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One of the key challenges when looking for the causes of a complex event is to determine the causal

status of factors that are neither individually necessary nor individually sufficient to produce that

event. In order to reason about how such factors should be taken into account, we need a vocabulary

to distinguish different cases. In philosophy, the concept of overdetermination and the concept of

preemption serve an important purpose in this regard, although their exact meaning tends to remain

elusive. In this paper, I provide theory-neutral definitions of these concepts using structural equations

in the Halpern-Pearl tradition. While my definitions do not presuppose any particular causal theory,

they take such a theory as a variable parameter. This enables us to specify formal constraints on

theories of causality, in terms of a pre-theoretic understanding of what preemption and overdeter-

mination actually mean. I demonstrate the usefulness of this by presenting and arguing for what I

call the principle of presumption. Roughly speaking, this principle states that a possible cause can

only be regarded as having been preempted if there is independent evidence to support such an infer-

ence. I conclude by showing that the principle of presumption is violated by the two main theories

of causality formulated in the Halpern-Pearl tradition. The paper concludes by defining the class of

empirical causal theories, characterised in terms of a fixed-point of counterfactual reasoning about

difference-making. It is argued that theories of actual causality ought to be empirical.

1 Introduction

When reasoning about actual causality, it is easy to fall in the logic trap, by thinking that causes behave

like necessary and sufficient conditions for outcomes.1 Of course, we know this way of thinking is

misguided. If Jane and Julie both give a lethal dose of poison to Bob, we realise that they are both causes

of his death, even though neither of them are necessary. If they give half a dose each, the same conclusion

is drawn, even if neither is sufficient.

This is widely accepted and hardly any theory of causality proposes otherwise. But the trappings of

classical logic are not so easily avoided. In legal theory, for instance, the so-called NESS test holds that

A is cause of B if A is a necessary element of a sufficient set of conditions for B [16]. This gloss on the

logic-based perspective suffices to deal with simple examples, but problems still arise.2

For an illustration of this, consider a scenario where Jane gives Bob half a dose of poison while Julie

administers a whole dose. We know from experiment (with other Bobs, no doubt) that one dose or more

is deadly. Furthermore, we assume that any integer percentage of a whole dose of poison could have

been given by both Jane and Julie; none of them were compelled to give a certain dose of poison to Bob.

1Actual causality is concerned with causal attributions for concrete events, not general dependencies or regularities. To

illustrate with an example from Halpern [7], ’smoking caused Bill’s cancer’ is a claim about actual causality, while ’smoking

causes cancer’, a statement of general causality, is not. See, generally, [9, 13].
2For a formalisation of the NESS test that suffers from many of the same problems as those identified with respect to the

Halpern-Pearl definitions considered in the present paper, see [4].
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When Bob dies, we would like to know who caused his death. In view of logic-based intuitions, some

might be tempted to claim that only Julie counts as a proper cause, since her dose of poison was sufficient

all by itself. Indeed, this is the judgement made by the NESS test: Jane is not necessary for any sufficient

set of conditions, since such a set also has to include Julie.

Others will disagree with this judgment, maintaining that we have to count Jane as a proper cause,

since she clearly contributed to the outcome. This is the position taken by the first two definitions of

causality in the HP tradition, due to Halpern and Pearl [9]. However, the most recent definition in this

tradition, due to Halpern, sides with the NESS test; Jane will not be considered a cause, or even part of

cause, when Bob dies [7, 8].

This underscores a lack of theoretical agreement about very simple cases, suggesting the need for

work that can help us reason about causal theories, to help us move beyond vague intuitions when trying

to evaluate them.3

To highlight what is at stake here, consider changing the scenario above so that Jane only gives Bob

1% of a full dose of poison. Should she still count as a cause of his death? Then contrast this with the

situation that arises when Jane gives Bob 99% of a full dose of poison - enough to kill him even if Julie

had given only 1%. Is it still defensible to deny that Jane was a cause of Bob’s death? Intuitively, most of

us would answer no to both questions, but this forces us to acknowledge that our logic-based intuitions

are at best context-dependent: if Jane gives Bob a 99% dose of poison, we are not willing to deny that

Jane counts as a cause of Bob’s death, even though we did want to do this when her contribution was

1% of a full deadly dose. From this arises the problematic question of where exactly to draw the line:

how much poison does it take to count as a cause of Bob’s death by poison? If we go down that route,

our theory of causality will effectively stumble over a sorites paradox, which is not likely to be solved

any time soon. It might be better, therefore, to understand actual causes as factors that make a causal

contribution to a given outcome.

In the following paper, this is the concept of “cause” I will elaborate on, building on how that notion

is traditionally used in the HP framework.4 With the understanding that “cause” means “causal contri-

bution”, it becomes more plausible to regard Jane as a cause of Bob’s death in the example above. In

principle, this intuition about causal contribution also remains robust regardless of whether she admin-

isters 1% or 99% of a full dose of poison. Either way, Jane contributes to Bob’s death. It might still be

possible to dispute this, but the more obvious objections have lost their appeal.

Moreover, when we consider the NESS test or the most recent definition of HP causality more closely,

we notice something strange: in the situation described above, these definitions fail to recognise the

contribution made by Jane, but in a model where Julie is assumed to have exactly one alternative action,

3In [5], formal theories of actual causation are criticised for being based on “induction from intuitions about an infinitesimal

fraction of the possible examples and counterexamples”. To improve the methodology, the authors propose an approach where

the aim is to find “reliable indicators” for actual causation, rather than sweeping formal definitions. While I agree with the gist

of the criticism, the present paper does not pursue a pragmatic response, but aims instead to contribute to a meta-theory that

can be used to justify formal definitions of causality in a more systematic way than by testing them on a handful of examples. I

believe we should aim to develop such a theory to account for some agreed-upon or defeasibly stipulated principles that express

what we expect of a formal theory of causation in a given context.
4In recent work, Halpern has used the terminology “part of a cause” and “complex cause” to highlight a distinction that

arises quite naturally from his most recent definition of causality [7]. This does not address the conceptual problem of how to

draw a distinction between “proper” causes and causal contributions, if such a distinction is thought to exist. In the Jane-Julie

example, Jane is neither a complex cause nor a part of a cause, meaning that the intuition that she contributes to Bob’s death

by poisoning him is not captured at all. Moreover, if Jane gives Bob 1% of a full dose of poison while Julie gives 99% of a full

dose, Jane alone will suddenly count as a complex cause of Bob’s death according to Halpern’s definition. Hence, if we want

to resist attributing causal significance to Jane’s action in such cases, we cannot simply equate Halpern’s notion of a complex

cause with that of a cause simpliciter.
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namely to give half a dose of poison to Bob, Jane will come out as a cause of his death after all. Why

should the causal status of Jane’s actual action depend on the contrary-to-fact options available to Julie?

The natural starting-point is to assume that there is no such dependence, unless we have a specific reason

to believe otherwise.5 In the June and Julie example, I fail to see any such reason. To my knowledge, none

has been produced in the literature either, where these kinds of cases appear to have been overlooked.

To structure our reasoning about the problem that arises here, and other problems like it, it is helpful

to use the concepts of overdetermination and preemption, broadly construed. The former notion is typi-

cally used to pinpoint causes that are not necessary for their effects, while the second notion is generally

used to pinpoint putative causes that are blocked from making a contribution to their apparent effects.6

Understood in this way, when Jane counts as a cause of Bob’s death, she is an overdetermining cause,

adding to the contribution made by Julie. By contrast, if Jane is not regarded as having made a causal

contribution, she must have been preempted from doing, presumably by Julie, whose dose was sufficient

all by itself. This usage is consistent with how I will define these terms in the present paper, as theory-

neutral concepts that can be used to talk about causal theories. The main contribution of my work is that

I show how this can be done formally in the HP framework, leading to a template for defining a new

class of causal theories within that framework, characterised by a fixed-point property.

2 Causal Models and Theories of Causation

I begin by presenting the basic constructs of the HP framework for causal modelling [7, 9, 10]. This

framework is based on formal specifications that generate a set of structural equations that represent

causal dependencies. To specify the variables and their ranges we use a causal structure, a tuple S =
(U ,V ,R) where U is a finite set of exogenous variables, V is a finite set of endogenous variables and

R : U ∪V → 2D
fin

is a map from variables to a finite collection of values from some domain D.

Given a causal structure, a causal model over S is a tuple M = (G,F ,~u) where G = (N,V ) is a

directed acyclic graph (DAG) over V , with directed edges N ⊆ V ×V . For all V ∈ V , p(V ) = {U |
(U,V ) ∈ N} collects the set of parents of V in G, i.e., the set of variables pointing to V . F = (FV )V∈V is

a collection of functions, one for each endogenous variable. For all V ∈ V , FV : ∏
U∈U ∪p(V )

R(U)→R(V )

depends only on U and the values of all parents of V . The final parameter of a model, ~u = (u1, . . . ,un),
is a setting of values for U = {U1, . . . ,Un}, ordered arbitrarily such that ui ∈R(Ui) for all 1≤ i≤ n.

Example 2.1. To represent two of the Jane-Julie scenarios considered in the introduction, we can use

S1 = (U1,V1,R1) and S2 = (U2,V2,R2) where U1 = U2 = {U1,U2} and V1 = V2 = {J1,J2,B}. The

ranges are defined such that R1(U1) = R2(U1) = R1(J1) = R2(J1) = {0,0.5},R1(U2) = R1(J2) =
{0.5,1},R2(U2) = R2(J2) = {0,0.5,1} and R1(B) = R2(B) = {0,1}. So the only difference between

S1 and S2 concerns the range of U2 and J2. We can then model the two problem cases by two models,

M1 and M2, which are identical except for the range of U2,J2. Specifically, both models are made up of

the context ~u = (0.5,1) and the graph G depicted on the left below, with associated functions shown on

5This could be, for instance, if the outcome under consideration is inevitable due to Julie’s limited options, in which case

neither June nor Julie will be regarded as having caused Bob’s death.
6See, e.g., [2, 11, 13, 14].
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the right (domains and function names are left implicit).

J1

��
❄❄

❄❄
❄❄

❄
J2

��⑧⑧
⑧⑧
⑧⑧
⑧

B

J1 =U1

J2 =U2

B =

{

0 if J1 + J2 ≥ 1

1 otherwise

Intuitively, J1 records the amount of poison given by Jane, J2 is the amount given by Julie, and B is a

variable encoding whether Bob lives or dies, with 0 representing that he dies.

If X ⊆ U ∪V is a set of variables, we use [~X ←~x] to denote an assignment of values to X . Here
~X = {X1, . . . ,Xn} is an arbitrary ordering of X and ~x = (x1, . . . ,xn) with xi ∈ R(Xi) for all 1 ≤ i ≤ n.

We write (~X =~x) to denote the conjunction
∧

1≤i≤n

(Xi = xi). Moreover, we may overload this notation by

writing [~Y ←~x] and (~Y =~x) when ~Y ⊆ ~X . In these cases, we read ~x as (xi){1≤i≤n|Xi∈~Y}
. Similarly, we

may write [~X ←~x] also when~x is a partial assignment on ~X , i.e., such that there is Xi ∈ ~X with xi 6∈~x. In

this case, Xi is not affected by the assignment ~x.

Given a model M, the associated system of equations is (V = FV (~XV ))V∈V where every ~XV =
(U1, . . . ,Un) is an arbitrary enumeration of the elements in U ∪ p(V ). Since G is acyclic, this system of

equations has a unique solution, namely SM : V → D (where, obviously, SM(V ) ∈R(V ) for all V ∈ V ).

An atomic causal expression has the form (V = v) where V ∈ V , x ∈R(V ). It is to be understood as

the claim that the variable V has the value v. Given a model M and an atomic expression (V = v), truth

on a model is defined by the clause M |= (V = v)⇔ SM(V ) = v.

A boolean combination of atomic expressions is called a basic formula. Truth on a model is induc-

tively defined for boolean combinations in the standard way.

A formula is either a basic formula or an update-formula of the form [~X ←~x]φ where φ is a basic

formula and [~X ←~x] is an assignment of values to some ~X ⊆ V . An update-formula is to be understood

as saying that φ is guaranteed to be true if we intervene to ensure that xi is assigned to Xi for all xi ∈~x.

Truth is defined for update-formulas by the recursive clause

M |= [~Y ←~y]φ ⇔M[~Y←~y] |= φ

where M[~X←~x] is the model obtained from M by replacing FXi
with the constant function xi for all xi ∈

~x. We will not require nested update-formulas, but we will work with sequences of model updates.

Specifically, if M′ = M[~X←~x], we might ask about the truth of formulas like ψ = [~Y ←~y]φ on M′. This is

well-defined also when Y ∩X 6= /0; to evaluate the truth of ψ on M′ one simply replaces xi by y j for all

Xi = Yj ∈ X ∩Y .

Example 2.2 (Example 2.1 continued). Recall the models M1 and M2 from Example 2.1. Clearly, the

solutions of the associated systems of equations are the same, SM1
= SM2

= {(J1,0.5),(J2,1),(B,0)}.
Hence, we have M1 |= (B = 0) and M2 |= (B = 0). Moreover, we have M1 |= [J1 ← 0](B = 0) and

M2 |= [J1← 0](B = 0). This shows that J1 taking the value 0.5 is not a necessary condition for (B = 0) in

either M1 or M2. Also observe that while M2 |= [J2← 0]¬(B = 0), the update formula [J2← 0]¬(B = 0)
is not defined with respect to M1, since 0 6∈R1(J2).

Given a model M, we define a set of associated models as follows:

M = {M′ | ∃~X ⊆ V : ∃~x ∈R(~X) : M[~X←~x] = M′}
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That is, M collects all causal models that can be obtained from M by intervening on some of its endoge-

nous variables. For instance, the models M1 and M2 from Example 2.1 both admit a variant of the model

depicted below as one of its associated models.

J1 J2 B

J1 =U1

J2 =U2

B = 1

If the context is ~u = (0.5,1), this is the counterfactual scenario where Bob lives even though he

receives one and a half doses of poison. Hence, the graph has no edges at all. If the range of the variables

is given by S1, the model above is associated with M1 and when the range is determined by looking at

S2, the model is associated with M2. Either way, the relevant update that generates the no-edges model

is [B← 1].
The point of causal models is to facilitate the definition of causal theories. In the HP tradition, there

have been many proposals for such theories, suggesting an indirect analysis of their properties. For this

purpose, we first define the basic signature of a causal theory in this setting.

Definition 2.3 (Causal theories). Given a signature S , a causal theory for S is a map Cause, such that

Cause(M,φ)⊆ V for all models M and all basic formulas φ built over S .

As a first example of a causal theory, we now define the bedrock of all other theories of actual

causality in HP tradition: the but-for test.

Definition 2.4 (But-for causality). The but-for theory, ButFor, is defined for all models M and all basic

formulas φ as follows:

X ∈ ButFor(M,φ)⇔M |= φ and ∃x ∈R(X) : M |= [X ← x]¬φ

It is hard to see how the but-for test could be wrong when it designates something as a causal con-

tributor. The definition can be given a logical reading, but it effectively asks for empirical evidence of

V ’s causal power: there is a way to change V so that φ no longer obtains. The problem with the but-for

theory is that it does not recognise enough causes.

To illustrate, let M1 and M2 be as in Example 2.1. Then it is easy to see that ButFor(M2,(B = 0)) =
{J2,B}. We have M1 |= [J2← 0]¬(B = 0), so J2 is a cause, while we also have M2 |= [J1← 0](B = 0),
so J1 is not a cause. However, ButFor(M1,(B = 0)) only contains the trivial cause B, since M1 |=
[J2 ← 0.5](B = 0). This is unreasonable; clearly, poison is causing Bob’s death in both these models.

Moreover, his death is not inevitable, since M1 |= [J1← 0,J2← 0.5]¬B. Hence, it seems we need to be

more permissive about what we regard as causes. Many definitions have been formulated to achieve this

in the HP framework, with Halpern’s most recent proposal given below.

Definition 2.5 (HP causality [7]). Given a model M and basic formula φ , ~X is a complex cause7 for φ

in M if

AC1. M |= φ .

AC2. There is a set ~W ⊆ V and a setting~x for ~X such that

M |= [~W ← ~w,~X ←~x]¬φ

where M |= (~W = ~w).

7Strictly speaking, the cause emanates from the value of ~X in M, but for the definition in [7] we might as well abstract

directly to the level that holds more interest.
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AC3. ~X is minimal with respect to set-inclusion; there is no subset of ~X for which AC1 and AC2 holds.

The notion of a complex cause gives rise to the following causal theory HP, where we maintain the

cause-as-contribution perspective, defined for all M,φ as follows:

HP(M,φ) = {V ∈ V | ∃~X : V ∈ ~X and
~X is a complex cause of φ in M}

If ~x, ~W and ~w can be used to show that ~X satisfies AC1-AC3 for some φ , we say that (~x, ~W ,~w) is a

witness of ~X being a complex cause of φ . It is then also a witness of V ∈ HP(M,φ) for all V ∈ ~X .

For M1, the HP theory does better than the but-for test. Specifically, since M1 |= [J1 ← 0,J2 ←
0.5]¬(B = 0), it is easy to verify that {J1,J2} is a complex cause of (B = 0) in M1. Hence, we

get HP(M1,(B = 0)) = {J1,J2,B}, which is intuitively reasonable when we come from a cause-as-

contribution starting point. After all, Bob dies of poison, as administered to him by both Jane and

Julie. However, moving to M2 we encounter the problemtic case, where HP agrees with the but-for the-

ory. Specifically, {J1,J2} fails to satisfy the minimality requirement, since assigning 0 to J2 suffices to

ensure ¬(B = 0). Hence, J1 is no longer considered a cause.

3 Preemption, Overdetermination and the Principle of Presumption

In my terminology, the Jane-Julie example points to an anomaly regarding how the HP theory draws

the line between overdetermination and preemption. To make this formally precise, the first step is

to extract from the HP theory how counterfactual reasoning is used to analyse causes. The scope of

permitted interventions, taking us away from the actual state that yields φ , is made clear in AC2 and

AC3. Combined, these conditions effectively say that we may intervene at will on the elements of

complex causes of φ , while interventions outside these sets must be limited to keeping variables fixed

at their actual values.8 How to justify this is a matter I will not get into here, except by noting that

it can be seen as an application of the so-called similarity principle, whereby counterfactuals need to

be evalutated relative to states of affairs that are as close as possible to the actual state of affairs.9 To

intervene by changing the values of complex causes is necessary to apply but-for reasoning, to obtain

evidence of difference-making. Meanwhile, keeping the values of other variables fixed can be justified

directly as an effort to keep the counterfactual scenario as close as possible to the actual one.10

Encoding this formally, we now define the collection of models obtained by intervening only on

some variables from a specific set ~X , while keeping some variables from its complement, c(~X), fixed

at their actual values. A conceptual premise of the HP definition is that interventions of this kind span

a space of counterfactuals that we need to consider in order to reason about causality. To understand

the formalisation below, recall that [~V ←~v] updates the equation for all Vi ∈ ~V with the constant value

vi ∈~v while leaving the equations associated with other variables Vj ∈ V , for which there is no corre-

sponding v j ∈~v, unchanged. That is, we quantify over partial interventions, allowing considerations of

counterfactuals where an arbitrary set of variables is left undisturbed. These variables are free to change

8We will make this formally precise in a moment.
9See generally [13].

10This glosses over deeper issues about whether our insistence on similarity of particular facts – the values of variables –

risks undermining deeper similarities, namely compliance with the equation associated with each variable (an equation that can

be overruled by an intervention that keeps a variable fixed at its actual value). However, I will not get into this problem here; I

do not see how my approach does much to resolve it one way or the other.
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compared to their actual value, if their equations so dictate in view of interventions elsewhere in the sys-

tem. Effectively, this can be understood as encoding a form of uncertainty about how to understand the

similarity-constraint, forcing us to consider a larger space of contrary-to-fact models, defined as follows:

M (~X) = {M′ | ∃~v ∈R(~X),∃~w ∈R(c(~X)) : M[~X←~v,c(~X)←~w] = M′ and M |= (c(~X) = ~w)} (1)

Intuitively, M (~X) collects all those models that can be obtained from M by assigning arbitrary range-

permitted values to some arbitrary subset of ~X , while holding an arbitrary set of variables from c(~X)
fixed at their actual value in M.

We are now ready to provide a formal definition of overdetermination and preemption, as well as

the notion of a putative cause. The definition is theory-neutral, taking an arbitrary causal theory as a

parameter.

Definition 3.1. Given a theory of causality, Cause, we say that:

• V is an overdetermining cause of φ in M if V ∈ Cause(M,φ) and V 6∈ ButFor(M,φ).

• V is a putative cause of φ in M if ∃M′ ∈M (Cause(M,φ)) such that SM(V ) = SM′(V ) and V ∈
ButFor(M′,φ).

• V is a preempted cause of φ in M if V is a putative cause of φ in M, but not a cause of φ in M.

According to this definition, overdetermination occurs whenever the theory of causality recognises

a cause of φ in M that does not satisfy the but-for test with respect to (M,φ). This notion of overde-

termination makes sense since it is paramterised by a causal theory. In standard usage, the notion of

overdetermination picks out causes that fail to be necessary for the effects they contribute to [15]. If

we also have additional expectations about what overdetermining causes look like, we should keep in

mind that the causal theory alone determines what we count as causes, c.f., Definition 2.3. Hence, if

we are serious about providing a theory-neutral definition, we cannot include further constraints in our

definition of overdetermination. Additional constraints must be regarded instead as proposed principles

of overdetermination, which may or may not bear further scrutiny.11

The notion of a putative cause, and the resulting definition of preemption, is in need of a more

substantive justification. Intuitively, the idea is that V is a putative cause of φ if V would have been a but-

for cause of φ if some causes of φ had taken different values and some other variables had remained fixed.

From an empirical perspective, V will eventually reveal itself as a smoking-gun cause of φ , provided you

start a process of examination where you gradually “remove” more and more known causes of φ .12

11For instance, it is common in the literature to say that overdetermination occurs when there are two or more distinct sets

of causes that are both sufficient for the outcome [3]. Clearly, no member of such a set is a but-for cause, so if our theory

of causality classifies these elements as causes in the first place, Definition 3.1 correctly identifies them as overdetermining

causes. However, if our theory of causality is more or less permissive, for instance by dropping the sufficiency requirement,

the theory could diverge from the judgements intuitively expected. However, this is hardly evidence of a problem with our

definition of overdetermination. Rather, it signals that the notion of overdetermination has been used elsewhere in a way that is

not theory-neutral.
12Of course, removing a cause in this context means changing the value of a variable, not removing the whole variable from

the system (which would amount instead to designing a new system). Hence, there might be many alternative values to try

out, some of which seem intuitively irrelevant or misleading, for instance because these new values themselves could be new

causes of φ . In my view, this possibility does not raise any fundamental problems, although anomalous models can certainly

be created by exploiting this phenomenon. However, I believe the impact of this is limited to highlighting the usefulness of

the concept of normality developed in earlier work by Halpern and others. This concept is based on the acknowledgement

that we might have to refine our application of contrary-to-fact causal theories by restricting attention to a certain subset of the

counterfactual domain, e.g., to consider only values we know to be either neutral or conducive to ¬φ . A generalisation of the

concepts presented in this article could then be given accordingly.
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This kind of approach corresponds closely with how we reason intuitively about causation when

events seem to be overdetermined. For instance, when we justify that having voted for a winning can-

didate was causally significant, we direct attention to the what if-scenario where the winner enjoys less

support, so that they would have lost if we had voted differently. Even if this very far from the actual

distribution of votes, most of us are willing to accept this kind of make-believe as a sound argument for

causal significance. If you voted for Trump in Pennsylvania or Florida, or even Texas, most of us would

agree that you did indeed contribute to him becoming President. At least, this would be a natural starting

point, justifying us in concluding that your vote was a putative cause.

But what if you voted for Trump in New York? After all, Trump lost the state of New York, so it

seems wrong to say that those who voted for him there actually contributed to his victory. Indeed, even

though there is an alternative distribution of votes that would have made you a but-for cause in this case

as well, you are no longer classified as a putative cause according to my definition. The reason is that in

order to make you a but-for cause, we would have to intervene also on the votes of people who voted for

another candidate, changing those into votes for Trump. It seems clear that this is a highly questionable

leap of make-believe to undertake when looking for the actual causes of Trump’s victory. In keeping

with the principle of similarity, it should not be permitted.

The most contentious aspect of how we use counterfactuals concerns the interventions we perform

when we force non-causal variables to stay the same even if other changes would have made them

different, according to the model. The issue that arises here can be illustrated by considering a recalcitrant

voter A who decides that he will always vote the exact opposite of B (we assume A has the necessary

knowledge about B to implement this scheme).13 Now, if B votes Trump, is B a cause of Trump winning?

The answer does not seem obvious. For the purposes of this paper, I accept the HP analysis that takes B

to be a cause, witnessed by the counterfactual scenario where A does not change his vote to cancel out B.

As indicated already, my understanding of what counts as a putative cause tracks how the HP theory

makes use of counterfactual reasoning. This might not be immidiately obvious from Definition 2.5, so I

record it as a proposition.

Proposition 3.2. For all models M, formulas φ and variables V , if V ∈ HP(M,φ), then V is a putative

cause of φ in M with respect to HP.

Proof. Let ~X witness to the fact that V ∈ HP(M,φ). That is, V ∈ ~X and ~X is a minimal set of variables

such that AC1 and AC2 holds, c.f., Definition 2.5. It follows that X ∈HP(M,φ) for all X ∈ ~X . Let~x, ~W ,~w

witness to the fact that ~X satisfies AC1 and AC2. It then follows by minimality of ~X that all X ∈ ~X are

but-for cause of φ in M1(X) = M[~X←~x,~W←~w,X←x] where x is the actual value of X , i.e., M |= (X = x). That

is, M1(X) is the model witnessing to ~X being a complex cause of φ in M, except that X ∈ ~X is fixed

at its actual value. Recall that M |= (~W = ~w) by AC2. Let ~F = ~W ∩HP(M,φ) collect all the elements

of ~W that are HP-causes of φ in M. Define ~y such that it extends ~x by wi for all Wi ∈ ~F . Moreover,

define ~z as the restriction of ~w obtained by removing all wi for Wi ∈ ~F . By construction, we then get

[~X ←~x, ~W ← ~w] = [HP(M,φ)←~y,c(HP(M,φ))←~z]. Hence, M1(V ) = M[HP(M,φ)←~y,c(HP(M,φ)←~z,V←v]

(where M |= (V = v). Since V is a but-for cause of φ in M1(V ), this witnesses to the fact that V is a

putative cause of φ in M, c.f., Definition 3.1.

What this means is that the notion of putative causes faithfully captures an upper limit to what the

HP theory is willing to designate as a cause. Combined with the but-for test, which acts as a lower limit,

we can now define a class of causal theories.

13A famous Norwegian football coach has stated publicly that he implements this strategy vis-a-vis his brother.



S.K. Dyrkolbotn 9

Definition 3.3. A causal theory is said to be similarity-based if for every M,φ , it recognises at least all

but-for causes of φ and at most all putative causes of φ .

In view of Proposition 3.2, it follows that HP is a similarity-based causal theory. The but-for theory is

clearly the unique minimal similarity-based causal theory. There are many distinct maximal theories, as

the reader can verify. Interestingly, the HP-theory is not among them; there are putative causes that arise

from the HP-theory without being designated as causes according to that theory. Or to put it differently,

the HP-theory recognises preemption.

This is reasonable, as illustrated by the typical example of preemption in the literature: Suzy and Billy

are both throwing a rock at a bottle. Suzy throws first and the bottle shatters; Billy throws second and

he is accurate, so the bottle would have shattered if Suzy had missed or decided not to throw. However,

we are not prepared to say that Billy is an actual cause of the bottle shattering; he is only the “back-up”

cause. According to Definition 3.1, applied to the standard HP analysis of the scenario, he is a preempted

cause.

The model is depicted in Example 3.4 below. The important thing to note is that changing the value

of S to 0, to reach the counterfactual model where Suzy does not throw her rock, is enough to make

B a but-for cause. Hence, if our theory regards Suzy as a cause of the bottle shattering, Billy’s throw

becomes a putative cause of the same. Under the HP analysis, the minimality constraint kicks in here, to

block Billy from being regarded as an actual cause. To see this, note that if we keep HB fixed at its actual

value, to encode that Billy’s rock does not hit the bottle, then changing S to 0 is sufficent to change the

outcome so that the bottle remains intact. In view of this, the set {S,B}, which would otherwise witness

to B being a cause, fails to satisfy the minimality constraint; according to the HP theory, {S} is also a

complex cause, and it is strictly smaller.

Example 3.4. Consider the model M depicted below, with binary-valued variables and context U1 =
U2 = 1 (both Suzy and Billy throw a rock):

S

��

B

��

HS

  ❅
❅❅

❅❅
❅❅

❅
// HB

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

G

S =U1,B =U2

HS = S

HB = B−HS

G = max{HS,HB}

We observe that M |= (G = 1), the bottle breaks. Moreover, we observe that there is no non-trivial but-for

cause of (G = 1). Specifically, changing either S or HS will not change the outcome (since then Billy’s

throw shatters the bottle). The HP analysis therefore relies on keeping HB fixed at its actual value, to

reach a counterfactual scenario where S becomes a but-for cause of (G = 1).

The HP analysis gives us the right result, but it lacks general appeal and has little or no explanatory

power. As to the general appeal, what is the justification for the minimality constraint, when we know

that the notion of necessity provides no secure footing for a theory of causality? While it is obvious that

we need some constraint that blocks us from attributing causal relevance to irrelevant variables, I have

not seen any argument that defends minimality as a principle of causal reasoning. As to explanatory

power, the problem is that the minimality constraint forces us to analyse the case of Suzy and Billy in

an unnatural way. To illustrate this, first note that the similarity constraint does not entitle us to presume
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that a counterfactual intervention to ensure that Billy misses the bottle is preferable to a counterfactual

intervention whereby Billy does not throw at all. Quite the contrary, the standard HP model of this

scenario encodes a world where Billy is necessarily accurate – there is no setting of the exogeneous

variables that results in Billy throwing and not hitting the bottle, unless Suzy has already broken it. In

view of this, the intervention that makes Billy miss the bottle even though Suzy does not throw a rock

creates a severe disparity between the counterfactual and the actual. Indeed, the state needed to verify

that Billy is not a cause is impossible according to the model. Under the HP theory, therefore, we need

to endorse the view that HP models are inaccurate, in order to explain preemption.

What could be a more reasonable justification? In my opinion, we do better when we replace

minimality-talk by noting that HB counts as evidence of non-causation. Since Billy did not actually

hit the bottle, he did not contribute to breaking it! This should be preferable to an explanation that in-

vokes the spectre of necessity. Granted that this is true, is what I am proposing only a gloss on how we

describe the workings of HP theory? I believe not, at least not when we follow our line of thought to

the conclusion that preemption requires proof. What this means is that we should not designate puta-

tive causes as non-causes unless there is some variable whose actual value witnesses to the fact that the

putative cause has been blocked.

This is exactly where the HP theory fails to make sense of the Jane-Julie example encoded in M2 of

Example 2.1. We have already seen that Jane comes out as a preempted cause in this model, but where

is the proof that she has been blocked? The only candidate is Julie, but the idea that Julie’s action can

count as evidence that Jane’s poison has been blocked is hard to accept; all we know is that Julie is a

but-for cause of Bob’s death, while Jane is not. But this is a theory-dependent comparative difference;

it gives us no reason to think that Julie is actually blocking Jane. If she is doing this, at least we seem

entitled to expect a witness of such a mechanism in the form of an additional variable. As the HP theory

fails to require this, I conclude that an evidential understanding of preemption, in line with the preferred

explanation of what is happening in the Suzy-Billy example, is simply not consistent with the theory.

As mentioned already, the HP theory behaves particularly strangely on Jane-Julie examples, since it

does regard Jane as a cause of Bob’s death in some cases, when the range of Julie is restricted. Moreover,

if we replace Julie by Mary and Mia, who give Bob 99% of a full dose of poison each, then suddenly

Jane is regarded as a cause of Bob’s death (part of a cause in Halpern’s terminology). This is so even

though the contribution made by Jane seems less significant now, as a proportion of the total amount of

poison given to Bob. Moreover, Mary and Mia together more than fulfill all those characteristics of Julie

in M2 that could perhaps justify regarding Jane as a preempted cause.

The reason why minimality leads to a different result when Julie is replaced by Mary and Mia is that

there are now three minimal sets satisfying AC1 and AC2 of Definition 2.5. Two of these sets include

Jane and one of Mary and Mia. The total amount of poison covered by these two sets is significantly

less than that covered by Mary and Mia together. However, the fact that the sets including Jane are not

strict subsets of the Mary-Mia set renders minimality impotent, so that Jane comes out as a cause after

all. On an evidential understanding of what it means to designate something as a preempted cause, this

difference in treatment appears unmotivated.

So far, we have only considered an example, suggesting that the HP theory fails to make sense of

it. The principle at stake is that preemption requires proof, so the natural follow-up question is how this

principle should be formalised so that it may be applied generally. Intuitively, we want to ensure that

no putative cause is excluded unless there is some variable witnessing to the fact that the putative cause

has been blocked. What does this mean? Since we identify causes by locating counterfactual worlds

where they are but-for causes, a variable that blocks V must be a variable that has to change value in

order for V to become a but-for cause. From this, it follows that we need an additional requirement to
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arrive at a sensible principle: we need to insist that a witness of non-causality must be found among

those variables that are not regarded as causes of φ in the actual situation. If we do not insist on this,

then our principle does not allow us to draw any meaningful distinction between overdetermination and

preemption. Indeed, if A and B were classified as overdetermining causes, we would also be entitled to

say that B blocks A and vice versa. If all the evidence we need to designate A as a preempted cause of

φ is that some variable has to change in order for A to become a but-for cause, then all overdetermining

causes are at risk of being classified as preempted ones.

The requirement that evidence of preemption must be grounded in non-causal variables is also needed

to avoid circularity. If A is a cause of φ and we allow it to function as the sole witness that a putative

cause B does not cause φ , there is no theory-independent evidence to verify that our judgement about B

is correct. Hence, there is no theory-independent evidence to prove that our theory correctly adheres to

the principle that preemption requires proof. To see this, note how A could block B merely by virture of

causing φ , according to our theory. This is what we did not want to accept in the Jane-Julie example.

To prevent it in general, we have to demand non-causal evidence of preemption. It is important to note

that causes of φ can certainly contribute to blocking putative causes of φ . However, to avoid circularity

and make sense of how preemption is related to overdetermination, we need additional evidence in these

cases.

This can be understood as a demand directed at the modeller; to recognise preemption, we need

models that are sufficiently fine-grained to represent the mechanism by which a putative cause has been

blocked. This is exactly what we saw in the Billy-Suzy case, where the standard HP model needs to

include an auxiliary variable, HB, to reach the result that Billy has been blocked (a more naive model

will regard both Suzy and Billy as causes). There is no reason why the same demand should not be

made in the Jane-Julie cases; if there is really some mechanism whereby Julie’s larger dose of poison

renders Jane’s dose causally insignificant, then the modeller has to include this information in the form

of non-causal evidence of non-causation.

We are now ready to formalise the requirement that preemption requires proof, a principle we will

refer to as presumption. It is essentially a principle of default reasoning; unless there is independently

verifiable evidence to the contrary, a putative cause should always be regarded as a cause.

Definition 3.5. A causal theory Cause satisfies the principle of presumption if for all models M, all

formulas φ and all variables V , we have the following:

• If V is a preempted cause of φ , then for all M′ ∈M (Cause(M,φ)) such that SM′(V ) = SM(V ) and

V ∈ ButFor(M′,φ), there is W 6∈ Cause(M,φ) such that SM(W ) 6= SM′(W ).

The evidence of preemption that we need is provided by the W ’s in the definition above; we need one

for every similarity-based counterfactual where V comes out as a but-for cause. The actual value of W

effectively blocks the causal contribution of V in the actual situation, relative to at least one counterfactual

where V is a but-for cause of φ . Or, to put it differently: no matter how we modify known causes of φ

(while holding some non-causes fixed), as soon as we modify so many that V becomes a but-for cause,

at least one non-causal W will also have changed, witnessing to V having been blocked in the actual

situation.

The example of Jane and Julie in model M2 shows that the HP theory does not satisfy the presumption

principle. As mentioned in the introduction, the predecessors of the HP theory judge this example

differently, satisfying the principle of presumption in this case. A more complicated example for which

the previous version of HP-causality also violates presumption is given below.

Example 3.6. Imagine that Jane is deciding whether to poison Bob, while June and Julie are deciding

independently whether to give him a dose of antidote, just in case. Unfortunately for Bob, the antidote
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has a peculiar property: two doses behave like one dose of poison. As it happens, Jane gives Bob poison,

while both June and Julie give him an antidote. To model this, we can use M depicted below, where all

variables are binary-valued and the context is given by ~u = (1,1,1).

J1

��
❄❄

❄❄
❄❄

❄❄
J2

��

J3
// B

J1 =U1,J2 =U2,J3 =U3

B =

{

1−max{J1,J2} if J2 = J3

1 otherwise

So M |= (B = 0), since SM(J1) = SM(J2) = 1 so that SM(B) = 1− SM(J1) = 0. Moreover, we have

M |= [J2← 0]¬(B = 0) and M |= [J3← 0]¬(B = 0). So both J2 and J3 are but-for causes of (B = 0) in

M. However, observe that we have M |= [J1← 0](B = 0), since 1 = max{J1,J2} is still the case when J1

is assigned 0. It follows that J1 is not a but-for cause of (B = 0). Hence, by the minimality restriction, J1

is not an HP cause either. But this cannot be right. We know J1 has the same effect as J2 and J3 combined

in this case, so it stands to reason that J1 should also be regarded as making a causal contribution to

(B = 0). Indeed, the antidotes do not work, since they behave like poison.

The causal judgements prescribed for this example seem hard to justify. Jane gives Bob a deadly

dose of poison, but she is still not considered a cause of his death. The reason for this cannot be that the

two antidotes preempt Jane’s contribution. Two antidotes behave like a single dose of poison, they do

not trump it. Rather, one seems forced to conclude that Jane is not considered a cause because June and

Julie could have coordinated their actions in such a way that Jane’s poison would not have been deadly.

But this cannot be a sound form of causal reasoning; the mere possibility of prevention should not block

causal attributions. However, as Example 3.6 shows, there are cases when the minimality constraint of

the HP definition does exactly that. Similarly, the invariance constraint that is used to define causality

in [9], the previous version of HP causality, yields the same result. The very first HP definition from [10]

manages to get things right in this case, but other problems arise, showing that this definition cannot be

accepted; it is simply too liberal about what it regards as causes [12].

To my knowledge, there is no widely endorsed theory of causality for the HP framework that satisfies

the principle of presumption. What about the converse of presumption: is it reasonable to demand that

putative causes should not be regarded as actual causes when non-causal blockers can be identified? In

my opinion, this is a reasonable requirement at the theoretical level, as long as the quality of evidence is

not in question. This position leads naturally to the following fixed-point characterisation, picking out a

class of causal theories.

Definition 3.7. A causal theory Cause is empirical whenever the following holds, for all M,φ ,V :

V ∈ Cause(M,φ)⇔∃M′ ∈M (Cause(M,φ)) :
(

SM(V ) = SM′(V ) and V ∈ ButFor(M′,φ) and ∀W 6∈ Cause(M,φ) : SM(W ) = SM′(W )
)

We record the following simple observation about empirical theories (proof omitted).

Proposition 3.8. If Cause is an empirical causal theory, then it is similarity-based and it satisfies the

principle of presumption.

It remains for future work to investigate further the class of empirical causal theories. Suffice it to

say that in my opinion, Proposition 3.8 summarises why the class is worth exploring.
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4 A Remark on Asymmetry

I have not proposed a new definition of actual causality. Instead, I have formulated principles that I

believe any theory of actual causality (in the HP tradition) should satisfy. This is reminiscent of the

approach taken in [1], where several principles of causality are defined, before the authors go on to

propose a new definition of causality that satisfy them. However, while the methodology is similar, the

outcome is quite different. In [1], the authors focus on the concept of production, generalising the version

of this concept introduced in [6]. This involves addressing how actual causation depends on time, leading

to an extension of the HP framework that includes the formal notion of a “timing”.

While the relationship between time and causation is no doubt interesting, it is not dealt with ex-

plicitly in the present paper, which sticks with the standard HP formalism. More importantly, the key

principle postulated in [1] – referred to as asymmetry – stands in opposition to the principle of presump-

tion postulated above. The asymmetry principle captures a specific intuition one might have about certain

kinds of models: if V is a binary-valued variable and the outcome we are looking at is X , then it should

not be the case that intervening only to assign a different value to V results in a model where V is still

a cause of X . That is, if V counts as an actual cause of X it should no longer count as a cause when we

change the value of V , as long as we do not intervene on any other variable (so the equations and the

context will deteremine the value of other variables).

The principle of asymmetry is hard to accept in general. If Jane gives Bob half a dose of poison A

while Julie gives Bob half a dose of poison B, a person choosing whether to give Bob half a dose of

either poison A or poison B will typically come out as a cause of Bob’s death either way (even if they

are not to blame). Moreover, while it is easy to agree with the authors of [1] that “the absence of a cause

fullls a different role than the cause itself”, this observation is hardly a justification of asymmetry as

defined in that paper. Causes are found by reasoning counterfactually, but the asymmetry principle does

not permit us to perform any interventions when looking for evidence of the “different role” played by

the other value of V . By contrast, if the intuition referred to in [1] had been formalised by requiring that

asymmetry must be a relevant possibility whenever V is a cause of X , any similarity-based causal theory

would trivially satisfy it. After all, similarity-based causal theories satisfy something stronger, namely

that V is a but-for cause of X in some relevant counterfactual model, c.f., Definition 3.3.

The authors of [1] also argue for the asymmetry principle by relating it to examples where it has been

claimed that the HP theory behaves unintuitively. One such example, closely related to the recalcitrant

voter mentioned in Section 3, is the so-called Switch: one imagines two railway tracks leading to the

same station and a switch that determines which track the train will use. Is the switch a cause of the

train arriving at the station? Intuitively, many would answer that it is not a cause. Since the train arrives

regardless of which track it uses, there is no clear evidence of difference-making in this model. However,

under the HP theory, the switch is a cause of the train arriving. This attribution clearly violates the

asymmetry principle: this switch is a cause regardless of its value (and regardless of which track the

train actually uses).

It is not so obvious that the HP theory gets the Switch wrong. As long as we are not trying to model

laws of nature, I am inclined to say the judgement provided is correct. The underlying question raised

by the Switch is the following: what counterfactual interventions should be permitted when looking for

evidence of difference-making? As I mentioned in Section 3, this is a question for which the HP theory

provides a rather permissive answer. Specifically, by allowing us to intervene at will on causal variables

while holding any subset of non-causal variables fixed, the HP theory allows us to instantiate value

assignments that are impossible according to the structural equations in the model (that is, assignments

not instantiated by any context). For instance, the witness to the switch being a cause of the train arriving
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at the station includes the railway track that is not actually used. By insisting that this track is not used

even after the switch is changed (permitted by Definition 2.5), we arrive at a model where the train does

not arrive and the switch made the difference. This only makes sense if we allow ourselves to depart

from the model by considering additional contingencies. What if, for instance, a tree blocks the railway

track that was not used? In this case, the switch clearly makes a causal contribution to the train arriving,

as pointed out in [9].

The question is whether we should be permitted to question the model in this way. If the answer

is yes, as in the HP theory, then the asymmetry principle must be rejected. The two railway tracks

are then symmetric in the sense that there is the possibility that they could have been blocked, even if

this is not recorded by our model. Hence, the switch is a cause of the train arriving, regardless of its

value. The authors in [1] are aware of this objection and deal with it by proposing also a weaker version

of their asymmetry principle. This version effectively concedes that the principle does not hold with-

out exception, but requires us to mark exceptions explicitly by introducing special “non-deterministic”

variables whose values are undetermined whenever asymmetry fails.14 In my opinion, the case for asym-

metry remains unconvincing. However, enriching the HP model by allowing partial variable assignments

seems potentially appealing. Specifically, it might offer a path to a reasonable theory of causality that

only permits counterfactual value assignments that are instantiated by some (partial) context, leaving all

equations intact (so that interventions cannot lead to “impossible” states).

Even without such a modification, the HP framework makes sense when we work with particular

facts, and the equations in our system are to be regarded as no more than records of observed (or defeasi-

bly stipulated) dependencies. Still, as examples like the Switch show, I should not like to take the present

version of the HP theory as a point of departure when discussing laws of nature (assuming such exist).

This caveat also explains why I have been interested in finding a principle of causation that provides for

a well-behaved empirical theory, as opposed to an axiomatic or metaphysical one.

5 Conclusion

In this paper, I have given a formal definition of preemption and overdetermination for causal theories

in the HP formalism. When defined in a precise way, these two notions seem very useful as means

for evaluating, comparing and classifying causal theories. Indeed, this is how the notions are already

used in the literature, where they are regularly invoked in informal discussions about formal and semi-

formal theories of actual causality.15 By using a formalisation, I was able to identify problems with

how the distinction between preemption and overdetermination is made in leading theories of causality

formulated in the HP tradition.

To arrive at the key definition, I used the most recent HP definition of causality to identify a notion

of putative causation based on counterfactual intervention and but-for testing. This led to a definition of

preempted causes as putative causes that are not recognised as actual ones. The problematic cases were

then diagnosed as resulting from the minimality constraint used by the HP definition as an abstract way

of forcing us to regard some putative causes as having been preempted.

While it is true that not all putative causes can be recognised as actual causes, I argued that the

minimality constraint lacks general appeal and has little or no explanatory power when it comes to

14If the context is such that both values of V are causes of X , the weak symmetry principle states that there has to be a choice

of values for V and the undetermined variables such that V is not a cause of X . In this way, a larger space of counterfactuals is

introduced through the back door, as it were.
15See, e.g., [2, 11, 13, 14].
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identifying cases of preemption. Essentially, my point was that the minimality constraint is a remnant

of logic-based ideas about causality that we know to be flawed and ought to abandon completely. I then

proposed the principle of presumption, whereby a putative cause must be recognised as an actual cause

unless there is theory-independent evidence to the contrary.

Following up on this, I proposed the principle of empiricism, defining thereby a class of causal

theories that always recognise exactly those putative causes for which there is no independent evidence

of preemption. The definition amounts to providing a fixed-point characterisation of causal theories that

rely entirely on but-for testing and counterfactual intervention when deciding what counts as a cause.

It follows from the examples given in this paper that the leading HP definitions of causality are not

empirical theories. In future work, I will present results that shed further light on the class of empirical

causal theories.
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