
 

 
 

 BACHELOR’S THESIS 
Notification Centre Development 
for Wide Assessment (WA)'s Recruiting Management System 
 

 
Bachelor, Computer Engineering 

 

Department of Computing, Mathematics and Physics 

 

Faculty of Engineering and Science 

 

Submission date: 03.06.2019 

 

Number of words: 7 639 

Number of pages: 33 

Group nr: 08 

 

 

Jianyou Dai 

Marcus Joar Hauge 

 

 

 

I confirm that the work is self-prepared and that references/source references to all sources used in the 

work are provided, cf. Regulation relating to academic studies and examinations at the Western 

Norway University of Applied Sciences (HVL), § 10. 



 

2 
 

TITLE FOR MAIN PROJECTS 

 

Report title:    Date: 

03.06.2019 Notification Centre Development for Wide Assessment (WA)'s 

Recruiting Management System 

Author(s): Number of pages: 33 

Jianyou Dai,  Marcus Joar Hauge Number of appendix pages: 4 

Field of study: Computer engineer Number of DVDs/CD-er: 0    

Contact person at field of study: Richard Kjepso Grading:  (Select: None or Limited 

to ddmmyy) 

Remarks:    

 

Assigner:  

 Wide Assessment AS 

 

Assigner reference: 

Oppdragsgivers kontaktperson:     

Andreas Hammerbeck 

Phone:     

97661466 

Summary: 

Development of notification centre for WA’ recruiting system using React + TypeScript as frontend 

and C#(.Net Core) as backend.  

 

 

 

Keywords: 

Notification 

Poke 

 React 

Typescript 

.Net Core 

Web API 

 

 

 

 

 

 

 

 

Høgskulen på Vestlandet, Fakultet for ingeniør- og natuvitskap  

Post address:  Postbox 7030, 5020 BERGENBesøksadresse: Inndalsveien 28,  Bergen  

Tlf. 55 58 75 00  Fax 55 58 77 90   E-post:  post@hvl.no Hjemmeside: http://www.hvl.no 

https://www.facebook.com/profile.php?id=100000256517370&ref=br_rs
http://www.hvl.no/


 

3 
 

Table of Contents 
 

PREFACE ............................................................................................................................. 5 

1. INTRODUCTION ........................................................................................................... 6 

1.1 Goal and motivation ................................................................................................ 6 

1.2 Context ................................................................................................................... 6 

1.3 Limitations .............................................................................................................. 7 

1.4 Resources ................................................................................................................ 7 

1.5 Organization of the report ....................................................................................... 8 

2. PROJECT  DESCRIPTION ............................................................................................... 8 

2.1 Project description ........................................................................................................ 8 

2.1.1 Project owner ......................................................................................................... 8 

2.1.2  Previous work ...................................................................................................... 10 

2.1.3 Initial requirements specification........................................................................... 10 

2.1.4 Initial solution idea ............................................................................................... 10 

2.2 Literature background ................................................................................................ 11 

3. PROJECT DESIGN ........................................................................................................ 12 

3.1 Possible approaches ............................................................................................... 12 

3.1.1 Alternative approach 1 ................................................................................... 12 

3.1.2 Alternative approach 2 ................................................................................... 12 

3.1.3 Discussion of alternative approaches ............................................................... 12 

3.2 Specification .......................................................................................................... 12 

3.3 Selection of tools and programming languages (if necessary) ................................... 13 

3.4 Project development method .................................................................................. 13 

3.4.1 Development method ...................................................................................... 13 

3.4.2 Project Plan .................................................................................................... 14 

3.4.3 Risk management ........................................................................................... 15 

3.5 Evaluation method ................................................................................................. 16 

4. DETAILED DESIGN ....................................................................................................... 17 

4.1 Use cases ..................................................................................................................... 17 

4.2 Architecture: .............................................................................................................. 18 

4.2.1 Database model .................................................................................................... 18 

4.2.2 Server architecture ............................................................................................... 19 

4.2.3 Client architecture ................................................................................................ 19 

4.3 Implementation........................................................................................................... 19 

4.3.1 Database/model .................................................................................................... 19 



 

4 
 

4.3.1 Server application ................................................................................................. 19 

4.3.2 Client ................................................................................................................... 22 

5. EVALUATIONS .............................................................................................................. 25 

5.1 Evaluation method ...................................................................................................... 25 

5.2 Evaluation results ....................................................................................................... 25 

6. DISCUSSION .................................................................................................................. 26 

6.1 Final product .............................................................................................................. 26 

6.3 Choices ....................................................................................................................... 26 

6.4 Notes .......................................................................................................................... 27 

7. CONCLUSIONS ............................................................................................................. 27 

7.1 Summary of goals ....................................................................................................... 27 

7.2 Confirmation of reached goals ..................................................................................... 27 

7.3 Further work .............................................................................................................. 27 

8. LITERATURE/REFERENCES ........................................................................................ 28 

9. APPENDIX ..................................................................................................................... 30 

9.1 APPENDIX A: Risk list ............................................................................................... 30 

9.2 APPENDIX B:  Gantt diagram .................................................................................... 31 

9.3 APPENDIX C: Acronyms ........................................................................................... 32 

9.4 APPENDIX D: Vocabulary ......................................................................................... 33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 
 

PREFACE 

 

This document of bachelor assignment “Notification Centre Development” is 

completed in spring of 2019 by Marcus Hauge and Jianyou Dai at Western Norway 

University of Applied Sciences (HVL). 

We would like to thank the people over at Wide Assessment(WA) for giving us this 

challenging and exciting bachelor’s assignment. Special thanks to Arve Andreassen 

and Stine Andreassen for bringing this project to our attention and allowing us to work 

at WA’s office. A great thanks to Andreas Hammerbeck and Vilja Rolfsen for all their 

continued support throughout the project. 

Last but not least, we would like to thank Richard Kjepso, our project advisor at HVL, 

for all the guidance and encouraging feedbacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 
 

1. INTRODUCTION 

Wide Assessment is a company developing an IT recruiting system that is used for candidates 

and companies to find their match.  On the platform employers can post available positions 

and information about their company, and search for certain skill sets they want in a potential 

candidate. The candidates can edit their profile with prior experience, skills, education , they 

can upload their resume and link to other social media sites. A company or candidate can 

make contact by “poking” the other. This will for instance let the candidate know the 

company is interested in them.  

 

1.1  Goal and motivation 

The goal for this bachelor thesis is to create a notification centre and add this feature to WA’s 

existing platform. By using this feature on the platform both candidates and companies are 

able to view their own notifications all at one place and make it easy for them take an action 

on it. In addition, the notification will be marked as “read” if it has been clicked by user or it 

will remain at an “unread” status.  

The motivation is that Wide Assessment is constantly improving their platform for all users, 

and the new feature is expected to improve user experiences and boost the interaction 

between candidates and companies. The current solution is an email-based notification, that 

is, when a user pokes another, a notification will be sent and notify the recipient by email 

with a link in it. Then the user has to click the link for further info. Although the notification 

is not always seen by the recipient due to many reasons, for example when the recipient’s 

mailbox is full, notification email could be landing in the spam folder or even the user forgets 

there’s a notification in mailbox if he or she does not check often. By using the new feature 

notification centre that will bring benefits not only candidates and companies but also Wide 

Assessment itself marketing.  

 

1.2 Context 

As mentioned above, Wide Assessment wants to have a notification centre to be integrated to 

their existing recruitment platform. Currently the platform is an email-based notification 

when a candidate or company pokes to another, a message will be sent and notify recipient by 

email. However, the inconvenient are obvious that it has been described from above which is 

not user friendly enough for all WA users.  

In this bachelor assignment, Marcus Hauge and Jianyou Dai will be working as a group and 

help WA to develop and integrate the notification centre to the platform. The new feature 

therefore will meet their requirements and bring a positive change for their already existing 

platform. 



 

7 
 

1.3 Limitations 

There are some limitations for the notification centre development that it needs to be taken 

into consideration. 

 

C# and .Net Core - The programming language C#  and frameworks .Net Core are used in 

the existing platform in the backend. For our group, java, JavaScript and MVC are the most 

familiar programming language and framework. None of us have experience in C# or .Net 

Core. However, C# was built specifically as a Java competitor, there are many similarities 

between the two languages. Even the .NET framework has some similarities with Java. 

Object-oriented languages: Both Java and .NET (C# and VB.NET) are object-oriented 

languages. 

Therefore, the limitations are existed, but it can be an opportunity for us to make a 

breakthrough point to the limitations.  

 

React and typescript - when it comes to frontend, the platform uses typescript and React as 

their language and framework that are also new for us. Although TypeScript is a superset of 

JavaScript, in typescript there are many JavaScript code in it. With help of typescript 

documentation, it is not difficult for us to overcome the limitation. When it comes to React 

framework, it is one of the most popular frameworks which are being used by numbers of 

web developers and many companies prefer to use it as their frontend framework according 

to the research on GitHub. That means there are many already existing resources that can be 

used, in addition with help of online documentation of React and typescript, the limitation 

will not be a big hurdle for us to complete the project. It is what the purpose of doing 

bachelor project. To learn new things  and update our programming language and 

frameworks which will be a practical benefit for our future work.  

 

Integration -  the notification centre system is considered as a part of  the existing platform, 

it means the first step for us is to clearly understand the already implemented frameworks,  

models and the relevant codes that  chosen and written by others, there will be a little room 

for us to decide freely.  However, one of the most important way to break through this 

limitation is starting early and studying other’s code by practising with our own code to test.  

 

1.4 Resources 

First and foremost, our contact person Andreas Hammerbeck who is a full stack developer 

and the CTO of Wide Assessment. He is available to provide us with  tips and help along the 

development process, especially about the architecture of the system. Besides,  Vilja Rolfsen, 

a developer at WA who is always available to help us whenever he is at office or on Slack. 

Therefore, both of them will be our most valuable resource to give a hand for our project 

development. 

 



 

8 
 

Another important resource is the internet. Our group will first go through some general 

beginner tutorials on React, and then look up the documentation for more specific concepts. 

The feature we will work on implementing is not something new, so similar solutions may be 

looked at for inspiration. 

 

In addition, the school library has many valuable books related to programming languages 

and frameworks. It is uncertain to what extent that will be used, but it is at least a good 

alternative option. 

 

1.5 Organization of the report 

Chapter 1: An introduction to the project. 

Chapter 2: A more detailed description of the project. 

Chapter 3: The design of the project, discussing different approaches and planning. 

Chapter 4: A detailed description of the actual solution developed in this project. 

Chapter 5: How the work was evaluated, and the results of the evaluation. 

Chapter 6: Discussion regarding the result based on the goals of the project. 

Chapter 7: The conclusion of the report. 

Chapter 8: Literature and appendices. 

Chapter 9: appendices.  

 

2. PROJECT  DESCRIPTION 

 

2.1 Project description 

Our aim in this chapter is to describe the background for the project.  In the sections below 

are project owner,  previous work, initial requirements specifications, initial solution idea and 

literature background.  

  

2.1.1 Project owner  

The owner of the project is Wide Assessment AS which is a subsidiary company of Gyril 

Norway who provides employment recruiting services focusing on IT industry and helps 

especially IT firms to find talent and to locate individuals who meet specific job 

requirements. With the widespread impact of digitalization, the company started to digitalize 

the process. Eventually the digitized version is born in Bergen which is today’s WA.works. 

  



 

9 
 

    
 Figure 1:  Wide Assessment 

 

The platform provides a profiling for tech candidates and employers in a way that they can 

easily be approached and shared on the IT market.  The candidates are able to show off their 

skills without being limited by formal experience or lack of communication skill. The 

platform allows them to create their profiles that can be viewed by multiple companies, and 

this makes it simple for companies to find their wanted candidates quickly and accurately. 

  

The project team consists of one UX-designer and two full stack developers. Their office is 

located in the centre of Bergen. It is allowed for us to work at the office any time we want, 

and they are available to help us with both backend and frontend issues of the application. 

 

Why the project is important to the project owner. 

The current notification system is using email-based notification. Due to the email could be 

delayed, not received or it may be staying in user’s spam folder. In this case either the 

candidate or company could consider that no response means the receiver  has no interest in 

them. If delayed, it could cause loss for both sides because they could already have achieved 

something else before the late response.  

 

The trend today is shifting to  instant notifications and the new technology clearly has more 

benefits than these older mediums. The quick, real and effective request or response will be  

the final result. This will definitely bring a great benefit for candidates, companies as well as 

project owner itself. 

 

  



 

10 
 

2.1.2  Previous work 

The development of our project  is based on the  existing  product on wa.works platform. The 

current product  integrated with an email notification system.  Each time the poke button is 

pressed either from a candidate or a company, the system will send out a notification with an 

email form including an accessing link address for the receiver. The receiver will then be 

notified by the email. Clicking the provided link address enables the receiver to access and 

view more details of the sender’s profile if he or she is interested. 

   

2.1.3 Initial requirements specification 

The initial  requirements specification for the project is to understand  how  the email-form 

notification works  between client and server.  And then to further develop the new 

notification system based on the current frameworks. The extra challenge of the assignment is 

to make a real time notification work, that is, once the poke button is pressed, the notification 

should be visible on receiver’s screen without reloading its webpage. 

  

2.1.4 Initial solution idea 

The initial solution idea is to create a notification centre system based on the existing 

platform. There are mainly two situations to handle the default settings of notifications once 

the poke-button is triggered. 

 

 

 
Figure 2:  Notification sketching 

 

The first situation is when the user is logged in, the notification should be set to display in a 

corner of the screen so that the user can have a quick view of it. Multiple notifications are 



 

11 
 

available to be shown as a stack or a list and then disappear after a set amount of time. User 

can click the notification-block for further view if he or she has logged on the platform. 

  

The second situation is when the user is logged in. The system should enable end users to get 

notifications with an alert appearing in the status bar on the top of the webpage once the 

poke-button is triggered. On the alert status it should show the user the total numbers of 

unread notifications. Under the dropdown list of the status-icon it should be displaying all the 

latest read and unread notifications. 

  

Although the real time function for the notification is not included in the assignment, we 

would like to take this as our challenge. With real time notification, the system should have a 

WebSocket connection or SignalR that enables Two-way full duplex communication with 

low latency between candidates and companies. 

  

When it comes to the programming, it is desired that the code should be written in the 

language of React JavaScript and typescript for the frontend design. C# and .Net Core will be 

used in the backend. There is also a requirement to follow the company’s programming 

practice in order for the code to be consistent and easy to read. 

 

 

2.2 Literature background 

 

References used in this document are mainly from the official website of  .NET Core by 

Microsoft, Reactjs organization by Facebook, typescript organization by Microsoft and some 

published books and previous research papers. 

  

Major resources referred to throughout this paper are dotnet core and Reactjs which are 

respectively the leading frameworks of backend and frontend that adapted in this project 

development. In the dotnet core webpage, it presents an overview of the structure to get an 

understanding of how to build web API, how to integrate with client-side framework React 

and so on. In the Reactjs documentation that provides the main concepts and advanced guides 

for building the frontend web in great details.   

  

  

 

 

 

 

 



 

12 
 

3. PROJECT DESIGN 

 

3.1 Possible approaches  

 

The possible approach is to create a new feature that either company or candidate can be able 

to poke and receive notification from each other. However, it is important to follow WA’s 

architecture and programming practices in order for the implementation to function 

optimally. The aspect which has some wiggle room for design choices is the frontend. The 

backend logic will depend on how the frontend and the notification object is designed. 

 

3.1.1 Alternative approach 1 

On the client side there would be a notification icon button at the top menu bar. By 

clicking the icon button, all this user’s read, or unread notifications will be displayed. 

User can take further action to view detailed information of the one who poked him or 

her. The notifications can be rendered in real time or fetched from the server on a set 

interval such that the user can see the notification without reloading the website. 

 

3.1.2 Alternative approach 2 

The frontend could have a page dedicated for notifications with details of each one. 

The page is basically a nested list from the icon-dropdown list which shows not only 

the latest notifications but also older notifications that user has received. 

 

3.1.3 Discussion of alternative approaches 

There is not that much of a difference between the approaches. A page only for notifications 

might be a bit excessive, but it depends on what kind of data the notification will hold. The 

frontend is WA’s decision. We might come up with better looking designs along the way 

which they might approve of, but now in the beginning we could go with either approach and 

then afterwards evaluate how it turned out and discuss possible changes which would make 

an improvement. 

 

3.2 Specification 

We have chosen to start with approach 1 because the notifications are not very big or 

detailed, so an entire page only for notification might not be needed. Instead, an icon with a 

dropdown similar to sites like Facebook for example which will highlight unread 

notifications will probably give the best user experience. 



 

13 
 

3.3 Selection of tools and programming languages (if necessary) 

As specified by WA, the frontend will be programmed in JavaScript plus typescript with the 

React framework. The backend will be programmed in C# with the ASP.NET core 

framework. Visual studio code is the preferred code editing tool, but any kind of text editor is 

fine. GitHub is used of easy version control and keeping track of changes. 

 

3.4 Project development method 

In order to achieve the goals and planned result, it is important to have a good and suitable 

methodology that puts a primary focus on the most crucial tasks that need to be done. 

 

3.4.1 Development method 

There are a number of software development methodologies such as Agile, Waterfall, Spiral 

development and so on. However, our team is not large, it consists of only 2 people plus 

about 3 developer from WA, a lightweight methodology is much suitable for us, like Agile 

Scrum, which is also recommended by our project owner. It focuses mainly on short iterative 

cycles and rely on the knowledge within a team.  

 

Scrum is the most popular Agile development framework because it is relatively simple to 

implement but also because it solves a lot of problems that software developers have 

struggled with in the past such as convoluted development cycles, inflexible project plans, 

delayed production. The Scrum framework enables our small team to work in a short cycle of 

one or two weeks which called “sprints”. In addition, we can have a daily meeting if we want  

to discuss what has been done and what the current problems are. The methodology allows 

for quick development and testing.  

 

 

                             Figure 3:  Pivotal Tracker  Kanban-board 

 



 

14 
 

In additional,  a Pivotal Tracker  tool is recommended by our project owner. The Pivotal 

Tracker for Kanban-board embraces  the simplicity and make the scrum run easier rather than 

creating more work. The main goal is to track the process of your tasks. It tracks what you are 

actually doing, how far along you are into a project and what’s left to do.  

 

By utilizing these methodologies ensure that every member of the project group is up to date 

on what is started, what is in the process , what is getting stuck in which phase, and what is 

finished. Combining the Scrum methodology together with The Pivotal Tracker board 

provide an actual feeling of everything running as planned.  

 

3.4.2 Project Plan 

 

 

Figure 4:  Gantt diagram 

 

 

Gantt diagram explained:  

 

Sprint 1 

The goal at this part is basically to make a general preparation for the project development. I 

consist of highlighting the main tasks such as making a schedule time, selecting the working 

method, setting up software requirement, understanding the basic requirements of  the 

project. Besides M2 assignment needs to be delivered then.  

 

Sprint 2 

At this part we are going to break down each task into small pieces then fill it in our agenda.  

As well the group can start modelling for the application to have a better understanding of the 

app structure through a data flow diagram. In addition, the group should decide our project 

name in the report, meet our supervisor and deliver the status report afterwards. In week 13 



 

15 
 

our focus is on our pre- project report. It should be completed and have a review by our 

supervisor before delivery. 

 

Sprint 3 

Our main job at this part is to start building the application structure and making a simple 

notification demo work at the front end at first with fake data. 

Secondly the group have to prepare for our presentation for week 15th.   

At last the group can try to connect frontend with backend. In the meantime, we need some 

feedbacks from our UX design about the frontend. 

 

Sprint 4 

This part will be the complete core function development for the skeleton which includes 

adding database connection to all elements. The group may want to work sometime during 

the Easter holiday.  

 

Sprint 5 

Here we will focus on testing and debugging. It should not be a big problem, because we will 

keep testing along the development process from the beginning. If all is good, it is time to 

integrate our project to the platform and make it work. After that if we have good time, we 

can try to take the challenge that is implementing WebSocket to make the notification in real 

time. 

 

Sprint 6 

We will keep writing and editing our thesis through the whole process, such that we can have 

a quick feedback responding from our supervisor on each sprint and deliver the draft and the 

final report on time. After delivering we can start the poster for the expo. We can ask our 

project owner for tips. 

 

Sprint 7 

Writing reflection notes for individual. Then preparing presentation and expo supposed to be 

at last sprint of the schedule.  

 

3.4.3 Risk management 

There are various types of risks through every step of the development process. It may cause 

part of our project failure, delay or prevent us from achieving our goals. In order to avoid and 

minimize those threats, we need the risk management to handle it properly. Therefore, we 

should monitor this from early stages until the project is delivered. 

 

In the risk management, all possibilities of the threats should be listed and identified in the 

beginning of the schedule.  

 

 



 

16 
 

Time management 

The time schedule is set up in the beginning of the development, but we cannot be certain that 

the scheduled time will accurately meet to our actual tasks’ requirement. To avoid failures 

which may cause delay or other results, we should have good communication between group 

members, and keep updating the time schedule accordingly.  

 

Not achieving the goals as expected.  

It is possible that we may get stuck in the code and using too much time on debugging. To 

avoid this, we should contact our project owner as early as possible after we have tried our 

best efforts. In addition, we have to prioritize our tasks for not affecting other processes.  

 

Lack of  competence 

Neither of us have any experience in using c#, .net core and react, although it is not 

completely new programming languages or frameworks so it shouldn't take too long to get 

familiar with them. In the developing process it may cause some extra time on debugging. To 

minimize too much time consuming at this part, we should share the learning together and 

dare to ask questions and solve problem as quick as possible. 

 

Illness or absence 

Illness and absence are possible to happen and definitely will affect the project quality and 

working process. Therefore, it is important to maintaining the work-life balance. the absence 

is better in control as long as we can reschedule and prioritize the task then it won't affect the 

process too much.  

 

3.5 Evaluation method 

The evaluation method of the project is to maintain a good communication with our project 

owner and keep our them up to date in order to make sure that every task is done based on the 

initial goal as requested initially.  

 

The second important is self-verification after each small goal achieved and fix the problem 

as quick as possible with project owner if necessary. In the end to have complete review the 

whole project together with project owner ensure the final goal is achieved.  

 

 

 

 

 

 

 



 

17 
 

4. DETAILED DESIGN 

 

This chapter contains details about the use cases, architecture, the designs of the backend, 

frontend and database, and implementation. 

 

4.1 Use cases 

The use cases are quite few and simple. 

 

 

 
Figure 5:  use case 

 

 

 

Flow: 

A candidate will navigate to the “companies” page where he/she will filter them based on 

preference, and then click poke on some company. The poke will send a an initial notification 

object to the backend where it will be further processed. A notification will be generated for 

each admin in the poked company. 

 

A company poking a candidate works similar. The company first creates a search with 

wanted education, experience etc, and then click poke on the relevant candidate(s). A “base” 

notification will be sent to the backend, processed, and stored in the database. 

 

When a company wants to send a message, they first click create message which opens up a 

modal box, then fills in the form data and clicks send. The form data is sent to the backend 

which will generate a notification for each specified recipient. 

 



 

18 
 

4.2 Architecture: 

The architecture follows the MVC pattern where the view is controlled only by the client, 

which sends requests to the controller to fetch the relevant data. In contrast to the more 

traditional design where the view in prepared in the backend based on the request and then 

served to the user, fetching only some data is faster because it won’t send an entire page each 

time. 

 

 

 
 

Figure 6:  Overview of the total architecture 

 

4.2.1 Database model 

 

 
  Figure 7:  Model shows what data the Notification object contains.  



 

19 
 

4.2.2 Server architecture 

As mentioned, the server architecture utilizes the MVC pattern, which stands for model-view-

controller. This way of development separates parts of the application making it easy to 

maintain, scale and reuse any of them. The backend consists of the model and controller 

parts. The model is the data structure of the application, and the controller takes input and 

processes it and performs some actions on the model.  

 

 

4.2.3 Client architecture 

The client side is created with the React framework and is a single-page website. This means 

that the client will not request a new page when navigating the site, but rather load the 

website once on first visit, and then content will be created and removed dynamically based 

on the user inputs. A big advantage with this approach is a much quick and responsive 

experience for the user. 

 

React is component based, so a notification component is created with its own state which 

holds the current notifications the user has received. The component, as with all other react 

components, has a render() function which is the part where the HTML elements on the site 

is modified. This function will render the notifications in the dropdown menu/icon by 

creating a HTML element for each notification object currently stored in the component’s 

state. The render() function is called whenever the state changes, and for the state to change, 

a GET request to the notification controller on the server is made. The returning response is a 

list of notification objects which are put into the component’s state. 

 

4.3 Implementation 

4.3.1 Database/model 

Entity Framework Core is the framework used for data access. A subclass of DbContext 

handles data access. The class contains properties of the type DbSet<SomeDataObject>, 

which represents collections of each data object in the system. Since this is already done and 

configured by WA, all that is needed to be added is a Dbset for the notification object to 

access notification data in the database. 

 

4.3.1 Server application 

A controller is implemented to handle all http requests related to notifications. The controller 

is designed in a way that an action to be executed is routed to with http[verb] attributes. This 

is a typical way of routing for web APIs. 

 



 

20 
 

There are three actions which can be performed, which means three different methods are 

defined in the controller. These actions are retrieving notification data, creating notifications, 

and changing the data in a notification. 

 

 
Figure 8:   GET-request method in the Notification Controller. 

 

 

The [Authorize] attribute on the top means that if the user making the request does not pass 

an authorization check, the action will not be performed. The second attribute [HttpGet] 

routes incoming get-requests to this method. The logic inside the method is surrounded by a 

try-catch to handle errors. The user making the request is fetched from _userManager, which 

is then put in a query to the database for all the notification objects relevant to this user. It is a 

query expression from LINQ, which is a component from .Net framework that makes for 

easy data extraction from several different data sources, including relational databases. The 

query returns a list of the objects which is returned to the client to handle. 

 



 

21 
 

 
Figure 9:   Snippet of part of the post method 

 

This is the first section of the post request method. The method takes three parameters, a 

notification object, a number, and a string. The notification object only contains some data of 

the notification, the Boolean unread status. It is done this way for simplicity reasons. The 

snippet shown on the figure is for the case where a company pokes candidate user. A JSON 

string is made with the guide value from the parameter. GUID is an acronym for Globally 

Unique Identifier, a value each company in the database has. These values in the json will 

utilized in the client. The id parameter is for a search match retrieved from which candidate is 

being poked in the client. A query is made to the database to find the correct candidate, which 

will be put into the ApplicationUser attribute of the notification. Finally, the notification is 

added to the notification DbSet of the DbContext, and then SaveChangeAsync() persists the 

change to the database. 

 

In the case where it is the candidate who pokes a company, a notification is made for each 

admin in the company. The implementation is quite similar to the one described above but 

with some differences. The poked company is fetched with the GUID parameter, and a query 

is made which selects all users which is admin the company. For each admin user in the 

company, a notification object is made for them and persisted to the database. 

 

The last case is when sending a “custom” notification message. This will only be used by 

WA admins to send out notifications to either all company admins or all candidates. If GUID 

equals “massNotification” in the post request, then based on the id, a query is made to fetch 

all candidates or all company admins and then create a notification for each one. 

 

The final action, changing a notification, is done with a PUT request. The actual change to 

the notification object is done in the client. The clients send the updated object in the put 

request which is then passed to the dbContext which updates the database. 



 

22 
 

4.3.2 Client 

 

As described in the architecture section above, the client is built with the React framework 

and is a so called Single-page application. Since React is component-based, a separate 

component for notifications was implemented. Components are kind of similar to regular 

functions, in that they take some input and returns some elements to be rendered on the page. 

There are two different types, functional and class components. The functional one really is 

just defined like a regular function, while a class component is defined as a class extending 

the React.Component class with its own state and functions. Components takes something 

called “props”(properties) as input, which works basically how regular functions take some 

parameter as input. This is an easy way to reuse a component several places on the website 

but where it acts different each place based on the props it was passed. 

 

The notification component is of the class type as it needs its own logic state. State has 

similarities to props, but instead of it being passed to the component and is only read-only, 

state is variable and handled from inside the component.  

 

Something related to state is the render() function which is the only function components 

must implement. Every time the state is changed, render() will automatically be executed. 

This function returns the elements to be displayed on the page, with the help of JSX. JSX 

stands for JavaScript Extension and makes it simpler to make changes to the page by writing 

the code like HTML instead of having to use DOM which could require significantly more 

code. It makes for better readability and easier to debug. 

 

 

 



 

23 
 

Figure 10: Render function 

 

Figure 10 is a snippet of the render function in the notification component. The 

prepareNotifications() function on top goes through each notification object in the state, and 

fetches the relevant data to be displayed, such as text and URL to whoever poked the user, 

and then put the data into a HTML <p> element which is then put into an array. In render(), 

the items is inside curly brackets, which is a way to write any JavaScript expression inside 

JSX. Since items is an array of <p> elements, all these elements will be rendered inside the 

<div>. 

 

Lifecycle 

http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/ 

 
  Figure 11: React component lifecycle functions. 

 

The constructor is for initializing state and binding methods, which is not necessary in the 

notification component. After the component is mounted, which means added to the DOM, 

componentDidMount is called. Here, an interval is created which will automatically calls the 

function that fetches data from the server every 30 second.  

 

 
Figure 12: Function of notifications request from the web API. 

 

Using the Axios library, a get request is made to the API and the “objects” field in state is set 

to the notification objects returned for the server. 

http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/


 

24 
 

 

 
Figure 13: how the notifications is rendered after the get request. 

 

Last function in the notification component is markAsRead(), which changes the read status 

of the notification. 

 
Figure 14:  Method markAsRead() function in notification component 

 

The function retrieves the notification to be changes based on the id parameter, sets unread to 

false, and makes a put request to the web API with the entire object. ForceUpdate() is called 

in order to re-render the component so that the notification renders with a different look. 

 

Creation of notifications is not a part of the notification component, but rather another 

component for the buttons for poking someone. There are two buttons, one for poking a 

company, and one for poking a candidate. Both of them makes a post request to the WEB api, 

with either ID for candidate or GUID for company. An option to create a “custom” 

notification is available to WA’s admins. This is a separate component which opens a modal 

box when a button is clicked, with a text field for the message and a dropdown for selecting 

the receivers. 



 

25 
 

5. EVALUATIONS 

 

The goal in this section is to describe the methods are used for evaluating and determining 

whether the project meets the goal as it is initially expected. The evaluation methods mainly 

based on the development method scrum and functionality testing which will be  presented in 

the sections below. 

 

5.1 Evaluation method 

Evaluation by Scrum 

As mentioned earlier in section 3.4,  the development methodology Agile Scrum is 

implemented for the project development.  The Scrum framework enables project team to 

work in a short cycle of sprint. Each sprint will get feedbacks by comparing the the solution  

with the project requirements. Then the feedbacks will be used to evaluate whether the it is 

heading in the right direction. By following scrum framework, the team can give a quick 

response to the problem addressed by project owner through a meeting or daily 

communication. The essential adjustment will be made accordingly so that the project  

always meets the requirements for usability. 

 

 

Evaluation by project owner 

Another method of evaluation is  maintaining a good communication with our project owner 

and keep them up to date in order to make sure that every task is done based on the initial 

goal as requested. When it comes to front-end development, it is about user events and 

rendering the right views at the right time. Due to React is used in the frontend, therefore it is 

easy to  use the build-in TestUtils which is Jest that can be used to test the UI structure, 

interactions. By maintaining a good communication with UI designer from WA to evaluate 

the user interface design should always follow the existing theme and not changed 

unexpectedly from user end. 

In addition, the functionality testing is important to ensure the quality of the code and the 

results of all functions should be working as planned. After a function was implemented or 

changed, it will be pushed to the GitHub, and then the project owner will evaluate the code 

and the result regularly through GitHub repository. Project owner can make a comment to 

notify that a specific part of the code should be modified, as well keep tracking of the 

progress and reducing the expectation gap between initial concept and delivered reality. 

  

5.2 Evaluation results 

By keeping track of the progress and evaluating the task during each sprint and after it is 

completed by the project owner. Meanwhile the group follows tight after the scrum 

framework and remain good communication with project owner to make the modification 

when it is needed. An actual testing of the solutions enhanced the robust code and reduce the 

chances of occurrence of risk.  

https://docs.google.com/document/d/1CJym0co1az-Y_Enedju0RFA9H6mekR7mSu2ci1mEjcs/edit#heading=h.49x2ik5
https://docs.google.com/document/d/1CJym0co1az-Y_Enedju0RFA9H6mekR7mSu2ci1mEjcs/edit#heading=h.2p2csry


 

26 
 

6. DISCUSSION 

 

6.1 Final product 

One of the biggest influences on the results is that none of the group members had any prior 

experience in any of the technologies used in WA’s system, except for for SQL, which was 

only used a little bit for testing purposes. This in combination with the fact that the codebase 

was completely new to us, lead to a lot of time being spent on figuring out how things 

worked and how to all work together. At the start of the project, we did read up on the basics 

of React and created a separate project to test and experiment how our solution would be like, 

but eventually moved over to WA’s codebase. This was very overwhelming at first and we 

didn’t know where to begin, but some guidance from WA’s developers helped out alot. Not a 

lot of reading was done before we dived right into implementation and began our trial and 

error process. This method involved a lot of guessing and assumptions, but progress was 

made, nevertheless. In hindsight, this method was not optimal and led to us not following all 

the right coding and design practises. More studying up the principles behind .net core, react, 

redux etc would have prevented us in having to spend time correcting and changing things up 

in the later parts of the project. 

 

6.3 Choices 

Throughout this project there hasn’t been that much room for different approaches and design 

choices as it would have been if the project was to develop a new system, in contrast to new 

features in an existing system. Nevertheless, there was several ways to go about this project. 

 

One of the major choices that has been made in the project is how the Notification object 

would look like. Since the developers at WA talked about extending the notification feature 

or change in the future, we decided to use a JSON string as an attribute of Notification in 

addition to the other must-have attributes. This way it wouldn't be necessary to create a new 

model later, but instead add data to the JSON string. A disadvantage to this is you cannot 

directly make queries to the database based on data in the JSON string. Also, there is a slight 

performance decrease because of the need to parse the string, but not enough to be noticeable. 

There was also the choice of having the notifications on a separate page for itself, or just have 

them in the dropdown icon on the top menu. The decision landed on not adding the extra 

page because of the nature of the notifications. It would be a little excessive for such 

“simple” content and might impact the user experience negatively. 

 

As stated before, since the codebase and technologies in this project was completely 

unfamiliar, there was a fair share of trial and error. This led to us sticking with a solution 

when it worked but should maybe have taken some more time to think if there is a better way 

https://docs.google.com/document/d/1CJym0co1az-Y_Enedju0RFA9H6mekR7mSu2ci1mEjcs/edit#heading=h.3o7alnk


 

27 
 

to do it. Of course, we knew the principles behind the MVC architecture and we follow best 

practises to the best of our abilities. 

 

6.4 Notes 

Even though there might have been more trial and error than learning from reading, we did 

learn very much about the technologies used. React in particular was very intuitive and 

enjoyable to work with, with separation of components making it very modular and flexible. 

We also value the experience of working on an existing codebase a lot, because this is 

something we most likely are going to do after graduating. 

 

7. CONCLUSIONS 

 

7.1 Summary of goals 

The main goal of the project is to develop a notification system and integrate it to existed 

recruiting platform for wa.works. In such way that a company or candidate can make contact 

by “poking” the other and then a notification will be sent or received by a candidate 

immediately once the page is reloaded,  instead of checking the notification by email. In 

additional a company can create a notification and send it to  a candidate. The programming 

languages frameworks are used for the project are C#-.NET core for the backend and React-

Typescript for the frontend. 

 

7.2 Confirmation of reached goals 

As the poke button is pressed, the notification will be sent to a candidate, then it will also 

appear in receiver's dropdown menu with unread status. By clicking the notification item, it 

will lead user to the sender’s profile page. As well user can view all read or unread 

notifications from a single page. The features above are integrated to the existed platform for 

wa.works such that one can conclude that the main goal for the project has been reached. 

 

7.3 Further work 

Further work for the project, the adaptation of WebSocket has been left for the future due to 

lack of time. Although it is not required in the project, we would like to try during the 

development. With the implementation of WebSocket protocol, a notification will be sent or 

received in real-time. User will be notified by the pushed notification whenever user is busy 

with other things, the real-time notification will be an effective way of getting user back to 



 

28 
 

the site and easily view the message. In such way that the interaction between candidate and 

company would be boost increasingly.  In addition, the real-time notification enable user to 

have personalized custom notification through settings.   

8. LITERATURE/REFERENCES 

 

Microsoft.com (n.d.). .NET Core Guide. [online] Available at: https://docs.microsoft.com 

/en-us/dotnet/core/#net-core-22 [Accessed on 15 May 2019].  

 

Upwork.com.  (n.d.).  Java vs. .NET: Determining the Right Software Platform for Your 

Project. [online] Available at: https://www.upwork.com/hiring/development/java-vs-net- 

determining-right-software-platform-project/ [Accessed on  02 April 2019].  

Medium.com. (n.d.). React vs Angular vs Vue.js: A Complete Comparison Guide. [online] 

Available at: https://medium.com/front-end-weekly/react-vs-angular-vs-vue-js-a-complete 

-comparison-guide-d16faa185d61 [Accessed 02 April 2019].  

 

Reactjs.org  (n.d.).  A JavaScript library for building user interfaces.  [online] Available at: 

https://reactjs.org/docs/getting-started.html [Accessed on 10 April 2019].  

 

Typescriptlang.org  (n.d.). Typescript doc.  [online] Available at:https://www.typescriptlang 

 .org/docs/handbook/release-notes/typescript-3-3.html [Accessed on 07 April 2019].  

 

Microsoft.com (n.d.).Tutorial: Create a web API with ASP.NET Core MVC. [online] 

Available at: https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view= 

aspnetcore-2.2&tabs=visual-studio [Accessed on 19 May 2019].  

 

WA.works  (n.d.). We help companies grow better [online] Available at:  

https://wa.works/candidate?s=candidate)  [Accessed on 11 April 2019].  

 

Code.visualstudio.com. (n.d.). Visual Studio Code - Code Editing. Redefined  . [online] 

Available at: https://code.visualstudio.com/ [Accessed on 25 May 2019].  

 

W3schools.com. (n.d.). JSON Introduction.  [online] Available at:  

https://www.w3schools.com/js/js_json_intro.asp [Accessed on 02 April 2019].  

 

Typescriptlang.org. (n.d.). Migrating from JavaScript [online] Available at: https:// 

www.typescriptlang.org/docs/handbook/migrating-from-javascript.html [Accessed on 03 

April 2019].  

 

Tomdalling.com. (2009). Model View Controller Explained.  [online] Available at: 

https://www.tomdalling.com/blog/software-design/model-view-controller-explained/ 

[Accessed 13 May 2019].  

 

https://docs.google.com/document/d/1CJym0co1az-Y_Enedju0RFA9H6mekR7mSu2ci1mEjcs/edit#heading=h.ihv636
https://docs.microsoft.com/en-us/dotnet/core/#net-core-22
https://docs.microsoft.com/en-us/dotnet/core/#net-core-22
https://docs.microsoft.com/en-us/dotnet/core/#net-core-22
https://www.upwork.com/hiring/development/java-vs-net-determining-right-software-platform-project/
https://www.upwork.com/hiring/development/java-vs-net-determining-right-software-platform-project/
https://medium.com/front-end-weekly/react-vs-angular-vs-vue-js-a-complete-comparison-guide-d16faa185d61
https://medium.com/front-end-weekly/react-vs-angular-vs-vue-js-a-complete-comparison-guide-d16faa185d61
https://medium.com/front-end-weekly/react-vs-angular-vs-vue-js-a-complete-comparison-guide-d16faa185d61
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-3.html
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-3.html
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-3.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-3.html
https://docs.microsoft.com/en-us/dotnet/core/#net-core-22
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-2.2&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-2.2&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-2.2&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-web-api?view=aspnetcore-2.2&tabs=visual-studio
https://wa.works/candidate?s=candidate
https://code.visualstudio.com/
https://www.w3schools.com/js/js_json_intro.asp
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.tomdalling.com/blog/software-design/model-view-controller-explained/
https://www.tomdalling.com/blog/software-design/model-view-controller-explained/


 

29 
 

Google.com (n.d.). Model View Controller Explained.  [online] Available at:  

https://developers.google.com/web/ilt/pwa/introduction-to-push-notifications [Accessed on 

15 Apil 2019].  

 

Npmjs.com  (n.d.). React-awesome-modal  [online] Available at:  

https://www.npmjs.com/package/react-awesome-modal [Accessed on 05 May2019].  

 

 

 

 

 

 

 

 

 

 

 

 

 

https://developers.google.com/web/ilt/pwa/introduction-to-push-notifications
https://developers.google.com/web/ilt/pwa/introduction-to-push-notifications
https://www.npmjs.com/package/react-awesome-modal


 

30 
 

9. APPENDIX 

9.1 APPENDIX A: Risk list 

 

Figure 15: Risk identification and mitigation 



 

31 
 

9.2 APPENDIX B:  Gantt diagram 

 

Figure 17: Gantt diagram 

 

 

 

 

 



 

32 
 

9.3 APPENDIX C: Acronyms 

 

API Application Programming Interface 

HVL Høgskulen på Vestlandet 

(Western Norway University of Applied Sciences) 

 

JS JavaScript 

 MVC  Model-View-Controller 

WA  Wide Assessment 

 UI  User Interface 

 UX User Experience 

 CTO  Chief technical officer 

JSX JavaScript XML 

DOM  Document Object Model 

http  Hyper Text Transfer Protocol 

MVC Model-View-Controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

9.4 APPENDIX D: Vocabulary 

API A set of clearly defined methods to communicate between a 

service and any other software or component 

Backend Commonly the database and web server layers of a web application. 

Where most of the business logic and data are stored. 

Frontend The presentation layer of a web application. What the user actually 

can see and interact with. Also called client. 

User  Company and Candidate 

Database  An organized collection of data, structured with tables holding 

different attributes. 

React  A JavaScript framework for building user interfaces. 

State  An object that is managed within a React component. 

Component  Components are the building blocks of any React app and a typical 

React app will have many of these 

 


