

Computational Modeling of Novel Bulk Materials for the Intermediate-Band Solar Cells

Murugesan Rasukkannu,**[†] Dhayalan Velauthapillai,[†] and Ponniah Vajeeston[‡]

[†]Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences, Inndalsveien 28, 5063 Bergen, Norway

[‡]Department of Chemistry, Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway

Supporting Information

ABSTRACT: Research communities have been studying materials with intermediate bands (IBs) in the middle of the band gap to produce efficient solar cells. Cells based on these materials could reach theoretical efficiencies up to 63.2%. In this comprehensive study, we investigate by means of accurate first-principle calculation the electronic band structure of 2100 novel compounds (bulk materials) to discover whether the IB is present in these materials. Our calculations are based on the density functional theory, using the generalized-gradient approximation for exchange and correlation terms and focusing on the band structure, the density of states, and the electron effective masses of the structures in the database. The

Research communities have been studying materials with intermediate bands in the middle of the bandgap to achieve efficient solar cells. Cells based on these materials could reach theoretical efficiencies up to 63.2%.

IB structures are obtained by adding metallic or semimetallic atoms in the bulk material. By means of these calculations, we have clearly identified a number of compounds that may having high potential to be used as photovoltaic materials. We present here the numerical results for 17 novel IB materials, which could theoretically prove to be suitable for photovoltaic applications.

INTRODUCTION

Multi-band gap materials offer the possibility of increasing the efficiency of solar cells beyond the limit of traditional singleband gap solar-cell materials. Intermediate-band (IB) materials are characterized by the splitting of the main band gaps into two or more sub-band gaps by narrow IBs and have been the focus of recent studies.^{1,2} In IB solar cells, an IB material is sandwiched between two ordinary p-type and n-type semiconductors and deed as discriminating contacts to the valence band (VB) and the conduction band (CB), respectively. In IB materials, an electron is promoted from the VB to the CB through the IB. Upon absorption of sub-band gap-energy photons, the electrons transit from VB to CB and later from IB to CB. It will add up to the transition of electrons from VB to CB through conventional VB-to-CB photon absorption.^{1,2} By adopting a hypothesis similar to that of Shockley and Queisser, it was shown in 1997⁴ that balance-limiting efficiencies of 63.2% for IB solar cells and 41% for single-band gap solar cells can be achieved at a concentration of 46 050 suns at earth and sun temperatures of 300 and 6000 K, respectively.

The IB should be partially filled to permit the comparable rates for the low sub-band gap-energy photon absorption processes and should not overlap with either the VB or the CB to avoid fast transitions through thermalizations.⁵ We can consider the IB solar cells as a combination of three cells. Cells representing VB-to-IB and IB-to-CB transitions can be regarded as two cells in series, and the VB-to-CB transition can represent a parallel cell. The cell will have a high tolerance to changes in the solar spectrum. 6

In the mid-20th century, researchers^{7–10} suggested the concept of creating intermediate levels in the middle of a forbidden band gap to increase the maximum photocurrent by doping the semiconductor with a large concentration of impurities. At an early stage, it was believed that these IBs would cause nonradiative recombination. It has been later shown that the nonradiative recombination can be suppressed by using a sufficiently high concentration of dopants.^{10–13}

Two major approaches are considered in fabricating IB solar cells, namely, quantum-dot IBs (QDIBs) and bulk IB solar cells. By using quantum dots with different shapes and sizes, the IB levels can be tuned. The first QDIB was produced in 2004 on the basis of the InAs/GaAs QD material with an efficiency of 15.3%. Energy levels of the confined states in a quantum dot can be used as IB in QDIBs. However, there are many challenges with QDIBs as quantum dots are very small and do not absorb a significant amount of light. With an increasing number of QDs, the cell structure can be damaged, and strain will cause severe damages. At room temperature, the Shockley–Read–Hall recombination is a dominant mechanism that leads to low efficiency in QDIB solar cells due to deeper impurities.

Received:December 21, 2016Accepted:March 31, 2017Published:April 13, 2017

ACS Publications © 2017 American Chemical Society

Figure 1. Band diagram of bulk IB solar cell; E_{vi} —energy gap between the top of the VB and the bottom of an IB, E_{ci} —energy gap between the top of the IB and the bottom of the CB, ΔE_i —width of the IB, E_g —total band gap between the top of the VB and the bottom of the CB. The electronic transitions (V, I), (I, I), (I, C), and (V, C) are also explained.

Table	1.	Calculated	Selected	Narrow-Band	Gan	Semiconductors	with	IBs and	Band	Gan	Type
1 auto	1.	Calculated	ociccica	Trailow-Dana	Uap	ocimeonaucions	VV I LII	IDS and	Danu	Juap	Type

serial no.	chemical formula	Pearson symbol	space group number	band gap $(E_{\rm vi})$	band gap $(E_{\rm ci})$	width of IB (ΔE_i)	total band gap (E_g)	band gap type
1.	K ₆ C ₆₀	cI132	204	0.61	0.28	0.39	1.28	ID
2.	Au2Cs2I6	tI20	139	0.64	1.01	0.7	2.35	ID
3.	$\mathrm{Ag}_{2}\mathrm{GeBaS}_{4}$	tI16	121	0.90	0.35	1.16	2.41	ID

Table 2. Wide-Band Gap 1 Semiconductors with IB Ranging from 2.62 to 3.15	e	v
---	---	---

serial no.	chemical formula	Pearson symbol	space group number	band gap $(E_{\rm vi})$	band gap $(E_{\rm ci})$	width of IB ($\Delta E_{\rm i}$)	total band gap $(E_{\rm g})$	band gap type
1.	CuAgPO ₄	oP56	61	1.27	0.61	0.74	2.62	DB
2.	Ag_2ZnSnS_4	tI16	121	0.47	0.57	1.66	2.70	DB
3.	$Au_2Cs_2Br_6$	tI20	139	0.67	1.23	0.81	2.71	DB
4.	Ag_3AsS_4	oP16	31	0.73	1.04	1.00	2.77	DB
5.	Ag ₂ KSbS ₄	tI16	121	0.81	1.08	0.94	2.93	ID
6.	Na ₃ Se ₄ Sb	cI16	217	1.02	1.24	0.71	2.97	DB
7.	AgK_2SbS_4	oP32	118	1.52	1.03	0.47	2.97	DB
8.	$AsRb_3Se_4$	oP32	62	1.32	0.98	0.97	3.15	DB

Several research groups have produced QDIB solar cells,^{14–22} and efficiencies over 18% have been reported by Blokhin et al.²⁰

The second type of IB solar cells is based on bulk materials. The IB was detected through photoreflectance measurements in some bulk materials, and this formation was attributed to band anticrossing and heavily mismatched alloys.²³ The first of these bulk materials, ZnMnTeO, was developed by Walukiewicz and co-workers.²³ Later, numerous quantum-accurate calculations have been performed on VInS bulk material, characterized by an IB containing Fermi levels. Phillips and coworkers developed bulk IB solar cells using ZnTe doped with an oxygen atom and obtained higher efficiencies and shortcircuit current than QDIB solar cells.^{24,25} The band gap properties of bulk materials are widely studied, and the technologies are well verified by researchers.^{5,26-33} However, the search for intermediate-band gap materials continues, to model high-efficiency IB solar cells. Figure 1 shows the band diagram of an IB solar cell with E_{g} , the total band gap between the top of the VB and the bottom of the CB. In the figure, E_{vi} is the energy gap between the top of the VB to the bottom of an IB, E_{ci} is the energy gap between the top of the IB to the bottom of the CB, and ΔE_i is the width of the IB. Furthermore,

the electronic transitions of (V, I), (I, I), (I, C), and (V, C) are schematically depicted in the figure.

In the present work, we study 2100 structures with the aim of identifying ideal candidates for solar-cell materials. We employ density functional theory (DFT) calculations to verify the presence of an IB, isolated in the band gap of the semiconductor compounds of bulk material compounds with different substitutional impurities forming ternary alloys. The calculated band gap values are used to identify the most suitable compounds for solar-cell applications. We also present density of states (DOS) and effective mass calculations for the selected IB materials.

RESULTS AND DISCUSSION

The main focus of the present work is to find the potential IB materials from the selected 2100 compounds. Because of the very high computational cost, we mainly focused on the electronic structure, the DOS and effective mass calculations. The hybrid electronic structure and optical properties of the selected IB compounds are under investigation, and the results will be published in a forthcoming work. We employ the DFT method to elucidate the band structure arrangement of 2100

ACS Omega

bulk materials, vital for the interaction of IB and could be potent solar cells with sufficient band gap. The DFT approaches to reveal the significant and computational features of the bulk materials and these features can be used as virtual screenings of band structures of the 2100 compounds to identify the novel IB compounds. From the first screening, we observed 312 compounds having an IB with the maximum of the VB at the Fermi level. Among these, 282 compounds were selected for further analysis and 30 compounds were found as heavy elements. After carrying out a detailed analysis, we found out that only 17 compounds among the starting 282 would be acceptable semiconductor materials for photovoltaic applications. The rest were found to be perfect insulators, with band gap values larger than 3.51 eV.^{34} The electronic properties of these 17 compounds are presented in Tables 1–3. It is well

Table 3. Calculated Effective Masses of Narrow-Band Gap Compounds; Light Holes $(m^*_{\rm lh})$, Heavy Holes $(m^*_{\rm hh})$, and Electrons $(m^*_{\rm e})$

serial no.	plane directions	compound	$m^*_{lh} \cdot m_e$	$m^*_{hh} \cdot m_e$	$m_{e}^{*}\cdot m_{e}$
1.	110	K ₆ C ₆₀	0.092	0.164	0.216
2.	110	$Au_2Cs_2I_6$	0.096	0.265	0.095
3.	110	Ag_2GeBaS_4	0.059	0.114	0.021

known that the band gap (E_g) values of solids obtained from usual DFT calculations are systematically underestimated due to discontinuity in the exchange-correlation potential. Thus, the calculated E_g values are typically 30–50% smaller than those measured experimentally.³⁵ It is recognized that the theoretically calculated E_g for semiconductors and insulators are strongly dependent on the approximations used, particularly on the exchange and correlation terms of the potential. In the present work, because of the large number compounds involved in the screening process, we have used only generalizedgradient approximation. However, the overall structure is not going to change except the band gap value irrespective of the approximation.

We have chosen to divide the 17 compounds with IBs into three groups depending on the magnitude of their band gap values. The first group of three compounds is named as narrowband gap semiconductors, which is characterized by band gaps varying from 1.2 to 2.5 eV. The second group of eight compounds is named wide-band gap 1 semiconductors, which includes materials with band gaps varying from 2.6 to 3.15 eV. Finally, the third group is named as wide-band gap 2 semiconductors. In this case, the band gap values vary from 3.15 to 3.5 eV. The band structures of these compounds are presented in Figures 2a-c, 3a-d, 4a-d, and 5a-f, and we calculate the total band gaps, band gaps $E_{vir} E_{cir}$ and the widths of the IB (ΔE_i) bands for all of the compounds. The electronic structure properties of these compounds are presented in Tables 1, 2, and S1.

As presented in Table 1, narrow-band gap semiconductors K_6C_{60} (alkali fullerides), $Au_2Cs_2I_6$, and Ag_2GeBaS_4 had total indirect band gaps of 1.28, 2.35, and 2.41 eV, respectively.

From Figure 2a, the calculated values for K_6C_{60} are: The total indirect band gap is 1.28 eV, band gaps E_{vi} and E_{ci} are 0.61 and 0.28 eV, respectively, and the width of the IB is 0.39 eV. The band gap of 1.28 eV makes an optimal compound for the PV applications as their light responses are in the infrared region. Also, the IB will help the material to absorb additional photons with lower energy. It should be noted that K_6C_{60} is already

Article

Figure 2. Calculated electronic band structures of (a) $K_6C_{60\prime}$ (b) $Au_2Cs_2I_{6\prime}$ (c) and $Ag_2GeBaS_4.$ The Fermi level is set to zero.

known as a semiconductor and the nature of the band structure is not well explained about the IB. However, they explained that the electronic structure of crystalline K_6C_{60} is indirect band gap of 0.48 eV.³⁶ The DOS around the VB maximum is very similar to that of the isolated C_{60} molecule, and the K atoms are almost completely ionized.³⁶

Similarly, from Figure 2b, the calculated values for Au₂Cs₂I₆ are as follows: The total indirect band gap is 2.35 eV, band gaps $E_{\rm vi}$ and $E_{\rm ci}$ are 0.64 and 1.01 eV, respectively, and the width of the IB, $\Delta E_{\rm i}$ is 0.70 eV. The band gap of 2.35 eV for Au₂Cs₂I₆ shows that the material has its response to light in the visible

Figure 3. Calculated electronic band structures of (a) CuAgPO₄ (up and down spin bands; up—black, down—red), (b) Ag₂ZnSnS₄, (c) Au₂Cs₂Br₆, and (d) Ag₃AsS₄. The Fermi level is set to zero.

region. For Au₂Cs₂I₆, the IB region has the optimal thickness to balance the absorption rate and recombination rate.³⁷ In Figure 2b, Au₂Cs₂I₆ has a broad band dispersion of IB, enough to produce an optical depth for subgap light, ensuring the compound to absorb subgap light so that it can be considered as a potential PV material.³⁷

From Figure 2c, the calculated values for Ag₂GeBaS₄ are: The total indirect band gap is 2.41 eV, band gaps E_{vi} and E_{ci} are 0.90 and 0.35 eV, respectively, and the width of the IB is 1.16 eV. The band gap of 2.35 eV for Ag₂GeBaS₄ shows that the material has its response to light in the visible region. Here, we observe that the width of the IB, ΔE_{i} , in Ag₂GeBaS₄ is much higher than E_{ci} and E_{vi}. Because of the broadness of the IB, photons can also be absorbed by the electrons from lowerenergy states of the IB to excite to higher-energy states of IB. When the IB broadens, the absorption of photons for the transition of electrons from the VB to lower-energy states of IB as well as from the higher-energy states of IB to CB will be reduced. These effects will lead to lower efficiencies of the solar cell based on Ag₂GeBaS₄. It has been shown that the efficiency limit for an IB solar cell is reduced from higher to lower efficiencies if the width is infinitesimally significant.³⁸ It is important to note that all of these three materials, K_6C_{60} , Au₂Cs₂I₆, and Ag₂GeBaS₄, present indirect band gaps.

As presented in Table 2, the wide-band gap semiconductors CuAgPO₄, Ag₂ZnSnS₄, Au₂Cs₂Br₆, Ag₃AsS₄, Ag₂KSbS₄, Na₃Se₄Sb, AgK₂SbS₄, and AsRb₃Se₄ had the total band gaps of 2.62, 2.70, 2.71, 2.77, 2.93, 2.97, 2.97, and 3.15 eV, respectively. Figures 3a-d and 4a-d show the calculated band structures of CuAgPO₄, Ag₂ZnSnS₄, Au₂Cs₂Br₆, Ag₃AsS₄, Ag2KSbS4, Na3Se4Sb, AgK2SbS4, and AsRb3Se4 with IB, respectively. The calculated values of $E_{\rm vi}$, $E_{\rm ci}$, and $\Delta E_{\rm i}$, and the total band gaps are presented in Table 2. The band gap type of the above eight compounds is direct band gap except for Ag₂KSbS₄ (indirect band gap). From Figure 2c, the calculated values for Ag₂ZnSnS₄ are: The total direct band gap is 2.70 eV, band gaps E_{vi} and E_{ci} are 0.47 and 0.57 eV, respectively, and the width of the IB is 1.66 eV. The band gap of 2.70 eV for Ag₂ZnSnS₄ shows that the material has its response to light in the visible region. Here, we observe that the width of the IB, ΔE_{ii} in Ag₂ZnSnS₄ is much higher than E_{ci} and E_{vi} . The increase in the IB width leads to a decrease in efficiency; however, it is still significantly higher than that of a single-band gap solar cell.³⁹ The band gaps associated with optimum efficiencies are constant for all IB solar cells when the IB width exceeds 2 eV.³⁹ Because of the display of the small amount of data, we added the remaining six compounds in the Supporting Information.

In general, the electrochemical potentials of the electrons in the different bands are close to the edges of the bands. The

Figure 4. Calculated electronic band structures of (a) Ag₂KSbS₄, (b) Na₃Se₄Sb, (c) AgK₂SbS₄, and (d) AsRb₃Se₄. The Fermi level is set to zero.

Figure 5. Total and site-projected DOS of Au₂Cs₂I₆. The Fermi level is set to zero and marked by a vertical dotted line.

open-circuit voltage of any solar cell is the difference between the CB minimum at the electrode in contact with the n-type side and the VB maximum at the electrode in contact with the p-type side. Thus, the maximum photovoltage of IB solar cells on the materials presented in Tables 1 and S1 is limited to 2.41 and 3.51 eV, respectively. Ag_2GeBaS_4 is still capable of absorbing energy photons above 0.28 eV in Table 1 and Ag_6SiSO_8 of 0.47 eV in Table 2. IB solar cells can deliver a maximum photovoltage by absorbing two sub-band gap

photons to produce one high-energy electron; the laws of thermodynamics would be violated if this were not the case.¹

All of the 17 semiconductor compounds presented in this work have properties that make them suitable for PV applications; we show here the DOS analysis for three compounds, namely, $Au_2Cs_2I_6$, Ag_2GeBaS_4 , and Ag_2ZnSnS_4 . The band gaps of 1.28 and 2.41 eV, respectively, make $Au_2Cs_2I_6$ and Ag_2GeBaS_4 optimal PV materials. Solar cells based on Ag_2ZnSnS_4 materials are interesting as a high efficiency gain for these types of cells has been recently observed.⁴⁰ There are also reports on the possibilities to integrate Ag_2ZnSnS_4 in the Cubased solar cells as an additional absorption layer.⁴⁰ The total DOS of $Au_2Cs_2I_6$ in Figure 5 shows that the IB is formed in the energy region between 0.64 and 1.34 eV. The IB composed of I 2p are described by the projected density of states (PDOS), as shown in Figure 5. Figure 6 shows that the IB is formed in the

Figure 6. Total and site PDOS of Ag_2GeBaS_4 . The Fermi level is set to zero and marked by a vertical dotted line.

energy region between 0.90 and 2.06 eV of the total DOS of Ag_2GeBaS_4 . We have also plotted the PDOS at the IB mainly composed of the S 2p band and the Ge 4s band as well as the smaller mixing of the Ba 4d band. For Ag_2ZnSnS_4 , the IB is formed in the energy region between 0.47 and 2.13 eV, and the electron density, as shown in Figure 7 better describes the states. The PDOS of Ag_2ZnSnS_4 at the IB mainly composed of the S 2p band and the S 2p band is shown in Figure 7. The Ag_2ZnSnS_4 has an energy gap of 2.62 eV. We found the excellent IB peaks between CB and VB in the three materials, namely, $Au_2Cs_2I_6$, Ag_2GeBaS_4 , and Ag_2ZnSnS_4 . We observed that the p and s states play a vital role in the band structure for the applicability of semiconductor for PV applications.

In Figures 5–7, broadening of IB indicates a highly parabolic dispersion relationship that induces lower values for the DOS.⁴¹ From Tables 3 and 4, the electron effective masses of Au₂Cs₂I₆, Ag₂GeBaS₄, and Ag₂ZnSnS₄ are $0.095m_e$, $0.021m_e$, and $0.025m_e$, respectively. Lower values for the electron effective mass are as expected because the effective mass is directly related to the values of DOS. In addition, the IB region has the optimal thickness to balance the absorption rate and the recombination rate.³⁷ We may expect the effective IBSC to have IB thickness enough to ensure these materials to absorb sufficient subgap

Figure 7. Total and site PDOS of Ag_2ZnSnS_4 . The Fermi level is set to zero and marked by a vertical dotted line.

Table 4. Effective Mass of Wide-Band Gap IB Compounds

serial no.	plane directions	compound	$m^*_{lh} \cdot m_e$	$m^*_{\rm hh} \cdot m_{\rm e}$	$m_{e}^{*} \cdot m_{e}$
1.	100	CuAgPO ₄	3.875	4.969	14.229
2.	110	Ag_2ZnSnS_4	0.033	0.237	0.025
3.	110	$Au_2Cs_2Br_6$	0.870	1.810	0.806
4.	100	Ag ₃ AsS ₄	0.200	0.234	0.012
5.	110	Ag ₂ KSbS ₄	0.125	0.526	0.034
6.	110	Na ₃ Se ₄ Sb	0.377	0.381	0.085
7.	100	AgK ₂ SbS ₄	1.524	12.025	1.007
8.	100	AsRb ₃ Se ₄	6.213	84.330	2.595
9.	100	AsCs ₃ Se ₄	8.213	24.794	3.561
10.	110	Al ₂ HgSe ₄	0.070	0.255	0.021
11.	110	PdPbF ₄	0.391	0.592	0.094
12.	100	$C_2 Te_2 F_4$	3.293	5.165	7.659
13.	100	AlMoVO ₇	1.680	2.756	1.959
14.	110	Ag_6SiSO_8	0.145	2.634	0.053

light. We conclude that the conversion efficiency of bulk IBSC strongly depends not only on the band gap but also on the position and thickness of IB and DOS.^{37,41}

EFFECTIVE MASS CALCULATION

The calculation of the effective mass is important for a detailed study of energy levels in solar devices. The conductivity effective masses of electrons and holes affect the mobility, electrical resistivity, and free-carrier optical response of photovoltaic applications.⁴² To investigate the electron/hole conduction properties of the identified IB materials, we have computed the electron/hole effective mass at the VB/CB. For an excellent IB, a low effective mass corresponds to a high mobility of the electrons/holes at the VB/CB and consequently high conductivity. For the EM calculation, we have employed the effective mass calculator (EMC).⁴³ EMC implements the calculation of the effective masses at the bands extreme using the finite difference method (FDM) (not the band-fitting method). The effective mass (*m**) of charge carriers is defined as⁴³

$$\left(\frac{1}{m^*}\right)_{ij} = \frac{1}{\hbar^2} \frac{\partial^2 E_n(\vec{k})}{\partial k_i k_j}, \ i, j = x, y, z \tag{1}$$

where x, y, and z are the directions in the reciprocal Cartesian space $(2\pi/A)$, $E_n(k)$ is the dispersion relation for the *n*th electronic band, and indices *i* and *j* denote reciprocal components. The explicit form of the symmetric tensor in the right-hand side of eq 1 is⁴³

$$\frac{\mathrm{d}^{2}E}{\mathrm{d}k^{2}} = \begin{pmatrix} \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{x}^{2}} & \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{x} \, \mathrm{d}k_{y}} & \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{x} \, \mathrm{d}k_{z}} \\\\ \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{x} \, \mathrm{d}k_{y}} & \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{y}^{2}} & \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{y} \, \mathrm{d}k_{z}} \\\\ \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{x} \, \mathrm{d}k_{z}} & \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{y} \, \mathrm{d}k_{z}} & \frac{\mathrm{d}^{2}E}{\mathrm{d}k_{z}^{2}} \end{pmatrix}$$
(2)

The effective mass components are the inverse of the eigenvalues of eq 2, and the principal directions correspond to the eigenvectors.⁴³

To better understand the effective mass of semiconductors, it is not possible to fit the band to the quadratic polynomial. In this case, the results from the parabolic fitting can be reproduced with the FDM.⁴³ The FDM employed to solve the effective mass approximation equations because the spurious solutions can be included in the formalism, and the FDM can be solved by the hard equation having a high degree of polynomial.⁴⁴ This approach is quite reliable, and it was successfully applied for several classes of materials in the literature.⁴³ We present the effective masses of 14 compounds in Tables 3 and 4. The effective mass of an electron was computed from the minimum of the CB; the effective mass of the heavy hole was computed from the maximum of the first VB curvature, whereas the second VB curvature was used for the light hole. In the case of materials presented in Tables 3 and 4, the PBE functional predicts the effective masses of the light hole, heavy hole, and electron, which are parabolic-fitted values with a step size of 0.05 (1/bohr). The three narrow-band gap compounds, K₆C₆₀, Au₂Cs₂I₆, and Ag₂GeBaS₄, have low effective masses, as presented in Table 3.

The thirteen wide-band gap compounds in Table 4 have effective masses of electron lower than those of light holes and heavy holes except for CuAgPO₄. The effective masses of electron of photovoltaic materials silicon (Si), germanium (Ge), and gallium arsenide (GaAs) are $0.26m_e$, $0.067m_e$, and $0.12m_{e}$, respectively.^{45,46} The above three photovoltaic materials are single-band gap materials. It is well known that the band gaps of Si, Ge, and GaAs are 1.12, 0.66, and 1.424 eV, respectively. The maximum energy conversion of silicon and GaAs solar cells can reach 30% efficiency.⁴⁸ We can use germanium as the doping material in silicon solar cells because of its low band gap. We noticed that the effective masses of the electron for the silicon and GaAs are low.⁴⁵ From our results, we observed that the effective masses of electron for K_6C_{60} Au₂Cs₂I₆, and Ag₂GeBaS₄ are $0.216m_e$, $0.095m_e$, and $0.021m_e$, respectively.

From Table 4, we noted that the effective masses of electron for Ag₂ZnSnS₄, Au₂Cs₂Br₆, Ag₃AsS₄, Ag₂KSbS₄, Na₃Se₄Sb, Al₂HgSe₄, PdPbF₄, Ag₆SiSO₈ are $0.025m_e$, $0.806m_e$, $0.012m_e$, $0.034m_e$, $0.085m_e$, $0.021m_e$, $0.094m_e$, and $0.053m_e$, respectively. Hence, the effective masses of electron of our narrow-band gap and wide-band gap materials are approximately equal to those of the photovoltaic materials. From Table 4, the effective mass of an electron is $0.025m_e$ for Ag₂ZnSnS₄ in [110] plane direction. We observed from Jing et al. that the effective mass of an electron is $0.16m_e$ for Ag₂ZnSnS₄ in [100] plane direction.⁴² Hence, we found a lower effective mass in [110] direction than in [100] direction. These effective masses are better described by the band structures of the most curved parabolic band, as shown in Figures 3–5. Because of the effective masses for the presented materials, in this article, the electron mobility from VB to CB will be higher and the recombination effect will be lower.

CONCLUSIONS

We have carried out a comprehensive study of the electronic band structures of 2100 new bulk compounds using firstprinciple calculations with the DFT. Among these compounds, we have found that only 17 compounds have IBs. These compounds could be potentially used as photovoltaic materials based on the detailed studies of band structure, the DOS and effective mass calculations. Our effective mass calculations show that these compounds have high electron/hole conduction properties, which make them suitable for PV applications. Although we have studied 2100 new compounds from the ICSD database, our study clearly demonstrates the possibility of having more IB materials from the list of currently known compounds from the database. Thus, we are in the process of investigating more IB-compounds and results of the detailed analysis will be published in a forthcoming article.

COMPUTATIONAL DETAILS

Total energies have been calculated by the projected augmented plane-wave (PAW) implementation of the Vienna ab initio simulation package.⁴⁷ Ground-state geometries were determined by minimizing stresses and the Hellman-Feynman forces using the conjugate-gradient algorithm with a force convergence threshold if 10^{-3} eV Å⁻¹. Brillouin-zone integration was performed using the Monkhorst-Pack kmeshes with a Gaussian broadening of 0.1 eV. A 600 eV kinetic energy cutoff was used for the plane-wave expansion. All of these calculations usually set to use approximately the same density of k-points in the reciprocal space for all structures. Because a large variety of structures was considered in this study, both metallic and insulating, we ensured that the *k*-points mesh was dense enough to determine the total energy with meV/atom accuracy. All structures containing transition elements are treated using the spin-polarized approach. In some cases, the starting magnetization vanished as selfconsistency was reached. For all of these computations, the starting structures were directly taken from the ICSD database and input parameters, and file generation was done automatically by locally developed code "Tool". For the calculation of band structure, the k-point files were generated again with the help of locally developed code "KPATH". The information about the high symmetric points of the k-vector in the Brillouin zone was taken from the Bilbao Crystallographic Server.^{48–50} All of the calculated electronic structures of the studied systems are documented in the DFTBD database. For the transition metals, we have used exchange-correlation functional with the Hubbard parameter correction (GGA+U), following the rotationally invariant form. The full details about the computed U and J values are presented in the DFTBD database website. $^{51-54}$ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.6b00534.

Tables, list of computed compounds and figures (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: rmu@hvl.no.

ORCID 💿

Murugesan Rasukkannu: 0000-0002-2167-3242

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Bergen University College for financially supporting M.R. P.V. and D.V. acknowledge the NOTUR computing facilities of project. numbers NN2867K and NN2875K, which have been used to conduct the calculations presented in this article, and further acknowledge Dr.Vishnu for fruitful discussions.

REFERENCES

(1) Luque, A.; Marti, A.; Stanley, C. Understanding Intermediate-Band Solar Cells. *Nat. Photonics* **2012**, *6*, 146–152.

(2) Luque, A.; Marti, A. A metallic intermediate band high efficiency solar cell. *Prog. Photovoltaics* **2001**, *9*, 73–86.

(3) Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. **1961**, 32, 510–519.

(4) Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. *Phys. Rev. Lett.* **1997**, 78, 5014.

(5) Palacios, P.; Aguilera, I.; Sánchez, K.; Conesa, J.; Wahnón, P. Transition-metal-substituted indium thiospinels as novel intermediateband materials: prediction and understanding of their electronic properties. *Phys. Rev. Lett.* **2008**, *101*, No. 046403.

(6) Green, M. A. Multiple band and impurity photovoltaic solar cells: general theory and comparison to tandem cells. *Prog. Photovoltaics* **2001**, *9*, 137–144.

(7) Shockley, W.; Read, W., Jr. Statistics of the recombinations of holes and electrons. *Phys. Rev.* **1952**, *87*, 835–842.

(8) Hall, R. N. Electron-hole recombination in germanium. *Phys. Rev.* **1952**, *87*, 387.

(9) Lang, D.; Henry, C. Nonradiative recombination at deep levels in GaAs and GaP by Lattice-Relaxation Multiphonon Emission. *Phys. Rev. Lett.* **1975**, 35, 1525.

(10) Wolf, M. Limitations and possibilities for improvement of photovoltaic solar energy converters: part I: considerations for earth's surface operation. *Proc. IRE* **1960**, *48*, 1246–1263.

(11) Ekins-Daukes, N.; Honsberg, C.; Yamaguchi, M. In Signature of Intermediate Band Materials from Luminescence Measurements, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, 2005; IEEE, 2005; pp 49–54.

(12) Strandberg, R.; Reenaas, T. W. Photofilling of intermediate bands. J. Appl. Phys. 2009, 105, No. 124512.

(13) Levy, M. Y.; Honsberg, C. Solar cell with an intermediate band of finite width. *Phys. Rev. B* 2008, 78, No. 165122.

(14) Hubbard, S.; Cress, C.; Bailey, C.; Raffaelle, R.; Bailey, S.; Wilt, D. Effect of strain compensation on quantum dot enhanced GaAs solar cells. *Appl. Phys. Lett.* **2008**, *92*, No. 123512.

(15) Oshima, R.; Takata, A.; Okada, Y. Strain-compensated InAs/ GaNAs quantum dots for use in high-efficiency solar cells. *Appl. Phys. Lett.* **2008**, 93, No. 083111. (16) Kechiantz, A.; Sun, K.; Kechiyants, H.; Kocharyan, L. Selfordered Ge/Si quantum dot intermediate band photovoltaic solar cells. *ISJAEE* **2005**, *12*, 85–87.

(17) Laghumavarapu, R.; El-Emawy, M.; Nuntawong, N.; Moscho, A.; Lester, L.; Huffaker, D. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. *Appl. Phys. Lett.* **200**7, *91*, 243115.

(18) Popescu, V.; Bester, G.; Hanna, M. C.; Norman, A. G.; Zunger, A. Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga) As/Ga (As, P) quantum dot solar cells. *Phys. Rev. B* **2008**, *78*, No. 205321.

(19) Bailey, C. G.; Forbes, D. V.; Raffaelle, R. P.; Hubbard, S. M. Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. *Appl. Phys. Lett.* **2011**, *98*, No. 163105.

(20) Blokhin, S.; Sakharov, A.; Nadtochy, A.; Pauysov, A.; Maximov, M.; Ledentsov, N.; Kovsh, A.; Mikhrin, S.; Lantratov, V.; Mintairov, S.; et al. AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs. *Semiconductors* **2009**, *43*, 514–518.

(21) Guimard, D.; Morihara, R.; Bordel, D.; Tanabe, K.; Wakayama, Y.; Nishioka, M.; Arakawa, Y. Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. *Appl. Phys. Lett.* **2010**, *96*, No. 203507.

(22) Zhou, D.; Sharma, G.; Thomassen, S.; Reenaas, T.; Fimland, B. Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy. *Appl. Phys. Lett.* **2010**, *96*, No. 061913.

(23) Walukiewicz, W.; Shan, W.; Yu, K.; Ager, J., III; Haller, E.; Miotkowski, I.; Seong, M.; Alawadhi, H.; Ramdas, A. Interaction of localized electronic states with the conduction band: Band anticrossing in II–VI semiconductor ternaries. *Phys. Rev. Lett.* **2000**, *85*, 1552.

(24) Wang, W.; Lin, A. S.; Phillips, J. D. Intermediate-band photovoltaic solar cell based on ZnTe: O. *Appl. Phys. Lett.* **2009**, *95*, No. 011103.

(25) Wang, W.; Lin, A. S.; Phillips, J. D.; Metzger, W. K. Generation and recombination rates at ZnTe: O intermediate band states. *Appl. Phys. Lett.* **2009**, *95*, No. 261107.

(26) Antolín, E.; Martí, A.; Olea, J.; Pastor, D.; González-Díaz, G.; Mártil, I.; Luque, A. Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. *Appl. Phys. Lett.* **2009**, *94*, No. 042115.

(27) Wahnón, P.; Tablero, C. Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials. *Phys. Rev. B* 2002, *65*, No. 165115.

(28) Ling, C.; Zhou, L. Q.; Banerjee, D.; Jia, H. Band structures of ZnTe: O alloys with isolated oxygen and with clustered oxygen impurities. *J. Alloys Compd.* **2014**, *584*, 289–294.

(29) Strandberg, R. Evaluation of a selection of intermediate band materials based on their absorption coefficients. *IEEE J. Photovoltaics* **2013**, *3*, 997–1003.

(30) Aguilera, I.; Palacios, P.; Sánchez, K.; Wahnón, P. Theoretical optoelectronic analysis of $MgIn_2S_4$ and $CdIn_2S_4$ thiospinels: effect of transition-metal substitution in intermediate-band formation. *Phys. Rev. B* **2010**, *81*, No. 075206.

(31) Kong-Ping, W.; Shu-Lin, G.; Jian-Dong, Y.; Kun, T.; Shun-Ming, Z.; Meng-Ran, Z.; You-Rui, H.; Rong, Z.; You-Dou, Z. Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1 - xOx (Y = S, Se, Te) semiconductors by first-principles calculations. *Chin. Phys. B* **2013**, *22*, No. 107103.

(32) Palacios, P.; Wahnón, P.; Pizzinato, S.; Conesa, J. C. Energetics of formation of $TiGa_3As_4$ and $TiGa_3P_4$ intermediate band materials. *J. Chem. Phys.* **2006**, *124*, No. 014711.

(33) Sánchez, K.; Aguilera, I.; Palacios, P.; Wahnón, P. Assessment through first-principles calculations of an intermediate-band photo-voltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin. *Phys. Rev. B* **2009**, *79*, No. 165203.

(34) Huang, F.-W.; Sheu, J.-K.; Lee, M.-L.; Tu, S.-J.; Lai, W.-C.; Tsai, W.-C.; Chang, W.-H. Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection. *Opt. Express* **2011**, *19*, A1211–A1218.

(35) Lundqvist, S.; March, N. H. Theory of the Inhomogeneous Electron Gas; Springer US, 1983; pp 309–389.

(36) Erwin, S. C.; Pederson, M. R. Electronic structure of crystalline $K_{\delta}C_{60}$. *Phys. Rev. Lett.* **1991**, 67, 1610.

(37) Sullivan, J. T.; Simmons, C. B.; Buonassisi, T.; Krich, J. J. Targeted search for effective intermediate band solar cell materials. *IEEE J. Photovoltaics* **2015**, *5*, 212–218.

(38) Levy, M. Y.; Honsberg, C. Solar cell with an intermediate band of finite width. *Phys. Rev. B* 2008, 78, No. 165122.

(39) Levy, M. Y.; Honsberg, C. Intraband absorption in solar cells with an intermediate band. *J. Appl. Phys.* **2008**, *104*, No. 113103.

(40) Jing, T.; Dai, Y.; Ma, X.; Wei, W.; Huang, B. Electronic Structure and Photocatalytic Water-Splitting Properties of Ag₂ZnSn (S1–x Se x)₄. *J. Phys. Chem. C* **2015**, *119*, 27900–27908.

(41) Okada, Y.; Ekins-Daukes, N.; Kita, T.; Tamaki, R.; Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C.; Farrell, D.; Yoshida, K.; et al. Intermediate band solar cells: Recent progress and future directions. *Appl. Phys. Rev.* **2015**, *2*, No. 021302.

(42) Riffe, D. M. Temperature dependence of silicon carrier effective masses with application to femtosecond reflectivity measurements. *J. Opt. Soc. Am. B* **2002**, *19*, 1092–1100.

(43) Fonari, A.; Sutton, C. Validation of the Effective Masses Calculated Using Finite Difference Method on a Five-Point Stencil for Inorganic and Organic Semiconductors. 2013, arXiv:condensed matter/1302.4996. arXiv.org e-Print archive. https://arxiv.org/abs/ 1302.4996.

(44) Cartoixa, X.; Ting, D.-Y.; McGill, T. Numerical spurious solutions in the effective mass approximation. *J. Appl. Phys.* **2003**, *93*, 3974–3981.

(45) Van Zeghbroeck, B. *Principles of Semiconductor Devices*; Colarado University, 2004.

(46) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency Tables (Version 45). *Prog. Photovoltaics* **2015**, 23, 1–9.

(47) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **1996**, *54*, 11169–11186.

(48) Aroyo, M.; Perez-Mato, J.; Orobengoa, D.; Tasci, E.; De La Flor, G.; Kirov, A. Crystallography online: Bilbao crystallographic server. *Bulg. Chem. Commun.* **2011**, *43*, 183–197.

(49) Aroyo, M. I.; Perez-Mato, J. M.; Capillas, C.; Kroumova, E.; Ivantchev, S.; Madariaga, G.; Kirov, A.; Wondratschek, H. Bilbao Crystallographic Server: I. Databases and crystallographic computing programs. Z. Kristallogr. - Cryst. Mater. **2006**, 221, 15–27.

(50) Aroyo, M. I.; Kirov, A.; Capillas, C.; Perez-Mato, J.; Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2006**, *62*, 115–128.

(51) Dudarev, S.; Botton, G.; Savrasov, S. Y.; Szotek, Z.; Temmerman, W.; Sutton, A. Electronic Structure and Elastic Properties of Strongly Correlated Metal Oxides from First Principles: LSDA + U, SIC-LSDA and EELS Study of UO_2 and NiO. *Phys. Status Solidi A* **1998**, *166*, 429–443.

(52) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.

(53) Liechtenstein, A.; Anisimov, V.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1995**, *52*, No. R5467.

(54) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.

Computational Modeling of New bulk materials for the Intermediate Band Solar cells

Murugesan Rasukkannu¹, Dhayalan Velauthapillai¹, Ponniah Vajeeston² ¹Western Norway University of Applied Sciences, Department of Computing, Mathematics and Physics, Inndalsveien 28, Box 5063, Bergen, Norway

²Center for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Box 1033 Blindern N-0315, Oslo, Norway

Supporting information, tables, list of computed compounds and figures

The wide-band semiconductors AsCs₃Se₄, Al₂HgSe₄, C₂Te₂F₄, PdPbF₄, AlMoVO₇ and Ag₆SiSO₈ have the total bandgap vary from 3.26 to 3.51 eV (see Table S1). Figure S5(a-f) shows the calculated band structure with IB of AsCs₃Se₄, Al₂HgSe₄, C₂Te₂F₄, PdPbF₄, AlMoVO₇ and Ag₆SiSO₈ respectively. The calculated values of E_{vi} , E_{ci} , ΔE_i and the total bandgaps are presented in . The bandgap types of over six compounds are the direct bandgap except for the indirect bandgap of C₂Te₂F₄ and PdPbF₄. From figure S5b, the calculated values for Al₂HgSe₄ are: total direct bandgap is 3.28 eV, whereas the bandgap E_{vi} is 1.41 eV. The transition between IB to CB is fast because the bandgap E_{ci} is 0.04 eV. However, the width of IB is 1.83 eV, ΔE_i in Al₂HgSe₄, which is much higher than E_{ci} and E_{vi} .

Figure S 1 Calculated electronic band structure of (a) $AsCs_3Se_4$, (b) Al_2HgSe_4 , (c) $C_2Te_2F_4$ and (d) $PdPbF_4$. (e) $AlMoVO_7$ and (f) Ag_6SiSO_8 . The fermi level is set to zero.

Serial no.	Chemical Formula	Pearson symbol	Space group number	Bandgap (E _{vi})	Bandgap (E _{ci})	Width of IB ΔE _i	Total Bandgap (Eg)	Bandgap type
1.	AsCs ₃ Se ₄	oP32	62	1.49	1.04	0.73	3.26	DB
2.	Al ₂ HgSe ₄	tI14	121	1.41	0.04	1.83	3.28	DB
3.	$C_2Te_2F_4$	mP32	4	1.67	1.08	0.58	3.33	ID
4.	PdPbF ₄	tI24	140	1.92	0.8	0.61	3.33	ID
5.	AlMoVO ₇	oP40	62	2.31	0.72	0.46	3.49	DB
6.	Ag ₆ SiSO ₈	tI64	141	0.16	0.71	2.64	3.51	DB

Table S1. Wide-band 2 semiconductors with intermediate band ranging from 3.15 eV to 3.51 eV

Ground state structure of Ag₂ZnSnS₄:

In literature two types of tetragonal structures I-4 (kesterite-type; space group 82) and I-42m (stannite-type; space group 121) are described for Ag_2ZnSnS_4 . Both of these two modifications are having similar atomic arrangement (see **Figure S 2**) and are highlighted by square box in **Figure S 2**. Our total energy calculation predicted that kesterite-type structure is energetically favourable for Ag_2ZnSnS_4 compound (see **Figure S 3**). This finding is consistence with the recent experimental findings by Gong *et al.* [1] The calculated structural parameters and atomic positions are well fitted with the experimental findings. The involved energy difference between the two structures is 0.14 eV/f.u.

Figure S 2 Crystal structures of tetragonal Ag_2ZnSnS_4 in I-4and I-42m structure viewed along [001]. Both of these two modifications are having similar atomic arrangement and are highlighted by square box. The atomic label for the different kinds of atoms is given in the illustration.

Figure S 3 Calculated unit cell volume vs. total energy (per formula unit; f.u.) curves for Ag_2ZnSnS_4 in I-4and I-42m structure arrangements; structure types are labelled on the illustration.

Figure S 4 Band structure of tetragonal Ag_2ZnSnS_4 in I-4 space group. The Fermi level is set to zero.

Figure S 5 Band structure of tetragonal Ag_2ZnSnS_4 in I-42m space group. The Fermi level is set to zero.

Table S2 List of Compounds with Intermediate band considered in this study are listed bellow. The chemical formula, pearson symbol, space group number, E_{vi} - Energy gap between top of the valence band to bottom of an intermediate band, E_{ci} - Energy gap between top of the intermediate band to bottom of the conduction band, Ei1-Ei2- gap between two IBs, ΔE_{i1} and ΔE_{i2} - bandwidth of the intermediate bands, Eg-total bandgap between top of the valence band and bottom of the conduction band, ID-indirect bandgap type, DB-direct bandgap type are listed

Serial no.	Chemical Formula	Pearson symbol	Space group number	Bandgap (E _{vi})	Bandgap (E _{ci})	Multibands gap (Ei1-Ei2)	Width of IBss ΔEi1, ΔEi2	Total Bandgap (Eg)	Band gap type
1.	AgAsSe ₂	hR4	166	0.13	0.02		3.66	3.81	ID
2.	AgClO ₄	tI12	121	3.60	0.57	0.13	2.59, 2.28	9.17	ID
3.	AgPXe ₂ F ₁₀	tI56	140	2.48	0.72	2.39	0.99, 1.12	7.7	DB
4.	AgF ₂	oP12	61	1.03	1.15	-	1.43	3.61	DB
5.	AgF ₃	hP24	178	1.24	4.13	-	0.77	6.14	DB
6.	AgKF ₄	tI24	140	2.13	4.12	-	0.19	6.44	DB
7.	AgNaF ₄	tI24	140	1.78	4.01	-	0.36	6.15	DB
8.	AgIO ₄	tI24	88	0.77	1.27	1.59	2.13, 3.26	9.02	ID
9.	AgTcO ₄	tI24	88	2.34	0.35	0.8	0.98, 3.45	7.92	ID
10.	Ag ₂ GeBaS ₄	tI16	121	0.90	0.35	-	1.16	2.41	ID
11.	Ag ₂ HgI ₄	tI14	121	1.43	1.31	-	0.89	3.63	DB
12.	Ag ₂ KSbS ₄	tI16	121	0.81	1.08	-	0.94	2.93	ID
13.	Ag ₂ ZnSnS ₄	tI16	121	0.47	0.57	-	1.66	2.70	DB
14.	Ag ₄ TeSO ₄	cP40	198	1.06	0.44	-	2.17	3.67	DB
15.	Ag ₆ SiSO ₈	tI64	141	0.16	0.71	-	2.64	3.51	DB
16.	AlAsO ₄	tI12	121	4.22	1.82	-	1.92	7.96	DB
17.	AlH ₁₂ N ₃ O ₁₅	cI248	206	3.38	1.22	-	0.58	5.18	DB

18.	Al ₂ HgS ₄	tI14	121	2.0	0.03	-	1.64	3.64	ID
Serial no.	Chemical Formula	Pearson symbol	Space group number	Bandgap (E _{vi})	Bandgap (E _{ci})	Multibands gap (Ei1-Ei2)	Width of IBs ΔEi1, ΔEi2	Total Bandgap (Eg)	Band gap type
19.	AsBiO ₄	tI24	88	2.81	0.6	-	4.08	7.49	ID
20.	Al ₂ HgSe ₄	tI14	121	1.41	0.04	-	1.83	3.28	DB
21.	AsBO ₄	tI12	82	4.25	1.72	-	1.48	7.45	ID
22.	AsCsF ₄	mP12	4	4.62	0.39	-	1.04	6.05	DB
23.	AsCsF ₆	hR8	148	5.11	3.49	-	0.67	9.27	DB
24.	AsCuF ₇	oI36	74	2.18	2.06	1.01	0.85, 1.17	7.27	DB
25.	AsDyO ₄	tI24	141	3.61	0.65	-	2.04	6.30	DB
26.	AsF ₃	oP16	33	5.15	0.28	-	2.79	8.22	ID
27.	AsF ₅	hP12	194	4.55	3.82	-	0.88	9.25	DB
28.	AsF ₆ I ₅	mS48	15	1.39	2.11	1.22	0.59, 0.27	5.58	DB
29.	AsInF ₆	hR8	148	3.33	2.25	1.53	0.65, 1.26	9.02	ID
30.	AsK1F ₆	hR8	166	4.76	3.63	-	0.90	9.29	DB
31.	AsRbF ₆	hR8	166	4.94	3.60	-	0.75	9.29	DB
32.	AsTlF ₆	hR8	148	4.56	1.55	-	0.64	6.75	ID
33.	AsKrF ₇	mP36	14	2.44	3.79	2.32	0.17, 0.48	9.20	DB
34.	AsH ₆ NO ₄	tI48	122	4.12	1.16	-	1.9	7.18	ID
35.	AsHoO ₄	tI24	141	3.60	0.73	-	2.04	6.37	DB
36.	AsLuO ₄	tI24	141	3.50	0.89	-	2.06	6.45	DB
37.	AsTbO ₄	tI24	141	3.64	0.63	-	2.04	6.31	DB
38.	AsYO ₄	Ti24	141	3.65	0.54	-	1.93	6.12	DB
39.	As2Cl ₄ F ₆	tP24	85	2.84	2.34	2.35	0.22, 0.75	8.50	ID

Serial no.	Chemical Formula	Pearson symbol	Space group number	Bandgap (E _{vi})	Bandgap (E _{ci})	Multibands gap (Ei1-Ei2)	Width of IBs ΔEi1, ΔEi2	Total Bandgap (Eg)	Band gap type
40.	$As_4C_4F_{12}$	tP40	137	3.31	0.43	-	2.84	6.58	DB
41.	As ₃ Mg ₄ NaO ₁₂	tI80	122	3.19	1.13	-	2.60	6.92	DB
42.	As2KF ₇	mP40	14	4.78	0.28	-	2.92	7.98	DB
43.	AuLiF ₄	mP24	15	2.59	0.41	2.41	0.37, 2.84	8.62	DB
44.	AuLiF ₄	mS24	15	2.60	0.45	2.36	0.43, 2.9	8.74	ID
45.	AuKF ₆	hR8	166	2.20	4.43	-	0.39	7.02	ID
46.	AuTlF ₆	tP64	92	1.80	0.41	1.17	3.4, 1.94	8.72	ID
47.	Au ₂ BaO ₄	tI28	88	1.69	0.11	-	1.77	3.57	ID
48.	Au ₂ Cs ₂ Br ₆	tI20	139	0.67	1.23	-	0.81	2.71	DB
49.	Au ₂ CaF ₁₂	tP15	99	1.72	4.31	-	0.84	6.87	DB
50.	Au ₂ CaO ₄	tI28	88	1.81	0.18	-	1.65	3.64	ID
51.	Au ₂ CdF ₁₂	mS60	12	2.0	2.72	-	0.36	5.08	DB
52.	Au ₂ CdF ₈	tP22	127	2.33	1.2	-	0.72	4.25	DB
53.	Au ₂ Cs ₂ Cl ₆	tI20	XX	0.93	1.72	-	0.73	3.38	DB
54.	Au ₂ CsF ₇	mS40	15	2.29	2.07	0.38	0.21, 0.12	5.07	DB
55.	Au ₂ Cs ₂ I ₆	tI20	139	0.64	1.01	-	0.7	2.35	ID
56.	Au ₂ HgF ₈	tP22	127	2.1	0.21	1.21	2.88, 2.25	8.65	DB
57.	Au ₂ MgF ₈	mP22	14	2.45	0.79	2.26	0.5, 2.94	8.94	DB
58.	Au ₂ NiF ₈	mP22	14	2.24	0.41	1.58	0.63, 3.57	8.43	DB
59.	Au ₂ ZnF ₈	mP22	14	2.24	0.02	1.85	0.65, 3.25	8.01	DB
60.	Au ₃ LaF ₁₂	hR32	167	2.55	0.39	2.59	0.22, 1.95	7.70	ID
61.	BClF ₆	mP32	14	3.32	4.37	-	0.65,	8.34	DB

Serial no.	Chemical Formula	Pearson symbol	Space group number	Bandgap (E _{vi})	Bandgap (E _{ci})	Multibands gap (Ei1-Ei2)	Width of IBs ΔEi1, ΔEi2	Total Bandgap (Eg)	Band gap type
62.	BSF ₇	oP36	62	4.94	1.22	1.75	0.34, 0.43	8.68	DB
63.	BN1F ₈	oP40	57	2.91	3.34	1.4	0.18, 0.16	7.99	DB
64.	B ₂ F ₄	mP12	14	4.9	2.01	-	0.09	7.00	DB
65.	Co ₄ B ₆ O ₁₃	cI46	217	3.72	0.89	-	2.25	6.86	ID
66.	$Zn_4B_6O_{13}$	cI46	217	4.04	1.97	-	1.12	7.13	ID
67.	BiF ₅	tI12	87	1.98	3.73	-	1.38	7.09	ID
68.	BrF ₃	oS16	36	2.17	3.08	0.8	0.49, 0.7	7.24	ID
69.	BrF ₅	oS24	63	3.47	3.35	1.36	0.39, 0.49	9.06	ID
70.	$Ca_2U_6K_8O_{24}$	cI40	229	2.95	0.37	-	1.90	5.22	ID
71.	$Ca_3Te_2Zn_3O_{12}$	cI160	230	2.46	1.74	-	1.68	5.88	ID
72.	CdPdF ₆	aP8	148	2.27	1.72	2.26	0.52, 1.91	8.69	ID
73.	CdPtF ₆	hR8	148	2.74	0.95	0.68	0.66, 2.33	7.36	DB
74.	CdSnF ₆	hR8	148	3.59	0.76	0.95	2.01, 1.93	9.24	ID
75.	CdTiF ₆	hR8	148	4.92	0.98	0.79	0.24, 2.55	9.48	ID
76.	Cd ₄ OF ₆	tP22	137	2.09	0.36	-	5.28	7.73	DB
77.	$Cd_4P_6N_{12}S$	cI46	217	3.08	0.42	-	0.87	4.37	ID
78.	CeZrF ₇	mP18	4	4.24	1.05	-	0.28	5.57	ID
79.	SnClF	oP12	62	3.47	1.58	-	3.09	8.14	DB
80.	CIF	mP8	14	2.13	3.87	-	1.07	7.07	DB
81.	ClF ₃	oP16	62	2.59	2.77	1.58	0.3, 0.73	7.97	ID
82.	SbClF ₈	aP20	2	3.17	3.46	0.97	0.81, 0.72	9.13	ID
83.	$Hg_3 Se_2Cl_2$	cI28	199	1.75	0.65	-	1.92	4.32	ID

Serial no.	Chemical Formula	Pearson symbol	Space group	Bandgap (E _{vi})	Bandgap	Multibands gap	Width of IBs	Total Bandgap	Band gap type
			number		(E _{ci})	(Ei1-Ei2)	AEII, AEIZ	(Eg)	
84.	Hg ₃ Te ₂ Cl ₂	cI28	199	1.90	0.41	-	1.6	3.91	DB
85.	Li ₂ ZnCl ₄	cF56	227	4.56	0.58	-	1.73	6.87	DB
86.	CoF ₃	hR8	167	1.49	2.44	-	3.10	7.03	ID
87.	CrNbF ₆	tI16	139	1.34	0.19	-	1.26	2.79	DB
88.	CsCuF ₄	tI24	140	1.82	4.60	-	0.11	6.53	ID
89.	CsHgF ₃	cP5	221	0.75	1.00	-	4.61	6.36	DB
90.	Cs ₂ HgF ₄	tI14	139	2.05	0.88	-	2.56	5.49	ID
91.	Cs2GeF ₆	cF36	225	6.01	1.64	-	1.08	8.73	DB
92.	Cs ₃ Tl F ₆	tI20	139	3.34	1.78	-	0.78	5.90	ID
93.	CuF ₂	mP6	14	1.75	0.98	-	1.38	4.11	DB
94.	HOF	oP12	19	3.23	2.91	-	0.66	6.80	ID
95.	PbIF	tP6	129	2.17	0.53	-	3.45	6.15	DB
96.	NOF	oP12	19	3.21	3.06	1.78	0.24, 0.64	8.93	ID
97.	TcO ₃ F	mP20	14	2.48	1.06	1.74	1.09, 1.55	7.92	ID
98.	HNF ₂	oP16	29	4.41	0.88	-	1.62	6.91	DB
99.	PHF ₂	oP16	19	3.83	0.36	0.73	2.43, 1.64	8.99	ID
100.	HgF ₂	cF12	225	0.98	3.21	-	4.08	8.27	DB
101.	KrF ₂	tP6	136	2.79	4.13	-	0.59	7.51	ID
102.	KrF ₂	tI6	139	2.89	4.08	-	0.80	7.77	ID
103.	Pb ₂ OF ₂	tP20	105	0.89	0.36	-	6.3	7.55	ID
104.	SeOF ₂	oP16	29	4.15	0.88	0.99	1.63, 1.00	8.65	DB
Serial no.	Chemical Formula	Pearson symbol	Space group	Bandgap (E _{vi})	Bandgap	Multibands gap	Width of IBs	Total Bandgap	Band gap type

			number		(E _{ci})	(Ei1-Ei2)	$\Delta Ei1, \Delta Ei2$	(Eg)	
105.	XeF ₂	tI6	139	2.74	3.60	-	0.88	7.22	ID
106.	FeF ₃	cF64	227	2.80	1.34	-	2.26	6.40	ID
107.	FeF ₃	hR8	167	2.71	1.14	-	2.44	6.29	DB
108.	FeF ₃	hR32	167	2.77	1.19	-	2.40	6.36	DB
109.	IF ₃	oP16	62	1.78	2.10	0.39	1.36, 1.58	7.21	ID
110.	NiF ₃	hR8	167	1.24	2.54	2.84	0.62, 0.17	7.41	ID
111.	RhF ₃	hP12	150	1.30	1.61	0.16	1.00, 1.56	5.63	ID
112.	$N_2H_8F_4$	hR14	166	5.27	1.27	-	0.53	7.07	ID
113.	HfF ₄	mS60	15	5.39	0.31	-	1.50	7.20	ID
114.	K ₂ PdF ₄	mS14	12	3.09	1.48	-	0.19	4.76	ID
115.	NaSbF ₄	mP24	14	4.34	0.33	-	2.40	7.07	ID
116.	Na ₂ PdF ₄	mP14	14	2.67	1.46	-	0.13	4.26	ID
117.	TcOF ₄	hP36	176	1.97	1.49	1.35	0.59, 1.44	6.84	DB
118.	PdF ₄	oF40	109	1.05	4.67	-	1.28	7.00	ID
119.	SnF ₄	tI10	139	2.74	1.47	-	3.77	7.98	ID
120.	VF ₄	mP10	14	1.92	1.74	-	3.61	7.27	DB
121.	XeF ₄	mP10	14	2.81	4.10	0.04	0.57, 0.26	7.78	DB
122.	KTeF ₅	oP28	57	5.24	1.14	-	1.20	7.58	DB
123.	NaTeF ₅	oP28	62	5.25	1.21	-	1.36	7.82	ID
124.	Sn ₂ OF ₅	m\$32	12	1.56	1.10	0.25	1.51, 1.32	5.74	ID
125.	PdRb ₃ F ₅	tP18	127	2.87	1.51	-	0.05	4.43	ID
126.	SbSrF ₅	oP28	57	4.77	0.70	-	2.02	7.49	ID
Serial no.	Chemical Formula	Pearson symbol	Space group	Bandgap (E _{vi})	Bandgap	Multibands gap	Width of IBs	Total Bandgap	Band gap type

			number		(E _{ci})	(Ei1-Ei2)	ΔΕί1, ΔΕί2	(Eg)	
127.	Rb ₂ GeF ₆	hP9	164	5.77	2.30	-	1.10	9.17	ID
128.	Rb ₂ GeF ₆	cF36	225	5.94	1.96	-	1.22	9.12	DB
129.	KNbF ₆	tP16	116	5.60	2.22	-	0.12	7.94	ID
130.	LiNbF ₆	hR8	148	5.48	2.60	-	0.21	8.29	DB
131.	Li ₂ TiF ₆	tP18	136	4.88	1.58	1.54	0.16, 0.31	8.47	DB
132.	MoF ₆	oP28	62	4.06	1.06	3.84	0.11, 0.16	9.23	DB
133.	MoF ₆	cI14	229	4.10	0.49	3.78	0.12, 0.38		ID
134.	P ₃ N ₃ F ₆	oP48	62	5.69	0.24	-	1.51	7.44	DB
135.	NiSrF ₆	hR8	166	1.65	5.88	-	0.44	7.97	DB
136.	Sn ₂ F ₆	cF32	221	2.26	0.54	1.01	2.06, 1.20	7.07	ID
137.	TeF ₆	oP28	62	4.37	4.58	-	0.54	9.49	DB
138.	WF ₆	oP28	62	5.04	3.79	-	0.14	8.97	DB
139.	Xe ₂ F ₆	mP16	14	2.56	3.97	0.51	0.22, 0.29	7.55	ID
140.	K ₂ NbF ₇	mP40	62	4.93	0.68	1.48	0.10, 0.13	7.32	DB
141.	K ₂ PaF ₇	mS40	15	3.99	2.84	-	0.64	7.47	ID
142.	K ₂ TaF ₇	oP40	62	5.68	1.05	-	0.17	6.90	DB
143.	NiRb ₃ F ₇	tP22	127	0.78	4.91	-	0.15	5.84	ID
144.	Pb ₂ RhF ₇	mP40	14	2.85	1.06	1.27	0.38, 3.01	8.57	DB
145.	TiRb ₃ F ₇	tP22	127	3.52	1.80	-	0.04	5.36	DB
146.	SbXeF ₇	mP36	14	2.79	3.44	1.69	0.27, 0.56	8.75	DB
147.	SnTlF ₇	mP36	14	1.63	1.93	-	3.69	7.25	DB
148.	SrTaF ₇	mP18	11	5.66	0.21	1.46	0.19, 0.25	7.77	ID
Serial no.	Chemical Formula	Pearson symbol	Space group	Bandgap (E _{vi})	Bandgap	Multibands gap	Width of IBs	Total Bandgap	Band gap type

			number		(E _{ci})	(Ei1-Ei2)	$\Delta Ei1, \Delta Ei2$	(Eg)	
149.	Pb ₅ I ₂ F ₈	hR15	160	2.90	0.87	-	3.53	7.30	ID
150.	K ₃ TaF ₈	hP24	186	3.98	0.09	1.48	0.06, 0.30	5.91	DB
151.	Sn ₃ F ₈	mP22	14	2.70	0.83	0.85	0.95, 3.06	8.39	DB
152.	NbSeF ₉	hR44	146	5.53	1.99	0.68	0.62, 0.09	8.91	DB
153.	Na ₃ Ga ₃ Te ₂ O ₁₂	cI160	230	1.91	0.97	-	2.00	4.88	DB
154.	Hg ₃ TeO ₆	CI160	230	0.59	0.39	-	3.90	4.88	DB
155.	LiO ₃ I	tP40	86	3.59	0.68	-	3.11	7.38	DB
156.	LiO ₃ I	hP10	173	3.65	2.04	-	2.53	8.22	ID
157.	K ₃ SbS ₄	cI16	217	2.14	1.58	-	0.39	4.11	ID
158.	Li ₂ WO ₄	tI12	141	4.12	1.43	-	0.97	6.52	DB
159.	Li ₃ NbO ₄	cI64	197	4.03	1.65	-	1.17	6.85	DB
160.	$Li_3Nd_3W_2O_{12}$	cI160	230	3.28	0.22	-	0.96	4.46	DB
161.	Li ₃ TaO ₄	mS64	15	4.66	0.69	-	1.18	6.53	ID
162.	Li ₃ VO ₄	oP16	31	4.02	0.59	0.49	0.20, 0.80	6.10	ID
163.	Li ₆ Zr ₂ O ₇	mS60	15	3.92	0.50	-	2.40	6.82	DB
164.	Li ₇ TaO ₆	aP14	146	4.56	0.25	-	0.64	5.45	ID
165.	$Zn_8P_{12}N_{24}O_2$	cI46	217	3.44	0.57	-	0.25	4.26	ID
166.	Na ₃ SbS ₄	cI16	217	1.92	1.27	-	0.42	3.61	ID
167.	Na ₃ SbSe ₄	cI16	217	1.02	1.24	-	0.71	2.97	DB
168.	ZnSr ₂ WO ₆	cF40	225	3.05	1.31	-	1.01	5.37	ID
169.	AgBiSe ₂	hR4	166	0.44	0.08	-	3.36	3.88	ID
170.	AgBiTe ₂	hR4	166	0.17	0.09	-	3.27	3.53	ID
Serial	Chemical	Pearson	Space	Bandgap	Bandgap	Multibands	Width of IBs	Total	Band
no.	Formula	symbol	group	(E _{vi})		gap		Bandgap	gap type

			number		(E _{ci})	(Ei1-Ei2)	$\Delta Ei1, \Delta Ei2$	(Eg)	
171.	AgCN ₃ O ₂	oP28	57	3.18	0.61	-	0.46	4.25	DB
172.	AgCuPO ₄	oP56	61	1.27	0.61	-	0.74	2.62	DB
173.	AgK ₂ SbS ₄	oP32	118	1.52	1.03	-	0.47	2.97	DB
174.	AgN ₃ O ₄	oP64	61	2.67	1.19	1.04	0.28, 2.18	7.36	DB
175.	AgP ₄ TaO ₁₃	oP76	19	3.41	0.70	-	0.49	4.60	DB
176.	Ag ₃ AsS ₄	oP16	31	0.73	1.04	-	1.00	2.77	DB
177.	AlAsH ₄ O ₆	oP96	61	3.66	1.2	-	2.19	7.05	DB
178.	AlCl ₄ NS ₂	oP32	62	2.14	0.13	2.88	0.10, 0.4	5.65	DB
179.	AlCsSiO ₄	oP28	36	1.21	2.07	-	1.39	4.54	DB
180.	AlMoVO ₇	oP40	62	2.31	0.72	-	0.46	3.49	DB
181.	Al ₂ Ca ₂ Sn ₂ O ₉	oP60	60	2.45	0.78	-	2.91	6.14	DB
182.	Al ₅ NaTi ₂ O ₁₂	oP40	55	3.13	0.54	-	1.27	4.94	DB
183.	AsCl ₃	oP16	19	4.04	1.97	-	0.84	6.85	ID
184.	AsCoSe	oP24	61	0.46	0.30	-	4.43	5.19	ID
185.	AsCs ₃ Se ₄	oP32	62	1.49	1.04	-	0.73	3.26	DB
186.	AsZn ₂ HO ₅	oP36	58	2.65	1.01	-	2.71	6.37	ID
187.	AsLiZnH ₂ O ₅	oP40	33	3.41	0.83	-	2.22	6.46	DB
188.	AsNaH ₄ O ₅	oP44	19	3.87	1.33	-	1.92	7.12	ID
189.	AsNH ₆ O ₄	oP48	19	3.41	1.00	-	1.71	6.12	DB
190.	AsLiMgO ₄	oP28	62	3.46	1.28	-	2.00	6.74	DB
191.	AsLiNiO ₄	oP28	62	2.79	1.03	-	2.35	6.17	DB
192.	AsLi ₂ NaO ₄	oP16	31	3.92	1.51	-	1.82	7.25	ID
Serial	Chemical	Pearson	Space	Bandgap	Bandgap	Multibands	Width of IBs	Total Bandaar	Band
по.	Formula	symbol	group	(E _{vi})		gap		Банадар	gap type

			number		(E _{ci})	(Ei1-Ei2)	$\Delta Ei1, \Delta Ei2$	(Eg)	
103	AsRbSnO-	oP64	33	1.83	0.72		3.9/	6.49	DB
175.	ASICOSIIO5	01 04		1.05	0.72		5.74	0.47	
194.	AsSbO ₅	oP28	19	1.77	1.00	-	4.22	6.99	DB
195.	AsRb ₃ Se ₄	oP32	62	1.32	0.98	-	0.97	3.15	DB
196.	As ₂ MgXe ₂ F ₁₆	oP42	55	2.98	3.27	0.93	0.44, 0.6	8.22	DB
197.	As ₂ O ₅	oP28	92	1.46	1.17	-	6.65	9.28	DB
198.	Au K1C ₄ N ₄ H ₂ O	oP52	19	4.29	1.17	0.3	0.05, 0.36	5.87	DB
199.	BaTe ₂ F ₁₀	mS52	15	4.90	1.93		1.15	7.98	ID
200.	BaZr ₂ F ₁₀	mS52	15	5.75	0.37		1.47	7.59	ID
201.	BaSb ₂ F ₁₂	aP15	1	4.07	2.65	1.06	0	7.78	DB
202.	BaSbF ₅	oP28	57	4.73	0.22		1.84	6.79	ID
203.	BaGeF ₆	hR8	166	5.55	3.11		0	8.66	DB
204.	BaNiF ₆	hR8	166	1.72	6.01		0.37	8.09	DB
205.	BaPbF ₆	hR8	166	2.86	5.02		0	7.88	DB
206.	BaSnF ₆	hR8	148	4.98	3.52		0	8.50	DB
207.	BaTeF ₆	oF128	43	4.79	1.67		1.26	7.72	ID
208.	BaTiF ₆	hR8	166	4.80	0.94	1.6	0.14, 0.33	7.81	ID
209.	BaZrF ₆	mP32	14	6.32	0.41	0.274	0.53, 0.146	7.68	DB
210.	BaZrF ₆	oS32	67	6.26	0.35	-	0.64	7.25	ID
211.	BaTm ₂ F ₈	mS22	12	1.98	5.36		0	7.34	ID
212.	Ba ₂ PdF ₆	oS36	64	2.84	2.04	-	4.88	9.76	ID
213.	Ba ₂ ZrF ₈	oP44	62	5.95	1.1	-	0	7.05	DB
214.	Ba ₂ SrTeO ₆	hR10	225	3.16	1.96	-	5.12	10.24	ID
Serial	Chemical	Pearson	Space	Bandgap	Bandgap	Multibands	Width of IBs	Total	Band
no.	Formula	symbol	group	(E _{vi})		gap		Bandgap	gap type

			number		(E _{ci})	(Ei1-Ei2)	$\Delta Ei1, \Delta Ei2$	(Eg)	
215.	Ba ₃ In ₂ F ₁₂	tP34	127	4.70	0.9	0.52	1.1, 0.28	7.50	DB
216.	BiClF ₈	aP20	2	2.22	4.12	0.82	0.36, 0.83	8.35	DB
217.	BiCsF ₆	hR8	148	2.92	5.5	-	0	5.5	DB
218.	BiKF ₆	tP16	116	2.90	5.2	-	0.35	8.45	DB
219.	BiLiF ₆	hR8	148	2.75	6.14	-	0	8.89	DB
220.	BiNaF ₆	hR8	148	2.89	5.74	-	0	8.63	ID
221.	BiRbF ₆	hR8	148	2.79	5.61	-	0	8.40	DB
222.	BiKrF ₇	mP36	14	2.438	5.11	0.38	0.212, 0.41	8.55	DB
223.	BiNa ₃ O ₃	cI56	217	2.89	0.37	0.65	1.3, 1.58	6.79	DB
224.	Bi ₂₄ Pb ₂ O ₄₀	cI66	197	1.52	1.4	0.73	5.63	9.28	ID
225.	Bi ₄ Si ₃ O ₁₂	cI76	220	3.93	1.59	-	2.1	7.62	DB
226.	CsBrF ₆	hR8	148	4.03	3.34	-	0.31	7.68	DB
227.	PbBrF	tP6	129	2.72	0.33		3.82	6.75	DB
228.	Sn ₃ BrF ₅	mP36	14	3.21	0.3	-	3.96	7.47	DB
229.	CsBr ₂ F	tP4	123	1.77	1.34	-	1.41	4.52	DB
230.	GeBr ₂ F ₁₀	mP26	14	2.85	2.73	1.85	0.8,0.19	8.42	ID
231.	Hg ₃ Te2Br ₂	cI28	199	1.73	0.47	-	1.48	3.68	DB
232.	CBr ₃ F	oP20	62	3.27	0.23	1.13	0.37, 0.92	5.92	DB
233.	C ₁₂ SeF ₁₀	mP46	4	2.78	0.54	-	1.74	5.06	DB
234.	$C_{12}Ru_4Se_4O_{12}$	cI64	217	2.19	1.32	0.93	0, 1.33	5.77	ID
235.	CClF ₃	oS20	36	6.55	0.7	-	0.47	7.72	ID
236.	CCl ₂ F ₂	oF40	43	4.73	0.57	-	0.66	5.96	DB
Serial no.	Chemical Formula	Pearson symbol	Space group	Bandgap (E _{vi})	Bandgap	Multibands gap	Width of IBs	Total Bandgap	Band gap type

			number		(E _{ci})	(Ei1-Ei2)	$\Delta Ei1, \Delta Ei2$	(Eg)	
237.	CCl ₃ F	oP40	61	4.91	0.26	0.76	0.33, 0.62	6.88	DB
238.	CF ₃ I	oS40	64	3.71	1.78	-	0.37	5.86	ID
239.	CIF ₇	mP36	14	4.65	2.41	-	1.22	8.28	DB
240.	$C_2O_3F_2$	oP56	19	5.27	0.68	-	0.47	6.42	DB
241.	$C_2Te_2F_4$	mP32	4	1.67	1.08	-	0.58	3.33	ID
242.	$C_2Te_2F_6$	mP40	14	2.41	1.01	0.22	0.35, 0.83	4.82	DB
243.	K ₆ C ₆₀	cI132		0.61	0.28	-	0.39	1.28	ID
244.	CaPdF ₆	hR8	148	2.62	4.51	-	0.24	7.37	ID
245.	CaPtF ₆	hR8	148	3.17	2.77	-	0.25	6.19	ID
246.	CaSnF ₆	hR8	148	4.85	4.07	-	0	8.92	DB
247.	AgAsF ₇	P36	62	1.46	1.35	1.83	0.92,1.27	6.83	DB
248.	AgSbF ₆	cI64	206	3.37	1.29	0.94	1.92, 1.45	8.97	DB
249.	AgTiF ₆	aP8	2	1.46	0.89	2.64	0.52, 0.20	5.73	DB
250.	AsNaF ₆	cF32	225	4.93	3.42	-	0.87	9.22	DB
251.	As ₂ MnF ₁₂	tI60	141	4.01	1.4974	-	1.2119	6.7258	DB
252.	AuTh ₂ F ₁₁	tI56	139	2.59	0.24	3.00	0, 1.67	7.51	DB
253.	PbF ₄	tI10	139	1.86	3.31	-	3.15	8.32	ID
254.	AuKF ₄	tI24	140	2.88	2.24	-	0.2614	5.39	DB
255.	AuNaF ₄	tI24	140	2.61	2.03	-	0.401	5.05	DB
256.	AuRbF ₄	tI24	140	2.96	2.227	-	0.23	5.42	DB
257.	Au ₂ BaF ₁₂	cP60	224	1.79	1.03	3.12	0.7, 0.5	7.14	DB
Serial no.	Chemical Formula	Pearson symbol	Space group number	Bandgap (E _{vi})	Bandgap (E _{ci})	Multibands gap (Ei1-Ei2)	Width of IBs $\Delta Ei1$, $\Delta Ei2$	Total Bandgap (Eg)	Band gap type

258.	Au ₂ BaF ₈	tI44	82	2.96	0.41	2.29	0.25, 2.38	8.29	ID
259.	BaPdF ₄	tI24	140	2.56	1.74	-	0.39	4.69	ID
260.	BaTaF ₇	cP72	205	5.79	1.49	-	0.21	7.49	DB
261.	BiKF ₄	cF96	225	3.25	0.45	-	3.30	6.55	DB
262.	BiKF ₆	cI64	206	2.90	5.07	-	0.58	8.55	ID
263.	BrKF ₄	tI24	140	3.12	2.52	-	0.85	6.49	ID
264.	BrRbF ₄	tI24	140	3.31	1.92	-	0.85	6.08	DB
265.	Cs ₂ Br ₂ F ₂	tI12	139	2.52	2.05	-	0.26	4.83	ID
266.	CaPdF ₄	tI24	140	2.22	1.89	-	0.49	4.60	DB
267.	CaPbF ₆	cF32	225	3.41	4.63	-	0.64	8.68	DB
268.	CaSnF ₆	cF32	225	4.82	3.28	-	0.8	8.9	DB
269.	TaCl ₄ F	tI48	82	3.21	0.49	1.72	0.58, 0.54	6.54	ID
270.	Cs ₃ TlF ₆	tI20	139	3.32	1.73	-	0.8	5.85	ID
271.	KYb ₃ F ₁₀	cF112	225	0.96	0.39	6.27	0.07, 0.81	8.5	DB
272.	KSb ₄ F ₁₃	tI36	82	4.66	0.9	-	2.91	8.47	ID
273.	Rb ₂ HgF ₄	tI14	139	1.96	0.37	-	2.81	5.14	DB
274.	PbPdF ₄	tI24	140	1.92	0.8	-	0.61	3.33	ID
275.	PdSrF ₄	tI24	140	2.37	1.8	-	0.43	4.60	DB
276.	Rb ₂ GeF ₆	cF36	225	5.92	1.96	-	1.20	9.08	DB
277.	K ₂ NiF ₆	cF36	225	2.22	5.2	-	0.33	7.75	ID
278.	NaSbF ₆	cP32	225	4.86	3.38	-	0.9	9.14	DB
279.	NiRb ₂ F ₆	cF36	225	2.29	4.90	-	0.24	7.43	ID
Serial no.	Chemical Formula	Pearson symbol	Space group number	Bandgap (E _{vi})	Bandgap (E _{ci})	Multibands gap (Ei1-Ei2)	Width of IBs ΔEi1, ΔEi2	Total Bandgap (Eg)	Band gap type

280.	PdRb ₂ F ₆	cF36	225	2.84	3.69	-	0.29	6.82	DB
281.	Rb ₃ TlF ₆	tI20	139	3.16	1.63	-	0.97	5.76	ID
282.	Pb ₂ F ₆	tP16	116	1.96	1.10	2.40	1.23, 1.89	8.58	DB

List S1. List of computed compounds (in total 2100) considered in this study with their ICSD number:

Ag₅Cl₃P₄S₆-416586; Ag₆Ca₆N-78395; AgAlO₂-160643; AgAlO₂-99688; AgAlS₂-28744; AgAlS₂-604692; AgAlS₂-604694; AgAlS₂-604698; AgAlSe₂-28745; AgAlSe₂-604704; AgAlSe₂-604706; AgAlTe₂-28746; AgAl₂Pr-604688; AgAsF₇-62510; AgAsHg₂O₄-413087; AgAsS₂-18101; AgAsSe₂-20087; AgAs₂Nd-174360; AgAs₂Pr-98736; AgAs₂Sm-174361; AgAuCl₆Cs₂-26162; AgAuF₄-90071; AgAuTe₂-55250; AgBF₄-415320; AgBF₅-80645; AgBF₅-80646; AgBa-57342; AgBaO₉P₃-50672; AgBe₂-109313; AgBiCr₂O₈-8224; AgBiCr₄O₄-14233; AgBiCr₄O₄-14234; AgBiO₃-89432; AgBiSe₂-26518; AgBiTe₂-43266; AgBrHgS-411773; AgBr₃Cs₂-150288; AgBr₃Rb₂-150287; AgCN-85783; AgCNO-23833; AgCNO-260378; AgCN₃O₂-408288; $AgC_{2}F_{6}H_{2}N_{2}Sb-63287;$ $AgC_{2}H_{2}N_{3}O-63100;$ AgC₂KN₂S₂-280587; AgC₂N₃-68453; AgCaGe-421236; AgCaSb-56982; AgCdO₄V-401350; AgCd₂GaS₄-90459; AgClO₂-15407; AgClO₃-30227; AgClO₄-100280; AgClO₄-185363; AgCl₃Cs₂-150286; AgCl₃Rb₂-280031; AgCrO₂-4149; AgCrS₂-24797; AgCrSe₂-24799; AgCrSe₂-42397; AgCrTe₂-605002; AgCsF₃-23154; AgCsO-25745; AgCsO-49754; AgCsSe₄-87464; AgCs₂F₄-16254; AgCs₂I₃-150291; AgCuO₄P-35590; AgCuO₄V-419202; AgCuS-66581; AgCuTe₂-42482; AgDySe₂-605083; AgErS₂-423921; AgErSe₂-951; AgEu-58257; AgEuO₄Ti-78720; AgF₀PXe₂-412662; AgF₂Sb₂-65186; AgF₂Ta₂-62543; AgF₂-20453; AgF₂-6277; AgF₂-66014; AgF₃-80477; AgF₃Rb-23153; AgF₃Zn-28950; AgF₄K-72715; AgF₄K-9904; AgF₄Na-9903; AgF₆Pd-51507; AgF₆Sb-28676; AgF₆Sb-411795; AgF₆Ti-51506; AgF₇Ir-79880; AgFeO₂-31919; AgFeO₆Se₂-90414; AgFeS₂-156643; AgFeS₂-56263; AgFeS₂-605138; AgGaSe₂-28748; AgGaTe₂-605230; AgGdSe₂-602138; AgH₂O₄V-75941; AgH₄NS₄W-84370; AgHf₂-163152; AgHgIS-54796; AgHg₂NO₅-89685; AgHg₂O₄P-2208; AgHg₃O₆Sb-170764; AgHoSe₂-156419; AgHoSe₂-605365; AgIO₄-52380; AgISe₃-414116; AgITe₃-414117; AgI₂Tl-26318; AgI₃K₂-1969; AgI₃Rb₂-150290; AgI₃Tl₂-78929; AgInO₂-202429; AgInS₂-28750; AgInS₂-32655; AgInS₂-51618; AgInSe₂-28751; AgInSe₂-604401; AgInTe₂-28752; AgIn₂-58282; AgKO-188532; AgK₂S₄Sb-82144; AgLi-247145; AgMnO₄V-246202; AgMo₆S₈-600661; AgMo₆Se₈-600325; AgNO₃-1685; AgNO₃-374; AgN₃-183201; AgN₃O₄-419628; AgNaO-40153; AgNbO₃-55643; AgNiO₂-73974; AgNiSe₂-605616; AgNiTe₂-605619; AgO-202055; AgO₃P₄Ta-86892; AgORb-188533; AgORb-40155; AgORb-49753; AgO₂Rh-261561; AgO₂Sc-422442; AgO₂Yb-163472; AgO₃Sb-245292; AgO₃Ta-40830; AgO₄Re-280086; AgO₄Tc-281321; AgO₅SeV-417773; AgPS₄Zn-48197; AgRbSe₄-87463; AgS₂Yb-27090; AgS₂Yb-27091; AgSbTe₂-170663; AgSbYb-83983; AgSc₆Te₂-

94859; AgSeTI-100710; AgSe₂Tb-605827; AgSr-58358; AgTeTI-23367; AgTe₂Y₆-160181; AgTe₃-37186; AgTh₂-58367; AgYb-58377; AgZr₂-58391; Ag₂Al₇Ca₃-104173; Ag₂AsKO₄-409793; Ag₂BaGeS₄-10040; Ag₂BaGe₂-25318; Ag₂BaSn₂-25332; Ag₂BaTe₂-246048; Ag₂Ba₃-108847; Ag₂BiO₃-410665; Ag₂BrNO₃-1311; Ag₂CaGe₂-25316; Ag₂CdGeS₄-152753; Ag₂CeSi₂-106693; Ag₂CeSi₂-52551; Ag₂ClNO₃-8013; Ag₂Cl₆Cs₂-66067; Ag₂Cl₆Re-156662; Ag₂Cl₆Re-249357; Ag₂CrO₄-16298; Ag₂Cu₂O₃-51502; Ag₂Dy-57380; Ag₂Er-58252; Ag₂EuSi₂-106697; Ag₂FeS₄Sn-42534; Ag₂Gd-104473; Ag₂GdSi₂-52574; Ag₂GeO₃-167332; 408949; Ag2HgI4-6069; Ag2HgSe4Sn-95094; Ag2Ho-58278; Ag2INO3-8075; Ag2I6O8Ti-420852; Ag₂KPS₄-420033; Ag₂KS₄Sb-82143; Ag₂LaSi₂-52587; Ag₂La₂O₀Ti₃-74194; Ag₂Lu-605531; Ag₂MnO₄-35762; Ag₂Nb₄O-180731; Ag₂NdSi₂-106695; Ag₂NiO₂-160574; Ag₂O₀UW₂-98550; Ag₂OTa₄-180734; Ag₂O₃Si-36589; Ag₂P₂STi₂-84606; Ag₂PrSi₂-106694; Ag₂S₄SnZn-605734; Ag₂Sc-605791; Ag₂Se-15213; Ag₂Si₂Sm-106696; Ag₂Si₂Sr-25330; Ag₂Si₂Tb-98339; Ag₂Si₂Yb-52607; Ag₂Sn₂Sr-414; Ag₂Sr₃-58360; Ag₂Tb-58365; Ag₂Tm-58373; Ag₂Y-605957; Ag₂Yb-605966; Ag₂Zr-605995; Ag₃AsS₃-27841; Ag₃AsS₃-38388; Ag₃AsS₄-86227; Ag₃AsSe₃-2426; Ag₃AsSe₃-82636; Ag₃As₂K₃-32016; Ag₃AuSe₂-15734; Ag₃AuTe₂-15733; Ag₃BO₃-26521; Ag₃Ca₅-57355; Ag₃CeK₂Te₄-86678; Ag₃CuS₂-163982; Ag₃Ge₃P₆Sn₂-52575; Ag₃NO₃Se-33581; Ag₃O₄V-417470; Ag₃PS₄-416585; Ag₃PSe₄-97760; Ag₃P₆Si₃Sn₂-52595; Ag₃S₂Tl-75976; Ag₃S₃Sb-64986; Ag₃Sb-52600; Ag₃Sn-2721; Ag₃Yb₅-58382; $Ag_4EuSb_2-424312;$ $Ag_4I_2O_4Se-418902;$ Ag₄Lu-58321; Ag₄Mn₃O₈-414178; Ag₄N₂O₂S-23111; Ag₄O₄STe-421880; Ag₄P₂Se₆-1727; Ag₄Sb₂Sr-424311; Ag₄Sc-58349; Ag₅Cd₈-604897; Ag₅IO₆-415893; Ag₅O₄Si-165377; Ag₅S₄Sb-36347; Ag₅Zn₈-58389; Ag₆BaO₄-9288; Ag₆CeN₉O₂₇-59256; Ag₆CrO₈Si-420804; Ag₆Ge₀P₂-70055; Ag₆O₄Sr-10359; Ag₆O₈SSi-6225; Ag₈Ca₃-107145; Ag₈GeS₆-100079; Ag₈O₄S₂Si-2330; Ag₈S₆Si-1054; Ag₈S₆Ti-95648; Ag₈Se₆Sn-95093; Al₀Ba₇-420092; Al₂Ca₈O₂₄S₂-67589; Al₂Ca₈O₂₄Te₂-86156; Al₂Cd₈O₂₄S₂-78368; Al₂Cd₈O₂₄Te₂-86155; Al₂Mg₇-163478; Al₂Mn-608472; Al₂Mo-608577; $Al_2O_{24}S_2Sr_8-67590$; $Al_2O_{24}Sr_8Te_2-82609$; $Al_2Re-109107$; $Al_2Tc-58178$; $Al_2W-58207$; Al₄Ca₂O₃₂-164634; Al₄Mg₃-150647; Al₄O₂₅Sr₄-88527; Al₇Pd₈Si₄-52650; AlAsH₄O₆-170740; AlAsO₄-24512; AlAs₃Ca₃-32727; AlAuCa-370015; AlAuYb-370027; AlAu₂-57496; AlAu₂-606020; AIBMgO₄-34349; AIBO₃-30538; AIBO₄Pb-98572; AIB₄Cr₃-20082; AIB₄Lu-41405; AlB₄Yb-181368; AlB₆Yb₂-41404; AlBaF₅-37033; AlBaLaO₄-62490; AlBa₃F₉-72718; AlBa₃HO₄-280520; AlBeNa₃O₈Si₂-4334; AlBr₄Cs-83435; AlCOSc-419683; AlCaF₄Mg₃Na₃-168054; AlCaHO₅Si-12127; AlCaH₅-156314; AlCaPd-370036; AlCa₂ClF₂H₈O₂S₂-80437; AlCa₂F₇-100308; AlCa₃Sb₃-36363; AlCdF₆Na-80559; AlCeH₆-247039; AlCeO₃-150277; AlCeO₃-245264; AlCeO₃-245267; AlCePd₂-604242; AlCePt-104635; AlCeRh-160052; AlCeRu-160051; AlCl₃H₂O₆-22071; AlCl₄Cs-8118; AlCl₄Cu-165607; AlCl₄In-170790; AlCl₄NS₂-27210; AlCl₄Na-2307; AlCl₄Tl-419828; AlCr₂-57651; AlCsCuF₆-240292; AlCsO₄Si-160822; AlCs₂F₆Na-41801; AlCuF₆K-59003; AlCuO₂-25593; AlCuS₂-28733; AlCuSe₂-28734; AlCuTe₂-28735; AlCu₃-151216; AlDy-57734; AlEu-107525; AlFO₄Sr₃-50736; AlF₃-130021; AlF₃-202681; AlF₃-29131; AlF₃-30274; AlF₃-38305; AlF₃-68826; AlF₃-72174; AlF₃-79816; AlF₃K₂O₄S-161272; AlF₄K-166825; AlF₄K-77913; AlF₄Rb-54122; AIF₄TI-202455; AIF₅H₀N₂O-201652; AIF₆H₂N₃-96591; AIF₆K₃-262078; AIF₆Li₃-34672; AlF₆Na₃-74211; AlF₆PdRb-78749; AlFeO₃-203203; AlGdO₃-59848; AlGeLa-105149; AlGeLi₃O₅-72098; AlGeO₅Y-32744; AlGePr-90160; AlGe₃Tb₂-152747; AlGe₃Y₂-78969; AlH₂N₃O₅-96765; AlHO₂-16768; AlH₂LiO₅Si-161494; AlH₄K-99082; AlH₄K-99083; AlH₄Na-8022; AlH₄Th₂-43313; AlH₅Mg-165987; AlH₅Sr-156315; AlH₆K₂Li-245317; AlH₆K₃-153683; AlH₆K₃-153684; AlH₆La-247037; AlH₆Li₃-99217; AlH₆Nd-247043; AlH₆Pr-247041; AlHf₂-150773; AlI₂Pd₅-14164; AlI₄Na-400521; AlI₈P-35403; AlKO₂-88774; AlKSb₄-300157; AlKTe₂-44703; AlLaO₃-28629; AlLi-240114; AlLiO₂P₄-74860; AlLiO₂-23815; AlLiO₂-28288; AlLiO₄Si-97909; AlLiS₂-608360; AlLiSe₂-280225; AlLiTe₂-162672; AlLiTe₂-280226; AlLi₃N₂-25565; AlLi₅O₄-1037; AlLi₅O₄-16229; AlLuO₃-0000; AlMgSi-153548; AlMoO₇V-280775; AlMo₄S₈-36564; AlNNd₂O₃-201358; AlNaO₂-22216; AlNaO₂-79404; AlNaSe₂-44704; AlNaTe₂-44701; AlNdO₃-10333; AlNdPd₂-604244; AlNdPt-150174; AlO₃Pr-35549; AlO₃Y-167509; AlO₄P-24511; AlO₄P-72374; AlO₄RbSi-160823; AlO₄V₂-151457; AlPS₄-15910; AlPd-58112; AlPdTb-54938; AlPdYb-370028; AlPd₂-58115; AlPd₂Pr-604243; AlPd5-245328; AlPrPt-150173; AlPtY-609165; AlPt2-459; AlRe2-58147; AlSe2Tl-100130; AlSiSm-151717; AlSm-609374; AlTb-58172; AlTc₂-609480; AlY₂-58211; AlZr₂-150774; Al₂Pd₈-58119; Al₂Pt₈-58136; Al₂B₂BaO₇-409171; Al₂B₂CaO₇-86785; Al₂B₂O₇Sr-89423; Al₂BaGe₂-98514; Al₂BaGe₂-98515; $Al_2BaO_7Sb_2-154362;$ Al₂BaSi₂-249559; Al₂Ba₃F₂-413546; Al₂Ba₃N₄-410578; Al₂Ba₃O₂Si₃-27386; Al₂BeO₄-34806; Al₂Be₂Cl₂Na₈O₂₄Si₈-55253; Al₂Bi₆Ca₅-36364; Al₂Br₈Ti-39243; Al₂C₃Th₂-81572; Al₂CaCl₈-Al₂CaGa₂-300209; Al₂CaH₄O₈Si-100320; Al₂CaH₈-246482; Al₂CaZn₂-57550; 56730: Al₂Ca₂O₉Sn₂-260890; Al₂Ca₃F₄Na₂-202657; Al₂Ca₃Ge₃-31982; Al₂Ca₃H₂O₂-15379; Al₂Ca₃N₄-280348; Al₂Ca₃O₂Si₃-16750; Al₂Ca₅Sb₆-60146; Al₂CdS₄-25634; Al₂CdSe₄-25637; Al₂CdTe₄-25640; Al₂CeGa₂-55789; Al₂CeZn₂-57594; Al₂CeZn₂-606526; Al₂Cl₈Te₄-10322; Al₂Cl₈Yb-56729; Al₂Cu-42517; Al₂CuU-23257; Al₂CuYb-604213; Al₂Dy₃Ni₆-105027; Al₂Er₃Ni₆-107804; Al₂F₂Li₃Na₃-9923; Al₂FK₄NbO₂₀-65738; Al₂F₂GeO₄-409714; Al₂FeS₄-607619; Al₂Fe₃O₂Si₃-28030; Al₂Ga₂La-607781; Al₂Ga₂Pr-607795; Al₂Ga₂Yb-607817; Al₂Gd₂O₇Sr-33580; Al₂Ge₈Sc-76361; Al₂HgS₄-25635; Al₂HgSe₄-25638; Al₂HgTe₄-25641; Al₂Ho₃Ni₆-105154; Al₂LaZn₂-105503; Al₂La₅Ru₃-167948; Al₂MgS₄-107308; Al₂MgS₄-Al₂MgS₄-608441; Al₂MgSe₄-41926; Al₂Mg₃O₂Si₃-15438; Al₂MnS₄-608507; 38344; 280212; Al₂O₂S₃-32589; Al₂O₂Si₃Sr₃-27385; Al₂O₂W₃-73878; Al₂O₃-84375; Al₂O₃-9770; Al₂O₅Si-24275; Al₂O₉Pb₂Si₂-159977; Al₂Os-58108; Al₂Pb₂Sr-25336; Al₂Pd₅Pu-166270; Al₂Pd₅U-161313; Al₂Pd₅U-168816; Al₂Pd₅Y-182835; Al₂PrZn₂-106244; Al₂Ru-609234; Al₂S₄Zn-609280; Al₂Sb₆Sr₅-62304; Al₂Sb₆Yb₅-409996; Al₂Se₄Zn-25636; Al₂SmZn₂-609398; Al₂Te₄Zn-25639; Al₂Ti-107009; Al₃₀Mg₂₃-57965; Al₃AuCe-658144; Al₃Au₈-57502; Al₃B₄GdO₂-100831; Al₃B₄NdO₂-6175; Al₃B₄O₂Y-20223; Al₃Bi₅Cl₂-201993; Al₃Ca₂HO₃Si₃-9245; Al₃Ca₄Mg-152756; Al₃Cs₂F₂Na-646; Al₃CuGd-658383; Al₃Er₅Ge₄Ni₃-172068; Al₃F₉Pb₅-203224; Al₃FeSi₂-79710; Al₃Gd-607838; Al₃H₆KO₄S₂-12106; Al₃Hf-109214; Al₃ITe₃-66030; Al₃Li₂Si₄-39597; Al₃Nb-58015; Al₃Ho-150555; Al₃NiY-160931; Al₃O₂Sc₂Y₃-67055; Al₃Os₂-58109; Al₃Pd₅-58118; Al₃Ru₂-609226; Al₃Sc-247449; Al₃Ta-58169; Al₃Tb-150557; Al₃Ti-58189; Al₃V-58201; Al₃Y-58217; Al₃Zr-106259; Al₃Zr₅-603491; Al₄AuErGe₂-415290; Al₄Ba-606140; Al₄BaS₇-33237; Al₄Ba₆F₂₄-37034; Al₄Bi₂O₉-20069; Al₄Bi₄Cl₆Se₄-414155; Al₄Bi₄Cl₆Te₄-411714; Al₄Br₄La₅-413559; Al₄C₃-14397; Al₄C₄Th-81573; Al₄C₅Hf₂-161586; Al₄C₅Zr₂-173676; Al₄C₆Hf₃-161585; Al₄C₆Zr₃-173677; Al₄Ca-151189; Al₄Ce-57556; Al₄CeCo-55598; Al₄CoLa-9986; Al₄CoNd-154678; Al₄CoPr-600912; Al₄ErMo₂-607414; Al₄Eu-55427; Al₄Fe₈U-607702; Al₄Ge₂NiTb₂-95799; Al₄La57935; Al₄Mo₂Yb-456; Al₄Nd-150508; Al₄Ni₃-58042; Al₄Pr-150507; Al₄Sm-609379; Al₄Sr-107887; Al₅Br₄La₀-409704; Al₅CePt₃-171199; Al₅Er₃O₂-62615; Al₅Gd₃O₂-23849; Al₅Ho₃O₂-33603; Al₅Lu₃O₂-23846; Al₅NaO₂Ti₂-15346; Al₅Ni₂Zr-58084; Al₅O₂Tb₃-33602; Al₅O₂Y₃-16825; Al₆AuDy₂Si₄-281661; Al₆AuSi₄Tb₂-281659; Al₆C₃N₂-14399; Al₆Ca₀Ge₉-417966; $Al_6Ca_4O_3-16177$; $Al_6Ca_4O_6W-28481$; $Al_6Dy_2PtSi_4-281660$; $Al_6OSr_2-97713$; $Al_6O_6SSr_4-281660$; $Al_6OSr_2-97713$; $Al_6O_6SSr_4-28160$; $Al_6OSr_2-97713$; $Al_6O_6SSr_4-28160$; $Al_6OSr_2-97713$; $Al_6O_6SSr_4-28160$; $Al_6OSr_2-97713$; $Al_6O_6SSr_4-28160$; $Al_6OSr_2-97713$; $Al_6OSr_2-977713$; $Al_6OSr_2-977919$; $Al_6OSr_2-97713$; Al_6OS 28482; Al₆O₆Sr₄W-28483; Al₆PtSi₄Tb₂-281658; Al₇Au₃Ce-391101; Al₇Au₃Dy-391108; Al₇Au₃Er-391109; Al₇Au₃Gd-391102; Al₇Au₃Ho-391106; Al₇Au₃Lu-391105; Al₇Au₃Nd-391107; Al₇Au₃Pr-391104; Al₇Au₃Tb-391103; Al₇Ca₃Cu₂-57538; Al₇Te₀-62659; Al₇Th₂-58186; Al₈C₃N₄-14401; Al₈CaCo₂-57533; Al₈CaCu₄-57539; Al₈CaFe₄-606314; Al₈CaMn₄-57545; Al₈CeCr₄-606419; Al₈CeCu₄-57566; Al₈CeFe₄-57574; Al₈CeMn₄-57579; Al₈Co₂Pr-600914; Al₈Co₂Sm-600915; Al₈Cr₄Dy-606767; Al₈Cr₄Er-606769; Al₈Cr₄Gd-156967; Al₈Cr₄Ho-606790; Al₈Cr₄La-606792; Al₈Cr₄Nd-606817; Al₈Cr₄Pr-606830; Al₈Cr₄Tb-606848; Al₈Cr₄Y-57664; Al₈Cr₄Yb-606871; Al₈Cr₅-606753; Al₈Cu₄Dy-606899; Al₈Cu₄Er-606913; Al₈Cu₄Gd-606934; Al₈Cu₄Ho-606964; Al₈Cu₄Nd-607039; Al₈Cu₄Pr-607058; Al₈Cu₄Tb-607133; Al₈Cu₄Th-607143; Al₈Cu₄U-57724; Al₈Cu₄Y-57727; Al₈Cu₄Yb-607191; Al₈DyFe₄-57749; Al₈DyMn₄-607312; Al₈ErFe₄-607382; Al₈ErMn₄-607409; Al₈ErMn₄-607412; Al_8EuMn_4 -607460; Al₈Fe₄Gd-607505; Al₈Fe₄Hf-607535; Al₈Fe₄Ho-57752; Al₈Fe₄La-607554; Al₈Fe₄Nd-607593; Al₈Fe₄Sc-164856; Al₈Fe₄Tb-57823; Al₈Fe₄Th-54990; Al₈Fe₄U-54991; Al₈Fe₄Y-57842; Al₈Fe₄Yb-607748; Al₈Fe₄Zr-607756; Al₈Fe₅-169545; Al₈Fe₅-169547; Al₈Ge₃Sr₄-173215; Al₈HoMn₄-608195; Al₈LaMn₄-608299; Al₈LuMn₄-608379; Al₈Mn₄Nd-608479; Al₈Mn₄Pr-608494; Al₈Mn₄Sc-99142; Al₈Mn₄Tb-608537; Al₈Mn₄U-608550; Al₈Mn₄Y-57997; Al₈Mn₄Yb-608570; Al₉ErNi₃-105031; Al₉Sr₅-655752; AsRb₃-412872; As₂Fe₄La-168584; As₂Fe₄La-23080; As₂Ni₂Re₅-35731; AsBO₄-26891; AsBO₄-413436; AsBO₄-413438; AsB₆-68151; AsBeCsO₄-74027; AsBiCu₂O₆-88111; AsBiO₄-30636; AsBi₃Ni₈S₆-203066; AsC₃H₀I-171203; AsCaCoHO₅-240725; AsCaHNiO₅-202422; AsCaHO₅Zn-63285; AsCaPt-60828; AsCa₂-166865; AsCa₂ClO₄-26234; AsCa₂I-65218; AsCa₃N-657354; AsCd-432; AsCdNa-9571; AsCd₃Cl₃-23306; AsCeFO₄-166934; AsCeRh-90869; AsClO₂Pb-66246; AsCl₃-280796; AsCl₃F₆S-60076; AsCl₅-412103; AsCo-15065; AsCoHf-406953; AsCoRh-43896; AsCoS-31189; AsCoSe-41731; AsCr-23589; AsCrO₄-62132; AsCr₃N-25760; AsCsF₆-408070; AsCsO₅Ti-280315; AsCsSe₂-65299; AsCs₃O₄-412392; AsCs₃Se₄-404082; AsCuHO₅Zn-160894; AsCuMg-412296; AsCuMn-72413; AsCuS-23826; AsCuSe₂-42884; AsCu₃-655109; AsCu₃S₄-14285; AsCu₃Se₄-610361; AsDyO₄-16512; AsErPd-409908; AsEuO₄-409995; AsEuPt-60829; AsF₃-35132; AsF₅-65477; AsF₅H₆N₂-412507; AsF₆In-417952; AsF₆K-38130; AsF₆Li-74831; AsF₆Na-184563; AsF₆Na-184565; AsF₆Rb-408069; AsF₆Tl-417954; AsF₇Sn-816; AsF₉OS-10193; AsFe-15009; AsFeLi-187132; AsFeLiO₄-245182; AsFeS-15986; AsFeTa-610528; AsGa-43951; AsGa₂Rh₅-56973; AsGeSe-100828; AsHHgO₅Zn-281591; AsHO₅PbZn-98385; AsHO₅Zn₂-34868; AsH₂LiO₄-62024; AsH₂LiO₅Zn-409396; AsH₃₆Li₃N₂Se₄-409539; AsH₄NaO₅-4284; AsH₆NO₄-28155; AsH₆NO₄-66208; AsHf₂-610638; AsHoO₄-155919; AsHoPd-71619; AsI₃-23003; AsI₃La₃-411803; AsI₃S₂₄-412399; AsKLi₂-78938; AsKMoO₆-203218; AsKNiO₄-63544; AsKO₂-413149; AsKS₅Sn-281038; AsLaRh-95191; AsLaTe-280231; AsLiMgO₄-67523; AsLiMnO₄-245181; AsLiMoO₆-15035; AsLiNiO₄-51201; AsLiO₃-202862; AsLiO₅Ti-78105; AsLiO₅V-90991; AsLi₂NaO₄-73200; AsLi₃O₄-75927; AsLi₃S₃-59381; AsLuO₄-2506; AsMn-9496; AsMnNaO₄-95087; AsMo-43188; AsNaNiO₄-63353; AsNaO₂-16762; AsNb-

16585; AsNiTa-611079; AsNi₂Si-83753; AsO₂Rb-413150; AsO₄P-31879; AsO₄Sc-155920; AsO₄Tb-16329; AsO₄Y-24513; AsO₅RbSn-80977; AsO₅RbTi-71907; AsO₅Sb-36650; AsPdZr-92440; AsRb-412594; AsRb₃Se₄-404080; AsRh-42572; AsRhTi-44052; AsRhV-107965; AsRh₂-611266; AsRu-42577; AsSSm-96227; AsS₃Tl₃-100292; AsS₃Tl₃-79580; AsSe₃Tl₃-15148; AsTa-44068; AsTa₂-611452; AsTeU-42366; AsTiZr-92989; AsV-42445; AsZn-431; As₂BaCo₂-609848; As₂BaCo₂O₈-260062; As₂BaCr₂-609849; As₂BaCu₂-236307; As₂BaCu₄-89628; As₂BaFe₂-166018; As₂BaMn₂-41794; As₂BaNi₂-164197; As₂BaNi₂- $609856; \quad As_2BaNi_2O_8-27014; \quad As_2BaPd_2-36377; \quad As_2BaRh_2-165121; \quad As_2BaRu_2-165119; \quad As_2BaRu_2-165119$ As₂BaZn₂-12146; $As_2BaZn_2-417000;$ $As_2Ba_2MnO_2Zn_2-85659;$ As₂Ba₂Mn₃O₂-32011; As₂Ba₂O₂Zn₃-67998; As₂Ba₃O₈-404438; As₂Ba₄O-33905; As₂BeK₄-300111; As₂Br₂Cd₂Hg₂-240354; As₂CaCo₂-609899; As₂CaCu₄-32619; As₂CaFe₂-166016; As₂CaGa₂-422526; As₂CaNi₂-23004; As₂CaPd₂-36372; As₂CaRu₂-602108; As₂Ca₄O-68203; As₂Cd-16037; As₂CdGe-16736; As₂CdK₄-300190; As₂CdSi-22187; As₂CdSn-16737; As₂CeCo₂-610002; As₂CeNi₂-68146; As₂CePd₂-604354; As₂Cl₃Hg₃Tl-411520; As₂Co-610034; As₂Co₂K-610072; As₂Co₂La-610073; As₂Co₂Nd-610090; As₂Co₂Pr-610099; As₂Co₂Sr-610122; As₂CsRh₂-610296; As₂CsRu₂-610297; As₂Cu₂Sr-78756; As₂Cu₃K₃-32015; As₂Cu₄Eu-89627; As₂Cu₄K-59207; As₂Cu₄Sr-89626; As₂EuFe₂-163211; As₂EuNi₂-610437; As₂EuPd₂-604348; As₂EuRh₂-416982; As₂Eu₄O-1222; As₂F₂Mn-83635; As₂F₆MgXe₂-281694; As₂F₂OSr₂Ti₂-167013; As₂Fe-41724; As₂Fe₂Rb-167329; As₂Fe₂Sr-163209; As₂GdNi₂-610591; As₂Ge-610599; As₂GeMg-182368; As₂GeTe₄-68111; As₂GeZn-16735; As₂Ge₃Te₆-68113; As₂Hf₃-610637; As₂HgK₄-402573; As₂Hg₄O₇-391228; As₂K₃NbO₉-202980; As₂K₄Zn-409919; As₂LaNi₂-68145; As₂LaPd₂-604343; As₂LaRu₂-602111; As₂MgSi-182367; As₂Mg₃-610828; As₂Mn₃O₂Sr₂-32010; As₂NaSn₂-82366; As₂NbNi-38412; As₂NdNi₂-611001; As₂NdPd₂-604337; As₂Ni-24204; As₂Ni₂Pr-611047; As₂Ni₂Sr-23005; As₂OW₂-15020; As₂OSr₄-33904; As₂OYb₄-402951; As₂O₄-10436; As₂O₅-987; As₂O₆S-32581; As₂O₆Zn₃-10400; As₂O₈Sr₃-420295; As₂Os-995; As₂Pd₂Pr-604345; As₂Pd₂Sm-604347; As₂Pd₂Sr-36374; As₂Rh₂Sr-165120; As₂Ru-994; As₂Sc₃-16411; As₂SiZn-22184; As₂SnZn-18203; As₂Sn₂Sr-611428; $As_2Sn_2Sr-82371;$ $As_2Ti-20488;$ As₂Zr-168665; As₂Zr₃-611611; As₃Ba₃In-402338; As₃Ba₃NbO-408853; As₃Ba₃OTa-280155; As₃CaFe₄-260320; As₃Ca₃Ga-60126; As₃Cd₄K-262032; As₃Cd₄Rb-262037; As₃Ce₄-43883; As₃Co-655090; As₃CoHf₅-85884; As₃Cr₂Na₃O₂-280946; As₃Cs₅Ge-65718; As₃Cs₅Si-65716; As₃Eu₄-610400; As₃Ir-34046; As₃K₅O₀-23302; As₃LaSi-39160; As₃La₄-610771; As₃Mg₄NaO₂-59888; As₃NaO₂Ti₂-421531; As₃NaO₂Zr₂-97956; As₃NaZn₄-262036; As₃Nb₅-16417; As₃OSr₃Ta-409567; As₃Pr₄-611220; As₃Rb₅Si-300191; As₃Rh-34052; As₃Sn₄-419884; As₃Sr₄-402110; As₃Ti₄-611492; As₃Ti₅-611496; As₃V₅-611571; As₃Yb₄-611589; As₃Yb₄-95562; As₄BaCu₈-66017; As₄Ca₃In₂-61336; As₄Cd₂Ge-42132; As₄ClCuS₃-419754; As₄CsF₃-281641; As₄Cu₂S₂-33588; As₄Cu₂S₃-26724; As₄Cu₆Hg₃S₂-200785; As₄Cu₆Hg₃S₂-20424; As₄Eu₃Pd₄-79094; As₄K₇Nb-380109; As₄K₇Ta-380110; As₄Mo₅-43186; As₄NbRb₇-380111; As₄Nb₅Pd₄-412866; As₄Pa₃-611159; As₄Pb₉S₅- $18097; \ As_4Rb_5TaTl_2-85784; \ As_4S_3-16105; \ As_4Ta_5-36525; \ As_4Th_3-611490; \ As_4U_3-611550; \ As_4Ta_5-36525; \ As_4Ta_5-3655$ As₅Cu₄U₂-69726; As₅K₆Sn₃-71009; As₆Ca₅Ga₂-27; As₆Ca₅Sn₂-61037; As₆Cu₇Se₃-15235; As₆Ir₇Mg₄-94393; As₆Mg₄Rh₇-94391; As₆Rh₇Yb₄-94392; As₆Ru₇U₄-90326; As₇Re₃-26270; As₇Re₃-611260; AuBa-419559; AuBa₂Tl₇-98964; AuBa₄C₄KO₄-40854; AuBa₄NaO₈-73189; AuBe₂-109312; AuBr-200286; AuBrSe-2897; AuC₂KN₂-26498; AuC₄H₂KN₄O-16043; AuCaCd-420574; AuCaGa-106273; AuCaIn-408579; AuCa₃-58401; AuCd-58409; AuCdEu411544; AuCdYb-411545; AuCe-611711; AuCeCu₅-107971; AuCeZn-418712; AuCe₂P₃-411550; AuCl-6052; AuClF₃P-415842; AuClO-8190; AuCsK₂O₂-62064; AuCsO-409553; AuCsO-43006; AuCsTe-71653; AuCs₃Ge₄-413725; AuCs₃Pb₄-107448; AuEu-611844; AuEuZn-420674; AuFTh₂-89619; AuFU₂-152058; AuF₃-80478; AuF₄K-10327; AuF₄K-9906; AuF₄Na-9905; AuF₄Rb-9907; AuF₆K-415874; AuF₆Li-165209; AuGa-58457; AuGeYb-85835; AuGe₄K₃-413728; AuGe₄Rb₃-413724; AuHf₂-58471; AuHo₂-58480; AuI₂K₅O₂-40376; AuInSr-391422; AuKNa₂O₂-61226; AuKO₂-15115; AuK₃Se₂-402000; AuK₃Sn₄-107444; AuLa-612101; AuLaO₃-73873; AuLa₂-612100; AuLi₂Sn₂-55349; AuMgYb-411303; AuMg₂-58540; AuMn₂-58548; AuN₂-166465; AuNaSn-58554; AuNaSn-660108; AuNa₂-58527; AuNa₂O₂Rb-411460; AuNa₃S₂-202329; AuNd-612217; AuNi₂Sn₄-150127; AuORb-409552; AuPb₂-150949; AuPb₂-56272; AuPb₃-58567; AuPb₄Rb₃-107447; AuPr-612264; AuRbTe-71652; AuRb₂S₄Sb-54507; AuRb₃Sn₄-107445; AuSbTl-391381; AuSb₃-43504; AuSm-612335; AuSnSr-412013; AuSn₂-58587; AuTe₂-38213; AuTh₂-150644; AuTi-612407; AuTl₂-102798; AuYb-612473; AuYbZn-159306; AuYb₂-58619; AuZr₂-108025; AuZr₂-612511; Au₂BaF₂-39316; Au₂BaF₈-65289; Au₂BaIn₂-249562; Au₂BaO₄-80327; Au₂Be-150581; Au₂BiDy₅-156957; Au₂BiEr₅-156959; Au₂BiHo₅-156958; Au₂BiTb₅-156956; Au₂Br₂H₂N₄-80216; Au₂Br₆Cs₂-170696; Au₂CaGe₂-25333; Au₂CaO₄-79801; Au₂CaSi₂-412; Au₂Cd₂Rb₂S₄-85582; Au₂CeGe₂-246610; Au₂CeSi₂-58424; Au₂Cl₆Cs₂-6061; Au₂Cs₂I₆-59269; Au₂Dy-58440; Au₂Dy-611781; Au₂In₂Sr-249563; Au₂La₄O₉-74989; Au₂O₇Se₂-37009; Au₂Sr₃-58596; Au₃Ca₂In₄-410702; Au₃Dy-611784; Au₃Er-611810; Au₃EuIn₃-245680; Au₃F₂La-78915; Au₃Hf-611955; Au₃Ho-58482; Au₃In-612016; Au₃In₃Sr-245679; Au₃KSn₃-249645; Au₃K₃Sb₂-78977; Au₃La₃Sb₄-612105; Au₃Lu-612128; Au₃O₂Rb₅-91308; Au₃Pr₃Sb₄-612269; Au₃Rb₂Tl-249924; Au₃Rb₃Sb₂-78978; Au₃Sb₄Y₃-957; Au₃Sm-58585; Au₃Sn₂Yb₂-710044; Au₃Sn₄U₃-612361; Au₃Tb-612380; Au₃Y-612464; Au₃Yb-58620; Au₃Zr-612509; Au₄Ca₃-54547; Au₄Hf-611961; Au₄Li₅-150973; Au₄S₃Tl₂-51235; Au₄Th₃-601382; Au₇Cs₄Sn₂-107449; Au₇Ge₂K₄-79111; Au₇Rb₄Sn₂-58581; BLi-164842; B₂Ba₇Ir₂-8156; B₂BrCs₃H₂-414584; B₂BrH₂K₃-2120; B₂BrH₂Rb₃-414583; B₂Cs₃H₂I-98622; B₂H₂IK₃-98619; $B_2H_2IRb_3-98620$; $B_2O_{24}Se_2Zn_8-74057$; $B_2P_2-62748$; $B_2Si_3-615435$; B_3C_2-446 ; $B_6Ir_9Mg_0-646$; $B_6Ir_9Hg_0-646$; $B_6Ir_9Hg_0-646$; $B_6Ir_9Hg_0-646$; $B_6Ir_9Hg_0-646$; $B_6Ir_9Hg_$ 163909; BBa₂ClN₂-418947; BBe₂FO₃-56847; BBe₂F₂KO₃-77277; BBe₂F₂O₃Rb-164854; BBrEu₂N₂-409982; BBrN₂Sr₂-261795; BCF₄H₆N₃-202434; BC₃H₂N-249799; BC₇-181956; BCrO₃-43311; BF₃-24783; BF₄Li-171375; BF₅Li₂-426821; BFeO₃-34474; BH₀Li₄N₃-171352; BI₂Zr₆-202103; BInO₃-75254; BLi₃N₂-155128; BLi₃O₃-9105; BLuO₃-16525; BNaO₂-34645; BO₃Sc-65010; BO₃Ti-402039; BO₃V-45060; BO₃Yb-160141; BS₂TI-71593; B₂BaO₆Ti-97972; B₂BaO₆Zr-95527; B₂Ba₂MgO₆-75986; B₂CCe-40164; B₂CN-183792; B₂CTh-68414; B₂CU-44142; B₂CaO₆Sn-30998; B₂Ca₃Ni₇-36505; B₂Ca₃O₆-1894; B₂Ce₂Ir₅-97343; B₂Co₃Zr-16179; B₂Eu₃O₆-86479; B₂F₄-27867; B₂H₈KNa-163377; B₂Hg₃O₆-71261; B₂K₂O₆Zr-67982; B₂Li₂-1; B₂MgO₆Sn-28266; B₂Mo-40907; B₂O₆SnSr-28267; B₂O₆Sr₃-93395; B₃Ba₄N₆Na-401210; B₃Ca₄LiN₆-400339; B₃Eu₄LiN₆-400465; B₃H₃O₄Zn₈-416894; B₃LiN₆Sr₄-402173; B₃Mo-167734; B₃N₆NaSr₄-92577; B₃Na₃O₆-15967; B₃Na₃O₉Sc₂-245063; B₃Na₃S₆-79613; $B_3O_6Rb_3-59826$; $B_3O_9ScSr_3-75339$; $B_3Rb_3S_6-79615$; $B_4C-29093$; $B_4CeO_2Sc_3-90839$; B₄Fe₃LaO₂-83506; B₄Fe₃NdO₂-83507; B₄Fe₃O₂Tb-96455; B₄Ga₃NdO₂-200321; B₄LaO₂Sc₃-89013; B₄Mo₂-39554; B₅W₂-20326; B₆BaNi₂-100287; B₆Ba₂CaO₂-30890; B₆Ba₂MnO₂-391013; B₆Ba₂Ni₉-100288; B₆BrK₃O₀-172400; B₆CaNi₂-36507; B₆Co₄O₃-96561; B₆EuNi₂-86371; B₆Ni₂Sr-100286; B₆O-71065; B₆O₃Zn₄-100290; B₆O₈ScSr₆Y-67648; B₇ClCo₃O₃-

158297; $B_7ClO_3Zn_3-55444;$ $B_9BaLiO_5-93013; B_9BaNaO_5-93014;$ B₉MgN-280938; Ba₂Li₈N₆Na₅-417928; BaBiO₃-151895; BaCN₂-75041; BaCO₃-158389; BaC₂CeFO₆-74178; BaC₂F₂O₆Pb₂-280899; BaC₂MgO₆-24435; BaCeO₃-79627; BaCrF₆-10341; BaCu₂Ga-615828; BaF₂-183923; BaF₂-41649; BaF₂-41650; BaF₃Li-45310; BaF₄Pd-108991; BaF₆Ge-26614; BaF₆Ni-35396; BaF₆Pb-25521; BaF₆Rh-6038; BaF₆Si-26613; BaF₆Sn-33788; BaF₆Ti-33789; BaF₇Ta-417251; BaFeO₃-28917; BaGe₂Pt₄-174551; BaGe₂Li₂Mg₂-409576; BaH₉Re-247108; BaH₉Re-247109; BaHgO₂-74076; BaLi₂Mg₂Si₂-409575; BaMnO₃-66822; BaMn₃O₃₈Ti₈-BaMo₂O₂P₃-68560; BaMo₆S₈-615980; BaMo₆S₈-62157; 81584; $BaNb_2OV_2-165097;$ BaNi₂O₈P₂-280167; BaNi₂O₈V₂-96086; BaNi₄O₈-20898; BaO₈V₃-51472; BaO₃Ru-10253; BaO₃Si-156705; BaO₃Tb-2752; BaO₃Ti-6102; BaPb₃-419973; BaRu₄Sb₂-42963; Ba₂BiIrO₆-174290; Ba₂BiO₆Sb-172761; Ba₂BiO₆Ta-153120; Ba₂BiO₆Yb-80902; Ba₂Bi₂O₆-28164; Ba2BrCuO2-67395; Ba2BrN-262056; Ba2C3Cs2O9-73170; Ba2ClCo4O7-245991; Ba2ClCuO2-1038; Ba₂ClN-262051; Ba₂ClP-28134; Ba₂CoF₆-21057; Ba₂Cr₇O₄-2766; Ba₂FN-262049; Ba₂F₆Ni-21056; Ba₂F₆Zn-21054; Ba₂HN-67510; Ba₂IrLaO₆-152678; Ba₂IrO₆Sr-74030; Ba₂Ir₃O₉-54725; Ba₂LaO₆Ru-155549; Ba₂LaO₆Sb-153136; Ba₂LaO₆Ta-160170; Ba2La2MnO2W2-54667; Ba2Mg7-58660; Ba2Nb5O32-69991; Ba2NbO6Pr-245457; Ba2NiO6Te-25005; Ba₂O₆PrSb-153137; Ba₂O₆SrTe-246109; Ba₂O₆SrTe-246109; Ba₂O₆SrW-246114; Ba₂Re₆S-30737; Ba₃BeCl₈Zr₆-33993; Ba₃BiNaO₆-72839; Ba₃Cl₂Fe₂O₅-48178; Ba₃Cr₂O₈-9457; Ba₃Cr₂S₆-97540; Ba₃Dy₄O₉-72480; Ba₃Er₄O₉-72481; Ba₃Ho₄O₉-33807; Ba₃IrNaO₆-405134; Ba₃Lu₄O₉-38383; Ba₃Mn₂O₈-280045; Ba₃NaNbO₆-72330; Ba₃NaO₆Ru-405133; Ba₃NaO₆Ta-72331; Ba₃Nb₂O₈-95193; Ba₃NiO₄-30662; Ba₃O₈P₂-18110; Ba₃O₈P₂-30634; Ba₃O₈V₂-14237; Ba₃O₉W₂-100689; Ba₃O₉Y₄-87118; Ba₄CeMn₃O₂-99661; Ba₄ClO₈O₈-82910; Ba₄ErO₂Ru₃-174186; Ba₄HoO₂Ru₃-160868; Ba₄Mn₃NdO₂-156305; Ba₄Mn₃O₂Pr-99662; Ba₄NaO₂Sb₃-160173; Ba₄O₂Ru₃Tb-160870; Ba₄O₂Ru₃Zr-47132; Ba₄O₆Pt-65706; Ba₆NNa₆-78394; Ba₆N₆OOs₂-419467; Ba₆N₆ORe₂-419636; Ba₆O₈W₄-9725; Ba₉O₂₄Sc₂Si₆-75175; Be₇Nb₂-58724; Be₇Ru₃-58735; Be₇Ti₂-109217; Be₇Zr₂-58759; BeCl₂-173561; BeCsF₃-290357; BeF₂-173557; BeF₂-173558; BeF₂-9481; BeF₄Li₂-14360; BeK₄P₂-300110; Be₂CsF₅-2801; Be₂F₈K₂Pb-9902; Be₂F₈K₂Sr-109005; Be₂O₄Si-28003; Be₃Ca₃F₂Li₂O₂Si₃-39389; Be₃Nb-58723; Be₃Ru₂-616409; Be₄C₆K₆O₉-412642; Bi₂GeO₂₀-39611; Bi₂MnO₂₀-75079; Bi₂O₂₀Si-422389; Bi₂O₂₀Ti-167355; Bi₂O₂₀Zn-62479; BiCsF₆-15122; BiF₃-25567; BiF₃-655136; BiF₃-9015; BiF₄K-63166; BiF₄Li-65404; BiF₅-25023; BiF₆K-25024; BiF₆Li-15119; BiF₆Na-15120; BiF₆Rb-15121; BiFeO₃-15299; BiK₃O₃-407293; BiNa₃O₃-23347; Bi₂₄Ge₂O₄₀-68431; Bi₂₄Mn₂O₄₀-75390; Bi₂₄O₄₀Pb₂-75392; Bi₂₄O₄₀Si₂-68430; Bi₂₄O₄₀Ti₂-75389; Bi₂Ni₃S₂-159364; Bi₂Pd₃S₂-417634; Bi₃Eu₄-616649; Bi₃Gd₄-616662; Bi₃La₄-616755; Bi₃Sm₄-617132; Bi₃Tb₄-617161; Bi₃Nd₄-616855; Bi₃Nd₄-616860; Bi₃Yb₄-617255; Bi₄Ce₃Pd₃-419162; Bi₄Cu₃La₃-167250; Bi₄Ge₃O₂-260560; Bi₄O₂Si₃-402349; Bi₄Rh-58854; Bi₄Th₃-617222; Bi₄U₃-617239; Br₅CoTh₆-33926; Br₅FeTh₆-33925; BrF₃-31689; BrF₄K-10326; BrF₄Rb-65713; BrF₅-31690; Br₂Cs₂F₂-84021; Br₂Cs₂F₂-84022; Br₂Hg₃Te₂-27402; Br₃La₃Si-411800; $C_2Cl_2N_2O_4P_4S_2Sb_4-80097;$ $C_2O_2Ru_4Se_4-92913;$ $C_8 Er_0 Mn_3 - 603261;$ C₈Ho₀Mn₃-603286; C₈Lu₀Mn₃-603277; C₈Mn₃Tb₀-603285; C₈Ru₂Th-79240; CCl₃Gd₃-37323; CF₄-2848; CF₄-66659; CLi₂O₃-66942; CLi₂O₃-96486; C₂₂F₄-411879; C₃Ce₂-74661; C₃C₈₂O₉Sr₂-169231; C₃Dy₂-2449; C₃Er₂-86291; C₃F₆-151184; C₃Gd₂-602774; C₃Ho₂-42497; C₃La₂-618154; C₃Lu₂-618221; C₃N₄-97565; C₃Nd₂-2447; C₃O₉Rb₂Sr₂-169232; C₃Pr₂-74662; C₃Pu₂-24620; C₃Sc₄-42760; C₃Tb₂-74663; C₃Tm₂-86292; C₃U₂-618999; C₃Yb₂-86293;

C₆₀Eu₆-88616; C₆₀K₆-66879; Ca₂Li₆N₆O₃Re₄-411462; CaCo₄Cu₃O₂-169095; CaCsF₃-45309; CaCs₂F₄-82616; CaCuF₄-9928; CaCu₃Ge₄O₂-1303; CaCu₃Mn₄O₂-156374; CaCu₃O₂Pt₄-248230; CaCu₃O₂Ru₄-51894; CaCu₃O₂Sn₄-162100; CaCu₃O₂Ti₄-167254; CaCu₃O₂V₄-250094; CaF₂-44937; CaF₂-51237; CaF₂-51239; CaF₂-656449; CaF₃K-154074; CaF₃Rb-201253; CaF₄Pd-32674; CaF₄Zn-31366; CaF₆Pb-25522; CaF₆Sn-35713; CaFe₃O₂Ti₄-79277; CaFe₄Sb₂-42961; CaNa₀Sn₂-240006; CaO₃Si-240453; Ca₂F₄-246961; Ca₂K₈O₂₄U₆-91783; Ca₃Cr₂O₂Si₃-158537; Ca₃Fe₂Ge₃O₂-280047; Ca₃Ga₂O₂Si₃-27387; Ca₃Ga₄Ni₄-58899; Ca₃Ge₃O₂Y₂-280048; Ca₃Hg-58903; Ca₃Ir₄Si₄-95788; Ca₃Mn₂O₂Si₃-27388; Ca₃N₂-34678; Ca₃O₂Sc₂Si₃-27389; Ca₃O₂Te₂Zn₃-67045; CdCsF₃-290344; CdCuF₄-73478; CdCu₃O₂Ti₄-39467; CdF₂-183501; CdF₂-250165; CdF₃K-44788; CdF₃Rb-49587; Cd₂F₈Tb-86146; Cd₃Ge₃O₂Sc₂-20216; Cd₃N₂-416908; Cd₃P₂-620218; Cd₄N₂P₆S-71019; CeF₃-16965; CeF₃-4; CeF₃-42470; CeFe₄P₂-52852; CeP₂Ru₄-50595; CeRu₄Sb₂-621988; Ce₂O₃-96202; Ce₃Cu₃Sb₄-658638; Ce₃Ni₆Si₂-25622; Ce₃Pt₃Sb₄-621896; Ce₃S₄-31602; Ce₃Se₄-622113; Ce₃Te₄-43676; Ce₄Sb₃-52905; Ce₆Ni₆P₇-2243; Ce₆P₇Pd₆-30851; ClF-406442; ClF₃-19079; ClF₃Sn₂-2088; Cl₂Hg₃Se₂-27400; Cl₂Hg₃Te₂-27401; Cl₃F₂Sb-200039; Cl₃F₂Sb-380014; Cl₄CsLi₃-245975; Cl₄FSb-30629; Cl₄FTa-27413; Cl₄Li₂Zn-202743; Cl₈FeLi₆-73217; CoF₂-98785; CoF₃-16672; CoF₃-29133; CoF₃K-15246; CoF₄K₂-33522; CoF₄Rb₂-69683; CoF₆Rb₂-9701; CoF₆Zr-83724; CoP₃-624594; CoSb₃-41620; CoU-625521; Co₂F₇K₃-33524; Co₆Nd₂Sn-240094; Co₇Ge₆Zr₄-52996; CrCs₂F₆-29007; CrF₂-31827; CrF₃-59967; CrF₃K-172844; CrF₄-78778; CrF₄Sr-26105 (4); CrF₅-419661; CrF₆Nb-75384; CrF₆Rb₂-29006; CrF₆Zr-35719; CrGa₄-626026; Cr₂F₅-80639; Cr₂Fe₃O₂Si₃-27375; Cr₂Mn₃O₂Si₃-27379; Cs₈O₆Tl₈-421376; CsCuF₄-35264; CsEuF₃-49577; CsF-44288; CsF-53832; CsF-61563; CsF₂H-45858; CsF₂Li-18020; CsF₃Hg-15168; CsF₃Mg-290360; CsF₃Mg-49584; CsF₃Pb-290350; CsF₃Sr-49578; CsF₃Yb-49579; Cs₂CuF₆-65259; Cs₂F₄Hg-72353; Cs₂F₆Ge-35547; Cs₂F₆Mn-47201; Cs₂F₆Mn-76272; Cs₂F₆Si-26871; Cs₂F₆Si-38548; Cs₂O₃-627061; Cs₃F₅Li₂-245964; Cs₃F₆Tl-19076; Cs₃F₆Y-19078; Cu₂S₃Sb₄-25707; Cu₅Si₄-36254; CuF-52273; CuF₂-26576; CuF₂-9788; CuF₃K-21108; CuF₃Rb-69656; CuF₄K₂-15372; CuF₄K₂-24408; CuF₄Sr-9927; Cu₂F₇K₃-15373; Cu₃DyMn₄O₂-153871; $Cu_3Er_3Sb_4-658645;$ $Cu_3GdMn_4O_2-153870;$ $Cu_3Gd_3Sb_4-658641;$ Cu₃HoMn₄O₂-153872; $Cu_3LaO_2Ru_4-51897;$ Cu₃Ho₃Sb₄-658644; Cu₃La₃Sb₄-658637; Cu₃Mn₄O₂Pr-153867; Cu₃Mn₄O₂Th-34316; Cu₃Mn₄O₂Tm-153873; Cu₃Mn₄O₂Y-38419; Cu₃Mn₄O₂Yb-153874; Cu₃NdO₂Ru₄-51896; Cu₃Nd₃Sb₄-57207; Cu₃Nd₃Sb₄-658635; Cu₃O₂Ru₄Sr-51895; Cu₃O₆Te-1529; Cu₃O₆Te-26990; Cu₃Pr₃Sb₄-658639; Cu₃S₃Sb-31113; Cu₃Sb₄Tb₃-658642; Cu₃Sb₄U₃-657096; Cu₃Sb₄Y₃-658636; Cu₃Sn₄U₃-629298; Cu₅Zn₈-2092; Dy₂Fe₃₂O₂-9639; Dy₂O₃-66736; Dy₃Fe₅O₂-23856; Dy₃Ga₅O₂-409391; Dy₃S₄-630201; Dy₃Se₄-630252; Dy₄Ga₂Ni-629724; Dy₄Ni₂Sn₂₅-160045; Dy₄Sb₃-630245; ErF₃-81411; Er₂O₃-39521; Er₃F₀K-418210; Er₄Sb₃-600631; EuF₂-29025; EuFe₄P₂-79925; EuNa₀Sn₂-172209; EuRu₄Sb₂-79928; Eu₃F₀Rb-14027; Eu₃Ga₄Ni₄-103395; Eu₃S₄-100522; F₀KTb₃-28214; F₀KY₃-155137; F₀KYb₃-28258; F₂Fe₂Li₃Na₃-17056; F₂KTb₃-51125; F₂P₄Pt-418726; F₃KSb₄-24740; F₃KSb₄-4049; F₄N₂Ni-26397; F₅Nb₆-25769; FK-53824; FK-61558; FLi-184904; FLi-62361; FMg₂N-262328; FNa-262837; FRb-43436; FRb-53828; FSeY-1827; FTI-16112; FTI-16113; FTI-28495; FTI-30268; FTI-90993; FTI-90994; FTI-9873; F₂Fe-14143; F₂Ge-18030; F₂HK-9345; F₂HRb-45859; F₂Hg-33614; F₂Hg₂-23719; F₂Hg₂-27700; F₂Hg₃S₂-16927; F₂Kr-23534; F₂Kr-279623; F₂Mg-422263; F₂Mg-51242; F₂Mg-51243; F₂Mg-56506; F₂Mg-94284; F₂Mn-12167; F₂Mn-200641; F₂Mn-20365; F₂Ni-26605; F₂Ni-34307; F₂Pb-161391; F₂Pb-60014; F₂Pd-100567;

F₂Pd-16763; F₂Sn-14194; F₂Sn-14195; F₂Sn-308; F₂Sr-168801; F₂Sr-41402; F₂Ti-68400; F₂V-201245; F₂Xe-28334; F₂Zn-184219; F₃Fe-202047; F₃Fe-240398; F₃Fe-52167; F₃FeK-44784; F₃FeRb-49586; F₃Ga-22197; F₃HgRb-15169; F₃Ho-200955; F₃I-411036; F₃In-18028; F₃Ir-77619; F₃KMg-40476; F₃KMn-246919; F₃KMn-246921; F₃KMn-43721; F₃KMn-75412; F₃KMn-75414; F₃KNi-15426; F₃KPd-73167; F₃KV-28145; F₃KZn-56097; F₃La-164054; F₃La-164055; F₃La-167553; F₃La-16964; F₃La-246323; F₃La-27089; F₃La-28538; F₃La-3; F₃La-34108; F₃La-96133; F₃La-96134; F₃MgNa-171813; F₃MgRb-49585; F₃Mg₃N-18320; F₃MnRb-43722; F₃Mo-30612; F₃Mo-68527; F₃NaV-60611; F₃Nb-25596; F₃Nd-16967; F₃Nd-63049; F₃Nd-63050; F₃Ni-87943; F₃PbRb-49591; F₃Pd-16675; F₃Pr-16966; F₃Pu-29013; F₃RbV-28146; F₃RbYb-49590; F₃Rh-29134; F₃Ru-16673; F₃Sb-30411; F₃Sc-261067; F₃Sc-30215; F₃Ta-30613; F₃Tb-167474; F₃Ti-52162; F₃Tl-10365; F₃U-24966; F₃V-30624; F₃Y-15961; F₃Y-6023; F₃Yb-9844; F₄Ge-202558; F₄Hf-66008; F₄HgRb₂-72352; F₄Ir-23483; F₄K₂Mn-23184 (33); F₄K₂Ni-73450 (55); F₄K₂Zn-100298 (98); F₄LiLu-152948; F₄LiSc-413966; F₄LiY-39563; F₄LiY-55692; F₄LiYb-9914 (6); F₄MgRb₂-69681 (6); F₄Nb-23949; F₄Pb-16795; F₄PbPd-108992; F₄Pd-1555; F₄PdSr-108990; F₄Pt-71579; F₄S₂Yb₃-92497; F₄Se-85451; F₄Si-14122; F₄Si-63184; F₄Sn-16794; F₄SrZn-31367; F₄Te-9869; F₄V-65785; F₄Xe-27467; F₄Zr-35100; F₅H₈N-38338; F₅I-6021; F₅Mo-26644; F₅Nb-26647; F₅P-62554; F₅U-200459; F₅U-31658; F₆FeZr-100301 (48); F₆FeZr-35716 (90); F₆GeRb₂-68982 (27); F₆HfK₂-47244; F₆HfV-94455; F₆KP-25576; F₆K₂Mn-47213; F₆K₂Ni-41416; F₆K₂Si-73722; F₆K₃Mo-4403; F₆K₃W-51264; F₆LiNb-165202; F₆LiP-74830; F₆LiSb-23924; F₆Li₂Zr-409667; F₆MnRb₂-47207; F₆Mo-153; F₆Mo-1879; F₆MoNa-31033; F₆NaP-90615; F₆NaSb-25538; F₆NaSb-56251; F₆NiRb₂-29005; F₆O₂Pt-28345; F₆O₂Sb-78849; F₆PTI-28899; F₆Pb₂-23467; F₆PdRb₂-28675; F₆Rb₂Si-38547; F₆Rb₃Tl-19075; F₆Rb₃Y-19077; F₆S-214; F₆S-41229; F₆S-63360; F₆S-63362; F₆SiTl₂-38549; F₆SiTl₂-52292; F₆Sn₂-33786; F₆Te-67609; F₆TiTl₃-42154; F₆TiZr-94456; F₆U-2499; F₆VZr-94454; F₆W-4027; F₆Xe₂-18128; F₇I-31691; F₇IXe-26059; F7K3Mn2-33525; F7K3Ni2-33523; F7K3Zn2-100299; F7Li3Th-1726; F7Re-78311; F8Na2U-165293; F₈Na₃Pa-16153; F₈Sn₃-32592; F₉U₂-35288; FeGa₆Ge₆Tb₄-281082; Fe₂Ge₃Mn₃O₂-Fe₂Mg₃O₂Si₃-27373; Fe₃₂Ho₂O₂-9827; Fe₃₂O₂Y₂-9640; Fe₃Mn₂O₂Si₃-27378; 18111; Fe₃O₂Si₃V₂-27376; Fe₄LaP₂-1286; Fe₄LaSb₂-53490; Fe₄NdP₂-93364; Fe₄NdSb₂-79927; Fe₄P₂Pr-93363; Fe₄P₂Tb-245293; Fe₄P₂Th-200827; Fe₄P₂U-633114; Fe₄P₂Yb-156464; Fe₅O₂Si₃-27377; Fe₅O₂Tb₃-9233; Fe₅O₂Y₃-29235; Fe₅O₂Yb₃-23854; Fe₅Si₃-161132; Ga₂PdTb₄-153210; Ga₂PdY₄-103910; Ga₂PtTb₄-153211; Ga₂PtY₄-153909; GaI₃La₃-409561; GaLi₃N₂-25566; GaLi₅O₄-16926; Ga₃Na₃O₂Te₂-418645; Ga₄Mn-634630; Ga₅Ho₃O₂-409390; Ga₅O₂Tb₃-20831; Ga₅O₂Y₃-23852; Ga₅O₂Yb₃-23851; Ga₇Ni₃-408313; Gd-104045; GdLiO₂-422561; Gd₂O₃-40473; Gd₃I₃Si-67361; Gd₃Ni₆Si₂-601071; Gd₃O₂Sb₅-65147; Gd₃S₄-636328; Gd₃Se₄-636389; Gd₄Sb₃-601400; Ge-181072; GeI₃La₃-414174; GeLi₂O₅Ti-250297; Ge₃La₄-76313; Ge₃N₄-97569; Ge₄Li₅-43235; Ge₆Ir₇Mn₄-153070; Ge₆Ir₇Yb₄-413984; Ge₆Lu₄Rh₇-90200; Ge₆Lu₄Ru₇-90199; Ge₆Os₇Sc₄-637471; Ge₆Rh₇Sc₄-84201; Ge₆Rh₇Yb₄-413983; Ge₇Ir₃-53656; Ge₈Na₆Pt₈-32038; H₅Th₄-24686; H₄Li₂Mg-181325; Hf₃N₄-97997; Hg₃O₆Te-30325; Hg₄Ni-639118; Hg₄Pt-659824; Ho₂O₃-27773; Ho₄Sb₃-601431; ILiO₃-20032; ILiO₃-40363; I₃La₃P-411801; I₃La₃Pb-409796; I₃La₃Sb-411804; In₂O₃-14387; In₇Pd₃-408314; In₇Pt₃-59500; K₀Pb₄₈-410090; K₂O₃Sn₂-40463; K₃S₄Sb-41895; K₈O₂₄Sr₂U₆-91784; LaP₂Ru₄-50596; La₂O₃-96201; La₃S₄-56782; La₃Se₄-60208; La₃Te₄-642013; La₄O₉Re₆-22207; $La_4O_9Re_6-36083$; $La_4O_9Ru_6-100098$; $La_4Pb_3-641648$; $La_4Rh_3-641734$; $La_4Sb_3-10441$;

La₆P₇Pd₆-30850; Li₂Mg₃Si₄-39596; Li₅Si₄-159397; LiN₂P-66007; Li₂O₃Si-100402; Li₂O₄S-153807; Li₂O₄S-58; Li₂O₄W-10479; Li₂O₄W-15395; Li₂O₅Si₂-78562; Li₃NbO₄-30246; $Li_3Nd_3O_2W_2-245640;$ $Li_3O_4P-10257;$ $Li_3O_4P-20208;$ $Li_3O_4Ta-37126;$ $Li_3O_4V-19002;$ Li₄O₄Ti-75164; Li₆O₄Zn-62137; Li₆O₇Si₂-25752; Li₆O₇Zr₂-41321; Li₇O₆Ta-74950; Lu₂O₃-33659; Mg₃Mn₂O₂Si₃-27374; Mg₃N₂-23522; Mg₃O₂Si₃V₂-27372; Mg₃P₂-26875; Mg₃Sb₂-181285; Mg₄P₆Rh₇-94390; Mn₂O₃-9091; Mn₃O₂Si₃V₂-27380; Mn₅O₂Si₃-27382; Mn₇NaO₂-19022; Mo₃Sb₇-24303; N₂P₆SZn₄-76440; N₂₄O₂P₂Zn₈-417324; N₂O₄-29047; N₂Zn₃-84918; N₃U₂-644812; N₄Si₃-97567; N₄Zr₃-97998; Na₀Sn₂Sr-240007; Na₀Sn₂Yb-172210; Na₃O₃Sb-23346; Na₃S₄Sb-44707; Na₃SbSe₄-65141; Na₆O₄Pb-21059; NbS₄Tl₃-600246; NbSe₄Tl₃-600249; Nb₃Sb₂Te₅-417101; NdOs₄Sb₂-79929; Nd₃S₄-645823; Nd₄O₉Os₆-200870; Nd₄Sb₃-645890; NiP₃-23714; Ni₃Pb₂S₂-159363; Ni₃Sb₄U₃-23078; Ni₃Sb₄Zr₃-87995; Ni₃Sn₄Th₃-657422; Ni₃Sn₄U₃-105374; Ni₃Sn₄U₃-646805; Ni₆PbY₂-54614; O₂Pr₃Sb₅-22502; O₂Sb₅Yb₃-20945; OTa₂-28387; O₃₆P₂Sc₄-1719; O₃V₂-260212; O₄Pt₃-27836; O₆Rb₄-25718; O₆Sr₂WZn-28599; O₈SnTe₃-9077; O₈Te₃Ti-9076; O₈Te₃Zr-9079; Os₃Sn₇-54605; Os₄PrSb₂-155178; P₂Ru₄Tb-245294; P₃Rh-23712; P₃Ti₄-648219; P₄Th₃-25724; P₄U₃-25725; Pb-54314; Pb2Pd3S2-159365; Pd6S7-32053; Pr3Pt3Sb4-649207; Pr3S4-649249; Pr3Se4-649323; Pr3Te4-649411; Pr₄Sb₃-649308; Pt₃Sn₄U₃-649697; Re₇Si₆U₄-2471; RhSb₃-34049; Rh₇Sb₆Yb₄-409885; Rh₇Sb₆Yb₄-421488; Ru₃Sn₇-54510; Ru₄Sb₂Sr-42962; S₃Tm₂-39240; S₃Yb₂-72010; S₄Sm₃-2245; S₄TaTl₃-16571; S₄Tl₃V-16572; S₄Tl₃V-600245; Sb-108182; Sb₃Tb₄-601429; Sb₃Yb₄-43031; Sb₃Yb₄-651757; Sb₄Th₃-16655; Se-104187; Se₄Sm₃-651872; Se₄TaTl₃-52431; Se₄Tb₃-651982; Se₄Tl₃V-600248; Se₄U₃-23710; SiV₃-52472; Sm₃Te₄-652658

Reference

 Gong, W.; Tabata, T.; Takei, K.; Morihama, M.; Maeda, T.; Wada, T. Crystallographic and Optical Properties of (Cu, Ag)₂ZnSnS₄ and (Cu, Ag)₂ZnSnSe₄ Solid Solutions. Phys. Status Solidi C 2015, 12, 700–703.