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We study somemapping properties of Volterra type integral operators and composition operators onmodel spaces.We also discuss
and give out a couple of interesting open problems in model spaces where any possible solution of the problems can be used to
study a number of other operator theoretic related problems in the spaces.

1. Introduction

We denote by H the space of holomorphic functions. We
define the Volterra type integral operator on H induced by
a homomorphic symbol 𝑔 by

𝑉𝑔𝑓 (𝑧) = ∫

𝑧

0

𝑓 (𝑤) 𝑔

(𝑤) 𝑑𝑤. (1)

Questions about various operator theoretic properties of 𝑉𝑔
expressed in terms of function theoretic conditions on 𝑔 have
been a subject of high interest mainly after the works of
Pommerenke [1] and later by Aleman et al. [2–4]. In [3], it
was proved that𝑉𝑔 on the Hardy space𝐻𝑝(D), 1 ≤ 𝑝 < ∞, is
bounded if and only if 𝑔 belongs to the space of BMOA, while
compactness is characterized in terms of the corresponding
VMOA spaces.

In this paper we plan to study the bounded, compact,
and Hilbert–Schmidt properties of the Volterra type integral
operators and composition operators acting between the
model spaces 𝐾2

𝐼
and the Hardy space 𝐻2(C+) of the upper-

half plane. We recall that the model spaces 𝐾
2

𝐼
, where 𝐼 is

an inner function, are the subspace of 𝐻2(C+) defined by
𝐾
2

𝐼
= 𝐻
2
(C+) ⊖ 𝐼𝐻

2
(C+). The spaces 𝐾

2

𝐼
are reproducing

kernel Hilbert spaces with kernel function

𝐾𝑤 (𝑧) =
𝑖

2𝜋
⋅
1 − 𝐼(𝑤)𝐼 (𝑧)

𝑧 − 𝑤
, 𝑘𝑤 (𝑧) =

𝐾𝑤 (𝑧)
𝐾𝑤

2

. (2)

Each inner function 𝐼 has either one or infinitely many
components. We call it one-component if there exists a 𝛿 in
(0, 1) forwhich the level set {𝑧 ∈ C+ : |𝐼(𝑧)| < 𝛿} is connected.
For model spaces generated by such class of inner functions,
we prove the following.

Theorem 1. Let 𝐼 be a one-component inner function on C+
and let 𝑔 be a holomorphic function on C+. Then 𝑉𝑔 : 𝐾

2

𝐼
→

𝐻
2
(C+) is

(i) bounded if and only if

sup
𝑤∈C
+

∫
C
+

𝑘𝑤 (𝑧)

2 
𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) < ∞; (3)

(ii) compact if and only if

lim
|𝑤|→∞

∫
C
+

𝑘𝑤 (𝑧)

2 
𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) = 0; (4)

(iii) in the Hilbert–Schmidt class S2(𝐾2𝐼 , 𝐻
2
(C+)) if and

only if

∫
C
+


𝑔

(𝑧)



2

(1 − |𝐼 (𝑧)|
2
) 𝑑𝐴 (𝑧) < ∞, (5)

where 𝑑𝐴 denotes the usual Lebesgue area measure.
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The criteria found above classify the bounded and com-
pact𝑉𝑔 onmodel spaces in terms of their action on the repro-
ducing kernels. As will be seen in Section 4, by converting
the boundary integral in Hardy spaces to an area integral in
terms of derivatives, we could reduce the boundedness and
compactness problems of 𝑉𝑔 into questions of bounded and
compact Carleson embedding maps (measures) for𝐾2

𝐼
. Such

measures have been identified when 𝐼 belongs to the class
of one-component inner functions; for example, see [5–10].
Despite several attemptsmade bymany experts in the subject,
a complete identification of themeasures remains open when
𝐼 belongs to the class of infinitely many component inner
functions. For a special class of model spaces which admit
reproducing kernel Riesz bases corresponding to sparse
sequence of points, which includes the de Branges spaces,
the author together with Belov et al. [11] has described the
measures in terms of a condition analogous to the 𝐴2 weight
condition. In what follows we will use those results in [11] to
study the bounded and compact properties of 𝑉𝑔. We note in
passing that those spaces constitute model spaces generated
by the class of infinitely many component inner functions.

1.1. The Volterra Type Integral Operators on H(Γ, V). Let Γ =

(𝛾𝑛) be a sequence of distinct complex numbers and let
V = (V𝑛) be a weight sequence that satisfies the admissibility
condition

∞

∑

𝑛=1

V𝑛
1 +

𝛾𝑛

2
< ∞. (6)

Any such pair (Γ, V) parameterizes the space H(Γ, V) which
consists of all functions

𝑓 (𝑧) =

∞

∑

𝑛=1

𝑎𝑛V𝑛
𝑧 − 𝛾𝑛

(7)

for which
𝑓

H(Γ,V) =
(𝑎𝑛)

ℓ2V
< ∞,

ℓ
2

V = {(𝑎𝑛) : ‖𝑎‖
2

V =

∞

∑

𝑛=1

𝑎𝑛

2 V𝑛 < ∞}

(8)

and 𝑧 belongs to the set

(Γ, V)∗ = {𝑧 ∈ C :

∞

∑

𝑛=1

V𝑛
𝑧 − 𝛾𝑛


2
< ∞} . (9)

The equation in (7) means that we obtain the value of a
function 𝑓 inH(Γ, V) at a point 𝑧 in (Γ, V)∗ by computing the
weighted discrete Hilbert transform:

(𝑎𝑛) →

∞

∑

𝑛=1

𝑎𝑛V𝑛
𝑧 − 𝛾𝑛

, (10)

which is well defined whenever (𝑎𝑛) belongs to ℓ
2

V . This
follows from an application of Cauchy–Schwarz inequality
along with (8) and (9). The de Branges spaces, model

subspaces of the Hardy space 𝐻
2 which admit Riesz bases

of reproducing kernels, and the Fock-type spaces studied in
[12] are all examples of spaces of the kind H(Γ, V). We refer
to [11, 13, 14] for detailed accounts. The Carleson measures
onH(Γ, V) have been described in [11] when Γ grows at least
exponentially, that is, when

inf
𝑛≥1

𝛾𝑛+1


𝛾𝑛


> 1. (11)

When we consider such sparse sequence Γ, it is natural to
partition C+ in the following way. We set Ω1 = {𝑧 ∈ C+ :

|𝑧| < (|𝛾1| + |𝛾2|)/2} and then for 𝑛 ≥ 2

Ω𝑛 = {𝑧 ∈ C+ :
(
𝛾𝑛−1

 +
𝛾𝑛

)

2
≤ |𝑧| <

(
𝛾𝑛

 +
𝛾𝑛+1

)

2
} .

(12)

We now state our first result onH(Γ, V).

Theorem 2. Suppose that the sequence Γ satisfies the sparse-
ness condition (11) and 𝑔 : (Γ, V)∗ → C+ is homomorphic.
Then 𝑉𝑔 : H(Γ, V) → 𝐻

2
(C+) is

(i) bounded if and only if

sup
𝑛≥1

∫
Ω
𝑛

V𝑛

𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧)

𝑧 − 𝛾𝑛

2

< ∞, (13)

sup
𝑛≥1

(

𝑛

∑

𝑙=1

V𝑙
∞

∑

𝑚=𝑛+1

∫
Ω
𝑚


𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧)

|𝑧|
2

+

∞

∑

𝑙=𝑛+1

V𝑙
𝛾𝑙


2

𝑛

∑

𝑚=1

∫
Ω
𝑚


𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧)) < ∞;

(14)

(ii) compact if and only if the “little oh” counterparts of (13)
and (14) hold;

(iii) in the Hilbert–Schmidt class S2(H(Γ, V),𝐻2(C+)) if
and only if

∞

∑

𝑛=1

∫
Ω
𝑛

V𝑛

𝑔

(𝑧)



2

I𝑧

𝑧 − 𝛾𝑛

2

𝑑𝐴 (𝑧) < ∞,

∞

∑

𝑘=1

V𝑘
∞

∑

𝑘=𝑛+1

∫
Ω
𝑘


𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧)

|𝑧|
2

+

∞

∑

𝑘=𝑛+1

V𝑛
𝛾𝑛


2

𝑛

∑

𝑘=1

∫
Ω
𝑛


𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) < ∞.

(15)

Condition (13) of the theorem is a condition about the
local behavior of the symbol𝑔, while condition (14) deals with
its global behavior. Combining the two conditions, we see that
(13) may be replaced by the stronger global condition

sup
𝑛≥1

∫
C
+

V𝑛

𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧)

𝑧 − 𝛾𝑛

2

< ∞. (16)
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In some special cases, this condition or the original one
(13) automatically gives condition (14), for example, if the
weight sequence V𝑛 grows at least exponentially and the
numbers V𝑛/|𝛾𝑛|

2 decay at least exponentially with 𝑛. The
same conclusion follows if theweight sequence V𝑛 is also sum-
mable.

2. The Composition Operator on H(Γ, V)

Let 𝜓 be a homomorphic function in a given domain. We
denote by 𝐶𝜓 the composition operator 𝑓 → 𝑓 ∘ 𝜓. As
a consequence of Littlewood’s Subordination Theorem [15],
it has long been known that all composition operators are
bounded on all the Hardy spaces 𝐻𝑝 of the unit disc, where
0 < 𝑝 ≤ ∞. Although corresponding Hardy spaces of the
disc and half-plane are isomorphic, composition operators
act differently in the two domains. Unlike the case of𝐻𝑝(D),
not all composition operators are bounded on𝐻

𝑝
(C+).

The study of compact composition operators on 𝐻
2
(D)

first appeared in Schwartz [16] thesis in the late sixties though
a complete function theoretic characterization, in terms
of the inducing map’s Nevanlinna counting function, was
obtained by Shapiro later in [17]. Unlike 𝐻𝑝(D) again, it was
proved in [18] that there exists no compact composition oper-
ator on the Hardy space 𝐻𝑝(C+). The work in [17] was con-
tinued by Lyubarskii andMalinnikova [19] for𝐶𝜓 : 𝐾

2

𝐼
(D) →

𝐻
2
(D) and a complete extension was made when the gener-

ating inner function 𝐼 is one-component. More general trace
ideal criteria for 𝐶𝜓 were obtained later in [20]. The problem
remains open when 𝐼 has infinitely many components.

In this section, we study the bounded, compact, and
Hilbert–Schmidt properties of composition operators on
model spaces when the spaces admit normalized reproducing
kernel Riesz bases associated with sparse sequences of points
in C+. We note that such spaces represent some classes of
model spaces generated by infinitely many component inner
functions.

Theorem 3. Suppose that the sequence Γ satisfies the sparse-
ness condition (11) and 𝜓 is a nonconstant analytic function on
C+, and𝑚 refers to the usual Lebesguemeasure on the real line.
Then 𝐶𝜓 : H(Γ, V) → 𝐻

2
(C+) is

(i) bounded if and only if

sup
𝑛≥1

sup
𝑦≥0

∫
𝜓(Ω
𝑛
)

V𝑛𝑑𝑥
𝜓 (𝑥 + 𝑖𝑦) − 𝛾𝑛


2
< ∞,

sup
𝑛≥1

(

𝑛

∑

𝑙=1

V𝑙
∞

∑

𝑘=𝑛+1

sup
𝑦≥0

∫
𝜓(Ω
𝑘
)

𝑑𝑥

𝜓 (𝑥 + 𝑖𝑦)

2

+

∞

∑

𝑙=𝑛+1

V𝑙
𝛾𝑙


2
sup
𝑦≥0

𝑛

∑

𝑘=1

𝑚(𝜓 (Ω𝑘))) < ∞,

(17)

where 𝜓(Ω𝑘) = {𝜓(𝑥 + 𝑖𝑦) : 𝑥 + 𝑖𝑦 ∈ Ω𝑘};
(ii) compact if and only if the “little oh” counterparts of

conditions (17) hold;

(iii) in the Hilbert–Schmidt class S2(H(Γ, V),𝐻2(C+)) if
and only if

∞

∑

𝑘=1

sup
𝑦>0

∫
𝜓(Ω
𝑘
)

V𝑘𝑑𝑥
𝜓 (𝑥 + 𝑖𝑦) − 𝛾𝑘


2
< ∞,

∞

∑

𝑘=1

V𝑘
∞

∑

𝑗=𝑘+1

sup
𝑦>0

∫
𝜓(Ω
𝑗
)

𝑑𝑥

𝜓 (𝑥 + 𝑖𝑦)

2

+

∞

∑

𝑘=1

V𝑘
𝛾𝑘


2
sup
𝑦>0

𝑘−1

∑

𝑗=1

𝑚(𝜓 (Ω𝑗)) < ∞.

(18)

3. Open Problems

3.1. Open Problem 1. As will be seen in the next section, the
proof of our boundedness and compactness results for both
𝐶𝜓 and 𝑉𝑔 relies mainly on previously obtained Carleson
measure results on H(Γ, V). When the sequence of points
𝛾𝑛 = 𝑛 and the weight sequences V𝑛 ≃ 1, the space
H(Γ, V) becomes the classical Paley–Wiener space for which
its Carleson measures have long been identified. When the
sequence 𝛾𝑛 grows at least exponentially, the measures are
completely described in terms of 𝐴2 type condition in [11].
The case when 𝛾𝑛 grows between these two extreme cases
remains an interesting open problem. A solution of this
will settle the long-standing open problem of identifying
the Carleson measures for model spaces, of course modulo
the existence of reproducing kernel Riesz basis in model
spaces. The novelty and the core of the approach in [11]
has been in turning a number of problems including the
Carleson measure problem into questions about different
mapping properties of Hilbert transforms in weighted spaces
of functions and sequences. To extend the approach, one
may need to look into all possible interplays between the
smoothness (regularity) of the weight sequence (V𝑛) and the
growth of the sequence Γ = (𝛾𝑛).

3.2. Open Problem 2. Both of our results in parts (iii) of
Theorems 2 and 3 deal with the Hilbert–Schmidt properties
of the operators 𝑉𝑔 and 𝐶𝜓 on H(Γ, V). A more natural
and interesting question is to ask the Schatten S𝑝 class
membership of these maps fromH(Γ, V) to 𝐻

2
(C+) for all 𝑝

in the range 0 < 𝑝 < ∞. Dealing with these problems would
have been easier had we known a complete characterization
of the S𝑝 class membership of the imbedding maps induced
by Carleson measures for the spaces, which itself is still
another open problem. A good starting point for all of these
problems could be to consider first the case when sequence
𝛾𝑛 grows at least exponentially. A very special case of the S𝑝
membership problempertaining to the embeddingmapsmay
be seen in [21].

A word on notation: the notation 𝑈(𝑧) ≲ 𝑉(𝑧) (or
equivalently 𝑉(𝑧) ≳ 𝑈(𝑧)) means that there is a constant
𝐶 such that 𝑈(𝑧) ≤ 𝐶𝑉(𝑧) holds for all 𝑧’s in the set of a
question. We write 𝑈(𝑧) ≃ 𝑉(𝑧) if both 𝑈(𝑧) ≲ 𝑉(𝑧) and
𝑉(𝑧) ≲ 𝑈(𝑧).
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4. Proofs of the Results

Proof of Theorem 1. The key tool in the proofs of the first two
results is the Littlewood–Paley description of Hardy spaces in
terms of derivative

𝑓

2

2
= 2∫

C
+


𝑓

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) (19)

for each 𝑓 in 𝐻
2
(C+). The formula helps to convert a

boundary integral to an area integral in terms of derivatives.
Since (𝑉𝑔𝑓)


(𝑧) = 𝑓(𝑧)𝑔


(𝑧), an application of the above

identity ensures that for each 𝑓 in𝐾
2

𝐼
we have


𝑉𝑔𝑓



2

2
= 2∫

C
+

𝑓 (𝑧)

2 
𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) . (20)

It follows from this that the boundedness of the operator𝑉𝑔 :
𝐾
2

𝐼
→ 𝐻

2
(C+) is equivalent to saying that the measure 𝜇𝑔

where

𝑑𝜇𝑔 (𝑧) =

𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) (21)

is a Carleson measure for 𝐾
2

𝐼
. Assuming that 𝐼 is a one-

component inner function, a result of Cohn [8] ensures that
the measure property holds if and only if the normalized
reproducing kernels of 𝐾

2

𝐼
are uniformly embedded into

𝐿
2
(C+, 𝑑𝜇𝑔) from which the boundedness part of the result

follows.
To prove (ii), first from a standard normal family argu-

ment, we have that 𝑉𝑔 is compact if and only if 𝑉𝑔𝑓𝑛 → 0

in 𝐻
2
(C+) for each sequence of functions 𝑓𝑛 in 𝐾

2

𝐼
such that

the sequence is uniformly bounded in norm and converges
uniformly to zero on compact subsets ofC+. It means that the
compactness of𝑉𝑔 is equivalent to saying that the embedding
map from𝐾

2

𝐼
to 𝐿2(𝜇𝑔) is compact. Since 𝐼 is one-component,

then the desired conclusion follows from a result of Cohn [8]
again.

To prove part (iii), recall that the operator 𝑉𝑔 belongs to
the Hilbert–Schmidt class if and only if, for any orthonormal
basis (𝑒𝑛) of 𝐾

2

𝐼
, the sequence (‖𝑉𝑔𝑒𝑛‖

2

2
) is summable. It

follows by (20) that

∞

∑

𝑛=1


𝑉𝑔𝑒𝑛



2

2
≃

∞

∑

𝑛=1

∫
C
+

𝑒𝑛 (𝑧)

2 
𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧)

= ∫
C
+

∞

∑

𝑛=1

𝑒𝑛 (𝑧)

2 
𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) .

(22)

On the other hand, because of the reproducing property of
the kernel and Parseval’s identity, we have

𝐾𝑤 (𝑧) =

∞

∑

𝑛=1

⟨𝐾𝑤, 𝑒𝑛⟩ 𝑒𝑛 (𝑧) =

∞

∑

𝑛=1

𝑒𝑛 (𝑧) 𝑒𝑛 (𝑤),

𝐾𝑤

2

2
=

∞

∑

𝑛=1

𝑒𝑛 (𝑤)

2
.

(23)

The desired conclusion easily follows since
∞

∑

𝑛=1

𝑒𝑛 (𝑧)

2
=
𝐾𝑧


2

2
≃

1 − |𝐼 (𝑧)|
2

I𝑧
. (24)

Proof of Theorem 2. Applying the Littlewood–Paley identity
again, the estimate


𝑉𝑔𝑓



2

2
= 2∫

C
+

𝑓 (𝑧)

2 
𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) ≲
𝑓


2

H(Γ,V)

(25)

holds if and only if the embedding map from H(Γ, V) to
𝐿
2
(C, 𝜇𝑔) is bounded, where 𝜇𝑔 is the nonnegative measure

defined by (21). Then, the boundedness part of the result
immediately follows from an application of Theorem 1.1 in
[11].

By a result of Nordgren’s [22], a sequence of functions 𝑓𝑛
inH(Γ, V) converges weekly to zero if and only if it converges
pointwise to zero and sup

𝑛
‖𝑓𝑛‖H(Γ,V) < ∞. It follows that𝑉𝜓 is

compact if and only if the measure 𝜇𝑔 is a vanishing Carleson
measure for H(Γ, V). Then an application of Theorem 1.2 in
[14] finishes the proof of the compactness part.

It remains to prove the statement about Hilbert–Schmidt
membership. First, we may observe that the reproducing
kernel ofH(Γ, V) at a point 𝜆 in (Γ, V)∗ is explicitly given by

𝑘𝜆 (𝑧) =

∞

∑

𝑛=1

V𝑛
(𝜆 − 𝛾𝑛) (𝑧 − 𝛾𝑛)

; (26)

this is a direct consequence of the definition of the space
H(Γ, V). Furthermore, the sequence 𝑒𝑛(𝑧) = √V𝑛/(𝑧 − 𝛾𝑛)

constitutes an orthonormal basis toH(Γ, V). Then


𝑉𝑔



2

S
2

=

∞

∑

𝑛=1


𝑉𝑔𝑒𝑛



2

2
≃

∞

∑

𝑛=1

∫
C
+

𝑒𝑛 (𝑧)

2 
𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧)

= ∫
C
+

𝐾𝑧

2

H(Γ,V)

𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧)

= ∫
C
+

∞

∑

𝑛=1

V𝑛
𝑧 − 𝛾𝑛


2


𝑔

(𝑧)



2

I𝑧 𝑑𝐴 (𝑧) .

(27)

Using the growth condition (11), we observe that if 𝑧 ∈ Ω𝑚,
then
∞

∑

𝑛=1

V𝑛
𝑧 − 𝛾𝑛


2
≃

𝑚−1

∑

𝑛=1

V𝑛
|𝑧|
2
+

V𝑚
𝑧 − 𝛾𝑚


2
+

∞

∑

𝑛=𝑚+1

V𝑛
𝛾𝑛


2
. (28)

Plugging this estimate in (27), we find that ‖𝑉𝑔‖S
2

is finite if
and only if both equations of (15) hold.

Proof of Theorem 3. Suppose now that 𝜓 is analytic on C+.
Then, for each fixed 𝑦 > 0, we define 𝜓𝑦(𝑥) = 𝜓(𝑥 + 𝑖𝑦) from
R to C+. We denote by𝑚𝜓

−1

𝑦
the pullback measure

𝑚𝜓
−1

𝑦
(𝐸) = 𝑚 (𝜓

−1

𝑦
(𝐸)) (29)
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for each Borel subset 𝐸 ⊂ C+, where 𝑚 refers to the usual
Lebesgue measure on the real line.

Applying change of variables, we observe

∫
R


𝐶𝜓𝑓 (𝑥 + 𝑖𝑦)



2

𝑑𝑥 = ∫
C
+

𝑓 (𝑧)

2
𝑑𝑚𝜓
−1

𝑦
(𝑧) , (30)

which holds because of a classical result in measure theory
([23], page 163). This implies that the estimate


𝐶𝜓𝑓



2

2
= sup
𝑦>0

∫
C
+

(𝑓 ∘ 𝜓) (𝑥 + 𝑖𝑦)

2
𝑑𝑥 ≲

𝑓

2

H(Γ,V)

(31)

holds if and only if (𝑚𝜓
−1

𝑦
)𝑦>0 constitute a family of Carleson

measures forH(Γ, V)with a uniform bound on 𝑦 in the sense
that

sup
𝑦>0

∫
C
+

𝑓 (𝑧)

2
𝑑𝑚𝜓
−1

𝑦
(𝑧)

𝑓

2

H(Γ,V)

< ∞. (32)

Then an application of Theorem 1.1 of [11] gives the first part
of the result in the theorem.

The compactness part of our result follows easily by
similar arguments used to prove the compactness part in
Theorem 2 along with Theorem 1.2 of [14]. Thus, we remain
to prove part (iii) of the result. Proceeding as in the proof of
part (iii) of Theorem 2 and applying (31) we have


𝐶𝜓



2

S
2

=

∞

∑

𝑛=1


𝐶𝜓𝑒𝑛



2

2
=

∞

∑

𝑛=1

sup
𝑦>0

∫
C
+

(𝑒𝑛 ∘ 𝜓) (𝑥 + 𝑖𝑦)

2
𝑑𝑥

=

∞

∑

𝑛=1

sup
𝑦>0

∫
C
+

𝑒𝑛 (𝑧)

2
𝑑𝑚𝜓
−1

𝑦
(𝑧)

=

∞

∑

𝑛=1

sup
𝑦>0

∫
C
+

V𝑛
𝑧 − 𝛾𝑛


2
𝑑𝑚𝜓
−1

𝑦
(𝑧)

=

∞

∑

𝑛=1

sup
𝑦>0

∞

∑

𝑗=1

∫
Ω
𝑗

V𝑛
𝑧 − 𝛾𝑛


2
𝑑𝑚𝜓
−1

𝑦
(𝑧) .

(33)

Applying the growth condition in (11), we observe that if 𝑧 ∈

Ω𝑛, then

∞

∑

𝑛=1

V𝑛sup
𝑦>0

∞

∑

𝑗=1

∫
Ω
𝑗

𝑑𝑚𝜓
−1

𝑦
(𝑧)

𝑧 − 𝛾𝑛

2

≃

∞

∑

𝑛=1

V𝑛sup
𝑦>0

𝑛−1

∑

𝑗=1

∫
Ω
𝑗

𝑑𝑚𝜓
−1

𝑦
(𝑧)

|𝑧|
2

(34)

+

∞

∑

𝑛=1

sup
𝑦>0

(∫
Ω
𝑛

V𝑛𝑑𝑚𝜓
−1

𝑦
(𝑧)

𝑧 − 𝛾𝑛

2

+

∞

∑

𝑗=𝑛+1

V𝑛 ∫
Ω
𝑗

𝑑𝑚𝜓
−1

𝑦
(𝑧)

𝛾𝑛

2

) .

(35)

The sum on the right-hand side of (34) can be further
rewritten as

∞

∑

𝑛=1

V𝑛sup
𝑦>0

𝑛−1

∑

𝑗=1

∫
Ω
𝑗

𝑑𝑚𝜓
−1

𝑦
(𝑧)

|𝑧|
2

=

∞

∑

𝑛=1

V𝑛sup
𝑦>0

𝑛−1

∑

𝑗=1

∫
𝜓(Ω
𝑗
)

𝑑𝑥

𝜓 (𝑥 + 𝑖𝑦)

2
.

(36)

On the other hand, the sum on the right-hand side of (35)
becomes

∞

∑

𝑛=1

V𝑛sup
𝑦>0

(∫
Ω
𝑛

𝑑𝑚𝜓
−1

𝑦
(𝑧)

𝑧 − 𝛾𝑛

2

+

∞

∑

𝑗=𝑛+1

∫
Ω
𝑗

V𝑛
𝛾𝑛


2
𝑑𝑚𝜓
−1

𝑦
(𝑧))

≃

∞

∑

𝑛=1

V𝑛sup
𝑦>0

∫
𝜓(Ω
𝑛
)

𝑑𝑥

𝜓 (𝑥 + 𝑖𝑦) − 𝛾𝑛

2

+

∞

∑

𝑛=1

V𝑛
𝛾𝑛


2
sup
𝑦>0

∞

∑

𝑗=𝑛+1

𝑚(𝜓 (Ω𝑗)) ,

(37)

where 𝑚(𝜓(Ω𝑗)) = 𝑚({𝜓(𝑥 + 𝑖𝑦) : 𝑥 + 𝑖𝑦 ∈ Ω𝑗}). From the
above series of estimates, we see that ‖𝐶𝜓‖S

2

is finite if and
only if the sums in (36) and (37) are finite and from which
our assertion follows.
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393, 2010.

[14] T. Mengestie, “Compact Carleson measures from sparse
sequences,”TheRockyMountain Journal ofMathematics, vol. 44,
no. 1, pp. 223–234, 2014.

[15] J. E. Littlewood, “On inequalities in the theory of functions,”
Proceedings of the London Mathematical Society, vol. s2-23, no.
1, pp. 481–519, 1925.

[16] H. Schwartz, Composition operators on H𝑝 [Thesis], University
of Toledo, Toledo, Ohio, USA, 1968.

[17] J. H. Shapiro, “The essential norm of a composition operator,”
Annals of Mathematics: Second Series, vol. 125, no. 2, pp. 375–
404, 1987.

[18] V. Matache, “Composition operators on Hardy spaces of a half-
plane,” Proceedings of the American Mathematical Society, vol.
127, no. 5, pp. 1483–1491, 1999.

[19] Y. Lyubarskii and E. Malinnikova, “Composition operator on
model spaces,” http://arxiv.org/abs/1205.5172.

[20] A. Aleman, Y. Lyubarskii, E. Malinnikova, and K.-M. Perfekt,
“Trace ideal criteria for embeddings and composition operators
on model spaces,” http://arxiv.org/abs/1307.2652.

[21] T.Mengestie,Twoweight discrete Hilbert transforms and systems
of reproducing kernels [Ph.D. thesis], Norwegian University of
Science and Technology, 2011.

[22] E. A. Nordgren, “Composition operators on hilbert spaces,” in
Hilbert Space Operators, vol. 693 of Lecture Notes in Mathemat-
ics, pp. 37–63, Springer, Berlin, Germany, 1978.

[23] P. Halmos,MeasureTheory, Van Nostrand, Princeton, NJ, USA,
1950.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


