sensitive or confidential information can be hidden. PPDM is not a trivial task and can be concerned
an Non-deterministic Polynomial-time (NP)-hard problem. Many algorithms have been studied to
derive optimal solutions using the evolutionary process, although most are based on straightforward
or single-objective methods used to discover the candidate transactions/items for sanitization. In this
paper, we present a multi-objective algorithm using a grid-based method (called GMPSO) to find
optimal solutions as candidates for sanitization. The designed GMPSO uses two strategies for
updating gbest and pbest during the evolutionary process. Moreover, the pre-large concept is
adapted herein to speed up the evolutionary process, and thus multiple database scans during
each evolutionary process can be reduced. From the designed GMPSO, multiple Pareto solutions
rather than single-objective algorithms can be derived based on Pareto dominance. In addition,
the side effects of the sanitization process can be significantly reduced. Experiments have shown
that the designed GMPSO achieves better side effects than the previous single-objective algorithm
and the NSGA-II-based approach, and the pre-large concept can also help with speeding up the
computational cost compared to the NSGA-II-based algorithm.

Keywords: multi-objective optimization; PSO; privacy-preserving data mining; evolutionary
computation; grid-based method

1. Introduction

Data mining, also called knowledge discovery in databases [1–6], is used to find the useful
and meaningful information for further decision-making, and can be utilized in many domains
and applications, including basket analytics, DNA sequence analysis, or recommendations. During
the mining process, although useful information is discovered, confidential/sensitive information
is also revealed at the same time, which causes security and privacy threats. Privacy-preserving
data mining (PPDM) [7–10] has thus become an important topic in recent decades because it can
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not only hide private information but also discover the required information through varied data
mining techniques. Data sanitization is a way to hide sensitive information by perturbing the
database, although this process can also bring about side effects such as a hiding failure, missing
cost, or artificial cost. A hiding failure indicates confidential information that has been thought to be
hidden but still remains after a sanitization process and can be discovered during the mining process.
A missing cost indicates already discovered information that may be missed after the sanitization
process, whereas an artificial cost indicates meaningless or unnecessary information that has not been
discovered but is mined after the sanitization process. Such side effects can also be regarded as an
Non-deterministic Polynomial-time (NP)-hard problem [7,10] because more confidential information
is hidden, and greater loss or an increased amount of information can appear. Many algorithms
have been developed to minimize these three side effects during the sanitization process, including
straightforward (conventional) or optimization processes. Lindell and Pinkas presented an ID3
algorithm [11] to solve the problem of PPDM based on a decision-tree. Clifton et al. then presented a
toolkit to solve the problem of a PPDM [12]. Dwork et al. [13] designed several algorithms for handling
published noisy statistics to vertically partitioned databases. Wu et al. [14] then designed several
algorithms to reduce the support/confidence for hiding sensitive information. Hong et al. [15] utilized
the Term Frequency-Inverse Document Frequency (TF-IDF) method and presented the Sensitive
Itemset Frequency-Inverse Document Frequency (SIF-IDF) algorithm to evaluate the score of each
transaction for data sanitization. Several studies related to PPDM have been conducted, most of which
are based on a deletion procedure to hide sensitive information [15–18].

Because the PPDM is a non-trivial and NP-hard problem, it is thus difficult to find optimized
solutions between the side effects. Several algorithms based on the evolutionary computation have been
designed to obtain the optimal solutions. For instance, Lin et al. utilized genetic algorithms (GAs) to
sanitize a database and presented the cpGA2DT and pGA2DT algorithms [19,20]. A good performance
has been shown in terms of side effects as compared to a greedy-based algorithm. Although the
above algorithms can achieve a good performance in terms of side effects, they rely on the pre-defined
weights of three side effects in their pre-defined fitness function. This problem causes the results of
the side effects to be seriously influenced by the weighted values; the results are occasionally not
optimized, which requires a priori knowledge or an expert to set up these weighted values. To handle
this problem, Cheng et al. [21] developed the Evolutionary Multiobjective Optimization (EMO)-based
algorithm to consider “data distortion” and “knowledge distortion” in the sanitization process through
item deletion. Although this approach concerns multi-objective functions, it may lead to finding
incomplete knowledge for decision-making because it directly deletes the attributes from the database,
which is not applicable to a sequential dataset.

Non-dominated Sorting Genetic Algorithm (NSGA)-II [22] is a way to regard multi-objective
functions rather than a single-objective function. Lin et al. [23] developed an algorithm by adapting the
NSGA-II model for data sanitization in PPDM. The multi-objective particle swarm optimization
(MOPSO) algorithm [24] was extended from a conventional particle swarm optimization (PSO)
algorithm [25], but handles multi-objective problems to find a set of Pareto solutions. However,
the MOPSO framework cannot be directly applied to handle the problem of PPDM because the
dominance relationships should be utilized to obtain the optimized transactions for deletion. In this
study, we utilize the MOPSO framework and present a grid-based algorithm called GMPSO. The major
contributions of the study are summarized below.

• This is the first work regarding the design of an MOPSO-based framework in PPDM, which shows
a better performance in terms of side effects compared to a conventional single-objective approach
and the NSGA-II-based model.

• We present two updating strategies for the global best (gbest) and personal best (pbest) solutions
during the updating process of the MOPSO framework, which can be utilized in the PPDM
problem for obtaining un-dominated solutions.
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• To speed up the evolutionary process, the pre-large concept is utilized here to speed up the process
of the evaluated solution, and thus multiple database scans can be greatly avoided.

• Experiment results demonstrate the performance of the designed GMPSO in terms of the
time cost and four side effects as compared to a traditional single-objective algorithm and the
NSGA-II-based approach.

The rest of this paper is organized as follows. A literature review is provided in Section 2.
Preliminary information and a problem statement are given in Section 3. The developed GMPSO with
two updating strategies is described in Section 4. An illustrated example is provided in Section 5.
Several experiments conducted on varied datasets are detailed in Section 6. Finally, some concluding
remarks and areas of future study are discussed in Section 7.

2. Literature Review

The studies relevant to evolutionary computation, privacy-preserving data mining (PPDM),
and pre-large concepts are described as follows.

2.1. Evolutionary Computation

Evolutionary computation was inspired by the idea of biological evolution, which is used to
solve an NP-hard problem by providing the optimal solutions in different applications and domains.
Holland applied Darwin’s theory of natural selection and survival of the fittest to develop genetic
algorithms (GAs) [26,27], which are widely used in computational intelligence for solving the NP-hard
problem. GAs consist of several operations, for instance, selection, crossover, and mutation, used to
evaluate the solutions iteratively during the evolutionary process. Particle swarm optimization (PSO)
is a swarm intelligence algorithm proposed by Kennedy and Eberhart. It was inspired by bird flocking
activities [25] to search the optimal solutions, in which each particle in the PSO is regarded as a
potential solution. In a PSO, each bird has its own velocity, which is used to represent the direction to
the other solutions. Moreover, each particle is then updated with its own best value (represented as
pbest) and global best value (represented as gbest) according to the designed fitness function during
each iteration. The particle is then updated using gbest, pbest, and its own velocity during each iteration.
These processes are listed as follows [25]:

vi(t + 1) = w× vi(t) + c1 × r1 × (pbesti − xi(t)) + c2 × r2 × (gbest− xi(t)), (1)

xi(t + 1) = xi(t) + vi(t + 1). (2)

From the above equations, w is considered a factor used to balance the influence of global and
local searches, vi represents the velocity of the i-th particle in a population where t presents the t-th
iteration. Here, c1 and c2 are constant values. Both r1 and r2 are random numbers generated through a
uniform distribution within the range of [0, 1]. The velocity of the particle is updated by Equation (1),
and its position is updated by Equation (2). Several meta-heuristic algorithms have been respectively
presented and applied to several realistic problems and situations to search the optimal solutions,
for instance, ant colony optimization [28] or an artificial bee colony [29].

The above algorithms mostly regard single-objective optimization in a fitness function, and thus
the derived solutions cannot be optimized because, in real-world applications, we may regard
more than two objectives together to obtain the solutions. Multi-objective genetic algorithms [30],
a non-dominated sorting genetic algorithm (NSGA) [31], and the NSGA-II model [32] were respectively
designed to regard more objectives for obtaining Pareto solutions. Each solution in the Pareto solution
has a non-dominated relation to the others. Extensions of the multi-objective algorithms have been
respectively studied, for example, the strength Pareto evolutionary algorithm [33] and Pareto archived
evolution strategy [34]. Coello et al. introduced the multi-objective particle swarm optimization
framework [24] that applies the adaptive grid method to maintain an external archive, change the
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direction of the particles to keep them from flying out of the search space, and keep the particles within
the boundary. Several algorithms based on the evolutionary computations are extensively presented
in different domains and applications [35–37].

2.2. Privacy-Preserving Data Mining

During the past two decades, data mining has been an efficient way to find potential and useful
information from a very large database, particularly the relationships between those products that
may not be easily discovered and visualized. Because information can be revealed from a database,
confidential/secure information can also be discovered during the mining procedure, thereby causing
privacy and security threats to users. Privacy-preserving data mining (PPDM) has become a critical
issue in recent years because, not only can it find useful information, but confidential/secure data can
also be hidden using a sanitization procedure; such confidential information can thus be hidden and
not discovered after data sanitization. Agrawal and Srikant [38] developed a novel reconstruction
approach that can accurately estimate the distribution of original data. The classifiers can also be
constructed to compare the accuracy between the original and sanitized data. Verykios et al. [10]
developed hierarchical classification techniques used in PPDM. Dasseni et al. [16] then designed
an approach based on a Hamming-distance mechanism to decrease the support or confidence of
sensitive information (i.e., association rules) for sanitization. Oliveira and Zaiane [9] provided several
sanitization methods that can hide frequent itemsets through a heuristic framework. The developed
algorithms use an item-restriction approach to avoid a noise addition and limit the removal of real
datasets. Islam and Brankovic [39] presented a framework using the noise addition method to protect
and hide individual privacy while still maintaining a high data quality. Hong et al. provided an
SIF-IDF method [15] to assign a weight to each transaction, and a sanitization process is then conducted
from the transaction with the highest score to that of the lowest score for sanitization purposes.

The PPDM is considered as an NP-hard problem [7,10], however; it is thus better to provide
meta-heuristic approaches to find the optimal solutions. Han and Ng developed a secure protocol [40]
to find a better set of rules without disclosing their own private data based on GAs [26,27], and the
result of the true positive rate times the true negative rate is then calculated to evaluate each decision
rule. Lin et al. then presented several GA-based approaches, including sGA2DT, pGA2DT [20],
and cpGA2DT [19] to hide the sensitive information by removing the victim transactions. The encoded
chromosome is considered a set of solutions, and the transaction of a gene within a chromosome is
regarded as the victim for later deletion. A fitness function was also developed to consider three
side effects for an evaluation with pre-defined weights to show the goodness of the chromosome.
Although the above algorithms are efficient at finding the optimal transactions for deletion, they still
require pre-defined weights of the side effects; such a mechanism can seriously affect the final
results of the designed approaches. Cheng et al. [21] thus developed an Evolutionary Multiobjective
Optimization-Rule Hiding (EMO-RH) algorithm to hide the sensitive itemsets by removing the
itemsets based on the EMO. This approach is based on a multi-objective method, although incomplete
transactions can therefore be produced; a misleading decision can thus occur, particularly in the
treatment of hospital diagnoses. Lin et al. presented a meat-heuristic approach [23] based on the
NSGA-II framework for data sanitization, which shows better side effects compared to single-objective
algorithms, which is the state-of-the-art multiple-objective optimization algorithm in PPDM. Several
works of privacy-preserving and security issues are extensively studied in different applications.
For example, Hasan et al. [41] presented a new method for handling the privacy issue of independent
published data. Liu and Li [42] mentioned a clustering-based method for anonymity problem in
IoT devices.

2.3. Pre-Large Concept

The mining of useful and meaningful information is a critical target in data mining [1,2,43],
and most of the studied algorithms have focused on mining information from a static database.
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Thus, when the size of the database changes, a conventional approach is to re-process the updated
database and re-mine the required information again to reveal the most up-to-date information.
The fast updated (FUP) concept [44] was presented to handle dynamic data mining, particularly for a
transaction insertion. The FUP concept is efficient at updating discovered information, but it still needs
to rescan the original database again in certain cases. The pre-large concept [45,46] was presented to
more efficiently update the mined information, and can avoid the need for multiple database scans
if the number of newly inserted transactions does not achieve the pre-defined safety bound. It uses
two thresholds to maintain large (frequent) and pre-large itemsets, and treats pre-large itemsets as
a buffer for later maintenance. Thus, movement of a large itemset directly to a small itemset can be
significantly reduced, and vice versa. Although this approach needs extra memory use for a pre-large
itemset, it is efficient at handling the problem of dynamic data mining, particularly for a transaction
insertion. Figure 1 shows nine cases of the pre-large concept.

Case 1      Case 2      Case 3  

Case 4      Case 5      Case 6

Case 7      Case 8      Case 9 

Large

itemsets

Pre-large

itemsets

Small 

itemsets

Large

itemsets

Pre-large

itemsets

Small 

itemsets

Original 

database

Deleted 

records

Figure 1. Pre-large concept for transaction deletion.

Figure 1 indicates that the itemsets in cases 2, 3, 4, 7, and 8 will not affect the final results of
the frequent itemsets. In case 1, some frequent itemsets may be removed, and, in cases 5, 6, and 9,
the newly frequent itemsets may be generated. If all large and pre-large itemsets are maintained,
then cases 1, 5, and 6 can be easily handled. For a special case, such as case 9, an itemset cannot be a
large itemset in the updated database if its support value satisfies the following equation:

f ≤ (Su − Sl)× |D|
Su

, (3)

where Su is the upper-bound value, which is the same as the traditional minimum support threshold;
Sl is the lower-bound value; and |D| is the size of the original database. If the number of deleted
transactions satisfies the above condition, which is smaller than the safety bound ( f ), the itemset in
case 9 cannot be a large itemset; it can only remain as a pre-large or small itemset. Thus, the original
database needs to be rescanned and the computational cost can be reduced.

3. Preliminary Information and Problem Statement

Let I = {i1, i2, . . . , im} be a finite set of r distinct items appearing in database D, where D is a
set of transactions consisting of D = {T1, T2, . . . , Tn}, and Tq ∈ D. Each Tq is a subset of I and has a
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unique identifier q, called its TID. If support of the itemset is no less than the minimum support count
(minsup× |D|, minsup is defined as the minimum support threshold), it is then put into the set of FI.
The set of confidential information is denoted as CI = {c1, c2, . . . , ck}, which can be defined based on
user preference and each ci ∈ FI.

Definition 1. The maximal number of deleted transactions of all confidential information in CI is denoted as
MDT, which is defined as follows:

MDT = max{sup(c1), sup(c2), . . . , sup(ck)}, (4)

where sup(ci) is defined as the support count of ci in the database.

For example, suppose the sensitive itemsets are (AB:4) and (BC:5), the MDT of those two sensitive
itemsets is calculated as max{4, 5} (= 5).

Definition 2. For each ci ∈ CI, the number of deleted transactions for hiding ci is denoted as m, which is
defined as follows:

m = (1 + bMDT −minsup× |D|
1−minsup

c). (5)

For example, support the minsup is set as 35%, and MDT is 5, m is then calculated as:
(1 + b 5−0.35×10

1−0.35 c) (= 4).
In the designed GMPSO algorithm, m is then considered as the size of a particle in the MOPSO

model. To completely hide the confidential information in a database, the set of CI becomes null after
the sanitization process. However, this process may cause serious side effects in terms of missing
and artificial costs because three side effects have a trade-off relationship. Thus, an optimization
process is required to find the balance between the three side effects. Details of the three side effects
are described below.

Definition 3. A hiding failure indicates the amount of confidential information that fails to be hidden after the
sanitization process, which is denoted as α, and is defined as follows:

α = |CI ∩ FI′|, (6)

where FI′ is the set of frequent itemsets after data sanitization.

For example, suppose CI = {(AB), (BC)}, and FI’ = {(BC), (CD), (ABC)}. Thus, α is calculated as:
|{(AB), (BC)} ∩ {(BC), (CD), (ABC)}| = {(BC)} (= 1).

Definition 4. The missing cost is the number of itemsets that are discovered as a large itemset before the
sanitization but will be hidden after the data sanitization, which is denoted as β, and is defined as follows:

β = |FI − CI − FI′|, (7)

where FI is used to keep the frequent itemsets in the original database prior to sanitization.

For example, suppose FI = {(AB), (BC), (ABC)}, and CI = {(AB), (BC)}, and FI’ = {(AD)}, thus β is
calculated as: |{(AB), (BC), (ABC)} − {(AB), (BC)} − {(AD)}| = |{(ABC)}| = 1.

Definition 5. The artificial cost is the number of arisen itemsets that were not discovered as large itemsets
before sanitization but will appear as frequent itemsets after the sanitization process, which is denoted as γ,
and is defined as follows:

γ = |FI′ − FI|. (8)
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For example, suppose FI = {(AB), (BC), (ABC)} and FI’ = {(AD)}, and the γ is calculated as:
|{(AD)} − {(AB), (BC), (ABC)}| = |{(AD)}| (= 1).

The relationships among α, β, and γ are shown in Figure 2.
To find more optimized solutions regarding the consideration of more objectives, the similarity

between the original database and the sanitized database (Dis) [20] can be regarded as one of the side
effects for optimization, which is shown as follows.

Figure 2. Three side effects of the sanitization process.

Definition 6. Database dissimilarity is used to measure the number of deleted transactions between the original
database and the sanitized database, which is denoted as Dis and is defined as follows:

Dis = |D− D′|, (9)

where D is the original database before sanitization, and D’ is the database after the sanitization process.

For example, suppose the original database size is 10, and, after sanitization, the size becomes 6;
Dis is then calculated as |10− 6| (= 4).

From the perspective of optimization in PPDM, finding the trade-off among the four side effects
is an NP-hard problem. Thus, the MOPSO-based framework is utilized in the developed GMPSO.
We consider the grid-based method to assign the probability of the solutions for later selection,
which provides a higher diversity of the derived solutions than the NSGA-II-based model. The problem
statement of the GMSPO is defined below.

Problem Statement: The problem of PPDM with a transaction deletion based on the
multi-objective particle swarm optimization (MOPSO) framework is to minimize the four side effects
but still hide as much sensitive information as possible, which can be defined as follows:

min f (p) = [ f1(p), f2(p), f3(p), f4(p)], (10)

where f1 is α, f2 is β, f3 is γ, and f4 is Dis. Moreover, p represents a solution or particle in the
designed algorithm.
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4. Proposed MOPSO-Based Framework for Data Sanitization

The developed MOPSO-based framework for data sanitization described in this section consists
of two steps. For the first data processing step, the frequent itemsets and the pre-large itemsets are
discovered and placed into the FIs and PFs sets, respectively, for a later process. Details of this are
provided in the next subsection. Moreover, transactions with any confidential information are then
projected as a new database for a later process. For the second evolution step, the two updating
strategies of gbest and pbest for particles with dominance relationships and the GMPSO algorithm are
designed to iteratively update the particles in the evolutionary process. A pre-large concept is also
utilized to speed up the evolutionary computation of the execution time. Details of these are as follows.

4.1. Data Processing

Before the sanitization process, the user has to set the confidential information to hidden, and such
itemsets are placed in the CI set. The frequent itemsets and the pre-large itemsets are then discovered
against the minimum and pre-large support counts, and placed into the FIs and PFs sets, respectively.
Because the evolution process requires a certain number of computations, the pre-large itemsets are
considered as a buffer to reduce the computational cost in terms of the artificial cost of the side effects
in the evolution process. The lower support (lowsup) of the pre-large concept is derived as follows:

lowsup = bminsup× (|D| −m)

|D| c × 100%, (11)

where minsup is the minimum support threshold, |D| is the number of transactions in the database,
and m is the size of a particle in the designed MOPSO-based framework, which is defined through
Equation (5).

Thanks to the discovered large and pre-large itemsets, multiple database scans can be greatly
reduced during the evolutionary process. To obtain better transactions for deletion in PPDM,
the database is first processed to project the transactions with any of the confidential information
appearing in the set of CI. The projected database is then set as D∗. Each transaction in D∗ consists of
at least one itemset within the set of CI, which is also considered a candidate of the particles for later
deletion during the evolutionary process. A detailed algorithm is given in Algorithm 1.

Algorithm 1: Data Processing
Input: D, the original database; CI, the set of confidential information; minsup, the minimum

support threshold; lowsup, the lower support threshold.
Output: D∗, the projected database; FI, the set of frequent itemsets; PF, the set of prelarge

itemsets
1 find FI and PF by minsup and lowsup;
2 for q := 1, n; i := 1, k do
3 if ci ⊆ Tq then
4 D∗ = D∗ ∪ Tq;

5 calculate the size of particle by Equations (4) and (5);
6 return D∗, FI, PF;

In the data processing, the inputs of D and CI are the original database and the set of confidential
itemsets, respectively, and the outputs D∗, FI, and PF are the projected database, the set of large
itemsets, and the set of pre-large itemsets. First, the original database is scanned to obtain the FI and
PF using minsup and lowsup (line 1), respectively. The algorithm used for mining the FI and PF can
be the variants of the pre-large algorithm [45,46]. The transactions containing any of the confidential
itemsets are then projected (lines 2–4). The size of each particle is then calculated (line 5) for the later
evolutionary process. Thanks to the advantages of the pre-large itemsets, the side effects of the artificial
cost can be easily maintained and updated because the potential itemsets that may become large
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itemsets are kept in PF. Finally, the projected database (D∗), the frequent itemsets (FI), and pre-large
itemsets (PF) are then returned as the outputs (line 6) for the next evolution process.

4.2. Evolution Process

In the second evolution process, the particles are then evaluated to obtain better solutions for the
next iteration. In an MOPSO-based framework, each particle can be represented as a possible solution
with MDT vectors, and each vector has a transaction ID, which shows the transaction for deletion.
Note that a vector in a particle can have a null value. In the updating stage of the evolutionary process,
the formulas are thus defined as follows:

vi(t + 1) = (pbest− xi(t)) ∪ (gbest− xi(t)), (12)

xi(t + 1) = rand(xi(t), null) + vi(t + 1). (13)

In the updating process, the designed GMPSO handles data sanitization in PPDM as a discrete
problem. Thus, several parameters used in a traditional PSO are unnecessary in the designed GMPSO.
For the updating process, the TIDs within the elder particle or null value are then randomly chosen
to fill in the size of the particle, which is shown in Equation (12). The results are then summed with
the updated velocity of the particle, which is shown in Equation (13). This method increases the
randomization of the exploration ability during the evolution process.

For instance, supposing that the particle size is set as 4, a particle is initially set as x(t) = [1, 2, 5, 8];
gbest is initially set as [0, 4, 0, 5], and pbest is initially set as pbest = [2, 1, 0, 6]. Note that 0 represents a
null value, which indicates that a non-transaction is selected for deletion. Thus, the particle can be
updated as follows: v(t + 1) = {[1, 2, 5, 8] - [2, 1, 0, 6]} ∪ {[0, 2, 0, 5] - [1, 2, 5, 8]} = [5, 8] ∪ [0] = [5, 8, 0].
Because the size of a particle is set as 4, we then randomly select one transaction from its elder content
as rand(1, 2, 5, 8) (= 1). Thus, the particle is updated as [5, 8, 0, 1].

Because the MOPSO-based framework is used to solve a multi-objective problem, the pbest of each
particle cannot be simply determined based on the fitness value. Thus, the non-domination relation is
adapted to obtain pbest during the updating process. The local updating strategy is defined as follows:

Strategy 1 (Local Updating Strategy, LUS).

pbest←
{

x(t + 1) if f(x(t+1)) � f (pbest),

rand(x(t + 1), pbest) otherwise.
(14)

Thus, if the current particle dominates its last pbest, the pbest can be replaced by the current particle;
otherwise, a random selection is then conducted to select a particle as pbest for the next iteration.

To obtain gbest, a global updating strategy is then designed to obtain a better updating solution
during the evolution process. Using the designed GMPSO algorithm, a grid-based method is then
assigned to a set of candidate particles, and each particle is then assigned with a probability based on
the number of grids and the number of the particles in each grid. A random function is then performed
to choose one of the candidate particles as gbest based on their assigned probability. The global
updating strategy can be stated as follows:

Strategy 2 (Global Updating Strategy, GUS).

gbest← rand(pprob). (15)

Without loss of generality, the multi-objective optimization problem with n-objectives (n ≥ 2) to
be minimized can be defined as:
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min f (x) = [ f1(x), f2(x), . . . , fn(x)]T , (16)

which is subject to {gi(x) ≤ 0, i = 1, 2, . . . , ng} and {hj(x) = 0, j = 1, 2, . . . , nh}, and x ∈ X. Moreover,
x ∈ X is the vector of optimization variables; X ⊂ Rn is the optimized domain, which can be defined
by the Cartesian product of the domain of each optimization variable. f (•) : X 7→ Rm is the objective
functions of the problem; g(•) : X 7→ Rng and h(•) : X 7→ Rnh represents, respectively, the inequality
and equality constraints of the problem. The set of feasible solutions is represented by Ω ⊆ X.

Essentially, the goal of multi-objective evolutionary algorithms is to obtain a diverse set of
estimates of the Pareto optimal set, which contains the non-dominated solutions of the multi-objective
problem. Pareto dominance [47] has been the most commonly adopted criterion used to discriminate
among solutions in the multi-objective context, and therefore it has been the basis to develop most of
the MOEAs proposed so far. A theorem of Pareto dominance relation is given below.

Theorem 1. A feasible x ∈ Ω Pareto-dominates another point x′ ∈ Ω if it holds: f (x) ≤ f (x′) and f (x) 6=
f (x′) and the relation operation ≤ and 6= are defined as: f (a) ≤ f (b) ⇔ fi(a) ≤ fi(b), ∀i ∈ {1, 2, . . . , m},
and f (a) 6= f (b)⇔ ∃i ∈ {1, 2, . . . , m} : fi(a) 6= fi(b).

The above theorem of a and b respectively represents two different decision vectors. Normally,
this dominance is usually presented as: f (x) ≺ f (x′). Based on the theorem of Pareto dominance,
the four side effects can be considered as four objects, and the solutions of the optimization in PPDM
is to find a set of un-dominated solutions for transaction deletion. Thus, the Pareto dominance can be
utilized in the designed algorithm and holds the correctness of the dominance relationships of the
derived solutions. The details of the designed GMPSO algorithm are described in Algorithm 2.

Algorithm 2: Proposed GMPSO Algorithm
Input: D∗, the projected database; CI, the confidential information; FI, the set of frequent

itemsets; PF, the set of pre-large itemsets; N, the size of the populations; m, the size of a
particle using Equation (5); min f (x) = [ f1(p), f2(p), f3(p), f4(p)], the multi-objective
fitness functions; gs, the size of the grid

Output: PS∗, a set of Pareto solutions.
1 set t := 0;
2 initial N populations with m vectors;
3 put generated particle p into the set of POPt;
4 set Pool ← null;
5 while termination criteria are not achieved (t < N) do
6 for each p ∈ POPt do
7 evaluate min f (p) = [ f1(p), f2(p), f3(p), f4(p)];
8 if Pool 6= null then
9 for each c ∈ Pool do

10 if p � c then
11 remove c from Pool;
12 Pool ← ∪p;

13 else
14 Pool ← ∪p;

15 GirdProb(Pool);
16 update pbest and gbest;
17 generate POPt+1;
18 t++;

19 return PS∗;
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Here, D∗, CI, FI, PF, and N are the projected database, the set of confidential information, the set
of large itemsets, the set of pre-large itemsets, and the number of populations, respectively. In addition,
f1, f2, f3, and f4 are four fitness functions presenting the number of hiding failures, the missing cost,
the artificial cost, and the number of database dissimilarities, (Dis), respectively First, N particles are
randomly initialized as m vectors based on the size of each particle (line 1). The generated particles
are then put into the set of POP0 as the initial populations. The candidate set of the Pareto front is
then set as null (line 4). Next, an iterative process is then applied until the termination criteria are
achieved, for example, the number of iterations (t < N, lines 5–18). Each particle in the candidate set
of the Pareto front is then evaluated using four fitness functions (line 7) to find the non-dominated
solutions (lines 8–14). The satisfied solutions are then applied using the GridProb function to assign
the probability of each particle in the grid. The pseudo-code of the GridProb function is illustrated
in Algorithm 3.

Algorithm 3: GridProb(Pool)
Input: Pool, the set of particles.
Output: prob(p), the probability of each particle in PF.

1 create a gs× gs× gs× gs grid of particles in Pool;
2 for each grid do
3 find the number of particles in a grid as follows: |grid|;
4 for each particle p ∈ grid do
5 prob(p) := 1

gs ×
1
|grid| ;

6 return prob(p);

In Algorithm 3, the size of the grid is initially set based on user preference. For each grid,
the number of grids can be found using |grid| (line 3), and the probability of each particle within a
grid is then calculated (line 5). Each particle then receives a probability for later selection of gbest,
which increases the diversity of the solutions. To clearly explain the abbreviations used in this paper,
the explantions of all acronyms are shown in the Appendix A section.

5. An Illustrated Example

In this section, we illustrate a simple example to explain the designed algorithm step-by-step.
In this example, the original database was shown in Table 1, and the upper support threshold
(minimum support threshold) is initially set as 35%. The discovered frequent itemsets are then
shown in Table 2.

Table 1. The original database.

TID Items TID Items

T1 A, B, E T6 B, C, E
T2 B, C, E T7 B, C, D, E
T3 A, B, C, E T8 A, B, E
T4 A, C, D T9 A, B
T5 B, C, E T10 C, E

Table 2. The discovered frequent itemsets.

1-Itemset Count 2-Itemset Count 3-Itmset Count

(A) 5 (AB) 4 (BCE) 5
(B) 8 (BC) 5
(C) 7 (BE) 7
(E) 8 (CE) 6



Appl. Sci. 2019, 9, 774 12 of 20

Assume that itemsets (AB) and (BC) from Table 2 are the sensitive itemsets. At the beginning,
it would be better to calculate the at least number of transactions to be deleted to completely hide
sensitive itemsets. According to Equation (4) and Equation (5), we then have an m value as 4, and the
lowsup is calculated by Equation (11) as 24%. Based on the lowsup, we can find the support count of
pre-large itemset as 10 × 24% (= 3). The pre-large itemsets are used to reduce the computational cost
of multiple database scans. In this example, the pre-large itemsets are {(AE):3, (ABE):3}.

Afterwards, the transactions containing any of confidential information is then projected,
which will be used as the transactions to be deleted in the evolutionary progress. In this example,
the projected database is shown in Table 3.

Table 3. The projected database.

TID Items

T2 B, C, E
T3 A, B, C, E
T5 B, C, E
T6 B, C, E
T7 B, C, D, E
T10 C, E

Thus, only the transactions {T2, T3, T5, T6, T7, T10} can be considered as the transactions for
deletion in the sanitization process. Due to m equaling 4, the size of a particle is 4. Assume the size of a
particle is set to 4 and the initial populations for the evolutionary process are randomly chosen from
Table 3. After that, the particles of the populations are then evaluated one-by-one based on the defined
multi-objective functions shown in Equation (10). Take the particle P1, for example, to illustrate the
evaluation process. Suppose the P1 selects the transactions {T2, T3, T5, T6} for transaction deletion to
hide the sensitive itemsets for sanitization. Thus, the supports of (BC) and (CE) respectively become
(1/6 = 16.7% < 35%), and (2/6 = 33.3% < 35%); the (BC) and (CE) are then completely hidden after the
sanitization process. Moreover, the f1 (hiding failure) of the particle is calculated as 0. The discovered
frequent itemsets in Table 2 are then updated. In this example, the non-sensitive itemset of (BCE)
becomes (1/6 = 16.7% < 35%), which will be hidden after the sanitization progress. The missing cost of
f2 is returned as 1. Since the artificial itemsets can be generated from the pre-large itemsets, in this
example, none of the itemsets are generated as the artificial cost. The artificial cost of f3 is returned as
0. The Dis is calculated as 4 because four transactions are deleted from the database for sanitization.
All the particles are then evaluated in the same way, and the results after evaluation are shown in
Table 4.

Table 4. The initial population.

Particle TIDs f1 f2 f3 f4

P1 2, 3, 5, 6 0 1 0 4
P2 0, 5, 6, 7 1 1 2 3
P3 0, 2, 3, 3 1 1 1 3
P4 0, 5, 6, 0 1 0 1 2
P5 2, 3, 0, 10 2 0 0 3

After that, we then find the non-dominated particles of population. It is clear that the P1, P4 and
P5 are the non-dominated particles in this running example based on the non-dominated property.
Based on the grid method, we then can assign the probability of each particle for the updating of gbest
(global best). In this example, suppose P4 is selected as the candidate for the updating process. We also
take P3 as an example to illustrate the evolution process step-by-step. We first calculate the position
and velocity of the particle by Equation (12) and Equation (13). The velocity is then calculated as as
{[0, 2, 3, 3] - [0, 2, 3, 3]} ∪ {[0, 5, 6, 0] - [0, 2, 3, 3]} = {null ∪ [5, 6]} = [5, 6]. Since there are two empty
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dimensions in the updated particle, we select two values randomly from the elder particle (or null).
Assume we then randomly select rand([0, 2, 3, 3], 0) = [0, 2] for two dimensions; thus, the update
particle is [0, 2, 5, 6]. After that, we then evaluate the side effect values of all updated particles based
on the multi-objective functions. The same procedure then iteratively performs until the number of
generation is achieved. After that, we then obtain a set of non-dominated results as the final solution
for data sanitization.

6. Experimental Results

Several experiments were carried out to compare the effectiveness and efficiency of the proposed
GMPSO algorithm to the state-of-the-art single-objective cpGA2DT [19] and NSGA-II-based [23]
approaches. The algorithms used in the experiments were implemented in Java, using a PC with
an Intel Core i7-6700 quad-core processor and 8 GB of RAM under the 64-bit Microsoft Windows 10
operating system. Three real-world datasets [48], called chess, mushroom, and foodmart, were used
in the experiments. Because the foodmart dataset originally consisted of items and their purchase
quantities, only the distinct items in the foodmart dataset were extracted and used in the experiments.
A synthetic dataset, namely, T10I4D100K, was also generated using the IBM database generator [49]
for the experiments. The characteristics of the datasets used in the experiments are shown in Table 5.
The used parameters are defined as: #|D|: the total number of transactions; #|I|: the number of distinct
items; AvgLen: the average transaction length; MaxLen: the maximal length transactions; and Type:
The dataset type.

The maximum number of iterations is set to 50 and population size is set to 50 in the experiments
for all the compared algorithms. All the experiments are conducted five times and the average values
are calculated. The single-point crossover and bit-wise mutation are then performed and the rates
are respectively set to 0.9 and 0.01 for the cpGA2DT algorithm. The elitism method is used in the
cpGA2DT algorithm to select populations. The results in terms of the runtime, four side effects, and the
scalability are discussed and analyzed as follows.

Table 5. Characteristics of datasets used.

Dataset #|D| #|I| AvgLen MaxLen Type

chess 3196 74 37 37 dense
mushroom 8124 119 23 23 dense
foodmart 21,556 1559 4 11 sparse

T10I4D100K 100,000 870 10.1 29 sparse

6.1. Runtime

During the experiments, the execution time under varying percentages of sensitivity with a
fixed minimum support threshold was determined for the four datasets. In this section, only the
NSGA-II-based model is compared with the designed GMPSO because it is unreasonable to compare
a single-objective algorithm with multi-objective algorithms. The results of the two multi-objective
algorithms are shown in Figure 3.
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Figure 3. Runtime under varied percentages of sensitivity.

It is clear that the designed GMPSO consumes remarkably less runtime than the NSGA-II-based
model under varied percentages of sensitivity of frequent itemsets. The reason for this is because
the NSGA-II-based model spends a lot of time on generating new populations using crossover and
mutation operations. The sorting strategy of the Pareto solutions in the NSGA-II-based model also
requires some computational time. However, the presented GMPSO algorithm does not require
crossover and mutation operations to generate the next populations. The results in terms of the four
side effects are then shown.

6.2. Side Effects

In this section, the state-of-the-art single-objective cpGA2DT [19] and multi-objective
NSGA-II-based model [23] are then compared to the designed GMPSO in terms of the hiding failure
(α), missing cost (β), artificial cost (γ) and database dissimilarity (Dis). The number of populations for
all evolutionary algorithms is set to 50. Because a multi-objective algorithm will produce a set of
Pareto-front solutions, we evaluated the side effects based on the average of the produced solutions.
The results of hiding failure for the four datasets are shown in Figure 4.
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From Figure 4, we can clearly see that the designed GMPSO reaches a lower side effect in terms of
hiding failure, which indicates that most confidential information is hidden after the sanitization process.
For example, when the percentage of sensitivity is set as 4% for the chess dataset, the hiding failures
of cpGA2DT, the NSGA-II-based model, and the designed GMPSO are 50, 52.5, and 25, respectively,
which indicates that the GMPSO achieves the lowest hiding failure compared with the other approaches.
When the percentage of sensitivity is set as 6% for the foodmart dataset, the designed GMPSO has no
side effects in terms of a hiding failure, nor does the NSGA-II-based model. The results of GMPSO under
the chess and mushroom datasets outperform the results under the foodmart and T10I4D100K datasets.
This is reasonable because the chess and foodmart datasets belong to a dense dataset, and most
itemsets have a high relevance to each other, and thus the contents of the transactions even have a
high overlap. Therefore, the deleted transactions may have high overlap of confidential information;
more confidential information can be deleted together and a lower hiding failure can be achieved.
We then applied the results of missing cost, as shown in Figure 5.
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Figure 5. Missing cost under varied percentages of sensitivity.

From Figure 5, it can be seen that the GMPSO occasionally achieves a higher missing cost under the
chess and mushroom datasets, the reason for which is that these two datasets belong to a dense dataset;
in addition, the contents of most transactions have a high overlap. Thus, when more confidential
information is deleted from the dataset, more discovered information may be deleted together. Based on
the results shown in Figure 4a,b, we can see that the GMPSO achieves the lowest hiding failure than the
other algorithms. Thus, the GMPSO occasionally produces a higher missing cost in very dense datasets.
However, for spare datasets such as foodmart and T10I4D100K shown in Figure 5c,d, respectively,
the designed GMPSO produced no missing cost under varied percentages of sensitivity of frequent
itemsets compared to the cpGA2DT and NSGA-II-based model. From Figure 4c,d, we can see that
the GMPSO occasionally has no hiding failure and achieves almost optimized solutions as compared
to the cpGA2DT and NSGA-II-based model; we then concluded that the GMPSO achieves a good
performance in terms of the missing cost. The results of the artificial cost are shown in Figure 6.
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Figure 6. Artificial cost under varied percentages of sensitivity.

From Figure 6, we can see that GMPSO generates a higher artificial cost than cpGA2DT and the
NSGA-II-based model for very dense datasets such as chess and mushroom, as shown in Figure 6a,b.
The reason for this is that, when more of the hiding failure is prohibited, as the results in Figure 4a,b
show, for example, the size of the database is reduced; more unexpected rules then arise as new
information after the sanitization process owing to the change in threshold. This is reasonable because
there is a trade-off relationship between the hiding failure and artificial cost. For sparse datasets such
as foodmart and T10I4D100K, none of the algorithms, including GMPSO, generate any artificial costs;
the three compared algorithms achieve the optimized results in terms of the artificial cost for sparse
datasets. The results of the database similarity (Dis) are then applied, as shown in Figure 7.
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Figure 7. Database dissimilarity under varied percentages of sensitivity.

From Figure 7, we can see that the NSGA-II-based model achieves the best Dis compared to the
other two algorithms. The reason for this is that, based on Figure 4a,b, the NSGA-II-based model
achieves worse results in terms of hiding failure; less information is then deleted and thus the side
effect of Dis is not high. As we can see, the proposed GMPSO achieves a good performance in terms
of the hiding failure, as shown in Figure 4a,b; more confidential information is deleted and the Dis
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value is thus increased. For sparse datasets such as foodmart and T10I4D100K, shown in Figure 7c,d,
Dis for cpGA2DT, the NSGA-II-based model, and GMPSO is not higher, with a difference of less than
1%; GMPSO can thus show a good performance in terms of Dis. In summary, the designed GMPSO
can achieve a good performance in terms of the four side effects and obtain optimized solutions
compared to the other two approaches. Moreover, the designed GMPSO shows better flexibility than
the single-objective cpGA2DT algorithm because the transactions for deletion can be selected based on
user preference.

6.3. Scalability

We then evaluate the scalability of the compared algorithms in terms of database size. The results
are shown in Figure 8. In Figure 8a, we can see that all compared algorithms almost achieve the same
results expect the cpGA2DT algorithm under T10I4D150K dataset. The NSGA-II and the designed
GMPSO have the same results for hiding failure. However, in Figure 8b, the designed GMPSO generates
nothing of missing cost from the dataset size 100 K to 250 K, and increments 50 K each time. Moreover,
the GMPSO has no artificial cost under the dataset T10I4D150K, but the cpGA2DT and NSGA-II still
generate the side effect of artificial cost under the dataset T10I4D150K. Since it is a trade-off relationship
between four side effects, the designed GMPSO somehow generates a slight database dissimilarity
(Dis) compared to the other two algorithms, for example, under the dataset T10I4D100K. However,
it only has 0.05% difference of the Dis compared to the other two algorithms. In general, the designed
GMPSO still has obtained good effectiveness in terms of four side effects compared to the cpGA2DT
and NSGA-II algorithms in terms of scalability.
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Figure 8. Scalability under varied database sizes.

7. Conclusions and Areas of Future Study

In this paper, we first presented a grid-based multi-objective particle swarm optimization
algorithm (called GMPSO) for data sanitization in the area of privacy-preserving data mining.
Two updating strategies are utilized to find the better diversity of the obtained solutions. The pre-large
concept is also utilized in this study to speed up the computations. From the results, we can see that
the designed GMPSO achieves a good performance in terms of hiding confidential information (hiding
failure), and occasionally obtains optimized results in terms of the missing and artificial costs. Because
a trade-off relationship exists between the side effects, the GMPSO still obtains a minor side effect
of database dissimilarity (Dis) compared to cpGA2DT and the NSGA-II-based model. In summary,
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the designed GMPSO achieves a good performance in terms of four side effects and provides higher
flexibility than the other two algorithms.
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Appendix A

Acronym Full Name and Its Explanation

MDT The maximal deleted transaction of all the confidential itemsets
m The size of the particle in the evolution
D The original database before sanitization
D’ The sanitized database
CI The confidential information that should be hidden before sanitization
CI’ The remaining confidential information after sanitization
FI The set of frequent itemsets before sanitization
FI’ The set of frequent itemsets after sanitization
PF The set of pre-large itemsets
α The hiding failure after sanitization
β The missing cost after sanitization
γ The artificial cost after sanitization
Dis The database dissimilarity between the original database and the sanitized one
minsup The minimum support threshold
lowsup The lower support threshold
LUS The utilized local updating strategy in the designed algorithm
GUS The utilized global updating strategy in the designed algorithm
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