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Abstract: We explore some aspects of models with two and three SU(2) scalar doublets

that lead to mass degeneracies among some of the physical scalars. In Higgs sectors with

two scalar doublets, the exact degeneracy of scalar masses, without an artificial fine-tuning

of the scalar potential parameters, is possible only in the case of the inert doublet model

(IDM), where the scalar potential respects a global U(1) symmetry that is not broken by

the vacuum. In the case of three doublets, we introduce and analyze the replicated inert

doublet model, which possesses two inert doublets of scalars. We then generalize this model

to obtain a scalar potential, first proposed by Ivanov and Silva, with a CP4 symmetry that

guarantees the existence of pairwise degenerate scalar states among two pairs of neutral

scalars and two pairs of charged scalars. Here, CP4 is a generalized CP symmetry with the

property that (CP4)n is the identity operator only for integer n values that are multiples of

4. The form of the CP4-symmetric scalar potential is simplest when expressed in the Higgs

basis, where the neutral scalar field vacuum expectation value resides entirely in one of the

scalar doublet fields. The symmetries of the model permit a term in the scalar potential

with a complex coefficient that cannot be removed by any redefinition of the scalar fields

within the class of Higgs bases (in which case, we say that no real Higgs basis exists). A

striking feature of the CP4-symmetric model is that it preserves CP even in the absence of

a real Higgs basis, as illustrated by the cancellation of the contributions to the CP violating

form factors of the effective ZZZ and ZWW vertices.
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1 Introduction

After the initial discovery of the Higgs boson in 2012 [1, 2], certain anomalies in the Higgs

data (which have since disappeared) motivated the exploration of the possibility that the

125 GeV Higgs signal was comprised of two nearly mass-degenerate scalar states [3–11].

Although the present Higgs data is consistent with the Standard Model [12–14], one cannot

yet rule out the presence of a mass degenerate scalar state at 125 GeV [15].

In this work, we consider the implications of a mass degeneracy among two (or more)

scalar states of an extended Higgs sector. Such a mass degeneracy can be either accidental
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or the result of a symmetry. A trivial example of such a phenomenon arises in any dou-

blet extended Higgs model. All such models possess a mass degenerate state, namely the

charged Higgs boson, H±. Indeed, H+ and H− are mass-degenerate due to the U(1)EM

gauge symmetry. Moreover, the H+ and H− are distinguishable by their electric charge,

which can be experimentally probed using photons. Suppose that this probe were unavail-

able (or equivalently, suppose one could turn off electromagnetism). In this case, would it

be possible for an experiment to reveal the existence of a mass-degenerate scalar? In this

very simple example, one could not physically distinguish (on an event by event basis) be-

tween the two degenerate states that comprise the charged Higgs scalar. Nevertheless, there

would in principle be observables that are sensitive to the number of mass-degenerate scalar

states present. For example, in the CP-conserving two Higgs doublet model, the decay rate

for the decay of a heavy CP-even neutral scalar, H → H+H− (if kinematically allowed)

is proportional to the number of degrees of freedom in the final state. If we express the

charged Higgs field as a linear combination of real scalar fields, H± = (φ1± iφ2)/
√

2, then

the decay rate for H → H+H− is the (incoherent) sum of the decay rates for H → φ1φ1

and φ2φ2. These two rates are identical, and the sum yields a multiplicity factor of 2. This

multiplicity factor provides the experimental signal for mass-degenerate scalars.1

Apart from the trivial mass degeneracy of H±, we would like to explore in this paper

the possibility of exactly mass-degenerate neutral scalars and/or mass-degenerate charged

Higgs pairs in extended Higgs sectors. In each case, the critical questions to ask are: (i)

is the origin of the exact mass degeneracy natural? and (ii) how can the mass degenerate

scalars be distinguished experimentally? Exact mass degeneracies are natural if they are a

consequence of an unbroken symmetry. In particular, accidental mass degeneracies require

an artificial fine-tuning of the scalar potential parameters, and in this sense we shall call

them unnatural (and in our view not especially interesting). If mass-degenerate states are

present, it is of interest to determine how to probe them experimentally. In some cases,

one can identify the presence of mass degenerate states on an event by event basis. In

other cases, the only signal of the mass degeneracy is a measurable multiplicity factor that

can be determined when averaging over initial state degeneracies and summing over final

state degeneracies.2 Our focus in this paper is extended multi-doublet Higgs sectors with

mass-degenerate scalar states.

It is particularly instructive to discuss mass degeneracy in the scalar sector starting

from the so-called Higgs basis. This corresponds to a subset of all possible scalar field

parameterizations in which only one Higgs doublet, denoted by H1, acquires a non-zero

positive vacuum expectation value (vev), while all the other scalar fields of the Higgs basis

(H2, H3, . . . Hn) have zero vev [16–20]. The neutral and charged Goldstone bosons reside

entirely in H1, as this is the only doublet that possesses a non-zero vev, together with a

1Note that the decay rate for Z → H+H− is equal to the decay rate for Z → φ1φ2. In this case, the

off-diagonal nature of the Zφ1φ2 coupling implies that no multiplicity factor is present. Nevertheless, one

can still infer the existence of mass-degenerate states, since the decays Z → φ1φ1, φ2φ2 are forbidden by

Bose statistics.
2For example, a quark of a given flavor is a mass degenerate state due to its three possible colors.

Although the color of a quark cannot be identified experimentally, the presence of the color degree of

freedom can be experimentally verified by the color multiplicity factor (most famously exhibited in the

observed cross section for e+e− annihilation into quark-antiquark pairs).
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neutral Higgs field that, in the absence of mixing with the neutral fields of the other Higgs

doublets, behaves like the Standard Model (SM) Higgs boson. In this sense, this subset of

scalar bases may be viewed as Standard Model aligned bases. That is, the Higgs basis is

actually a family of basis choices, since one is always free to perform an arbitrary U(n− 1)

transformation among H2, H3, . . . Hn while preserving the vev of H1 [21]. There is no loss of

generality in choosing any particular scalar basis as a starting point. In order to identify the

physical neutral scalars one must diagonalize the corresponding scalar squared-mass matrix.

As expected, the end result is independent of the initial choice of basis for the scalar fields.

In section 2, we study under what circumstances there is an exact mass degeneracy

in the familiar two-Higgs-doublet model (2HDM) [22, 23]. In this model there are three

physical neutral fields and one charged field, so we only consider potential mass degenera-

cies among the neutral fields.3 We begin our 2HDM analysis by studying possible mass

degeneracies among the neutral scalar states of the inert doublet model (IDM) [28, 29].

The scalar potential of this model possesses a discrete Z2 symmetry that is unbroken by

the vacuum. In this case, the CP-even neutral component of H1 in the Higgs basis is a

mass eigenstate whose tree-level couplings are precisely those of the SM Higgs boson. The

real and imaginary parts of the neutral component of H2 are odd under the discrete Z2

symmetry, and have opposite signs under CP. We will denote these two neutral states

by H and A, although there is no way to identify which of these two states is CP-even

and which is CP-odd.4 It is possible that h is degenerate in mass with either H or A,

but such mass degeneracies are accidental in nature since neither case can arise due to a

symmetry. Moreover, these mass-degenerate states are physically distinguishable, since h

is even whereas H and A are odd under the Z2 symmetry. In contrast, an exact mass

degeneracy of H and A can arise if the Z2 symmetry of the scalar potential is promoted

to a continuous U(1) symmetry. In our terminology, this mass degeneracy of H and A is

natural. Nevertheless, the two mass-degenerate states can still be physically distinguished

due to the coupling of these states to W±H∓.

One can now extend the above analysis to an arbitrary 2HDM. One can show that

with one exception, all 2HDM mass degeneracies are accidental. The one exceptional case

of a natural mass degeneracy is precisely the case of mH = mA in the IDM. This conclusion

can also be obtained by considering all possible symmetries of the 2HDM scalar potential.

Among these symmetries, we can identify those that can potentially guarantee the mass

degeneracy of scalar states. By examining the consequences of these symmetries, we again

confirm that the only possible neutral scalar mass degeneracy in the 2HDM arises in the

IDM as previously noted.

3One can also examine mass degeneracies between the charged Higgs boson and one of the neutral Higgs

bosons. For example, in a custodial symmetric 2HDM, the CP-odd Higgs scalar is degenerate with the

charged Higgs boson [24–27]. However, custodial symmetry is not an exact symmetry of the full electroweak

Lagrangian. Thus, given a custodial symmetric 2HDM scalar potential, any potential mass degeneracies

between neutral and charged scalars is at best approximate. We do not consider such mass degeneracies

further in this work.
4Equivalently, one can propose two different definitions of CP (called, say, CPa and CPb), such that H

is CPa-even and A is CPa-odd, and vice versa for CPb. Either definition can be consistently used to define

the CP symmetry of the bosonic sector of the IDM.
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In section 3 we consider possible mass-degeneracies in the three Higgs doublet model.

Using the previous 2HDM analysis of mass degeneracies of the IDM, we construct a three

Higgs doublet model (3HDM) generalization of the IDM, which we call the replicated inert

doublet model (RIDM). In this model, two of the three Higgs doublets are inert, and four

mass-degenerate scalar pairs exist (two involving the charged scalar states from the inert

doublets and two involving the neutral scalar states from the inert doublets). We can ex-

plicitly identify the symmetries that are responsible for these mass degeneracies. We then

investigate the possibility of adding new terms to the scalar potential that partially break

these symmetries while preserving the mass degeneracies. In this way, we arrive at a model

first proposed by Ivanov and Silva [30]. The Ivanov and Silva scalar potential possesses a

discrete subgroup of the continuous symmetries that govern the RIDM, that maintains the

mass degeneracies of the RIDM. This discrete subgroup is the generalized CP symmetry,

CP4, which has the property that (CP4)n is the identity operator only for integer n values

that are multiples of 4. The CP4 symmetry is distinguished from the conventional CP sym-

metry (denoted henceforth by CP2), which has the property that (CP2)2 is the identity op-

erator. Some properties of specialized 3HDMs have also been analyzed recently in ref. [31].

One of the most notable properties of the Ivanov-Silva (IS) model is that one can write

down the most general CP4-invariant scalar potential with three Higgs doublets, which has

the feature that at least one of the coefficients of the quartic terms of the scalar potential

must be complex (with a nonvanishing imaginary part). Indeed, as demonstrated explicitly

in appendix A, one cannot redefine the scalar fields within the family of Higgs bases such

that all the coefficients of the scalar potential are real. In this case, we say that no real Higgs

basis exists. This means that CP2 is not a symmetry of the IS scalar potential and vacuum.

In section 4, we identify the existence of a physical observable that is present if no

CP2 symmetry exists that commutes with the CP4 symmetry of the IS model.5 As an

example, we focus on Z decay into four inert neutral scalars (with some details relegated to

appendix B). Nevertheless, the CP4 invariance guarantees that all CP-violating observables

involving the Higgs/gauge boson sector of the theory must be absent. For example, we

provide an instructive analysis in section 5 that shows how the CP4 symmetry of the IS

model with no real Higgs basis ensures the cancellation of contributions to the CP-violating

form factors of the effective ZZZ and ZW+W− vertices up to three-loop order. Finally,

we state our conclusions in section 6.

2 2HDM mass degeneracies

Consider the 2HDM, consisting of two hypercharge-one, doublet scalar fields, Φ1 and Φ2.

The most general gauge-invariant renormalizable scalar potential is

V =m2
11Φ†1Φ1+m2

22Φ†2Φ2−
[
m2

12Φ†1Φ2+h.c.
]
+

1

2
λ1(Φ†1Φ1)2+

1

2
λ2(Φ†2Φ2)2+λ3(Φ†1Φ1)(Φ†2Φ2)

+λ4(Φ†1Φ2)(Φ†2Φ1)+

{
1

2
λ5(Φ†1Φ2)2+

[
λ6(Φ†1Φ1)+λ7(Φ†2Φ2)

]
Φ†1Φ2+h.c.

}
. (2.1)

5However, this leaves open the possibility of the existence of a CP2 symmetry that does not commute

with the CP4 symmetry [32]; in this case, a real Higgs basis exists and a conventional CP symmetry can

be defined.
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We shall assume that the minimum of the scalar potential is electric charge conserving, in

which case only the neutral scalar fields possess a nonzero vacuum expectation value (vev),

〈Φ0
i 〉 = vi/

√
2, where the vi are potentially complex. The Fermi constant, GF fixes the

value of

v2 ≡ |v1|2 + |v2|2 = (
√

2GF )−1 ' (246 GeV)2 . (2.2)

Employing a new scalar field basis consisting of two orthonormal linear combinations

of Φ1 and Φ2 does not modify the physical predictions of the model. One convenient choice

is the Higgs basis, in which the redefined doublet fields (denoted below by H1 and H2) have

the property that H1 has a non-zero vev whereas H2 has a zero vev [16–18]. In particular,

we define new Higgs doublet fields:

H1 =

(
H+

1

H0
1

)
≡ 1

v
(v∗1Φ1 + v∗2Φ2) , H2 =

(
H+

2

H0
2

)
≡ 1

v
(−v2Φ1 + v1Φ2) . (2.3)

It follows that 〈H0
1 〉 = v and 〈H0

2 〉 = 0. The Higgs basis is uniquely defined up to an overall

rephasing, H2 → eiχH2 (which does not alter the fact that 〈H0
2 〉 = 0). In the Higgs basis,

the scalar potential of eq. (2.1) is denoted as [19, 20]:

V = Y1H
†
1H1 + Y2H

†
2H2 +

[
Y3H

†
1H2 + h.c.

]
+

1

2
Z1(H†1H1)2 +

1

2
Z2(H†2H2)2

+ Z3(H†1H1)(H†2H2) + Z4(H†1H2)(H†2H1)

+

{
1

2
Z5(H†1H2)2 +

[
Z6(H†1H1) + Z7(H†2H2)

]
H†1H2 + h.c.

}
, (2.4)

where Y1, Y2 and Z1, . . . , Z4 are real parameters, whereas Y3, Z5, Z6 and Z7 are potentially

complex parameters. Imposing the scalar potential minimum conditions yields,

Y1 = −1

2
Z1v

2 , Y3 = −1

2
Z6v

2 . (2.5)

2.1 Mass degeneracies of the inert doublet model (IDM)

We wish to study the consequences of a 2HDM in which two or three of the neutral

Higgs scalars are degenerate in mass. For simplicity, we shall first specialize to the inert

2HDM (the so-called IDM) [28, 29] in which there is an exact discrete Z2 symmetry that

is preserved by the vacuum, under which all particles of the SM and one of the two Higgs

doublet fields (which contains the observed Higgs boson) are even and the second Higgs

doublet field is odd under the multiplicative discrete symmetry. In particular, the discrete

symmetry of the IDM is manifest in the Higgs basis, where we identify H1 as even and H2

as odd under the Z2 symmetry. It then follows that Y3 = Z6 = Z7 = 0.

The IDM scalar potential is CP-conserving since one can eliminate the phase of Z5 (the

only remaining potentially complex scalar potential parameter) by appropriately rephasing

the Higgs basis field H2. The Higgs basis fields are

H1 =

(
G+

1√
2

[
v + h+ iG0

]) , H2 =

(
H+

1√
2

[
H + iA

]) , (2.6)
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where G± and G0 are the Goldstone bosons that provide the longitudinal degrees of free-

dom of the massive W± and Z0 gauge bosons. The physical mass spectrum of the IDM is

given by,

m2
h = Z1v

2 , m2
H± = Y2 +

1

2
Z3v

2 , (2.7)

m2
A = m2

H± +
1

2
(Z4 − Z5)v2 , m2

H = m2
A + Z5v

2 . (2.8)

For completeness, we exhibit the Higgs couplings of the IDM in the unitary gauge

below (where the Goldstone fields are set to zero). First, the interactions of the Higgs

bosons and the gauge bosons are governed by,6

LV V H =

(
gmWW

+
µ W

µ−+
g

2cW
mZZµZ

µ

)
h, (2.9)

LV V HH =

[
1

4
g2W+

µ W
µ−+

g2

8c2
W

ZµZ
µ

]
(h2+H2+A2)

+

[
1

2
g2W+

µ W
µ−+e2AµA

µ+
g2

c2
W

(
1

2
−s2

W

)2

ZµZ
µ+

2ge

cW

(
1

2
−s2

W

)
AµZ

µ

]
H+H−

+

{(
1

2
egAµW+

µ −
g2s2

W

2cW
ZµW+

µ

)
H−(H+iA)+h.c.

}
, (2.10)

LV HH =
g

2cW
ZµA

↔
∂µH−

1

2
g

[
iW+

µ H
−↔∂ µ(H+iA)+h.c.

]
+

[
ieAµ+

ig

cW

(
1

2
−s2

W

)
Zµ
]
H+↔∂µH−, (2.11)

where sW ≡ sin θW , cW ≡ cos θW . The trilinear and quadrilinear Higgs self-interactions

are governed by

L3h = −1

2
v
[
Z1h

3 + (Z3 + Z4)h(H2 +A2) + Z5h(H2 −A2)
]
− vZ3hH

+H− , (2.12)

L4h = −1

8

[
Z1h

4 + Z2(H2 +A2)2 + 2(Z3 + Z4)h2(H2 +A2) + 2Z5h
2(H2 −A2)

]
− 1

2
H+H−

[
Z2(H2 +A2 +H+H−) + Z3h

2
]
. (2.13)

The tree-level couplings of h to SM particles obtained above are precisely those of the

SM Higgs boson, corresponding to the exact Higgs alignment limit [33–41] (as expected in

light of Z6 = 0). Moreover, an examination of the above couplings implies that h is CP-

even (to be identified with the SM Higgs boson) and H and A have opposite CP-quantum

numbers (one is odd and the other is even) based on the ZAH coupling.7 Note that the

CP is not uniquely defined by the IDM interactions, since two candidate definitions of

CP exist (called CPa and CPb in footnote 4), where H is CPa-even and A is CPa-odd,

6The photon field Aµ should not be confused with the scalar field A.
7Under the rephasing, H2 → iH2, we note that Z5 → −Z5, H → −A and A→ H. One can check that

the masses of H and A and their couplings are invariant under this rephasing.

– 6 –
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and vice versa for CPb. Either definition of CP can be used consistently in exploring the

phenomenology of the IDM.

Finally, we note that under the Z2 symmetry of the IDM, the quarks and leptons can be

chosen to be even. Consequently, the tree-level couplings of h to fermion pairs are identical

to those of the SM Higgs boson, whereas H, A and H± do not couple to the SM fermions.

We now examine the possibility of mass degeneracies in the IDM. First, consider

the case of mh = mH or mh = mA. In this case, it is possible to physically distinguish

between h and its mass-degenerate partner due to their opposite Z2 quantum numbers. For

example, since all SM bosons and fermions are even under the Z2 symmetry, it follows that

the gluon-gluon (via a top quark loop), WW and ZZ fusion processes can only produce h

whereas Drell-Yan production (via virtual s-channel Z exchange) can only produce H in

association with A. Hence, despite the mass degeneracy, the two mass-degenerate scalars

are physically distinguishable. Note that the mass degeneracy of h and its scalar partner is

not radiatively stable. For example, if h and H are mass degenerate states, then the one-

loop contributions to the hh two-point function (such as ZZ and WW intermediate states)

differ from the corresponding contributions to the HH two-point function (e.g. the AZ

intermediate state). Indeed, the tree-level condition for the mass degeneracy of h and H,

Z1v
2 = Y2 +

1

2
Z345v

2, (2.14)

where Z345 ≡ Z3 +Z4 +Z5, is unnatural; i.e., eq. (2.14) is not the result of some symmetry.8

Second, consider the case of mH = mA, which corresponds to Z5 = 0. In this case, the

IDM scalar potential possesses a continuous U(1) symmetry, which is not spontaneously

broken by the vacuum.9 It is this symmetry that is responsible for the mass degenerate

states H and A. One can now define eigenstates of U(1) charge,

φ± =
1√
2

[
H ± iA

]
. (2.15)

The relevant interaction terms of φ± are

Lint =

[
1

2
g2W+

µ W
µ−+

g2

4c2
W

ZµZ
µ

]
φ+φ−+

ig

2cW
Zµφ−

↔
∂µφ

+− g√
2

[
iW+

µ H
−↔∂ µφ++h.c.

]
+
eg√

2

(
AµW+

µ H
−φ++AµW−µ H

+φ−
)
− g2s2

W√
2cW

(
ZµW+

µ H
−φ++ZµW−µ H

+φ−
)

−v(Z3+Z4)hφ+φ−− 1

2

[
Z2(φ+φ−)2+(Z3+Z4)h2φ+φ−

]
−Z2H

+H−φ+φ− . (2.16)

Although φ± are mass degenerate states, they can be distinguished. For example, Drell-

Yan production via a virtual s-channel W+ exchange can produce H+ in association with

φ−, whereas virtual s-channel W− exchange can produce H− in association with φ+. Thus,

8The scenario where mh = mH = mA is a special case of the h–H mass degeneracy. In the triply

mass-degenerate scenario, h is also distinguished from φ± by its U(1) charge, which is zero. For example,

there is no coupling of ZW±H∓h in contrast to the ZW±H∓φ± couplings exhibited in eq. (2.16).
9This case has also been noted in ref. [41].
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the sign of the charged Higgs boson reveals the U(1)-charge of the produced neutral scalar.

The origin of this correlation lies in the fact that, by construction, H+ and φ+ both reside

in H2, whereas H− and φ− both reside in H†2 .

2.2 2HDM mass degeneracies beyond the IDM

Although the IDM is a rather special case among all possible 2HDMs, the conclusions

concerning mass degeneracies are robust. Allowing for the most general 2HDM scalar

potential, the Higgs sector is CP-violating if the relative phases among Z5, Z6 and Z7

cannot be removed by rephasing the Higgs basis field H2. It is convenient to introduce

three invariant quantities [18, 20, 42], whose imaginary parts are given by,10

Im J1 = Im(Z∗6Z7) , Im J2 = Im(Z∗5Z
2
6 ) , Im J3 = Im

[
Z∗5 (Z6 + Z7)2

]
. (2.17)

The Higgs sector of the 2HDM is CP-violating unless Im J1 = Im J2 = Im J3 = 0. The

origin of the CP-violation can either be explicit or spontaneous [43, 44].11

Note that the neutral scalar squared-mass matrix does not involve the Higgs basis

parameter Z7. In particular, Z7 only enters in the Higgs boson cubic and quartic self-

couplings. Hence, if Im J2 = Im(Z∗5Z
2
6 ) = 0, then the neutral Higgs mass eigenstates

behave like eigenstates of CP in their tree-level interactions with the gauge bosons and

fermions (independently of the values of Im J1 and Im J3). Moreover, the neutral scalar

squared-mass matrix breaks up into a block diagonal form consisting of a 2×2 block (whose

diagonalization yields the two CP-even neutral scalars) and a 1× 1 block (which yields the

CP-odd neutral scalar).

Consider the possibility of mass degeneracies among the neutral scalars of the most

general 2HDM. We now recall a remarkable tree-level relation of the CP-violating

2HDM [42, 48, 49],

Im J2 = Im(Z∗5Z
2
6 ) =

2s13c
2
13s12c12

v6
(m2

2 −m2
1)(m2

3 −m2
1)(m2

3 −m2
2) , (2.18)

where the mi (i = 1, 2, 3) are the masses of the three neutral Higgs bosons of the 2HDM,

s12 ≡ sin θ12, c12 ≡ cos θ12, etc., and θ12 and θ13 are invariant mixing angles that are

associated with the diagonalization of the neutral Higgs squared-mass matrix in the Higgs

basis.12 In ref. [50], the three CP-odd invariants Im Ji have been expressed in terms of the

neutral scalar masses and the couplings of the neutral Higgs mass eigenstates to charged

pairs, ei (HiW
+W−) and qi (HiH

+H−). In particular,13

Im J2 =
2e1e2e3

v9
(m2

1 −m2
2)(m2

2 −m2
3)(m2

3 −m2
1). (2.19)

10Basis-invariant expressions for the Ji are given in ref. [20].
11To test for explicit CP-violation, one must employ invariant quantities that are independent of the

scalar field vacuum expectation values [45–47].
12Details on the definition of the mixing angles and their relations to the Higgs basis scalar potential

parameters can be found in ref. [49]. However, we will not need any of these details for the present argument.
13In ref. [42], the invariant defined in eq. (2.19) is called J1.
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If any two of the three neutral Higgs bosons are mass-degenerate, then either eq. (2.18)

or (2.19) implies that Im J2 = 0, and the corresponding neutral scalar mass-eigenstates

will behave as states of definite CP in their interactions with gauge bosons and fermions.

Nevertheless, if Im J1 6= 0 and/or Im J3 6= 0 (which would imply that ImZ7 6= 0 in

the Higgs basis where Z5 and Z6 are simultaneously real), then CP-violating Higgs self-

couplings must be present. Moreover, radiative corrections will generate a non-zero Im J2

and yield neutral Higgs states of indefinite CP. That is, if CP-violation in the scalar

sector is present, the tree-level relation Im J2 = 0 can only be realized via an artificial fine-

tuning of the parameters. Nevertheless, one can consider the implications of a tree-level

mass degeneracy among the neutral Higgs scalars of the 2HDM. The above discussion

illustrates the power of using scalar basis invariant conditions to analyze the CP properties

of multi-Higgs models [45, 46, 51–53].

In light of eq. (2.17), if a tree-level mass degeneracy among the neutral Higgs scalars

is present, then it is possible to rephase the Higgs basis field H2 such that Z5 and Z6 are

simultaneously real. Thus, in the analysis that follows, we shall analyze the most general

2HDM scalar potential assuming that Z5 and Z6 are real parameters. The squared-masses

of the charged Higgs boson, H±, and the CP-odd Higgs boson, A are given by,14

m2
H± = Y2 +

1

2
Z3v

2 , m2
A = m2

H± +
1

2
(Z4 − Z5)v2 . (2.20)

The squared-masses of the CP-even Higgs bosons, h and H are the eigenvalues of the

2× 2 matrix,

M2
H =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
. (2.21)

That is,

m2
H,h =

1

2

{
m2
A + (Z1 + Z5)v2 ±

√
[m2

A − (Z1 − Z5)v2]2 + 4Z2
6v

4

}
. (2.22)

Mass degenerate states arise if one of the following two quantities is zero,

Z5(m2
A − Z1v

2) + Z2
6v

2 = 0 or
[
m2
A − (Z1 − Z5)v2

]2
+ 4Z2

6v
4 = 0 , (2.23)

where m2
A is given by eq. (2.20).

The case of mh = mH arises when the second condition given in eq. (2.23) is satisfied.

It then follows that m2
A = (Z1 − Z5)v2 and Z6 = 0, and the latter then yields the IDM

mass spectrum. As in the case of the IDM, the mass degeneracy of h and H requires a

fine tuning of the parameters shown in eq. (2.14). In principle, it is possible that Z7 6= 0,

but in this case, Z6 = 0 is not a natural condition since the Z2 symmetry of the IDM is

not present. Nevertheless, even if one accepts the two fine tuned conditions needed in this

scenario, the arguments presented above eq. (2.14) still apply. Namely, Z6 = 0 corresponds

14In the notation employed in eqs. (2.20)–(2.25), h and H [A] refer to the neutral scalars that behave as

CP-even [odd] mass eigenstates in their tree-level interactions with the gauge bosons and fermions. Indeed,

CP-violating interactions are present in eqs. (2.24) and (2.25) if ImZ7 6= 0.
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to the exact alignment limit (at tree-level), in which case the tree-level interactions of the

Higgs bosons and gauge bosons are still the same as those of the IDM [cf. eqs. (2.9)–(2.11)],

whereas the tree-level trilinear and quadrilinear Higgs self-interactions given in eqs. (2.12)

and (2.13) are modified by the addition of the following terms,

δL3h = −1

4
v
[
Z7(H + iA) + Z∗7 (H − iA)

]
(HH +AA+ 2H+H−) , (2.24)

δL4h = −1

4

[
Z7(H + iA) + Z∗7 (H − iA)

]
(HH +AA+ 2H+H−)h , (2.25)

after rephasing the Higgs basis field H2 such that Z5 is real.

The cases mh = mA or mH = mA arise when the first condition given in eq. (2.23)

is satisfied. This condition also requires a fine-tuning of the parameters. Moreover, ap-

proximate Higgs alignment (as suggested by the LHC Higgs data) is not achieved unless

m2
A � Z1v

2 or |Z6| � 1. Nevertheless, the physical distinction of the mass degenerate

states is due to the CP quantum numbers of the neutral scalar states (which are pre-

served in the tree-level Higgs interactions with gauge bosons and with fermions). One can

therefore distinguish between the corresponding production mechanisms of the degenerate

scalars that are mediated by gauge boson fusion or Drell-Yan production via s-channel

gauge boson exchange.

Finally, we consider the triply mass-degenerate case of mh = mH = mA. In this

case, both conditions given in eq. (2.23) must be satisfied, which yields Z5 = Z6 = 0

and m2
A = Z1v

2. This leaves Z7 as the only potentially complex parameter of the scalar

potential in the Higgs basis. Thus, one is free to rephase the Higgs basis field H2 such

that Z7 is real, and we conclude that the Higgs scalar potential and vacuum must be CP-

conserving. However, as long as Z7 6= 0, the triply mass-degenerate case is unnatural, since

the Z2 symmetry of the IDM is not present.

2.3 Natural 2HDM mass degeneracies: a symmetry based approach

In sections 2.1 and 2.2, we derived the conditions that yield mass degeneracies among the

neutral scalars of the 2HDM by brute force. Namely, we obtained explicit expressions

for the neutral scalar masses and then derived the corresponding relations among Higgs

basis parameters for which mass degeneracies were present. We then checked whether any

of these relations were a consequence of a symmetry, and if yes we concluded that the

corresponding mass degeneracy was natural. In this section, we will obtain the same result

by considering all possible symmetries of the 2HDM scalar potential. Since the complete

list of such symmetries is known [54–59], we can be sure that our catalog of natural mass

degeneracies of the 2HDM is complete.

We shall make use of the classification of symmetries presented in ref. [56], which

identifies three possible Higgs family symmetries, Z2, U(1) and SO(3), and three classes

of generalized CP-symmetries, denoted by GCP1, GCP2 and GCP3, respectively, as sum-

marized in table 1.15 In the GCP transformation laws of table 1, we have introduced the

15In ref. [56] the three classes of generalized CP transformations are denoted by CP1, CP2 and CP3

respectively. This nomenclature for the generalized CP-symmetries is awkward, in light of the notation

that will be employed in section 3. To avoid confusion, we have appended the letter G (for “general”) in

denoting the three classes of generalized CP transformations of the 2HDM.
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symmetry transformation law

Z2 Φ1 → Φ1 Φ2 → −Φ2

U(1) Φ1 → Φ1 Φ2 → e2iθΦ2

SO(3) Φa → UabΦb U ∈ U(2)/U(1)Y (for a, b = 1, 2)

GCP1 Φ1 → ΦF
1 Φ2 → ΦF

2

GCP2 Φ1 → ΦF
2 Φ2 → −ΦF

1

GCP3 Φ1 → ΦF
1 cos θ + ΦF

2 sin θ Φ2 → −ΦF
1 sin θ + ΦF

2 cos θ (for 0 < θ < 1
2π)

Π2 Φ1 → Φ2 Φ2 → Φ1

Table 1. Possible symmetries of the 2HDM scalar potential that are respected by the SU(2)×U(1)Y
gauge kinetic terms of the scalar fields. The corresponding symmetry transformation laws are given

in a basis where the symmetry is manifest. Note that a scalar potential that is invariant under the

mirror discrete symmetry, Π2, is also invariant under the Z2 in another scalar field basis [20].

conjugation symbol F, which when applied to an SU(2) multiplet of scalar fields is defined

by ΦF ≡
[
Φ†
]
T , where the dagger refers both to hermitian conjugation of the quantum

field operator when acting on the Hilbert space, and to complex conjugate transpose when

acting on an SU(2) multiplet of fields.

We shall not consider the seven additional accidental symmetries of the 2HDM scalar

potential identified in refs. [58, 59], that utilized mixed Higgs family and generalized CP

transformations that leave the SU(2) gauge kinetic terms of the scalar fields invariant. An

example of such a symmetry is the well known custodial symmetry that is respected by

the 2HDM scalar potential when mH± = mA [24–27]. However, this class of symmetries is

violated by the U(1)Y gauge kinetic term of the scalar potential (as well as by the Yukawa

couplings that are responsible for mass differences between up and down-type fermions).

Hence, any exact mass degeneracies arising from these seven accidental symmetries will be

spoiled, in the absence of an artificial fine tuning of the Higgs scalar potential parameters.16

Possible natural mass degeneracy of the 2HDM must be the consequence of one of the

symmetries listed in table 1. Starting from a generic scalar potential given by eq. (2.1),

if the scalar potential respects one of the symmetries listed in table 1, then a scalar basis

is picked out in which the symmetry is manifest. In this basis, the coefficients of the

scalar potential are constrained according to table 2.17 It is straightforward to check that

the possible discrete symmetries of the 2HDM, namely Z2, GCP1, GCP2 (or equivalently,

Z2 ⊕ Π2), do not yield scalar potentials that lead to scalar mass degeneracies. Thus, we

henceforth focus on U(1), SO(3) and GCP3 (and the related U(1)⊕Π2 symmetry).

16In cases of accidental symmetries, i.e. symmetries of the scalar potential that are not respected by the

full theory, the would-be mass degeneracies are only approximate, with calculable mass splittings. The pos-

sibility of such approximate mass degeneracies, although technically natural, is not the subject of this paper.
17It can be shown that for each of the symmetries listed in table 2, a scalar field basis exists in which all

scalar potential parameters and the neutral scalar field vacuum expectation values are simultaneously real,

in which case CP (as defined by GCP1 in table 1) is conserved by the scalar sector Lagrangian and vacuum.
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symmetry m2
11 m2

22 m2
12 λ1 λ2 λ3 λ4 Reλ5 Imλ5 λ6 λ7

Z2 - - 0 - - - - - - 0 0

U(1) - - 0 - - - - 0 0 0 0

SO(3) - m2
11 0 - λ1 - λ1 − λ3 0 0 0 0

GCP1 - - real - - - - - 0 real real

GCP2 - m2
11 0 - λ1 - - - - - −λ6

GCP3 - m2
11 0 - λ1 - - λ1 − λ3 − λ4 0 0 0

Π2 - m2
11 real - λ1 - - - 0 - λ∗6

Z2 ⊕Π2 - m2
11 0 - λ1 - - - 0 0 0

U(1)⊕Π2 - m2
11 0 - λ1 - - 0 0 0 0

Table 2. Impact of the symmetries defined in table 1 on the coefficients of the 2HDM scalar

potential [cf. eq. (2.1)] in a basis where the symmetry is manifest. A short dash indicates the

absence of a constraint. A scalar potential that is simultaneously invariant under Z2 and Π2 is

also invariant under GCP2 in another scalar field basis [20, 56]. Likewise, a scalar potential that

is simultaneously invariant under U(1) and Π2 is also invariant under GCP3 in another scalar

field basis [56]. The symbol ⊕ is being used above to indicate that two symmetries are enforced

simultaneously within the same scalar field basis.

Given a 2HDM scalar potential with a Peccei-Quinn [U(1)PQ] symmetry [60] (or equiv-

alently the U(1) transformation specified in table 118) that is spontaneously broken by the

vacuum, the scalar sector will contain a massless CP-odd (Goldstone) scalar [61, 62]. In

such cases, no mass degeneracy is present (without further constraints on the scalar poten-

tial parameters). However, if the U(1) symmetry is manifestly realized in the Higgs basis,

then the U(1) symmetry is unbroken by the vacuum, resulting in a mass degeneracy be-

tween the two neutral scalars residing in the Higgs basis field H2. Indeed, this has already

been shown in section 2.1 [see text above eq. (2.15)], in the case of the mass degeneracy,

mH = mA, of the IDM with Z5 = 0.

In the case of a 2HDM scalar potential with an SO(3) symmetry, the form of the

scalar potential is invariant with respect to all possible changes of the scalar basis.

Hence, it follows that the scalar potential parameters in the Higgs basis satisfy Y1 = Y2,

Z1 = Z2 = Z3 + Z4 and Y3 = Z5 = Z6 = Z7 = 0. Using eqs. (2.5), (2.7) and (2.8), it follows

that mH = mA = 0. The presence of two massless (Goldstone) scalars is a consequence of

the spontaneous breaking of the SO(3) global symmetry by the vacuum. This scalar mass

degeneracy is a special case of the mass degeneracy in the case of the IDM with Z5 = 0,

in which additional constraints among the Higgs basis parameters result in the pair of

massless scalar states.

Finally, let us consider the case of a 2HDM scalar potential with a GCP3 symmetry.

Suppose that the GCP3 symmetry is manifestly realized in a basis where

〈Φ0
1〉 =

v1√
2
, 〈Φ0

2〉 =
v2√

2
eiξ , (2.26)

18In ref. [60], a U(1)PQ transformation of the 2HDM scalar fields is given by Φ1 → e−iθΦ1 and Φ2 → eiθΦ2.

The U(1) transformation specified in table 1 corresponds to combining the U(1)PQ transformation with a

hypercharge U(1)Y transformation, Φi → eiθΦi (for i = 1, 2).
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where v1 and v2 are positive. We define tan β ≡ v2/v1 (so that 0 < β < 1
2π). Then, in light

of the constraints on the GCP3 scalar potential parameters given in table 2, the scalar

potential minimum conditions yield (e.g., see eqs. (3)–(5) of ref. [63]),

m2
11 = −1

2
v2
[
λ1 − 2λ5 sin2 β sin2 ξ

]
, (2.27)

m2
22 = −1

2
v2
[
λ1 − 2λ5 cos2 β sin2 ξ

]
, (2.28)

m2
12 sin ξ = v2λ5 sinβ cosβ sin ξ cos ξ . (2.29)

We can assume that λ5 6= 0, since otherwise we would be dealing with an SO(3)-symmetric

scalar potential. Setting m2
11 = m2

22 and m2
12 = 0 then yields two conditions,

sin2 ξ cos 2β = 0 , sin ξ cos ξ sin 2β = 0 . (2.30)

Hence, there are two classes of vacua,

A. sin ξ = 0 and β arbitrary (0 < β < 1
2π) ,

B. cos ξ = 0 and cos 2β = 0.

We now can calculate the parameters of the GCP3 scalar potential in the Higgs basis

(e.g., see eqs. (11)–(20) of ref. [63]) in the two Cases A and B defined above,

A. Y1 =Y2, Y3 =Z6 =Z7 = 0, Z1 =Z2 =λ1, Z3+Z4 =λ1−λ5, Z5 =λ5 ,

B. Y1 =Y2, Y3 =Z6 =Z7 = 0, Z1 =Z2 =λ1−λ5, Z3+Z4 =λ1+λ5, Z5 = 0 .

In particular, Z1 = Z2 = Z3 +Z4 +Z5 in Case A, and Z1 = Z2 6= Z3 +Z4 (and Z5 = 0)

in Case B. We can now make use of eqs. (2.7) and (2.8) [along with eq. (2.5) to eliminate

Y2 by virtue of Y1 = Y2] to compute the neutral scalar mass spectrum in the two cases,19

A. m2
h = Z1v

2, m2
H = 0, m2

A = (Z3 + Z4 − Z1)v2, m2
H± = 1

2(Z3 − Z1)v2 ,

B. m2
h = Z1v

2, m2
H = m2

A = 1
2(Z3 + Z4 − Z1)v2, m2

H± = 1
2(Z3 − Z1)v2 .

Note that Cases A and B correspond to degenerate vacua, since in both cases the value of

the scalar potential (in the Higgs basis) at its minimum is Vmin = −1
8Z1v

4 = −1
8v

2m2
h.

In light of table 2, we can identify case A as corresponding to realizing a GCP3 sym-

metry in the Higgs basis,20 and case B corresponding to realizing a U(1)⊕Π2 symmetry in

the Higgs basis.21 In particular, case A exhibits a massless Goldstone boson corresponding

to the spontaneous breaking of GCP3 by the vacuum. In contrast, in case B, the GCP3

symmetry possesses a continuous U(1) subgroup, which is unbroken by the vacuum, that

19Note that the positivity of the squared masses are consistent with the conditions on the 2HDM scalar

potential parameters first obtained in ref. [54].
20This means that we can relax the restrictions of β 6= 0, 1

2
π in defining Case A. Note that for β = 1

2
π

one can simply interchange the definitions of Φ1 and Φ2 to recover the Higgs basis result (corresponding

to β = 0).
21This result is not surprising given that U(1)⊕Π2 is equivalent to GCP3 in another scalar field basis.
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protects the mass degeneracy, mH = mA. Indeed, this case is again a special case of the

IDM with Z5 = 0, where the additional constraints, Y1 = Y2 and Z1 = Z2 are imposed.

As a check, it is instructive to evaluate the consequences of a 2HDM scalar potential

with a U(1)⊕Π2 symmetry that is manifestly realized in the Φ1–Φ2 basis. In the following,

we employ primed coefficients, λ′i to distinguish this case from the one above where the

GCP3 symmetry is manifestly realized in the Φ1–Φ2 basis. Using the results of table 2,

the scalar potential minimum conditions yield,

m2
11 = −1

2
v2
[
λ′1 cos2 β + (λ′3 + λ′4) sin2 β

]
, (2.31)

m2
22 = −1

2
v2
[
λ′1 sin2 β + (λ′3 + λ′4) cos2 β

]
, (2.32)

under the assumption that 0 < β < 1
2π. We can assume that λ′1 6= λ′3 +λ′4, since otherwise

we would be dealing with an SO(3)-symmetric scalar potential. Setting m2
11 = m2

22 then

yields cos 2β = 0, with ξ arbitrary. Without loss of generality, one can set ξ = 0, since the

scalar potential is unchanged under a rephasing of Φ2. As before, we can now compute the

scalar potential parameters in the Higgs basis,

Y1 = Y2, Y3 = Z6 = Z7 = 0, Z1 = Z2 =
1

2
(λ′1 + λ′3 + λ′4),

Z3 + Z4 = λ′1, Z5 =
1

2
(λ′1 − λ′3 − λ′4) . (2.33)

In particular, note that Z1 = Z2 = Z3 +Z4−Z5. Using eqs. (2.5), (2.7) and (2.8), we obtain

m2
h = Z1v

2 , m2
H = (Z3 + Z4 − Z1)v2 , m2

A = 0 , m2
H± =

1

2
(Z3 − Z1)v2 , (2.34)

which is the same mass spectrum as Case A of the GCP3-symmetric scalar potential with

H and A interchanged. This result can be understood by noting that eq. (2.33) takes the

standard form of the GCP3-symmetric scalar potential in the Higgs basis after rephasing

the Higgs basis field H2 → iH2, which interchanges H and A and transforms Z5 → −Z5.

Finally, the case of β = 0 or β = 1
2π must be treated separately and corresponds to a

manifest realization of the U(1)⊕Π2 symmetry in the Higgs basis. This vacuum is degener-

ate with the one considered above, since in both cases, Vmin = −1
8Z1v

4 = −1
8v

2m2
h. Indeed,

this latter case corresponds to Case B of the GCP3-symmetric scalar potential treated

above, where the neutral scalar mass spectrum exhibits a mass degeneracy, mH = mA.

In summary, massless scalar (Goldstone boson) states A, H or (A, H) exist in the

2HDM with a scalar potential that exhibits, respectively, a U(1), GCP3 or SO(3) symmetry

manifestly realized in a generic Φ1–Φ2 basis, which agrees with the results of table 2

of ref. [59]. Nevertheless, in the special cases where U(1) or U(1)⊕Π2 are manifestly

realized in the Higgs basis (the latter corresponding to the Case B solution of the GCP3-

symmetric scalar potential), the corresponding U(1) subgroups of theses symmetries are

not spontaneously broken by the vacuum, and the neutral scalar mass spectrum exhibits

a mass degeneracy, mH = mA. In the case of the SO(3)-symmetric scalar potential, this

mass degeneracy is realized by a pair of massless Goldstone boson states.

– 14 –



J
H
E
P
0
1
(
2
0
1
9
)
0
4
2

Thus, we conclude that mass-degenerate neutral scalars can arise naturally in the

2HDM only in the case of the IDM with Z5 = 0. All other cases of mass-degenerate scalars

require an artificial fine-tuning of the scalar potential parameters, in agreement with the

analysis of section 2.2. Furthermore, this conclusion is unaffected by the interactions of

the scalars with the vector bosons. Indeed, the Higgs boson-gauge boson interactions,

Lint, given by eq. (2.16) show that the global U(1) symmetry responsible for the mass

degeneracy of H and A is an exact symmetry of Lint. Finally, as previously noted, the

Higgs basis field H2 of the IDM is odd whereas all other scalar, fermion and vector fields are

even under the discrete Z2 symmetry. This can be achieved by employing Type-I Yukawa

couplings [64] where fermions couple only to the Higgs basis field H1. In this case, the

global U(1) symmetry of the IDM scalar potential with Z5 = 0 will also be respected by

the Yukawa interactions. However, a GCP3 [or equivalently U(1)⊕Π2] or SO(3) symmetry

of the IDM scalar potential will be explicitly broken by the Yukawa interactions. Hence,

the U(1)-symmetric IDM is the only 2HDM for which an exact mass degeneracy of H and

A can be preserved.

3 3HDM mass degeneracies and the Ivanov Silva model

In extended Higgs sectors with more than two scalar doublets, it is now possible to have

mass-degenerate charged Higgs pairs as well as mass-degenerate neutral scalars [65]. In this

section, we explore new phenomena associated with mass degenerate scalars that arises for

the first time in the three-Higgs doublet model (3HDM).

As a warmup exercise, we return to the IDM and add a second inert doublet and

consider possible mass degeneracies among the scalar fields of the two inert doublets. We

then perturb the resulting model to obtain a version of the 3HDM that is equivalent to a

model first introduced by Ivanov and Silva [30].

3.1 The replicated inert doublet model (RIDM)

The IDM introduced in section 2.1 can be generalized by introducing additional inert scalar

doublets. In this section, we consider a 3HDM that consists of two inert hypercharge-one

electroweak doublets, in which the inert doublets contain mass-degenerate scalar states.

The resulting models shall be called the replicated inert doublet model (RIDM). As in

the case of the IDM, we work in the Higgs basis in which the first Higgs doublet field H1

contains the SM Higgs boson. The RIDM consists of H1, with 〈H0
1 〉 = v/

√
2, and two inert

doublet fields H2 and H3, with 〈H2〉 = 〈H3〉 = 0, and a scalar potential given by,

VRIDM = Y1H
†
1H1 + Y2

(
H†2H2 +H†3H3

)
+

1

2
Z1(H†1H1)2 +

1

2
Z2(H†2H2 +H†3H3)2

+ Z3(H†1H1)
(
H†2H2 +H†3H3

)
+ Z4

[
(H†1H2)(H†2H1) + (H†1H3)(H†3H1)

]
+

1

2
Z5

{
(H†1H2)2 + (H†2H1)2 + (H†1H3)2 + (H†3H1)2

}
. (3.1)

It is always possible to rephase the fields H2 and H3 such that all the scalar potential

parameters in eq. (3.1) are real. Hence, without loss of generality, we have chosen Z5
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real and non-negative in eq. (3.1), which implies that the bosonic sector of the RIDM is

CP-conserving.

The charged and neutral components of the Higgs basis doublet fields of the RIDM

are also mass eigenstate fields,

H1 =

(
G+

1√
2

[
v + hSM + iG0

]) , H2 =

(
H+

1√
2

[
H + iA

]) , H3 =

(
h+

1√
2

[
h+ ia

]) , (3.2)

with a minor change of notation from the IDM. The corresponding squared masses of the

neutral and charged scalars are given by,

m2
H± = m2

h± = Y2 +
1

2
Z3v

2 , m2
H = m2

h = Y2 +
1

2
(Z3 + Z4 + Z5)v2 ,

m2
A = m2

a = Y2 +
1

2
(Z3 + Z4 − Z5)v2 . (3.3)

By assumption, Z5 ≥ 0, in which case mH = mh ≥ mA = ma.
22 Thus, the RIDM possesses

four mass-degenerate scalar pairs: (H±, h±), (H,h) and (A, a). These mass degeneracies

can be understood as a consequence of a continuous global Higgs flavor symmetry (where

Higgs flavor corresponds to the multiplicity of Higgs doublets).

In order to explicitly exhibit the relevant symmetries, it is convenient to focus on

the neutral scalar states of the doublet fields H2 and H3, denoted henceforth by the

complex fields,

H0 ≡ H + iA√
2

, h0 ≡ h+ ia√
2

, (3.4)

respectively. Let us first focus on the kinetic energy terms and the terms in eq. (3.1) in the

absence of the term proportional to Z5. Then, one can check that the neutral complex scalar

fields H0 and h0 appear only in the combination H0 †H0 + h0 †h0 = 1
2(H2 + h2 +A2 + a2).

Thus, excluding Z5, the scalar Lagrangian possesses an O(4) global symmetry, that is

responsible for four mass-degenerate neutral scalar states.

It is instructive to see how this symmetry arises when employing the complex basis

ϕi = {H0, h0} (for i = 1, 2). Noting that ϕ† iϕi = H0 †H0 + h0 †h0 (the sum over the

repeated index i is implicit), it is clear that the scalar Lagrangian (in the absence of Z5)

is invariant under a U(2) global symmetry, ϕi → Ui
jϕj , with U ∈ U(2). However, the

corresponding symmetry group is in fact larger than U(2). Working in the complex basis,

it is straightforward to verify that the quantity ϕ† iϕi is invariant with respect to

ϕi → Ui
jϕj + (V ∗)ijϕ

† j , (3.5)

where U and V are complex 2 × 2 matrices (which are not in general unitary), provided

that the following two conditions are satisfied:

(i) (U †U + V †V )i
j = δi

j , (3.6)

(ii) V TU is an antisymmetric matrix . (3.7)

22In particular, note that if Z5 = 0 then there is an enhanced mass degeneracy in which mH = mh =

mA = ma.
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One can now check that eq. (3.5) corresponds to an O(4) symmetry transformation.

More explicitly, the 4 × 4 matrix,

Q =

(
Re(U + V ) − Im(U + V )

Im(U − V ) Re(U − V )

)
(3.8)

is an orthogonal matrix if and only if U and V satisfy eqs. (3.6) and (3.7). Indeed, one

can check that in light of eqs. (3.6) and (3.7), the global symmetry specified by eq. (3.5) is

governed by 6 continuous parameters as expected for an O(4) transformation. Two special

cases of eq. (3.5) are noteworthy. First, if V = 0, then U is unitary and we recover the U(2)

global symmetry mentioned previously. Second, if U = 0 then eq. (3.5) corresponds to a

generalized CP transformation [cf. eq. (A.1)].23 Both symmetries are present in the scalar

Lagrangian if the Z5 coupling is neglected, and either one would be sufficient to guarantee

the mass degeneracy of H, h, A and a.

In the absence of the Z5 coupling, the full O(4) global symmetry is respected by the

pure scalar Lagrangian. However, when we include the coupling of the scalar doublets

to the gauge bosons, one must replace the ordinary derivative, ∂µ, with the SU(2)×U(1)

gauge covariant derivative, Dµ, in the scalar kinetic energy term. The resulting coupling

of the scalars to the vector bosons partially breaks the O(4) symmetry. Employing the

complex basis, it is easy to check that the symmetry transformation specified by eq. (3.5)

is unbroken if and only if either U = 0 or V = 0, namely the two special cases just

highlighted above.24 That is, the kinetic energy term (Dµϕ)i †(Dµϕ)i is invariant under

a U(2) symmetry (corresponding to V = 0) and under the generalized CP symmetry

(corresponding to U = 0). Mathematically, the unbroken global symmetry that remains is

the semi-direct product U(2)oZ2.25

We now examine the consequence of including the term of eq. (3.1) proportional to Z5.

Focusing again on the neutral complex scalar fields H0 and h0 [cf. eq. (3.4)], we see that a

new combination of fields arises, ϕiϕi + h.c. = (H0)2 + (H0 †)2 + (h0)2 + (h0 †)2. This term

is invariant with respect to eq. (3.5) provided that the conditions specified in eqs. (3.6)

and (3.7) are replaced by

(i′) (UTU + V TV )i
j = δi

j , (3.9)

(ii′) V †U is an antihermitian matrix . (3.10)

The conditions specified by eqs. (3.9) and (3.10) are compatible with those of eqs. (3.6)

and (3.7) if U and V are real matrices.

Consequently, Q specified in eq. (3.8) is now a block diagonal orthogonal 4× 4 matrix,

Q =

(
U + V 0

0 U − V

)
, (3.11)

23The unified treatment of Higgs family transformations and generalized CP transformations has been

advocated previously in ref. [58]. A related discussion emphasizing the promotion of the U(2) basis trans-

formation to an enlarged group of O(4) transformations appears in ref. [66].
24This result is not surprising given that eq. (3.5) transforms the scalar field into a linear combination of

two fields of opposite hypercharge unless either U = 0 or V = 0.
25This symmetry is a generalization of the U(1) symmetry (and the associated CP symmetry) of the IDM

with Z5 = 0 treated in section 2.1, and provides the motivation for our choice of the RIDM scalar potential

given in eq. (3.1).
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where (U±V )T (U±V ) = 12×2 as a consequence of eqs. (3.7) and (3.9). That is, the scalar

Lagrangian is invariant under a global O(2)×O(2) symmetry, which explains the presence

of the mass-degenerate scalars (H,h) and (A, a), respectively. The breaking of the four-

fold mass degeneracy to the two mass-degenerate pairs is due to the scalar potential term

proportional to Z5, as is evident from eq. (3.3). Finally, after promoting the derivative to

the gauge covariant derivative in the scalar kinetic energy term, the remaining symmetry

is O(2)oZ2.

For completeness, we note that the degeneracy of the charged Higgs scalars (H±, h±)

is governed by the full O(4) symmetry, which is broken down to U(2)oZ2 after promoting

the derivatives of the scalar kinetic energy term to gauge covariant derivatives. This is

easily seen by noting that in the unitary gauge (in which the Goldstone fields do not

explicitly appear), the physical charged scalar fields do not appear in the scalar potential

term proportional to Z5. Finally, if Z4 = Z5 = 0, we can make use of the vertical SU(2)

global symmetry (which when gauged corresponds to the SU(2) electroweak gauge group)

to conclude that all eight charged and neutral inert scalars are mass-degenerate.

Next, we examine all the bosonic couplings of the RIDM in the unitary gauge (where

the Goldstone fields are set to zero). The Higgs boson interactions with the gauge bosons

and the Higgs boson self couplings of the RIDM are listed below.

LV V H =

(
gmWW

+
µ W

µ−+
g

2cW
mZZµZ

µ

)
hSM , (3.12)

LV V HH =

[
1

4
g2W+

µ W
µ−+

g2

8c2
W

ZµZ
µ

]
(h2

SM+H2+h2+A2+a2)

+

[
1

2
g2W+

µ W
µ−+e2AµA

µ+
g2

c2
W

(
1

2
−s2

W

)2

ZµZ
µ

+
2ge

cW

(
1

2
−s2

W

)
AµZ

µ

]
(H+H−+h+h−)

+

{(
1

2
egAµW+

µ −
g2s2

W

2cW
ZµW+

µ

)[
H−(H+iA)+h−(h+ia)

]
+h.c.

}
, (3.13)

LV HH =
g

2cW
Zµ(A

↔
∂µH+a

↔
∂µh)− 1

2
g

{
iW+

µ

[
H−
↔
∂ µ(H+iA)+h−

↔
∂ µ(h+ia)

]
+h.c.

}
+

[
ieAµ+

ig

cW

(
1

2
−s2

W

)
Zµ
]

(H+↔∂µH−+h+↔∂µh−), (3.14)

L3h =−1

2
v
[
Z1h

3
SM+(Z3+Z4)hSM(H2+A2+h2+a2)+Z5hSM(H2−A2+h2−a2)

]
−vZ3hSM(H+H−+h+h−) , (3.15)

L4h =−1

8

[
Z1h

4
SM+Z2

(
H2+A2+h2+a2

)2
+2(Z3+Z4)h2

SM(H2+h2+A2+a2)

+2Z5h
2
SM(H2+h2−A2−a2)

]
− 1

2
Z3h

2
SM(H+H−+h+h−)

− 1

2
Z2(H+H−+h+h−)(H2+A2+h2+a2+H+H−+h+h−) . (3.16)
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In the RIDM, there is no experimental measurement that can physically distinguish the

degenerate scalars, (H±, h±), (H,h) and (A, a). However, a multiplicity factor will appear

after summing over final mass-degenerate states, e.g., Z → HA, ha doubles the rate into

a pair of neutral scalars.

3.2 An alternative basis choice for the RIDM

So far, our discussion has employed the {H1, H2, H3} basis of doublet scalar fields. This

is one choice among a family of Higgs bases defined such that 〈H0
1 〉 = v/

√
2 and 〈H0

2 〉 =

〈H0
3 〉 = 0. Indeed, the Higgs basis is unique only up to an arbitrary U(2) transformation

of the doublet fields H2 and H3. In the following, we shall denote the {H1, H2, H3} basis

as the H23-basis, since the scalar potential of eq. (3.1) provides a simple 3HDM extension

of the inert 2HDM.

It will prove useful to consider another choice of scalar field basis that is related to the

H23-basis as follows,26

R ≡ 1√
2

(
H2 + iH3

)
=

(
R†

1√
2

(
P + iQ†

)) ,

S ≡ 1√
2

(
H2 − iH3

)
=

(
S†

1√
2

(
P † + iQ

)) . (3.17)

This defines the {H1,R,S} basis of doublet scalar field, henceforth denoted as the RS-

basis. Note that since the real neutral fields (H,h) and (A, a) are mass-degenerate pairs,

respectively, one can combine the mass-degenerate real fields into complex fields,

P ≡ H + ih√
2

, Q ≡ A− ia√
2

, (3.18)

where MP ≥MQ (in our convention where Z5≥0).27 The corresponding conjugate fields are

P † ≡ H − ih√
2

, Q† ≡ A+ ia√
2

. (3.19)

Likewise, since H± and h± are mass-degenerate charged fields, one is free to define,

R =
H− − ih−√

2
, S =

H− + ih−√
2

, (3.20)

R† =
H+ + ih+

√
2

, S† =
H+ − ih+

√
2

, (3.21)

where R and S are negatively charged mass-degenerate scalars and the corresponding con-

jugate fields, R† and S†, are positively charged mass-degenerate scalars.

In the RS-basis, the scalar potential is given by

VRIDM−RS = Y1H
†
1H1 + Y2

(
R†R+ S†S

)
+

1

2
Z1(H†1H1)2 +

1

2
Z̄2(R†R+ S†S)2

+ Z3(H†1H1)(R†R+ S†S) + Z4

[
(H†1R)(R†H1) + (H†1S)(S†H1)

]
+ Z̄ ′5

[
(H†1R)(H†1S) + (R†H1)(S†H1)

]
, (3.22)

26Further details are provided in appendix A.5.
27The relative minus sign in the definition of the imaginary parts of P and Q has been introduced for

later convenience.
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where Z̄2 = Z2 and Z̄ ′5 = Z5.28 One can then rewrite the RIDM couplings given in

eqs. (3.13)–(3.16) in terms of the neutral scalar fields P and Q and the charged scalar

fields R and S (and the corresponding conjugated fields),

LV V HH =

[
1

4
g2W+

µ W
µ−+

g2

8c2
W

ZµZ
µ

](
h2

SM+2|P |2+2|Q|2
)

+

[
1

2
g2W+

µ W
µ−+e2AµA

µ+
g2

c2
W

(
1

2
−s2

W

)2

ZµZ
µ

+
2ge

cW

(
1

2
−s2

W

)
AµZ

µ

]
(R†R+S†S)

+

{(
1

2
egAµW+

µ −
g2s2

W

2cW
ZµW+

µ

)[
R(P+iQ†)+S(P †+iQ)

]
+h.c.

}
, (3.23)

LV HH =
g

2cW
Zµ(Q

↔
∂µP+Q†

↔
∂µP

†)+

[
ieAµ+

ig

cW

(
1

2
−s2

W

)
Zµ
]

(R†
↔
∂µR+S†

↔
∂µS)

− 1

2
g

{
iW+

µ

[
R
↔
∂ µ(P+iQ†)+S

↔
∂ µ(P †+iQ)

]
+h.c.

}
(3.24)

L3h =−1

2
vZ1h

3
SM−v

[
(Z3+Z4)hSM(|P |2+|Q|2)+Z̄ ′5hSM(|P |2−|Q|2)

]
−vZ3hSM(R†R+S†S) , (3.25)

L4h =−1

8
Z1h

4
SM−

1

2
Z̄2

(
|P |2+|Q|2

)(
|P |2+|Q|2+2R†R+2S†S

)
− 1

2
(Z3+Z4)h2

SM(|P |2+|Q|2)− 1

2
Z̄ ′5h

2
SM(|P |2−|Q|2)

− 1

2

[
Z̄2(R†R+S†S)+Z3h

2
SM

]
(R†R+S†S) . (3.26)

3.3 Mass degeneracies beyond the RIDM

In this section, we add additional terms to the RIDM scalar potential while preserving the

mass degeneracies of the model. Naively, one can add to the RIDM scalar potential any

gauge invariant quartic term involving the doublet fields H2 and H3 without upsetting the

mass degeneracies of eq. (3.3). However, the resulting tree-level mass degeneracies will be

unnatural unless they are a consequence of a symmetry.

The simplest possible modification of the RIDM is to remove the (H†2H2)(H†3H3) term

entirely from the scalar potential. That is, we can define a RIDM′ scalar potential as,

VRIDM′ = VRIDM − Z2(H†2H2)(H†3H3) . (3.27)

Note that the term in VRIDM′ that is proportional to Z2 is now given by 1
2

[
(H†2H2)2 +

(H†3H3)2
]
. Indeed, one can argue that eq. (3.27) provides the simplest 3HDM generalization

of the IDM. In the case of the RIDM′, the tree-level mass degeneracies are no longer a

consequence of a continuous symmetry, which is now explicitly broken by the presence of

the explicit term in eq. (3.27) that is proportional to (H†2H2)(H†3H3). Indeed, this term is

invariant only under a discrete subgroup of O(2)×O(2) [which is the symmetry group of the

28The reason for introducing the notation Z̄2 and Z̄′5 in eq. (3.22) is clarified in section 3.3.
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RIDM scalar Lagrangian as discussed in section 3.1]. In the notation of eqs. (3.5) and (3.11),

consider the following two discrete subgroups of the O(2)×O(2) symmetry group,

(1) U = g , V = 0 , (3.28)

(2) U = 0 , V = g , (3.29)

where g is a 2 × 2 matrix that acts on the Higgs basis fields H2 and H3 regarded as a

two dimensional vector. Then, the term (H†2H2)(H†3H3) is invariant under the two discrete

subgroups above if g ∈ D4
∼= {1,−1, R,−R,S,−S,Z,−Z}, where 1 is the 2 × 2 identity

matrix and

R =

(
1 0

0 1

)
, S =

(
1 0

0 −1

)
, Z =

(
0 −1

1 0

)
. (3.30)

We recognize D4 as the dihedral group of order eight, which is the symmetry group of

the square [67]. Both discrete subgroups [eqs. (3.28) and (3.29)] are isomorphic to D4.

Following the discussion below eq. (3.11), we conclude that the RIDM′ scalar Lagrangian

is invariant under a discrete D4 × D4 symmetry, which is responsible for the presence of

the mass-degenerate scalars (H,h) and (A, a), respectively. Finally, after promoting the

derivative to the gauge covariant derivative in the scalar kinetic energy term, the remaining

symmetry is D4 o Z2.

A comprehensive treatment of natural scalar mass degeneracies in the 3HDM would

require a complete classification of 3HDM scalar potential symmetries, along the lines of

the 2HDM analysis given in section 2.3.29 In this paper, we shall ask a less ambitious

question: can one break the discrete symmetry identified above further while still natu-

rally maintaining the mass-degenerate states of the RIDM. The answer turns out to be

affirmative. This investigation led us to a particular 3HDM originally introduced by Ivanov

and Silva [30] for other reasons that will be reviewed below.

The Ivanov-Silva (IS) model was constructed to exhibit a number of curious prop-

erties [30, 66], which appear to rely on the existence of degenerate states in the scalar

spectrum. In particular, the IS scalar potential does not respect the conventional CP sym-

metry, Hi → HF
i , where the latter satisfies (CP)2 = 1, but instead respects a generalized

CP symmetry of the form Hi → XijH
F
j for some unitary matrix X. In particular, the

generalized CP symmetry of the IS scalar potential, denoted by CP4, is of order 4, signi-

fying that (CP4)4 = 1 and (CP4)2 6= 1. Moreover, no Higgs basis of scalar fields exists

in which all the parameters of the IS scalar potential are simultaneously real. As noted

in section 2.3, this property is in stark contrast with the 2HDM in which the existence

of any generalized CP symmetry implies that the 2HDM scalar potential automatically

respects the conventional CP symmetry, i.e. a basis of scalar fields exists such that the

corresponding 2HDM scalar potential parameters are real [56, 57].

In appendix A, we demonstrate that starting from the IS scalar potential, one can

perform a basis change in order to obtain a more convenient form of the scalar potential.

29A complete catalog of all possible finite symmetry groups of the 3HDM is known (as well as some

additional partial results); however the complete classification of all possible symmetries of the 3HDM

remains an open problem [68, 69].
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By making an appropriate U(2) transformation to define the Higgs basis fields, H2 and H3,

we find that the IS scalar potential takes on the following form in the H23-basis,

VIS = VRIDM + Z ′3(H†2H2)(H†3H3) + Z ′4(H†2H3)(H†3H2)

+
[
Z8(H†2H3)2 + Z9(H†2H3)(H†2H2 −H†3H3) + h.c.

]
, (3.31)

where VRIDM is given in eq. (3.1). In general, Z8 and Z9 are complex parameters.30

We shall continue to use eq. (3.2) to express the Higgs basis fields in terms of mass-

eigenstate fields. Since none of the extra terms in eq. (3.31) involve the Higgs basis field

H1, the tree-level mass relations of eq. (3.3) are not modified. We now argue that the mass-

degeneracies of (H±, h±), (H,h) and (A, a) are stable due to the presence of a symmetry.

The O(2)×O(2) symmetry of the RIDM (prior to gauging the scalar kinetic energy terms)

that is responsible for the mass degeneracies among the neutral Higgs mass eigenstates is

broken by the new terms beyond VRIDM contained in eq. (3.31). Indeed, after the extra

terms are included, no unbroken continuous subgroup of O(2)×O(2) remains.

In the notation of eqs. (3.5) and (3.11), consider the following two discrete subgroups

of the O(2)×O(2) symmetry group,

(1) U = Z , V = 0 , (3.32)

(2) U = 0 , V = Z , (3.33)

where Z is given by eq. (3.30). The 2×2 matrix Z acts on the Higgs basis fields H2 and H3.

Both discrete subgroups [eqs. (3.32) and (3.33)] are isomorphic to Z4 =
{
1,−1, Z,−Z

}
.

Note that Z2 = −1, where 1 is the 2× 2 identity matrix.31

Consider first the discrete symmetry defined in eq. (3.32). The fields H2 and H3 are

odd under −1, which simply identifies the two inert doublets. The elements Z (and −Z)

act non-trivially on the inert doublets. However, eq. (3.31) is invariant with respect to(
H2

H3

)
→
(

0 −1

1 0

)(
H2

H3

)
, (3.34)

if and only if Z8 and Z9 are both real. In the model of IS where there is an unremovable

complex phase in the scalar potential, only the subgroup Z2 = {1,−1} of Z4 survives.

In particular, the residual symmetry in this case is not sufficient to explain the mass

degeneracies of the IS model.

The discrete symmetry defined in eq. (3.33) is a generalized CP symmetry. In partic-

ular, the IS scalar potential is invariant under

Hi → XijH
F
j , where X =

1 0 0

0 0 −1

0 1 0

, (3.35)

30As shown in appendix A.3, one can perform an SO(2) rotation to redefine the fields H2 and H3 to

remove the complex phase from either Z8 or Z9.
31In this case, gauging the scalar kinetic energy terms does not reduce the symmetry group further.
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This symmetry, which is also isomorphic to Z4, is the CP4 symmetry advertised above.

Moreover, this discrete symmetry is sufficient to explain the mass degeneracies of the IS

model (in the case of an unremovable complex phase in the IS scalar potential).

It is instructive to consider the Higgs couplings of the IS model. Only the quartic

Higgs couplings of the RIDM are modified as follows,

δL4h =−1

4
(Z ′3+Z ′4)

[
(H2+A2)(h2+a2)+4H+H−h+h−

]
− 1

2
Z ′3
[
(H2+A2)h+h−+(h2+a2)H+H−

]
− 1

2
Z ′4
[(
Hh+Aa+i(Ha−hA)

)
H+h−+

(
Hh+Aa−i(Ha−hA)

)
h+H−

]
− 1

4
Z8

[
Hh+Aa+i(Ha−hA)+2h+H−

]2− 1

4
Z∗8
[
Hh+Aa−i(Ha−hA)+2H+h−

]2
− 1

4
Z9

(
H2+A2−h2−a2+2H+H−−2h+h−

)[
Hh+Aa+i(Ha−hA)+2h+H−

]
− 1

4
Z∗9
(
H2+A2−h2−a2+2H+H−−2h+h−

)[
Hh+Aa−i(Ha−hA)+2H+h−

]
.

(3.36)

It is convenient to re-express the neutral scalar fields appearing in eq. (3.36) in terms of

the complex neutral fields P andQ and their conjugates introduced in eqs. (3.18) and (3.19),

and the charged fields R and S and their conjugates defined in eqs. (3.20) and (3.21). Note

that the fields P , Q and the corresponding conjugate fields P † and Q† are each eigenstates

of CP4.32 In particular, under a CP4 transformation, P → iP , Q→ iQ, P † → −iP †, and

Q† → −iQ†. Likewise, under a CP4 transformation, R → −iS†, R† → iS, S → iR† and

S† → −iR. Note that these transformation properties are consistent with the requirement

that (CP4)4 = 1.

We can evaluate the four-scalar interaction Lagrangian directly in the RS-basis. We

first must rewrite eq. (3.31) in the RS-basis,

VIS−RS = VRIDM−RS + Z̄ ′3(R†R)(S†S) + Z̄ ′4(R†S)(S†R)

+
[
Z̄8(R†S)2 + Z̄9(R†S)(R†R− S†S) + h.c.

]
, (3.37)

where VRIDM−RS is given by eq. (3.22). The relations between the unbarred and barred

parameters are derived in appendix A.5,

Z̄2 = Z2 +
1

2
(Z ′3 + Z ′4 − 2 ReZ8) , Z̄ ′3 = −Z ′4 + 2 ReZ8 , (3.38)

Z̄ ′4 =
1

2
(Z ′4 − Z ′3 + 2 ReZ8) , Z̄ ′5 = Z5 , (3.39)

Z̄8 = −1

4
(Z ′3 + Z ′4 + 2 ReZ8) + iReZ9 , Z̄9 = ImZ9 + i ImZ8 . (3.40)

32This means that each of the four states, P , Q, P † and Q†, are CP4-self conjugate (they are their

own antiparticles). Moreover, P and the corresponding conjugate state P † are mass-degenerate, but are

otherwise unrelated fields (and similarly for Q and Q†).
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The quartic interactions given in eq. (3.26) are then modified by employing the new defi-

nition of Z̄2 given in eq. (3.38) and adding the following terms,

δL4h =−1

4
Z̄ ′3
[
|P |2+|Q|2+2|R|2−i(PQ−P †Q†)

][
|P |2+|Q|2+2|S|2+i(PQ−P †Q†)

]
− 1

4
Z̄ ′4
(
P 2+Q†2+2R†S

)(
P †2+Q2+2S†R

)
− 1

4
Z̄8(P †2+Q2+2S†R)2− 1

4
Z̄∗8 (P 2+Q†2+2R†S)2

+
1

2

[
i(PQ−P †Q†)−R†R+S†S

][
Z̄9(P †2+Q2+2S†R)+Z̄∗9 (P 2+Q†2+2R†S)

]
.

(3.41)

We now consider the possible effects of the Yukawa interactions. It is remarkable that it

is possible to construct a CP4-invariant Yukawa interaction Lagrangian where the fermions

transform nontrivially under a CP4 transformation [66, 70, 71]. In such a model, the mass

degeneracies identified above that are a consequence of the CP4 symmetry are of course

maintained. Alternatively, if the fermions couple exclusively to the Higgs basis field H1 (as

in the case of the IDM), then the Yukawa interactions are invariant with respect to the Z2

discrete symmetry defined below eq. (3.34),33 under which the inert doublet fields, H2 and

H3, are odd and all other fields of the model (H1, gauge bosons and fermions) are even.

However, the CP4 symmetry is no longer a symmetry of the complete model. That is, if we

define the CP4 transformation to be the conventional CP transformation when acting on

the fermions and gauge fields, then the CP4 symmetry of the model will be violated by the

presence of the unremovable CP-violating phase in the CKM mixing matrix. Nevertheless,

it is not clear whether this violation is sufficient to remove the scalar mass degeneracies

of the IS model that were protected by the (now accidental) CP4 symmetry of the scalar

potential. This is an open question that we hope to revisit in a future work.

Finally, it is instructive to note that the scalar mass degeneracies of the CP4-invariant

3HDM is just the simplest example of a larger class of multi-Higgs models with degenerate

scalars that are a consequence of a generalized CP symmetry. In ref. [72], Ivanov and Laletin

demonstrate how to construct N Higgs doublet models with a generalized CP symmetry of

order 2k (denoted by CP2k) with positive integer k. Nontrivial cases arise only for 2k = 2p

with integer p ≥ 1. The simplest nontrivial models of this type (CP8 and CP16) require at

least N = 5 Higgs doublets. Such models necessarily have mass-degenerate neutral scalars

and mass-degenerate charged Higgs pairs. A further exploration of models of this type is

beyond the scope of this work.

4 An observable distinction between CP2 and CP4

The distinction between the IS scalar potential in the H23-basis with Z8 and Z9 real

or complex is physical.34 To demonstrate this assertion, we focus on the neutral scalar

33Note that this Z2 symmetry is isomorphic to (CP4)2, which remains an exact symmetry of the model.
34In making this assertion, we have implicitly assumed that Z5 6= 0. The case of Z5 = 0, which is special

due to the enhanced mass degeneracy noted in footnote 22, will be treated at the end of this section.
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self-interactions in δL4h that are linear in the fields P or Q (or their complex conjugates),

δL4h 3
1

2
ImZ8

[
(PQ− P †Q†)(P 2 −Q2 − P † 2 +Q† 2)

]
+

1

2
i ImZ9

[
(PQ− P †Q†)(P 2 +Q2 + P † 2 +Q† 2)

]
, (4.1)

where we have used eq. (3.40) to re-express Z̄9 [which appears in eq. (3.41)] in terms of the

H23-basis parameters, ImZ8 and ImZ9. Self-interaction terms of this type are absent if Z8

and Z9 are both real. Hence, the presence of these terms signals a CP4-symmetric IS scalar

potential that does not respect the conventional CP symmetry, Hi → HF
i . Here we provide

two specific examples. First, eq. (3.24) shows the existence of a ZPQ interaction, which

would permit the decay Z → PQ,P ∗Q∗, if kinematically available. Since MQ ≤MP , let us

further suppose that MQ <
1
4mZ < MP . In this case, the P and P ∗ would be virtual. One

possible decay of the virtual P or P ∗ makes use of the existence of the four-scalar interaction

given in eq. (4.1). If this interaction is present, the decay Z → QQQQ∗, Q∗Q∗Q∗Q is

allowed and provides unambiguous evidence that either Z8 and/or Z9 possesses a nonzero

imaginary part. A second example makes use of the W+H−P , W+h−P , W+H−Q, and

W+h−Q interactions of eq. (3.24). In this case, we can consider the decay of a charged

W into a charged Higgs boson and P (or P ∗). We can now make use of eq. (4.1) to decay

the virtual P or P ∗ into QQQ, QQQ∗, QQ∗Q∗, Q∗Q∗Q∗. Note that in each of the two

cases above, there are multiple four-scalar final states involving mass-degenerate scalars.

In computing the experimentally observed rates, one must compute the squared amplitude

for each of the possible final states, and then multiply the final result by a multiplicity

factor that counts the number of possible final states.

In contrast, suppose that eq. (3.34) were a symmetry of the IS scalar potential. In

this case, the corresponding transformation properties of the scalar fields are, P → iP ,

Q → −iQ, P † → −iP †, Q† → iQ†, H± → −h±, and h± → H±. One would then

immediately conclude that Z8 = Z∗8 and Z9 = Z∗9 , as expected. In particular, eq. (4.1) is

not invariant under eq. (3.34), and thus the four scalar decay modes listed above would

necessarily be absent.

As an exercise, we have evaluated the decay rate for Z → QQQQ∗, QQ∗Q∗Q∗, in

an approximation where MQ = 0 and MP � mZ . The computation is presented in

appendix B. The end result is

Γ(Z → QQQQ∗, QQ∗Q∗Q∗)

Γ(Z → νν̄)
=

(ImZ8)2 + (ImZ9)2

3 · 5 · 28 π4

(
mZ

MP

)4

. (4.2)

This result implies that the quantity (ImZ8)2 + (ImZ9)2 must be a physical quantity, and

hence invariant with respect to scalar basis changes that are consistent with the form of

the IS scalar potential given by eq. (3.31) in the H23-basis.

However, the family of Higgs bases is larger than the set of scalar field bases in which

the IS scalar potential has the form of eq. (3.31), as discussed in appendix A.3. In special

cases, it is possible that there exists a real Higgs basis even if (ImZ8)2 + (ImZ9)2 6= 0.

In such cases, one can transform the fields (H2, H3) → (H̄2, H̄3), where H̄i → H̄i
F

is a
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symmetry of the Lagrangian; i.e., the model exhibits a CP2 symmetry.35 In the IS model,

the existence of a nonzero decay rate for Z → QQQQ∗, QQ∗Q∗Q∗ implies that no CP2

symmetry that commutes with the CP4 symmetry is present.36 However, this leaves open

the possibility of a CP2 symmetry that does not commute with CP4. In appendix A.3.2, we

provide two examples in which (ImZ8)2 + (ImZ9)2 6= 0 in the H23 basis, but nevertheless

a real Higgs basis exists: (i) ImZ8 6= 0 and Z9 = 0 and (ii) ImZ8 = 0, ReZ9 = 0 and

ImZ9 6= 0. In both these examples, the CP2 symmetry that exists does not commute with

the CP4 symmetry, whereas the decay rate for Z → QQQQ∗, QQ∗Q∗Q∗ is nonzero. In light

of the results of appendix A.4, this is a generic feature of a noncommuting CP2 symmetry

in the IS model. Equivalently, the nonexistence or existence of the decay Z → QQQQ∗,

QQ∗Q∗Q∗ is a physical distinction between the 3HDM with a CP4 symmetric IS scalar

potential that either preserves or does not preserve a commuting CP2 symmetry.

Finally, we return to the special case of Z5 = 0 (cf. footnote 34). In appendix A.4,

we have demonstrated explicitly that if Z5 6= 0, then there exists a ratio of two basis-

invariant quantities, which when evaluated in the H23-basis yields (ImZ8)2 + (ImZ9)2.

Moreover, if Z5 = 0, then it is possible to change the basis of scalar fields of the IS model,

in which the form of the IS potential is still given by eq. (3.31) but ImZ8 = ImZ9 = 0.

This result appears to be in contradiction to the result of eq. (4.2). The resolution of

this apparent paradox can be obtained by noting that if Z5 = 0, then MP = MQ. Since

eq. (4.2) was derived under the assumption that MQ = 0 and MP � mZ , eq. (4.2) no

longer applies if Z5 = 0. But, more importantly, if Z5 = 0 (so that MP = MQ), then

the decay Z → QQQQ∗, QQ∗Q∗Q∗ is no longer an experimental observable, since one

must also include four scalar decays involving P and P ∗. The possible four-body final

states involve all possible combinations of P and Q scalars, such that either one or three

of the final state scalars are complex-conjugated. Some of the vertices that contribute

to these final states are present even if ImZ8 = ImZ9 = 0. For example, there is a

four-scalar |P |2|Q|2 interaction that contributes to Z → QQPP ∗. One must compute the

squared amplitude for each possible final state and then add the amplitudes incoherently

to obtain the final experimentally observable decay rate. This decay rate will involve

a complicated combination of the IS potential coefficients, which will correspond to the

appropriate invariant quantity in the case of Z5 = 0. Thus, the possibility of finding a new

basis for the IS potential in which ImZ8 = ImZ9 = 0 when Z5 = 0 is no longer paradoxical.

5 The ZZZ and ZWW vertices

In the CP-violating 2HDM, CP violation may manifest itself at loop level in the effective

ZZZ and ZWW vertices. In that model, one finds that CP-violating form factors can

be described in terms of the three invariants introduced in eq. (2.17) [73]. In section 4,

we noted the existence of a physical observable that could distinguish between the CP4-

35The notation CP2 derives from the property, (CP2)2 = 1.
36We say that the CP2 symmetry commutes with CP4 if the application of these two symmetry trans-

formations on the scalar fields does not depend on the order in which the transformations are applied. For

further details see appendix B of ref. [32].
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conserving IS models in which a CP2 symmetry that commutes with CP4 is either present

or absent. However, from a spacetime viewpoint, this physical observable was CP-even.

This raises the question as to whether any observable can exist in a CP4-invariant theory

that is CP2-odd. The answer to this question is no. For example, there is no way to

distinguish between CP2 and CP4 on the level of the form factors themselves. Thus, if the

theory respects at least one generalized CP symmetry, then all CP-violating form factors

must be absent.

It is instructive to check the cancellation of contributions to the CP-violating form

factors of the effective ZZZ and ZWW vertices in a CP4-conserving, CP2-violating theory

(neglecting any effects from the Higgs-fermion Yukawa interactions). The general ZZZ

vertex function (with all Z bosons off-shell) can be expressed in terms of 14 different

Lorentz structures [74–78], all preserving parity. Some of these vanish when one or more Z

are on-shell. Let us characterize them by momenta and Lorentz indices (p1, µ), (p2, α) and

(p3, β), and let Z1 be off-shell while Z2 and Z3 are on-shell. Furthermore, we assume that

Z1 couples to a pair of leptons such as e+e−, and terms proportional to the lepton mass

will be neglected. Denoting ` ≡ p2 − p3 ≡ 2p2 − p1, the ZZZ vertex structure reduces to

the form [76]

− iΓαβµZZZ =
p2

1 −M2
Z

M2
Z

[
fZ4 (pα1 g

µβ + pβ1g
µα) + fZ5 ε

µαβρ`ρ

]
. (5.1)

The dimensionless form factor fZ4 violates CP while fZ5 conserves CP.

For example, consider the case of the 2HDM. At the one-loop level, CP violating

effects yield a non-zero contribution to the ZZZ vertex function, f4, that is proportional

to Im J2 of eq. (2.19) [73]. Thus, only one of the three invariants of eq. (2.17) contributes.

Indeed, in light of eq. (2.18), it follows that a non-zero Im J2 requires all three neutral Higgs

bosons to be non-degenerate in mass, and the Z boson couples to all three non-diagonal

neutral Higgs pairs.

In order to understand how the IS model conserves CP (while not respecting CP2), it is

instructive to see how the CP-violating effects cancel at loop level in the effective ZZZ (and

ZWW ) vertices. In order to do this we have employed the software package FeynArts [79]

and written a FeynArts model file containing all the bosonic couplings of the IS-model. We

have automated the construction of the diagrams contributing to the effective ZZZ-vertex

and evaluated their amplitude (the loop integrals are kept unevaluated in symbolic form).

We are only interested in those contributions to each diagram that contain ImZ8 and/or

ImZ9, since such contributions could be a signal of CP violation.

At the one-loop level there are no diagrams containing ImZ8 and/or ImZ9. Such

contributions can only arise from a four-point scalar vertex. This means that this four-point

vertex must be “internal”; i.e., none of the external Z-fields can be part of this vertex. None

of the ZZZ one-loop topologies can accommodate this. Diagrams containing ImZ8 and/or

ImZ9 first appear at two-loop order. But even if there are individual diagrams with this

type of contribution, the sum of the contributions is zero when we add the amplitudes for

all the individual diagrams within each topology. A pair of cancelling diagrams are shown

in figure 1. The same happens for diagrams at three-loop order. Repeating this exercise
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Zµ

P Q

Q P

H−

Zα

Zβ

Zµ

P Q

Q P

H−

Zα

Zβ

Figure 1. A typical pair of Feynman diagrams for Z → ZZ at two-loop order.

for the ZWW vertex we find the same result. Hence, there are no contributions at one-,

two- or three-loop order containing ImZ8 and/or ImZ9 after adding the amplitudes for all

the individual diagrams within each topology. The arguments presented at the beginning

of this section imply that this cancellation persists to all orders in perturbation theory.

6 Conclusions

In this work we discussed the interplay between symmetries and natural mass degeneracies

in the scalar sector. Some cases of scalar mass degeneracy are accidental, i.e. they are not

the result of an exact symmetry and therefore can be implemented only by an artificial fine

tuning of the scalar potential parameters. The Higgs basis [16–18], in which the neutral

scalar field vacuum expectation value resides entirely in one of the scalar doublet fields,

is especially suitable for our study. We began by examining the two Higgs doublet model

(2HDM), with particular attention given to the special case of the inert doublet model

(IDM), which possesses an unbroken Z2 symmetry under which one “inert” scalar doublet

is odd, and all other fields of the model are even. In all cases in which the 2HDM exhibited

scalar mass degeneracies (whether natural or accidental), the mass degenerate states can be

experimentally distinguished from each other. Moreover, with one exception, we found that

all 2HDM mass degeneracies are accidental. The one exceptional case of 2HDM scalars

that can be naturally degenerate in mass are the two neutral scalar states of the inert

doublet of the IDM. This result was also confirmed by examining all possible symmetries

of the 2HDM scalar potential and analyzing which of these symmetries can guarantee the

presence of mass degenerate scalar states.

For models with three Higgs doublets, the analysis of the general case becomes signif-

icantly more elaborate. We focused first on a 3HDM generalization of the IDM with mass

degenerate scalars, which we denoted as replicated IDM (RIDM), where the two doublets

H2 and H3 are invariant under two separate unbroken Z2 symmetries and the model is CP

conserving. In this framework H2 and H3 are composed of mass eigenstate fields, that do

not mix with the SM like Higgs boson, forming four mass degenerate pairs. Furthermore,

each mass degenerate pair picks one field from each one of these doublets. We also identi-
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fied the symmetry obeyed by the neutral mass eigenstates themselves, which is responsible

for the twofold mass degeneracies.

In the absence of Z5 (which appears in the RIDM scalar potential) there are four mass

degenerate neutral scalars and the symmetry of the scalar potential consists of an O(4)

global symmetry. Introducing in the potential the term proportional to Z5, partially breaks

the O(4) symmetry down to an O(2)×O(2) symmetry and the fourfold mass degeneracy

is lifted, leaving a pairwise mass degeneracy. The mass degeneracy of the two charged

physical fields is governed by the full O(4) symmetry. In the case of Z4 = Z5 = 0 there is

further enhancement of the symmetry and all eight physical scalars contained in H2 and

H3 are mass degenerate.

It is instructive to examine the Higgs boson interactions with the gauge bosons as well

as the Higgs self couplings of the RIDM, since in the RIDM the components of H2 and

H3 are already states with well defined masses. We are then led to the conclusion that

there is no experimental measurement that can physically distinguish the mass degenerate

scalars of the RIDM on an event by event basis. Nevertheless, multiplicity factors due to

the production of different scalar states of the same mass do appear in physical observables

and signal the existence of the mass degeneracy.

Starting with the RIDM, one can consider perturbations in which the mass degeneracies

persist and yet remain natural. By reducing the RIDM symmetries responsible for the mass

degeneracies to the smallest discrete subgroup that maintains the mass degenerate scalar

states, we are led to a model that is equivalent to a particular 3HDM that was originally

proposed by Ivanov and Silva (IS) [30]. The IS model exhibits very special properties. The

original form of the IS scalar potential is given in appendix A.1 and is the most general

potential respecting the symmetry given by eq. (A.2). We have rewritten the IS potential

in the notation of eq. (3.31) where the symmetry is now given by eq. (3.35). In particular,

the scalar mass terms (and the corresponding mass degeneracies) are the same as in the

RIDM; only the quartic couplings of the physical scalar states differ.

One must apply the symmetry given by eq. (3.35) [denoted by CP4] four times in

order to obtain the identity transformation. This is to be contrasted with the conventional

CP symmetry transformation (denoted by CP2) whose square is the identity. On the

other hand, if we apply the CP4 transformation while at the same time transforming

the space coordinates from x into −x, the end result can be identified as a generalized

CP transformation. This is a very unusual type of CP transformation since applying it

twice does not yield the identity transformation. However, identifying CP4 with a CP

transformation is possible because from the spacetime point of view the transformation

remains of order two, as it should. Likewise, one can define a generalized time reversal

operator with properties analogous to CP4 while transforming the time coordinate from t to

−t. Consequently, there is no contradiction with the CPT theorem, which remains intact.

A very interesting feature of the IS scalar potential is that the symmetry requires

some of its coefficients to be complex (in a particular Higgs basis). Moreover, for generic

choices of the scalar potential parameters, there is no scalar basis transformation within

the family of Higgs bases, of the form given by eqs. (A.22)–(A.24), that can transform the

scalar potential into a new potential with only real coefficients. This is a surprising result
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in light of the statement that the IS potential is CP-conserving. The IS model conserves

CP independently of the existence or nonexistence of a real Higgs basis, although in the

case where no real Higgs basis exists, the IS model is only invariant with respect to the

generalized CP symmetry, CP4 (whereas CP2 is not a symmetry of the IS scalar potential).

Nevertheless, any CP-violating observable of the IS model must vanish. For example, the

contributions to the CP-violating form factors of the effective ZZZ and ZWW vertices

generated in the IS model must exactly cancel. As a check of this statement, we confirmed

this cancellation up to three-loop order in the IS model with no real Higgs basis.

We identified a physical quartic scalar interaction made up of an odd number of mass-

degenerate neutral scalar states (e.g., P 3Q and Q3P ) that is consistent with the CP4 sym-

metry, but would vanish if the IS scalar potential exhibits a CP2 symmetry that commutes

with CP4. This leaves open the possibility of the existence of a CP2 symmetry that does not

commute with CP4. However, we were unable to find an observable quantity of the IS model

that can distinguish between the presence or absence of a noncommuting CP2 symmetry.

Finally, we stress that the possibility of a scalar potential and vacuum that is invariant

with respect to a generalized CP symmetry without the existence of a real basis appears to

be inexorably connected with the existence of mass-degenerate scalar states. We strongly

suspect that this connection, which has been demonstrated in this paper for the IS model,

is applicable more generally to any multi-Higgs doublet model. If true, then the existence

of a generalized CP symmetry in the absence of mass degenerate scalars necessarily implies

the presence of a conventional CP symmetry; i.e., the existence of a real basis of scalar

fields in which the CP symmetry corresponds simply to conjugation of the scalar fields.
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A The Ivanov Silva model revisited

Consider the most general 2HDM with a scalar potential as specified in eq. (2.1). Including

the kinetic energy terms with SU(2)×U(1) gauge covariant derivatives, the 2HDM [after

electroweak symmetry breaking under the assumption that the vacuum preserves U(1)EM]

consists of a model of two scalar doublets coupled to the gauge bosons, W±, Z and γ. We

shall ignore the couplings of the bosonic sector of the 2HDM to the fermions of the SM in

the following discussion.

We now ask the following question. Does the bosonic Lagrangian conserve CP? For CP

to be conserved, two conditions must be verified. First, the scalar potential must exhibit

explicit CP conservation. Second, the vacuum must conserve CP. If the former is true but

the latter is false, we say that CP is spontaneously broken. However, in this discussion, we

are interested in whether both explicit and spontaneous CP violation are absent.

In the 2HDM, the answer to this question is simple. We first transform to the Higgs

basis and examine the scalar potential given in eq. (2.4). The Higgs basis is unique up to a

possible rephasing of the Higgs basis field, H2 → eiχH2. Then, CP is conserved if and only

if there exists a choice of χ such that all Higgs basis scalar potential parameters are real.

In the discussion above, we have not specified in detail how the scalar fields transform

under a CP transformation. Starting from the generic Φ1–Φ2 basis employed in writing

eq. (2.1), the conventional CP transformation corresponds to conjugation, ΦCP
i = ΦF

i .

However, this is a basis-dependent statement. Indeed, one is always free to change the

basis, Φ′i = UijΦj , where U ∈ U(2). In the new basis, Φ′CP
i = XijΦ

′CP
j , where X =

UUT is a symmetric unitary matrix. More generally, we can consider the generalized CP

transformation,

ΦCP
i (x, t) = XijΦ

F
j (−x, t) , (A.1)

where X ∈ U(2).37 If X is both unitary and symmetric, then one can find a basis in which

the CP transformation is simply conjugation.38 In ref. [56], it is shown that in the 2HDM

there are three possible classes of generalized CP transformations (GCPs): (i) X is unitary

and symmetric; (ii) X is unitary and antisymmetric; and (iii) X is unitary but is neither

symmetric nor antisymmetric. Clearly, no basis change can convert a GCP transformation

of types (ii) or (iii) into the transformation of the field into its conjugate. Nevertheless, as

shown in ref. [56], any 2HDM scalar potential that is invariant under GCP transformations

of types (ii) or (iii) is also separately invariant under a GCP transformation of type (i).

Do the above results generalize to arbitrary Higgs sectors? In particular, consider an

extended Higgs sector with N hypercharge-one, complex doublets (denoted henceforth as

the NHDM). To address the question of CP invariance, we transform to the so-called

charged Higgs basis defined in ref. [81]. If the scalar fields of the charged Higgs basis are

37Note that it is not consistent to simply define the CP transformation of a multi-Higgs doublet model

without including the matrix X in eq. (A.1), since the form of the CP transformation depends on the choice

of the scalar basis, as noted above. Consequently, some authors prefer to call this transformation a general

CP transformation rather than generalized CP transformation.
38As shown in appendix D of ref. [80] [see the Lemma below eq. (D.3.1)], for any symmetric unitary

matrix X, there exists a unitary matrix U such that X = UUT .
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denoted by Hi (i = 1, . . . , n), then 〈H0
1 〉 = v/

√
2, 〈H0

j 〉 = 0 for j = 2, 3, . . . , n, and the

fields H±j (for j = 2, 3, . . . , n) are the physical, mass-eigenstate charged Higgs fields. Note

that for N = 2, the Higgs basis and the charged Higgs basis coincide. For N ≥ 3, consider

first the case in which the physical charged Higgs bosons are mass non-degenerate. In this

case, the charged Higgs basis is uniquely defined up to a possible rephasing, Hj → eiχjHj .

In this case, CP is conserved if and only if there exist a choice of the χj such that all

charged Higgs basis scalar potential parameters are real. This generalizes the result of the

2HDM quoted above.

If there exist mass degeneracies among the physical charged Higgs fields, then one must

re-evaluate the conditions for CP invariance. To simplify the discussion, we focus on the

case of N = 3, in which the two physical charged Higgs bosons are mass degenerate. In this

case, the charged Higgs basis is unique up to a U(2) transformation of the charged Higgs

basis fields H2 and H3. Ivanov and Silva [30] constructed a 3HDM whose scalar potential

and vacuum are invariant under a generalized CP transformation such that (GCP)2 6= 1,

where 1 is the identity operator. Moreover, some of the scalar potential parameters of

the charged Higgs basis of the Ivanov-Silva (IS) scalar potential are complex, and no U(2)

transformation of the charged Higgs basis fields H2 and H3 can be performed to remove

all the complex phases. Hence, the IS scalar potential is not invariant under a separate

GCP transformation that is equivalent to conjugation in another basis, in contrast to the

corresponding 2HDM result. Ivanov and Silva denote the GCP transformation of the IS

scalar potential by CP4, since it has the property that (CP4)4 = 1 and (CP4)2 6= 1.

Indeed, one consequence of the CP4 symmetry of the scalar potential and the vacuum is

the mass degeneracy of the physical charged Higgs bosons, as well as two additional mass

degeneracies among pairs of neutral Higgs bosons. In this appendix, we consider the 3HDM

scalar potential of the Ivanov and Silva model and examine some of its properties.

A.1 The IS scalar potential

Consider the 3HDM consisting of three hypercharge-one, complex doublet fields, φi (i =

1, 2, 3). In the Higgs basis, the form of the scalar potential proposed initially by Ivanov

and Silva (IS) in ref. [30] is fixed by imposing the following generalized CP symmetry,

φi →Wijφ
F
j , W =

1 0 0

0 0 i

0 −i 0

 , (A.2)

which has the property that applying it four times yields the identity operator. This is the

CP4 symmetry transformation noted above.

The resulting IS scalar potential is given by

V = V0 + V1 , (A.3)
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with

V0 = −m2
11(φ†1φ1)−m2

22(φ†2φ2 + φ†3φ3) + λ1(φ†1φ1)2

+ λ2

[
(φ†2φ2)2 + (φ†3φ3)2

]
+ λ′3(φ†2φ2)(φ†3φ3) + λ3(φ†1φ1)

[
(φ†2φ2) + (φ†3φ3)

]
+ λ′4(φ†2φ3)(φ†3φ2) + λ4

[
(φ†1φ2)(φ†2φ1) + (φ†1φ3)(φ†3φ1)

]
, (A.4a)

V1 = λ5(φ†3φ1)(φ†2φ1) +
1

2
λ6

[
(φ†2φ1)2 − (φ†1φ3)2

]
+ λ8(φ†2φ3)2 + λ9(φ†2φ3)

[
(φ†2φ2)− (φ†3φ3)

]
+ h.c. (A.4b)

The hermiticity of the scalar potential implies that the coefficients of V0 are real. In

contrast, the coefficients of V1 are potentially complex. However, having imposed the CP4

symmetry given by eq. (A.2), we see that λ5 is real.

Under the CP4 symmetry specified in eq. (A.2), the gauge-invariant bilinear quantities,

Bij ≡ φ†iφj , transform as follows:

B11 → B11, (A.5a)

B22 → B33 B33 → B22, (A.5b)

B12 → iB31, B21 → −iB13, (A.5c)

B13 → −iB21, B31 → iB12, (A.5d)

B23 → −B23, B32 → −B32. (A.5e)

It follows that V given by eqs. (A.3)–(A.4b), with λ6, λ8 and λ9 complex and all other

scalar potential parameters real, is the most general 3HDM potential that is invariant under

the CP4 transformation given in (A.2). Without loss of generality, one can furthermore

assume that λ6 is real after an appropriate rephasing of the scalar fields φ2 and φ3.

At this stage, we have not yet found the minimum of the scalar potential and deter-

mined whether the CP4 symmetry is respected by the vacuum. There exist a range of

scalar potential parameters in which the vacuum preserves U(1)EM, in which case one can

decompose the scalar doublets as,

φi =

(
ϕ+
i

(vi + ηi + iχi)/
√

2

)
, i = 1, 2, 3. (A.6)

In particular, the vacuum conserves CP4 if the minimum of the scalar potential corresponds

to (v1, v2, v3) = (v, 0, 0) [30]. Indeed, there exists a range of scalar potential parameters for

which this corresponds to the global minimum, in which case the value of m2
11 is fixed by

the scalar potential minimum condition to be

m2
11 = λ1v

2. (A.7)

In this case, the scalar field basis employed in eqs. (A.3) and (A.4) is the Higgs basis, with

the freedom to perform U(2) transformations on {φ2, φ3}. We shall take advantage of this

freedom in the next two subsections.
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It is now straightforward to determine the scalar mass spectrum of the IS model. Since

we are in the Higgs basis, we can immediately identify the Goldstone bosons, ϕ±1 = G±

and χ1 = G0. Moreover, η1 is a neutral mass-eigenstate with mass m2
η1 = 2λ1v

2, whose

tree-level couplings to the gauge bosons and to itself are precisely those of the SM Higgs

boson (corresponding to the exact alignment limit). Indeed, this is analogous to the IDM

in which φ1 is equivalent to the hypercharge-one, complex scalar doublet of the SM and

φ2 and φ3 are inert doublets. The two physical charged Higgs fields, ϕ±2 and ϕ±3 , are

mass-degenerate,

m2
ϕ±2 ,ϕ

±
3

=
1

2
λ3v

2 −m2
22. (A.8)

The neutral scalar spectrum consist of the SM-like Higgs boson η1 and a pair of mass

degenerate neutral scalars made up of linear combinations of the η2,3 and χ2,3, with masses

given by [30],

M2 = a+
√
b2 + c2 , m2 = a−

√
b2 + c2 , (A.9)

where

a =
1

2
(λ3 + λ4)v2 −m2

22, b =
1

2
λ6v

2, c =
1

2
λ5v

2. (A.10)

A.2 A simpler form for the IS scalar potential

Given the IS scalar potential in the Higgs basis, we still have the freedom to perform a

U(2) transformation on {φ2, φ3}. It is possible to remove the λ5 term in eq. (A.4) by the

following basis transformation,

φ̄i = Uijφj , (A.11)

where

U =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , (A.12)

with 0 ≤ θ ≤ π. With respect to the new basis, the CP4 transformation specified in

eq. (A.2) is given by,

φ̄i → Vijφ̄
F
j , where V = UWUT . (A.13)

Using the form for U given in eq. (A.12), it follows that V = W . Thus, in this new basis,

the IS symmetry takes the same form as in the original basis.

When the scalar potential is expressed in terms of the fields φ̄i, the resulting scalar

potential parameters will be denoted by m̄2
ii and λ̄i. It is straightforward to obtain ex-

pressions for m̄2
11, m̄2

22 and the λ̄i in terms of the scalar potential parameters defined in

eq. (A.4). In particular, m̄2
11 = m2

11, m̄2
22 = m2

22, and λ̄i = λi for i = 1, 3 and 4. Next, we

note that the CP4 symmetry does not mandate that λ̄6 is real. However, it is straightfor-

ward to check that Im λ̄6 = Imλ6. Having previously chosen λ6 real (after an appropriate

rephasing of φ2 and φ3), it follows that λ̄6 is also real.
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The remaining transformed coefficients are given by,

λ̄2 = λ2 −
1

2
sin2 2θ

[
λ2 − Reλ8 −

1

2
(λ′3 + λ′4)

]
− sin 2θ cos 2θReλ9 , (A.14a)

λ̄′3 = λ′3 + sin2 2θ

[
λ2 − Reλ8 −

1

2
(λ′3 + λ′4)

]
+ 2 sin 2θ cos 2θReλ9 , (A.14b)

λ̄′4 = λ′4 + sin2 2θ

[
λ2 − Reλ8 −

1

2
(λ′3 + λ′4)

]
+ 2 sin 2θ cos 2θReλ9 , (A.14c)

λ̄5 = λ5 cos 2θ + λ6 sin 2θ , (A.14d)

λ̄6 = λ6 cos 2θ − λ5 sin 2θ , (A.14e)

Re λ̄8 = Reλ8 +
1

2
sin2 2θ

[
λ2 − Reλ8 −

1

2
(λ′3 + λ′4)

]
+ sin 2θ cos 2θReλ9 , (A.14f)

Re λ̄9 = (1− 2 sin2 2θ) Reλ9 + sin 2θ cos 2θ

[
λ2 − Reλ8 −

1

2
(λ′3 + λ′4)

]
, (A.14g)

Im λ̄8 = cos 2θ Imλ8 + sin 2θ Imλ9 , (A.14h)

Im λ̄9 = cos 2θ Imλ9 − sin 2θ Imλ8 . (A.14i)

One can now choose the angle θ such that λ̄5 = 0.39 This yields tan 2θ = −λ5/λ6.

Then, sin 2θ and cos 2θ are determined up to an overall sign. Introducing the following

notation,

λ56 ≡
√
λ2

5 + λ2
6 , (A.15)

we choose the angle θ such that,

sin 2θ =
λ5

λ56
, cos 2θ = − λ6

λ56
. (A.16)

Thus, the λ5-term in eq. (A.4) is actually redundant.40

Inserting the results of eq. (A.16) back into eq. (A.14) yields λ̄5 = 0 and,

λ̄2 =
λ5 [λ5 (λ′3 + λ′4 + 2 Reλ8) + 4λ6 Reλ9] + 2λ2

(
λ2

5 + 2λ2
6

)
4λ2

56

, (A.17a)

λ̄′3 =
λ2

5 (λ′3 − λ′4 − 2 Reλ8) + 2λ2
6λ
′
3 − 4λ5λ6 Reλ9 + 2λ2λ

2
5

2λ2
56

, (A.17b)

λ̄′4 =
λ2

5 (−λ′3 + λ′4 − 2 Reλ8) + 2λ2
6λ
′
4 − 4λ5λ6 Reλ9 + 2λ2λ

2
5

2λ2
56

, (A.17c)

λ̄6 = −λ56, (A.17d)

Re λ̄8 =
−λ2

5 (λ′3 + λ′4 − 2 Reλ8)− 4λ5λ6 Reλ9 + 4λ2
6 Reλ8 + 2λ2λ

2
5

4λ2
56

, (A.17e)

Re λ̄9 =
λ5λ6 (λ′3 + λ′4 + 2 Reλ8)− 2λ2

5 Reλ9 + 2λ2
6 Reλ9 − 2λ2λ5λ6

2λ2
56

, (A.17f)

39Note that a different choice of tan 2θ could have been made to set either λ̄6 = 0, Im λ̄8 = 0 or Im λ̄9 = 0.

That is, one can always perform a change of Higgs basis to remove one degree of freedom from the coefficients

of the IS scalar potential.
40A similar simplification was presented recently in ref. [70].
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Im λ̄8 =
λ5 Imλ9 − λ6 Imλ8

λ56
, (A.17g)

Im λ̄9 =
−λ5 Imλ8 − λ6 Imλ9

λ56
. (A.17h)

An additional feature of the IS scalar potential with λ̄5 = 0 is that the real and

imaginary parts of the neutral fields φ̄0
2 and φ̄0

3 are mass eigenstates. That is, the neutral

squared-mass matrices are already diagonal in the {φ̄1, φ̄2, φ̄3} basis. In particular, the

lightest of the two mass-degenerate states lives in the imaginary part of φ̄2 and in the real

part of φ̄3. The heaviest of the two mass-degenerate neutral states lives in the real part of

φ̄2 and in the imaginary part of φ̄3.

It is convenient to make an additional field redefinition, φ̄3 → iφ̄3. The effect of this

modification is to modify V̄1 by flipping the sign of (φ̄†1φ̄3)2 in the term proportional to

λ̄6 and to transform λ̄8 → −λ̄8 and λ̄9 → −iλ̄9. To make contact with the H23-basis

employed in eq. (3.31), we define,

H1 = φ̄1 , H2 = φ̄2 , H3 = iφ̄3 , (A.18)

corresponding to a basis change, Hi → Ũijφ̄j , with Ũ = diag(1 , 1 , i). Note that the

heaviest mass degenerate neutral fields now reside in the real part of the neutral components

of H2 and H3, and the lightest mass degenerate neutral fields reside in the imaginary part

of the neutral components of H2 and H3. When expressed in the H23-basis, the IS scalar

potential is given by,

VIS = VRIDM + Z ′3(H†2H2)(H†3H3) + Z ′4(H†2H3)(H†3H2)

+
[
Z8(H†2H3)2 + Z9(H†2H3)(H†2H2 −H†3H3) + h.c.

]
, (A.19)

where VRIDM is given by eq. (3.1), with Z8 and Z9 potentially complex and all other scalar

potential parameters real. Eq. (A.19) is the version of the IS scalar potential employed in

section 3.3. To make contact with the previous notation used above, we note that

Y1 = −m2
11 , Y2 = −m2

22 , Z1 = 2λ1 , Z2 = 2λ̄2 , Z3 = λ3 , Z4 = λ4

Z ′3 = λ̄′3 − 2λ̄2 , Z ′4 = λ̄′4 , Z5 = λ̄6 , Z8 = −λ̄8 , Z9 = −iλ̄9 . (A.20)

The corresponding CP4 symmetry transformation now takes the form

Hi → XijH
F
j , where X = ŨWŨT =

1 0 0

0 0 −1

0 1 0

 , (A.21)

as indicated in eq. (3.35).

A.3 Non-existence of a real Higgs basis

Consider the IS scalar potential [cf. eq. (A.19) with VRIDM given by eq. (3.1)] expressed

in terms of the Higgs basis of scalar doublet fields, {H1, H2, H3}, where 〈H0
1 〉 6= 0 and

the vevs of the other two doublet fields vanish. The coefficients Z8 and Z9 are potentially

complex and all other scalar potential parameters are real. Recall that the Higgs basis is

unique only up to an arbitrary U(2) transformation of {H2, H3}. Is it possible to transform

to a new Higgs basis in which all the IS scalar potential parameters are real? Such a Higgs

basis, if it exists, is called a real Higgs basis.
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The most general basis transformation that preserves the general class of Higgs bases

is given (in block diagonal form) by,(
H̄1

H̄23

)
=

(
1 0

0 Ṽ

)(
H1

H23

)
, (A.22)

where

H23 ≡
(
H2

H3

)
, H̄23 ≡

(
H̄2

H̄3

)
, (A.23)

and Ṽ is the most general U(2) matrix,

Ṽ = eiψ/2

(
eiα cosφ −e−iβ sinφ

eiβ sinφ e−iα cosφ

)
, (A.24)

where 0 ≤ φ < π, −π < ψ ≤ π, 0 ≤ α ≤ π and 0 ≤ β ≤ π. Applying eq. (A.22) to the IS

scalar potential given in eq. (A.19) yields

VIS = Y1H̄
†
1H̄1 + Y2

(
H̄†2H̄2 + H̄†3H̄3

)
+

1

2
Z1(H̄†1H̄1)2 +

1

2
Z̄2(H̄†2H̄2 + H̄†3H̄3)2 (A.25)

+ Z3(H̄†1H̄1)(H̄†2H̄2 + H̄†3H̄3) + Z4

[
(H̄†1H̄2)(H̄†2H̄1) + (H̄†1H̄3)(H̄†3H̄1)

]
+ Z̄ ′3(H̄†2H̄2)(H̄†3H̄3) + Z̄ ′4(H̄†2H̄3)(H̄†3H̄2)

+ iZ̄ ′5
[
eiψ(H̄†3H̄1)(H̄†2H̄1)− e−iψ(H̄†1H̄2)(H̄†1H̄3)

]
,

+

{
1

2
Z̄5

[
eiψ(H̄†2H̄1)2 + e−iψ(H̄†1H̄3)2

]
+ Z̄8(H̄†2H̄3)2 + Z̄9(H̄†2H̄3)(H̄†2H̄2 − H̄†3H̄3) + h.c.

}
.

The coefficients Y1, Y2, Z1, Z3 and Z4 are unmodified, whereas,

Z̄2 =Z2+
1

2
sin2 2φ

(
Z ′3+Z ′4+Z8e

2iξ+Z∗8e
−2iξ

)
−sin2φcos2φ

(
Z9e

iξ+Z∗9e
−iξ), (A.26)

Z̄ ′3 =Z ′3−sin2 2φ
(
Z ′3+Z ′4+Z8e

2iξ+Z∗8e
−2iξ

)
+2sin2φcos2φ

(
Z9e

iξ+Z∗9e
−iξ), (A.27)

Z̄ ′4 =Z ′4−
1

2
sin2 2φ

(
Z ′3+Z ′4+Z8e

2iξ+Z∗8e
−2iξ

)
+sin2φcos2φ

(
Z9e

iξ+Z∗9e
−iξ), (A.28)

Z̄ ′5 =Z5 sin2φsinξ , (A.29)

Z̄5 = eiχZ5

(
eiξ cos2φ+e−iξ sin2φ

)
, (A.30)

Z̄8 = e2iχ

{
−1

4
sin2 2φ

(
Z ′3+Z ′4

)
+e2iξ cos4φZ8+e−2iξ sin4φZ∗8

+sin2φ
[
eiξ cos2φZ9−e−iξ sin2φZ∗9

]}
, (A.31)

Z̄9 = eiχ
{
−1

2
sin2φcos2φ(Z ′3+Z ′4)−sin2φ

[
e2iξ cos2φZ8−e−2iξ sin2φZ∗8

]
+

1

2
eiξ(cos4φ+cos2φ)Z9+

1

2
e−iξ(cos4φ−cos2φ)Z∗9

}
, (A.32)
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where

ξ ≡ α+ β , χ ≡ α− β . (A.33)

By definition of the H23-basis, Z5 is real and Z ′5 = 0 [the latter is a consequence of the

absence of a term in eq. (A.19) that involves (H†3H1)(H†2H1) and its hermitian conjugate].

After employing a generic U(2) basis change [eq. (A.24)], a nonzero Z̄ ′5 and a complex Z̄5

are generated [cf. eqs. (A.29) and (A.30)], such that

Z2
5 = |Z̄5|2 + Z̄ ′ 25 . (A.34)

It is instructive to examine the form of the CP4 transformation in the {H̄1, H̄2, H̄3}
basis. Starting from eq. (A.21) and transforming Hi → H̄i = ṼijHj (i, j = 2, 3), it follows

that the CP4 transformation of the barred fields is given by,

H̄i → X̄ijH̄
F
j , where X̄ = VWV T , (A.35)

where the 3× 3 matrices X̄, V and W in block form are given by

X̄ =

(
1 0

0 X̃

)
, V =

(
1 0

0 Ṽ

)
, W =

(
1 0

0 ε

)
, (A.36)

and ε ≡
(

0 −1
1 0

)
. For any Ṽ ∈ U(2), we have

X̃ = Ṽ εṼ T = eiψε , (A.37)

after taking the determinant of eq. (A.37) and noting that det Ṽ = eiψ. Indeed, if we impose

invariance of the scalar potential under CP4 in the {H̄1, H̄2, H̄3} basis, then the IS scalar

potential must have the form given by eq. (A.25), with Z̄8 and Z̄9 potentially complex and

all other scalar potential coefficients [excluding factors of i or e±iψ that explicitly appear

in eq. (A.25)] real.

It is possible to choose a basis in which all but one of the scalar potential parameters

are real. This can be achieved by choosing ψ = α = β = 0 in eq. (A.24). In this case,

eqs. (A.31) and (A.32) yield Z̄ ′5 = 0, Z̄5 = Z5 and

Im Z̄8 = cos 2φ ImZ8 + sin 2φ ImZ9 ,

Im Z̄9 = cos 2φ ImZ9 − sin 2φ ImZ8 . (A.38)

Indeed, there is a choice of φ in eq. (A.38) such that Im Z̄9 = 0 (and another choice of φ

such that Im Z̄8 = 0). Thus, by a series of basis changes, we have reduced the number of

independent parameters in the IS scalar potential from 14 to 12.

A.3.1 Transforming to a Higgs basis where Z8 and Z9 are real

We now examine whether a choice of ψ, χ, ξ and φ exists such that iZ̄ ′5e
±iψ, Z̄5e

±iψ, Z̄8

and Z̄9 are all real. To begin, we first show that a Higgs basis exists in which Z̄8 and Z̄9

are both real. Here, we follow the analysis given in appendix C of ref. [46]. By assumption,
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Z9 is real and Z8 = |Z8|eiθ8 (where θ8 is not an integer multiple of π so that ImZ8 6= 0).

Setting Im Z̄8 = Im Z̄9 = 0 in eqs. (A.31) and (A.32) yields,

Im Z̄8 = fa cos 2χ− fb sin 2χ = 0 , Im Z̄9 = fc cosχ− fd sinχ = 0 , (A.39)

where

fa = |Z8|cos2φsin(2ξ+θ8)+Z9 sin2φsinξ , (A.40)

fb =
1

4
(Z ′3+Z ′4)sin2 2φ−|Z8|

(
1− 1

2
sin2 2φ

)
cos(2ξ+θ8)−Z9 sin2φcos2φcosξ , (A.41)

fc =−|Z8|sin2φsin(2ξ+θ8)+Z9 cos2φsinξ , (A.42)

fd =
1

2
(Z ′3+Z ′4)sin2φcos2φ+|Z8|sin2φcos2φcos(2ξ+θ8)−Z9 cos4φcosξ . (A.43)

Assuming that fa 6= 0 and fc 6= 0, eq. (A.39) implies that

cotχ =
fd
fc
, cot 2χ =

fb
fa
. (A.44)

Employing the trigonometric identity, cot 2χ = (cot2 χ− 1)/(2 cotχ), we end up with,

G(φ, ξ) ≡ fa(f2
d − f2

c )− 2fbfcfd = 0 . (A.45)

Note that the above condition is independent of the angle ψ. Inserting the results of

eqs. (A.40)–(A.43) into eq. (A.45) leads to a very complicated expression. However, it is

quite easy to check that

G(0, ξ) = −G
(

1

2
π, ξ

)
= Z2

9 ImZ8 . (A.46)

As a consequence of eq. (A.46), for any choice of ξ, there must exist a value of φ between

0 and 1
2π such that G(φ, ξ) = 0. Plugging these values of φ and ξ back into eqs. (A.40)–

(A.43), we can then use eq. (A.44) to determine χ. Thus, we have shown that for any

choice of ξ and ψ, there must exist a corresponding φ and χ (whose values depend on the

choice of ξ) such that Im Z̄8 = Im Z̄9 = 0.41

A.3.2 Does a Higgs basis exist were all scalar potential parameters are real?

Having found a Higgs basis with real Z̄8 and Z̄9 for an arbitrary choice of ξ and ψ (where

the parameters φ and χ have been determined), we now examine whether it is also possible

to choose particular values of ξ and ψ such that iZ̄ ′5e
±iψ and Z̄5e

±iψ are both real. If this

were possible, then one would have succeeded in finding a U(2) transformation, H̄i = ṼijHj

(i, j = 2, 3) such that all the coefficients of the IS scalar potential are real. For example, if

Z5 = 0, then it follows from eqs. (A.29) and (A.30) that Z̄ ′5 = Z̄5 = 0, in which case all the

41Although we have reached this conclusion under the assumption that fc and fa are nonzero, it is

straightforward to modify the analysis if either fa = 0 and/or fc = 0. If fa = fb = fc = fd = 0, then

eq. (A.39) immediately yields Im Z̄8 = Im Z̄9 = 0. If at least one of the quantities fa, fb, fc and fd is

nonzero, then χ can be determined from one of the two expressions in eq. (A.44).
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coefficients of the IS scalar potential, when expressed in terms of the barred scalar doublet

fields, are real. Thus a real Higgs basis exists when Z5 = 0.

It therefore follows that if Z5 = 0, then the IS scalar potential must possess a CP2

symmetry of the form, Hi → YijH
F
j , where Y is a symmetric unitary matrix, which in

block diagonal form [cf. eq. (A.22)] is given by,

Y =

(
1 0

0 Ỹ

)
, with Ỹ ≡ (Ṽ T Ṽ )∗, (A.47)

and Ṽ [given by eq. (A.24)] is the unitary matrix that transforms the H23 basis into a

real Higgs basis. Suppose one performs a CP4 transformation [eq. (A.21)] followed by a

CP2 transformation, Hi → YijH
F
j , and compares the result obtained by performing these

two transformations in the opposite order. The results of applying CP4 followed by CP2

as compared to CP2 followed by CP4 are equivalent to the Higgs family transformations,

Y X∗ and XY ∗, respectively [32]. Using eqs. (A.21), (A.24) and (A.47), it follows that

XY ∗ = e2iψY X∗ . (A.48)

That is, the CP2 and CP4 transformations commute if and only if det Y = e2iψ = 1.

For example, the H23 basis is a real Higgs basis in the trivial case where ImZ8 =

ImZ9 = 0, independently of the value of Z5. In this case, the corresponding CP2 symmetry,

Hi → YijH
F
j , with Y = 1, commutes with the CP4 symmetry of the IS potential. If Z5 = 0,

the real Higgs basis obtained above is independent of ψ. In this case, it is convenient to

choose ψ = 0 in defining the CP2 transformation. It then follows from eq. (A.48) that the

CP2 and CP4 transformations commute if Z5 = 0 and either ImZ8 and/or ImZ9 is nonzero.

Two other special cases, first pointed out in appendix B of ref. [32], are noteworthy.

First, suppose that Z9 = 0. In this case, the choice of ψ = χ = 1
2π, ξ = 0 and φ = 1

4π

inserted into eqs. (A.29)–(A.32) will yield a real Higgs basis, with Z̄ ′5 = 0, e±iψZ̄5 = ∓Z5,

Z̄8 = 1
4(Z ′3 + Z ′4 − 2 ReZ8) and Z̄9 = ImZ8. In light of eqs. (A.24) and (A.33), the barred

and unbarred scalar fields are related by

H̄2 =
i√
2

(H2 −H3) , H̄3 =
1√
2

(H2 +H3) . (A.49)

In the H23 basis, we can identify the corresponding CP2 transformation as Hi → YijH
F
j ,

with

Y =

1 0 0

0 0 1

0 1 0

 . (A.50)

Since XY ∗ 6= Y X∗, it follows that the CP2 and CP4 transformations do not commute.

Second, suppose that ImZ8 = 0, ReZ9 = 0 and ImZ9 6= 0. In this case, we simply

choose H̄2 = H2 and H̄3 = iH3, corresponding to ψ = 1
2π, χ = ξ = −1

4π and φ = 0

in (A.24). A real Higgs basis is then achieved with Z̄ ′5 = 0, e±iψZ̄5 = ±Z5, Z̄8 = −ReZ8,

and Z̄9 = ImZ9. In the H23 basis, we can identify the corresponding CP2 transformation
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as Hi → YijH
F
j , with

Y =

1 0 0

0 1 0

0 0 −1

 . (A.51)

Once again, the CP2 and CP4 transformations do not commute. It should be noted that

the last two cases are related by a simple basis transformation. Namely, starting from an

H23 basis with ImZ8 = 0 and ReZ9 = 0 and employing χ = ψ = ξ = 0 and φ = 1
4π in

eqs. (A.29)–(A.32) yields Z̄ ′5 = 0, Z̄5 = Z5, Im Z̄8 6= 0 and Z̄9 = 0, thereby reducing to the

previous case above.

We now consider the IS scalar potential with generic parameters (excluding the special

cases considered above) and investigate whether a real Higgs basis exists. In particular,

consider the H23 basis with Z5, Z9 6= 0. As noted above, we can assume without loss of

generality that Z5 and Z9 are real.42 We examine two different cases:

• Case 1: ψ 6= ±1
2π

• Case 2: ψ = ±1
2π

In case 1, a real Higgs basis would require Z̄ ′5 = 0. Since sin 2φ 6= 0 [in light of

eq. (A.46)], it follows that sin ξ = 0, in which case e±iψZ̄5 = ±ei(χ±ψ)Z5 is real if and only

if sin(χ±ψ) = 0. This equation must be satisfied for both sign choices, which implies that

sinχ cosψ = cosχ sinψ = 0. For generic values of the parameters, eqs. (A.40)–(A.44) imply

that sinχ 6= 0 and cosχ 6= 0. Thus, in general no value of ψ exists such that sin(χ±ψ) = 0

holds for both sign choices. That is, case 1 cannot yield a real Higgs basis for a generic

choice of the IS scalar potential parameters.

In case 2, iZ̄ ′5e
±iψ is real for all choices of ξ and one must check whether there exists

a ξ that yields a real value of iZ̄5 = ieiχZ5(eiξ cos2 φ+ e−iξ sin2 φ). The condition that iZ̄5

is real is equivalent to

Re
[
ei(χ+ξ) cos2 φ+ ei(χ−ξ) sin2 φ

]
= 0 , (A.52)

which can be simplified to the condition,

cotχ = cos 2φ tan ξ . (A.53)

It follows that either χ± ξ are both half odd integer multiples of 1
2π or cos 2φ = cotχ cot ξ.

If χ ± ξ are both half odd integer multiples of 1
2π, then either χ is a half odd integer of

1
2π and ξ is an integer multiple of π or vice versa. If χ is a half odd integer multiple of 1

2π

and ξ is an integer multiple of π, then eq. (A.39) yields fa = fd = 0. However, these latter

two equations cannot be simultaneously satisfied if Z9 6= 0. Similarly, if χ is an integer

multiple of π and ξ is a half odd integer multiple of 1
2π, then eq. (A.39) yields fa = fc = 0

which cannot be simultaneously satisfied if ImZ8 and Z9 are nonzero. Thus, if χ ± ξ are

42The case of ImZ8 = 0 and ReZ9 = 0 is thus eliminated from consideration, since it is related by a

scalar basis transformation to the case of Z9 = 0 as noted above.
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both half odd integer multiples of 1
2π, then no real Higgs basis exists for generic values of

the IS scalar potential parameters.

Finally, we examine the possibility that iZ̄5 is real due to cos 2φ = cotχ cot ξ. We can

also assume that ξ is not an integer multiple of 1
2π, as this case was already treated above.

In order that Im Z̄8 = Im Z̄9 = 0, one must satisfy cotχ = fd/fc and G(φ, ξ) = 0, under

the assumption of fc 6= 0. In this case we can satisfy Im Z̄9 = 0 if φ = φξ, where

cos 2φξ =

(
fd
fc

)
φ=φξ

cot ξ . (A.54)

Using eqs. (A.42) and (A.43), one can employ eq. (A.54) to obtain a quadratic equation

for cot 2φξ, whose solution is given by

cot 2φξ =
1

2Z9

[
1

2
(Z ′3 + Z ′4) cos ξ + |Z8| cos(ξ + θ8)

±
√[

1

2
(Z ′3 + Z ′4) cos ξ + |Z8| cos(ξ + θ8)

]2

+ 4Z2
9 cos2 ξ

]
. (A.55)

Eq. (A.55) determines sin 2φξ up to an overall sign. It is convenient to choose this sign to

be positive.

It is sufficient to demonstrate one example of the IS scalar potential parameters in

which no real Higgs basis exists. Thus, consider an example where

Z8 = −1

2
(Z ′3 + Z ′4) + 2iZ9 . (A.56)

Then, 1
2(Z ′3 + Z ′4) cos ξ + |Z8|(cos(ξ + θ8) = −2Z9 sin ξ. It follows that

cot 2φξ = ±1− sin ξ . (A.57)

We now investigate whether a value of ξ 6= 1
2nπ (where n is an integer) exists such

that G(φξ, ξ) = 0. We introduce the notation, f̃ ≡ f(φξ, ξ), where φξ has been determined

from eq. (A.55). Then, eq. (A.54) implies that f̃d = f̃c cos 2φξ tan ξ. Inserting this result

into eq. (A.45) yields,

G(φξ, ξ) = f̃2
c

[
f̃a(cos2 2φξ tan2 ξ − 1)− 2f̃b cos 2φξ tan ξ

]
. (A.58)

An explicit calculation yields

f̃c = sin 2φξ
[
−ReZ8 sin 2ξ + (3 sin ξ ∓ 2)(sin ξ ± 1)Z9

]
, (A.59)

and

f̃a(cos2 2φξ tan2 ξ − 1)− 2f̃b cos 2φξ tan ξ = 2Z9
sin 2φξ
cos2 ξ

(sin ξ ∓ 1) . (A.60)

Hence, we end up with43

G(φξ, ξ) =
2Z9

cos2 ξ

[
1 + (1∓ sin ξ)2

]−3/2
(sin ξ ∓ 1)

[
ReZ8 sin 2ξ − (3 sin ξ ∓ 2)(sin ξ ± 1)Z9

]2
.

(A.61)

43We have made use of the identity, 1 + cot2 2φξ = 1/ sin2 2φξ. As noted below eq. (A.55), we have

assumed that sin 2φξ is positive.
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Since the above analysis has assumed that f̃c 6= 0 and ξ 6= 1
2nπ (for integer n) it follows

that G(φξ, ξ) is strictly nonzero, which implies that Im Z̄8 6= 0.44

A.3.3 Special cases

Cases where fc = 0 need to be treated separately. First, we examine the case of fc = 0

and fd 6= 0. Inserting eq. (A.56) into eq. (A.42), one can solve for cot 2φξ,

cot 2φξ =
ReZ8 sin 2ξ + 2Z9 cos 2ξ

Z9 sin ξ
. (A.62)

We next impose Im Z̄9 = 0. Then eq. (A.39) implies that sinχ = 0, in which case eq. (A.53)

yields cos ξ = 0. Inserting the latter result back into eq. (A.62) yields cot 2φξ = ±2. If

one now attempts to impose Im Z̄8 = 0 using eq. (A.39) with sinχ = 0, then one would

conclude that fa = 0. However, one can explicitly show that fa 6= 0 by inserting eq. (A.56)

into eq. (A.42) and employing cot 2φξ = ±2 and cos ξ = 0.

Finally, we briefly consider the case of fc = fd = 0. Inserting eq. (A.56) into eqs. (A.42)

and (A.43) yields equations for tan 2φ and tan 4φ respectively. The compatibility of these

two equations then fixes the value of ξ. In this case, Im Z̄9 = 0 is automatic, and Im Z̄8 = 0

implies via eq. (A.39) that cot 2χ = fb/fa. At this stage, χ, ξ and φ are all determined

prior to imposing eq. (A.53). The latter is an independent condition; hence for generic

values of ReZ8 and Z9, it is not possible to perform a basis change such that iZ̄5, Z̄8 and

Z̄9 are simultaneously real. This completes all the subcases of case 2.

We conclude that if the IS scalar potential possesses at least one non-real coefficient

(for generic choices of the scalar potential parameters), then no real Higgs basis exists and

it is not possible to perform a U(2) transformation of the Higgs basis fields {H2, H3} such

that all coefficients of the scalar potential are real.

A.4 Basis-invariant polynomial functions of the IS scalar potential parameters

In our analysis of the IS model, we have advocated the choice of a particular class of Higgs

bases in which Z̄ ′5 = 0. Nevertheless, it is instructive to show that physical observables

that depend on the parameters of the IS scalar potential are independent of the choice of

the scalar basis. In this appendix, we introduce a number of basis invariant quantities and

evaluate them in the H23-basis.

Consider a generic basis of scalar fields, {Φa}, where a = 1, 2, 3 labels hypercharge-

one, doublet fields of the 3HDM. Basis transformations that leave invariant the form of

the canonical kinetic energy terms correspond to global U(3) transformations, Φa → Uab̄Φb

[and Φ†ā → Φ†
b̄
U †bā], where the 3×3 unitary matrix U satisfies U †bāUac̄ = δbc̄. Here, we follow

the index conventions introduced in ref. [20], in which replacing an unbarred index with

a barred index is equivalent to hermitian conjugation. We only allow sums over barred-

unbarred index pairs, which are performed by employing the U(3)-invariant tensor δab̄. In

this notation, the 3HDM scalar potential in a generic Φa-basis is given by,

V = Yab̄Φ
†
āΦb +

1

2
Zab̄cd̄(Φ

†
āΦb)(Φ

†
c̄Φd) , (A.63)

44By expanding to squared expression in eq. (A.61), one sees that the factor of cos2 ξ in the denominator

is canceled by terms in the numerator. Hence, there is no singularity in the limit of cos ξ → 0.
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where Zab̄cd̄ = Zcd̄ab̄. Hermiticity of V implies that Yab̄ = (Ybā)
∗ and Zab̄cd̄ = (Zbādc̄)

∗.

Minimizing the scalar potential, under the assumption that the vacuum preserves U(1)EM,

yields the neutral Higgs vacuum expectation values, 〈Φ0
a〉 = vv̂a/

√
2, where v = 246 GeV

and v̂a is a vector of unit norm. It is convenient to define the hermitian matrix [19]

Vab̄ ≡ v̂a v̂∗b̄ . (A.64)

One can now construct basis-invariant quantities that depend on knowledge of the

scalar potential minimum by forming products of Vab̄ and Zab̄cd̄ such that all barred-

unbarred index pairs are summed over. We define six invariant quantities below,

J1 = Vac̄Vbd̄Zcādb̄, (A.65)

J2 = Vab̄Zbācc̄, (A.66)

J3 = Vab̄Zbc̄cā, (A.67)

J4 = Vab̄Zbd̄cēZdāec̄, (A.68)

J5 = Vab̄Zbd̄cēZdf̄eḡZfāgc̄, (A.69)

J6 = Vab̄Zbd̄cēZdf̄eḡZfh̄gk̄Zhākc̄. (A.70)

The invariants above can be evaluated in any basis. In particular, in the H23-basis, the

only nonzero component of Vab̄ is V11 = 1. We thus obtain,

J1 = Z1, (A.71)

J2 = Z1 + 2Z3, (A.72)

J3 = Z1 + 2Z4, (A.73)

J4 = Z2
1 + 2Z2

3 + 2Z2
4 + 2Z2

5 , (A.74)

J5 = Z3
1 + 4Z2

5Z1 + 2Z3
3 + 6Z3Z

2
4 + 2Z2Z

2
5 + 4Z2

5 ReZ8, (A.75)

J6 = Z4
1 + 2Z4

3 + 2Z4
4 + 12Z2

3Z
2
4 + 4Z4

5 + 2Z2
5 (3Z2

1 + 2Z1Z2 + Z2
2 )

+ 8Z2
5

[
|Z8|2 + (Z1 + Z2) ReZ8 + (ImZ9)2]. (A.76)

Using the first four invariant quantities above, one can show that Z5 can be expressed

in terms of an invariant quantity.45 In particular,

Z2
5 = −J2

1 +
1

2
J1 (J2 + J3)− 1

4
(J2

2 + J2
3 ) +

1

2
J4 . (A.77)

Finally, we have discovered a remarkable invariant quantity,

N = 32Z2
5J6 − 16J2

5 + 8J5(3J21J
2
31 +K)− J4

31(9J2
21 + 4Z2

5 )− 6KJ21J
2
31 − 24Z2

5J
2
21J

2
31

− J6
21 − 4Z2

5J
4
21 − 8J1(J2

1 + 2Z2
5 )J3

21 − 16J6
1 − 96Z2

5J
4
1 − 192Z4

5J
2
1 − 128Z6

5 , (A.78)

where Jij ≡ Ji − Jj , the invariant quantity Z2
5 is given by eq. (A.77) and

K ≡ 4J3
1 + 8Z2

5J1 + J3
21 . (A.79)

45In the H23-basis (where Z′5 = 0), one expects that Z2
5 can be expressed in terms of an invariant quantity

in light of the mass relation, M2
P −M2

Q = Z5v
2, which implies that Z2

5 is a physical parameter. In a general

class of Higgs bases, the corresponding invariant quantity is |Z5|2 + |Z′5|2 [cf. eq. (A.34)].
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Plugging in the expressions for J1 , . . . , J6 given above, we find

N = 256Z4
5

[
(ImZ8)2 + (ImZ9)2

]
. (A.80)

It follows that if Z5 6= 0 then there exists a ratio of invariant quantities, which when

evaluated in the H23-basis, is equal to (ImZ8)2+(ImZ9)2. In contrast, if Z5 = 0, then there

is no invariant quantity that reduces in the H23-basis to (ImZ8)2 +(ImZ9)2. Nevertheless,

the invariant condition, Z5 = 0, signals the presence of four mass-degenerate neutral scalars.

The significance of the invariant N is as follows. The CP4-conserving IS model pos-

sesses a CP2 symmetry that commutes with CP4 if and only if N = 0. Note that the

nonvanishing of N does not exclude the possibility of a CP2 symmetry that does not com-

mute with CP4. Two explicit examples of this phenomenon were presented in appendix

A.3.2: (i) Z9 = 0 and ImZ8 6= 0; and (ii) ImZ8 = ReZ9 = 0 and ImZ9 6= 0. In both these

cases, a real Higgs basis exists, and the corresponding CP2 transformation does not com-

mute with CP4.46 We also noted in section 4 that under the assumption that MP 6= MQ

(or equivalently for Z5 6= 0 in the H23 basis), the decay rate for Z → QQQQ∗, QQ∗Q∗Q∗,

if kinematically allowed, is nonzero if and only if N 6= 0.

Note that the invariant quantity N constructed above has been expressed in terms of

Higgs basis parameters. This means that this invariant quantity depends on the knowledge

of the vacuum, i.e. the minimum of the scalar potential (which is needed to formally define

the Higgs basis). Given an explicitly CP4-invariant scalar potential, one could ask a slightly

different question: is there an invariant quantity that can differentiate between scalar po-

tentials that explicitly preserve or violate the CP2 symmetry, independently of the vacuum.

This question has been recently addressed and answered in ref. [32]. However, it is not clear

that such an invariant quantity can be directly related in practice to a physical observable.

A.5 An alternative Higgs basis

In this paper, we first defined the H23-basis by employing the scalar doublet fields

{H1, H2, H3}, which was one particular choice among possible Higgs bases. An arbi-

trary Higgs basis can be obtained by performing the U(2) basis transformation given by

eqs. (A.22) and (A.24). The corresponding IS scalar potential is given by eq. (A.25), where

the barred coefficients in terms of the unbarred coefficients are given in eqs. (A.26)–(A.32).

In section 3.2, we explored another Higgs basis choice, called the RS-basis, which

employs the scalar doublet fields, {H1,R,S}. The relations between the H23-basis and

RS-basis are given by,

R ≡ 1√
2

(
H2 + iH3

)
=

(
R†

1√
2

(
P + iQ†

)) , S ≡ 1√
2

(
H2 − iH3

)
=

(
S†

1√
2

(
P † + iQ

)) .
(A.81)

46One cannot employ eq. (A.80) to compute N in the real Higgs basis in cases (i) and (ii), since in both

cases, the real Higgs basis lies outside the set of H23 bases. Nevertheless, we have checked that evaluating

N directly in the real Higgs basis in cases (i) and (ii) reproduces the corresponding results obtained in the

H23 basis via eq. (A.80).
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Note that the form of the CP4 transformation in this basis isH1

R
S

 −→
1 0 0

0 0 i

0 −i 0


H

†
1

R†
S†

 . (A.82)

The change of basis from {H1, H2, H3} to {H1, R, S} corresponds to choosing α = β = φ =
1
4π and ψ = −1

2π. Inserting these results into eqs. (A.26)–(A.32) yields,

Z̄2 = Z2 +
1

2
(Z ′3 + Z ′4 − 2 ReZ8) , (A.83)

Z̄ ′3 = −Z ′4 + 2 ReZ8 , (A.84)

Z̄ ′4 =
1

2
(Z ′4 − Z ′3 + 2 ReZ8) , (A.85)

Z̄ ′5 = Z5 , (A.86)

Z̄5 = 0 , (A.87)

Z̄8 = −1

4
(Z ′3 + Z ′4 + 2 ReZ8) + iReZ9 , (A.88)

Z̄9 = ImZ9 + i ImZ8 . (A.89)

Note that in the RS-basis, the invariant N defined in eq. (A.78) is

N = 256Z̄ ′ 45 |Z̄9|2 . (A.90)

In particular, the absence [or presence] of the Z → QQQQ∗, QQ∗Q∗Q∗ decay discussed in

appendix B depends on the [non-]vanishing of Z̄9. These decays are governed by eq. (4.1),

which when expressed in the RS-basis is given by,

δL4h 3
1

2
i(PQ− P †Q†)

[
Z̄9(P † 2 +Q2) + Z̄∗9 (P 2 +Q† 2)

]
. (A.91)

B Z decay into four inert neutral scalars

Consider a universe (not ours) in which the electroweak theory of elementary particles at

the electroweak scale consists of the IS model, with MH±,h± < MQ < 1
4mZ � MP . In

this case, the decay of the Z to four neutral inert scalars would be consistent with a CP4-

symmetric IS scalar potential that does not possess a real scalar basis. Experimentally, the

final state would be detected via the decay Q → (H±, h±) + W ∗∓, with the virtual W ∗∓

decaying to quark or lepton pairs. In this universe, the H±, h± are the lightest particles

of the inert scalar sector and hence stable. Although this is not our universe, this example

provides a proof in principle of the existence of an experimental distinction between the

CP4-conserving/CP2-nonconserving case and the CP4/CP2-conserving case.

In light of eq. (4.1), there are four contributing tree-level Feynman diagrams to the

decay amplitude Z → QQQQ∗, which are shown in figure 2. Employing the Feynman rules

obtained from eq. (4.1) (and including the appropriate symmetry factors in obtaining the
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Z
P

Q(k1)

Q(k2)

Q(k3)

Q∗(k4)

Z
P

Q(k1)

Q(k2)

Q(k3)

Q∗(k4)

Z
P

Q(k1)

Q(k2)

Q(k3)

Q∗(k4)

Z
P ∗

Q(k1)

Q(k2)

Q(k3)

Q∗(k4)

Figure 2. Feynman diagrams for Z → QQQQ∗.

rules for the four-scalar vertex), the invariant matrix element is given by,

iM =
g

2 cos θW

(
ImZ8 + i ImZ9

)
ελ(p) ·

[
p− 2k1

(p− k1)2 −M2
P

+
p− 2k2

(p− k2)2 −M2
P

+
p− 2k3

(p− k3)2 −M2
P

− 3(p− 2k4)

(p− k4)2 −M2
P

]
,

where p is the four-momentum of the Z and the ki are the final state momenta (with k4

the momentum of Q∗). We then square the matrix element and average over the initial

state spins, using

|M|2ave ≡
1

3

∑
λ

|X · ελ(p)|2 = −1

3
XµX

∗
ν

(
gµν − pµpν

m2
Z

)
, (B.1)

where X is the four vector dotted into the polarization vector in the expression for iM.

We shall work in the approximation that MP � mZ and MQ = 0. In this case,

X =
g

M2
P cos θW

(
ImZ8 + i ImZ9

)
(p− 4k4) , (B.2)

where we have used conservation of momentum, p = k1 +k2 +k3 +k4. It then follows after

some simplification (with p2 = m2
Z) that,

|M|2ave =
16g2

3m2
ZM

4
P cos2 θW

[
(ImZ8)2 + (ImZ9)2

]
(p · k4)2 . (B.3)
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The four body decay width for Z → QQQQ∗ is given by

Γ =
1

6

(2π)−8

2mZ

∫ ( 4∏
i=1

d3ki
2Ei

)
δ4(p− k1 − k2 − k3 − k4)|M|2ave , (B.4)

where the factor of 1/6 is due to the three identical Qs in the final state (which means we

overcount by a factor of 3! by integrating over the full phase space).

Using the above results, we obtain,

Γ =
4g2(2π)−8

9m3
ZM

4
P cos2 θW

[
(ImZ8)2 + (ImZ9)2

] ∫ ( 4∏
i=1

d3ki
2Ei

)
δ4(p− k1 − k2 − k3 − k4) (p · k1)2

(B.5)

after changing integration variables k1 ←→ k4.

To perform the phase space integration, we follow ref. [82]. To integrate over d3k1d
3k2

we use,

∫
d3k1

2E1

d3k2

E2
δ4(N − k1 − k2)×


1 = 1

2π,

k1µ = 1
4πNµ,

k1µk1ν = − 1
24π(N2gµν − 4NµNν),

k1µk2ν = 1
24π(N2gµν + 2NµNν),

(B.6)

where N is an arbitrary four-vector. In the present application, N = p − k3 − k4. After

performing this integration, we have two further integrations to do over k3 and k4. It is

convenient to work in the Z rest frame:

p = (mZ ; 0, 0, 0); k3 = E3(1; 0, 0, 1); k4 = E4(1; sin θ, 0, cos θ) . (B.7)

We introduce the following scaled kinematic variables

w ≡ 1− cos θ

2
, y ≡ 2E3

mZ
, z ≡ 2E4

mZ
. (B.8)

Then,∫
d3k3

2E3

d3k4

2E4
=
π2m4

Z

4

∫ 1

0
z dz

{∫ 1−z

0
y dy

∫ 1

0
dw +

∫ 1

1−z
y dy

∫ 1

(y+z−1)/yz
dw

}
. (B.9)

We now evaluate the integral in eq. (B.5). Using the above results,∫
d3k1

2E1

d3k2

E2
δ4(N − k1 − k2) (p · k1)2 = − π

24

{
m2
Z(p− k3 − k4)2 − 4

[
p · (p− k3 − k4)

]2}
=
πm4

Z

24

[
(2− y − z)2 − 1 + y + z − yzw

]
, (B.10)

where N ≡ p− k3 − k4. In obtaining the above result, we have used [cf. eq. (B.7)],

(p− k3 − k4)2 = m2
Z − 2p · (k3 + k4) + 2k3 · k4 = m2

Z(1− y − z + yzw) , (B.11)

p · (p− k3 − k4) = m2
Z

[
1− 1

2
(y + z)

]
. (B.12)
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Hence, after employing eq. (B.9), we end up with

∫ ( 4∏
i=1

d3ki
2Ei

)
δ4(p− k1 − k2 − k3 − k4) (p · k1)2

=
π3m8

Z

96

∫ 1

0
z dz

{∫ 1−z

0
y dy

∫ 1

0
dw +

∫ 1

1−z
y dy

∫ 1

(y+z−1)/yz
dw

}
×
[
(2− y − z)2 − 1 + y + z − yzw

]
=
π3m8

Z

1280
. (B.13)

Collecting all our results, we end up with

Γ =
g2m5

Z

[
(ImZ8)2 + (ImZ9)2

]
32 · 5 · 214 π5M4

P cos2 θW
. (B.14)

Relative to the decay rate of Z into a neutrino pair, Γ(Z → νν̄) = g2mZ/(96π cos2 θW ),

Γ(Z → QQQQ∗)

Γ(Z → νν̄)
=

(ImZ8)2 + (ImZ9)2

3 · 5 · 29 π4

(
mZ

MP

)4

. (B.15)

Finally, we note that the decay rate for Z → QQ∗Q∗Q∗ is identical to the one given

above. Since Q and Q∗ are mass degenerate, the experimentally observable width would

be a factor of 2 times the one given in eq. (B.15), as quoted in eq. (4.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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