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1. Introduction

Multi-Higgs doublet models (NHDM) offer simple yet attractive extensions of the Standard
Model due to the possibility to accomodate for extra CP violation as well as offering viable candi-
dates for Dark Matter[1].

The doublets in an NHDM are not unique. One can combine the doublets to form new com-
binations using a U(N) matrix. This is referred to as a change of basis. When writing down the
Lagrangian of the 2HDM, one has a freedom to write it down in any basis one wishes. This free-
dom is parametrized by the arbitrary U(N) matrix. The physics of the model cannot depend on
this arbitrary choice of basis and implies that all observables of the model that can be measured
in experiments, like for instance cross sections and decay rates, cannot depend on the choice of
basis. This naturally leads to the study of basis invariant quantities, since any observable must be
independent of the choice of basis. In the Standard Model we know that the potential is invariant
under a rephasing of the Higgs-doublet. This is exactly the U(1) freedom present in the model with
one doublet. None of the parameters of the potential change under this rephasing in the SM.

The simplest multi-Higgs extension of the Standard Model is the two-Higgs-doublet model
(2HDM) in which there is a U(2) freedom present. Unlike the SM, the parameters of the potential
do change when we use this freedom to change basis. Therefore, the study of basis invariants
and basis invariant techniques is important in NHDMs, and many papers have been written on this
subject[2, 3, 4].

We start by discussing the general form of the 2HDM potential, vacuum expectation values
and the transformation of these under changes of basis in section 2. In section 3 we study the mass
sector of the 2HDM in more detail, working out the transformation rules of both the rotation matrix
and the squared mass matrix under a basis change. We use these to show that the scalar masses
are invariant under a change of basis. Next, in section 4 we study both scalar and gauge couplings
and find that these are invariant under a basis change. We discuss systematic construction of basis
invariant quantities in section 5. A powerful and simple method for translating from parameters to
masses and couplings is presented in section 6 and applied to CP odd invariants in section 7 before
a short summary in section 8.

2. The potential, vacuum expectation values and basis transformations

2.1 Parametrizing the potential

The potential of the two-Higgs-doublet model shall be parametrized in the standard fashion as

V (Φ1,Φ2) = −1
2

{
m2

11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 +

[
m2

12Φ
†
1Φ2 +h.c.

]}
+

λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 +λ3(Φ

†
1Φ1)(Φ

†
2Φ2)+λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+
1
2

[
λ5(Φ

†
1Φ2)

2 +h.c.
]
+
{[

λ6(Φ
†
1Φ1)+λ7(Φ

†
2Φ2)

]
(Φ†

1Φ2)+h.c.
}

≡ Yab̄Φ
†
āΦb +

1
2

Zab̄cd̄(Φ
†
āΦb)(Φ

†
c̄Φd), (2.1)
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where the second form (which is also more compact) enables us to make the following identifica-
tions

Y11 =−
m2

11
2

, Y12 =−
m2

12
2

, Y21 =−
(m2

12)
∗

2
, Y22 =−

m2
22
2

, (2.2)

and

Z1111 = λ1, Z2222 = λ2, Z1122 = Z2211 = λ3,

Z1221 = Z2112 = λ4, Z1212 = λ5, Z2121 = (λ5)
∗,

Z1112 = Z1211 = λ6, Z1121 = Z2111 = (λ6)
∗,

Z1222 = Z2212 = λ7, Z2122 = Z2221 = (λ7)
∗. (2.3)

The second form, where we express the potential parameters in terms of the tensors Yab̄ and Zab̄cd̄

is more convenient in the study of invariants as one may write down simple and compact rules for
how they transform under a change of basis, see section 5.

2.2 Basis transformations and the parameters of the potential

The potential is defined with respect to the doublets Φi. There is, however, nothing unique with
these (initial) doublets, and the potential may just as well be expressed in terms of the transformed
doublets Φ̄i, which is related to the Φi by Φ̄i =Ui jΦ j. The matrix U can be any unitary 2x2 matrix.
This is what is referred to as a change of basis. Our theory can be formulated in terms of the
doublets in any basis we wish. Each choice of the matrix U brings us to another basis, so there are
infinitely many different bases in which the theory can be formulated. Naturally, physics cannot
depend on an arbitrary choice of basis, so quantities that do not depend on the matrix U play an
important role in the theory, and shall be referred to as physical or basis invariants of the theory.

The most general U(2) matrix can be parametrized as

U = eiψ

(
cosθ e−iξ sinθ

−eiχ sinθ ei(χ−ξ ) cosθ

)
. (2.4)

Naturally, the parameters of the potential will change under a basis transformation. The transfor-
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mation rules are given explicitly in [5], we repeat them here for the reader’s convenience,

m̄2
11 = m2

11 cos2
θ +m2

22 sin2
θ +Re (m2

12eiξ )sin2θ , (2.5)

m̄2
22 = m2

11 sin2
θ +m2

22 cos2
θ −Re (m2

12eiξ )sin2θ , (2.6)

m̄2
12 =

[
1
2(−m2

11 +m2
22)sin2θ +Re (m2

12eiξ )cos2θ + iIm (m2
12eiξ )

]
e−iχ , (2.7)

λ̄1 = λ1 cos4
θ +λ2 sin4

θ + 1
2 λ345 sin2 2θ +2sin2θRe [cos2

θλ6eiξ + sin2
θλ7eiξ ], (2.8)

λ̄2 = λ1 sin4
θ +λ2 cos4

θ + 1
2 λ345 sin2 2θ −2sin2θRe [sin2

θλ6eiξ + cos2
θλ7eiξ ], (2.9)

λ̄3 =
1
4

sin2 2θ(λ1 +λ2−2λ345)+λ3− sin2θ cos2θRe [(λ6−λ7)eiξ ], (2.10)

λ̄4 =
1
4

sin2 2θ(λ1 +λ2−2λ345)+λ4− sin2θ cos2θRe [(λ6−λ7)eiξ ], (2.11)

λ̄5 =

(
1
4

sin2 2θ(λ1 +λ2−2λ345)+Re (λ5e2iξ )+ icos2θ Im (λ5e2iξ )

− sin2θ cos2θRe [(λ6−λ7)eiξ ]− isin2θ Im [(λ6−λ7)eiξ ]

)
e−2iχ , (2.12)

λ̄6 =
(
−1

2 sin2θ [λ1 cos2
θ −λ2 sin2

θ −λ345 cos2θ − iIm (λ5e2iξ )]

+cosθ cos3θRe (λ6eiξ )+ sinθ sin3θRe (λ7eiξ )

+icos2
θ Im (λ6eiξ )+ isin2

θ Im (λ7eiξ )
)

e−iχ , (2.13)

λ̄7 =
(
−1

2 sin2θ [λ1 sin2
θ −λ2 cos2

θ +λ345 cos2θ + iIm (λ5e2iξ )]

+sinθ sin3θRe (λ6eiξ )+ cosθ cos3θRe (λ7eiξ )

+isin2
θ Im (λ6eiξ )+ icos2

θ Im (λ7eiξ )
)

e−iχ . (2.14)

Even though the parameters of the potential change under a basis transformation, some combi-
nations of potential parameters remain unchanged under a basis transformations. A few simple
examples that can be readily verified from the above rules are

m̄2
11 + m̄2

22 = m2
11 +m2

22, (2.15)

λ̄1 + λ̄2 +2λ̄3 = λ1 +λ2 +2λ3, (2.16)

λ̄1 + λ̄2 +2λ̄4 = λ1 +λ2 +2λ4. (2.17)

These three simple basis invariants are all linear in the parameters of the potential, and they repre-
sent physical quantities of the theory due to the fact that they are basis invariant.

2.3 Vacuum expectation values and basis transformations

For a physically viable theory, the electroweak symmetry must be spontaneously broken so that
we get non-zero vacuum expectation values (VEVs), representing the minimum of the potential.
These in turn give rise to masses of the particles. The most general form of the VEVs that conserves
electric charge is

〈Φ1〉=
1√
2

(
0

v1eiξ1

)
, 〈Φ2〉=

1√
2

(
0

v2eiξ2

)
, (2.18)
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where v2
1 + v2

2 = v2 = (246GeV)2. We shall introduce the notation ξ21 ≡ ξ2−ξ1 for the difference
in phase between the two doublets. If we transform to a new basis, the VEVs will also change. We
find that the parameters of the VEVs transform as

v̄1 =
√

v2
1 cos2 θ + v2

2 sin2
θ + v1v2 sin2θ cos(ξ21−ξ ), (2.19)

v̄2 =
√

v2
1 sin2

θ + v2
2 cos2 θ − v1v2 sin2θ cos(ξ21−ξ ), (2.20)

and

cos ξ̄21 =
v̄1(2v1v2(cos2θ cos(ξ21−ξ )cos χ− sin(ξ21−ξ )sin χ)+(v2

2− v2
1)sin2θ cos χ)

v̄2(v2
1 + v2

2− (v2
2− v2

1)cos2θ +2v1v2 cos(ξ21−ξ )sin2θ)
,

(2.21)

sin ξ̄21 =
v̄1(2v1v2(cos2θ cos(ξ21−ξ )sin χ + sin(ξ21−ξ )cos χ)+(v2

2− v2
1)sin2θ sin χ)

v̄2(v2
1 + v2

2− (v2
2− v2

1)cos2θ +2v1v2 cos(ξ21−ξ )sin2θ)
,

(2.22)

and we immediately see that v̄2
1 + v̄2

2 = v2
1 + v2

2. Thus, v2 must represent a physical quantity of the
theory that can be observed in experiments, as is of course already well known. With the form of the
VEVs given above, demanding that the potential should possess a minimum for these VEVs, one
finds the stationary-point equations given in eqs. (A.1) - (A.3) of [6]. Enforcing that the stationary
point is indeed a minimum is done by enforcing that the squared masses of the physical scalars (to
be encountered in the next section) are positive so that the potential has the needed curvature for
the VEVs to represent a minimum.

3. The physical scalars and basis invariance of the masses

We follow the same approach as in [6] and parametrize the doublets as

Φ j = eiξ j

(
ϕ
+
j

(v j +η j + iχ j)/
√

2

)
, j = 1,2. (3.1)

In the charged sector we extract the massless Goldstone bosons by introducing orthogonal states,(
G±

H±

)
=

(
v1/v v2/v
−v2/v v1/v

)(
ϕ
±
1

ϕ
±
2

)
. (3.2)

Here, G± represent the massive Goldstone fields while H± represents the massive charged scalars.
Their masses are found to be given by

M2
H± =

v2

2v1v2 cosξ21
Re
(

m2
12− v2

1λ6− v2
2λ7− v1v2

[
λ4 cosξ21 +λ5eiξ21

])
. (3.3)

Replacing each of the parameters in this expression with its basis-transformed counterpartner (i.e.
putting a bar over each of the parameters) and applying the transformation rules for changes of
basis listed in the previous section, we find that the expression for M2

H± is invariant under a change

4
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of basis. The implication of this is that the charged mass is physical and can be observed in
experiments, just as we expect it to be.

Next, we turn to the neutral sector in which we introduce orthogonal states in the same way
that we did in the charged sector,(

G0

η3

)
=

(
v1/v v2/v
−v2/v v1/v

)(
χ1

χ2

)
. (3.4)

Then G0 becomes the massless neutral Goldstone boson, and the remaining mass terms can be
written as

1
2

(
η1 η2 η3

)
M 2

 η1

η2

η3

 . (3.5)

The elements of the squared mass matrix M 2 are given explicitly in eqs. (A.5) - (A.10) of [6].
In order to extract the physical neutral scalars, we form combinations of the ηi by the use of an
orthogonal 3x3 matrix R so that the squared mass matrix becomes diagonal,H1

H2

H3

= R

 η1

η2

η3

 , (3.6)

where

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 , (3.7)

giving

RM 2RT = diag(M2
1 ,M

2
2 ,M

2
3). (3.8)

The rotation matrix needed in order to diagonalize M 2 will depend on the choice of basis. How-
ever, we must end up with the same physical fields, hence the same diagonalized mass matrix for
any choice of basis. This implies that for two different choices of basis we must have

R

 η1

η2

η3

= R̄

 η̄1

η̄2

η̄3

 . (3.9)

Since we know how the doublets Φi transform under a change of basis, we can use this to figure
out how the ηi transform under a change of basis. Combining this with the above, we arrive at the
transformation rules for the rotation matrix R,

R̄ = RP, (3.10)

5
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where P is an orthogonal 3x3 matrix with elements given by

P11 =
cosθ(v1 cosθ + v2 sinθ cos(ξ21−ξ ))

v̄1
, (3.11)

P12 = −sinθ(v2 cosθ cos(ξ21−ξ )− v1 sinθ)

v̄2
, (3.12)

P13 =
vv2 sin2θ sin(ξ21−ξ )

2v̄1v̄2
, (3.13)

P21 =
sinθ(v1 cosθ cos(ξ21−ξ )+ v2 sinθ)

v̄1
, (3.14)

P22 =
cosθ(v2 cosθ − v1 sinθ cos(ξ21−ξ ))

v̄2
, (3.15)

P23 = −vv1 sin2θ sin(ξ21−ξ )

2v̄1v̄2
, (3.16)

P31 = −vsin2θ sin(ξ21−ξ )

2v̄1
, (3.17)

P32 =
vsin2θ sin(ξ21−ξ )

2v̄2
, (3.18)

P33 =
2v1v2 cos2θ +

(
v2

2− v2
1
)

sin2θ cos(ξ21−ξ )

2v̄1v̄2
. (3.19)

By equating the diagonalized mass matrices for two different choices of basis,

RM 2RT = R̄M̄ 2R̄T, (3.20)

we find the transformation rules for the squared mass matrix under a basis transformation,

M̄ 2 = PT M 2P. (3.21)

We make note of the fact that none of the elements of the rotation matrix or the squared mass
matrix are invariant under a change of basis, so none of their elements are physical. By combining
elements of the squared mass matrix like the trace, the sum of principal cofactors or the determinant
we find basis invariant expressions, meaning that those combinations are physical. Indeed, we
know that they can be expressed in terms of the three eigenvalues (masses) of the neutral sector.
The characteristic equation of the squared mass matrix is

λ
3 +bλ

2 + cλ +d = 0, (3.22)

with

b = −(M 2
11 +M 2

22 +M 2
33), (3.23)

c = M 2
11M

2
22 +M 2

11M
2
33 +M 2

22M
2
33− (M 2

12)
2− (M 2

13)
2− (M 2

23)
2, (3.24)

d = M 2
11(M

2
23)

2 +M 2
22(M

2
13)

2 +M 2
33(M

2
12)

2−M 2
11M

2
22M

2
33−2M 2

12M
2
13M

2
23. (3.25)

Here, a, b and c are now basis invariant expressions. Introducing the (also basis invariant) com-
binations p = c− b2/3 and q = (2b3− 9bc+ 27d)/27, we may write the three solutions of the

6
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characteristic equations as

M2
1 =

−b
3

+2

√
−p
3

cos

[
1
3

arccos

(
3q
2p

√
−3
p

)
+

2π

3

]
, (3.26)

M2
2 =

−b
3

+2

√
−p
3

cos

[
1
3

arccos

(
3q
2p

√
−3
p

)
− 2π

3

]
, (3.27)

M2
3 =

−b
3

+2

√
−p
3

cos

[
1
3

arccos

(
3q
2p

√
−3
p

)]
. (3.28)

Since the three neutral masses can be written as functions of basis invariant quantities, this means
that the neutral masses must also be basis invariant, again as we expect them to be.

4. Some important couplings and basis invariance

4.1 Scalar couplings

We shall find the couplings between one neutral and two charged scalars as well as the coupling
between four charged scalars useful. We can read the coefficients of these combinations of fields
directly off of the potential. In the general basis they become

qi ≡ Coefficient(V,HiH−H+)

=
v1v2

2
v2 Ri1λ1 +

v2
1v2

v2 Ri2λ2 +
v3

1Ri1 + v3
2Ri2

v2 λ3−
v1v2(v2Ri1 + v1Ri2)

v2 λ4

−v1v2 [(v2Ri1 + v1Ri2)cos2ξ21− vRi3 sin2ξ21]

v2 Re λ5

+
v1v2 [(v2Ri1 + v1Ri2)sin2ξ21 + vRi3 cos2ξ21]

v2 Im λ5

+
v2
([
(v2

2−2v2
1)Ri1 + v1v2Ri2

]
cosξ21− vv2Ri3 sinξ21

)
v2 Re λ6

−
v2
([
(v2

2−2v2
1)Ri1 + v1v2Ri2

]
sinξ21 + vv2Ri3 cosξ21

)
v2 Im λ6

+
v1
([
(v2

1−2v2
2)Ri2 + v1v2Ri1

]
cosξ21− vv1Ri3 sinξ21

)
v2 Re λ7

−
v1
([
(v2

1−2v2
2)Ri2 + v1v2Ri1

]
sinξ21 + vv1Ri3 cosξ21

)
v2 Im λ7, (4.1)

q ≡ Coefficient(V,H−H−H+H+)

=
v4

2
2v4 λ1 +

v4
1

2v4 λ2 +
v2

1v2
2

v4 (λ3 +λ4 + cos2ξ21Re λ5− sin2ξ21Im λ5)

−
2v1v3

2
v4 (cosξ21Re λ6− sinξ21Im λ6)−

2v3
1v2

v4 (cosξ21Re λ7− sinξ21Im λ7). (4.2)

Again, upon investigating how these expressions transform under a change of basis, we conclude
that both the qi and q are basis invariant expressions. Hence, they are physical and can be measured
in experiments. Again, this is as it should be, as the couplings of the theory appear in the Feynman
amplitudes and are directly related to observables.

7
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4.2 Gauge couplings

The kinetic term of the Lagrangian in the 2HDM may be written

Lk = (DµΦ1)
†(Dµ

Φ1)+(DµΦ2)
†(Dµ

Φ2), (4.3)

with

Dµ = ∂
µ +

ig
2

σiW
µ

i + i
g′

2
Bµ , (4.4)

W µ

1 =
1√
2
(W+µ +W−µ), (4.5)

W µ

2 =
i√
2
(W+µ −W−µ), (4.6)

W µ

3 = cosθWZµ + sinθWAµ , (4.7)

Bµ = −sinθWZµ + cosθWAµ . (4.8)

The couplings between scalars and gauge bosons can now be read directly off from the kinetic
term, i.e.

Coefficient
(
Lk,Zµ

[
H j
←→
∂µ Hi

])
=

g
2vcosθW

εi jkek, (4.9)

Coefficient(Lk,HiZµZν) =
g2

4cos2 θW
ei gµν , (4.10)

Coefficient
(
Lk,HiW+µW−ν

)
=

g2

2
ei gµν . (4.11)

The factors ei appearing in these couplings are given by

ei ≡ v1Ri1 + v2Ri2, (4.12)

and satisfy e2
1 + e2

2 + e3
3 = v2 = (246GeV)2. Upon performing a change of basis, we easily find

that v̄1R̄i1 + v̄2R̄i2 = v1Ri1 + v2Ri2, implying that the ei are basis invariant quantities. Hence, these
gauge couplings are also physical and can be measured in experiments.

5. Systematic construction of invariants

Invariants can also be constructed in a systematical way by using tensors and their transforma-
tion properties under a change of basis. We have already encountered the Y - and Z-tensors. Let us
also introduce the V -tensor defined by

Vab =
vav∗b
v2 =

1
v2

(
v2

1 v1v2e−iξ21

v1v2eiξ21 v2
2

)
. (5.1)

Under a change of basis, the transformation rules of the tensors can be found in [5] and are given
by1

Ȳab̄ = Uac̄Ycd̄U†
db̄, (5.2)

V̄ab̄ = Uac̄Vcd̄U†
db̄, (5.3)

Z̄ab̄cd̄ = UaēUcḡZe f̄ gh̄U†
f b̄U†

hd̄ . (5.4)

1The barred indices can be used to see which indices transform with U and which transforms with U†.

8
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In order to construct a basis invariant from these three tensors we must write down an expression
that does not depend on the unitary matrix U . We put together an arbitrary number of Y -, V - and
Z-tensors, pairing together barred and unbarred indices that are not already summed over. Next,
we sum over the indices we pair together, exploiting the unitarity of U to get an expression that is
independent of U , hence basis invariant. The simplest examples are

Vaā = 1, (5.5)

Yaā = −1
2
(m2

11 +m2
22), (5.6)

Zaābb̄ = λ1 +λ2 +2λ3, (5.7)

Zab̄bā = λ1 +λ2 +2λ4. (5.8)

We recognize those basis invariant expressions that we already encountered in eqs. (2.15) - (2.17).

6. From parameters to physical quantities

We have seen that the masses of the scalars as well as some couplings involving scalars are all
invariant under a change of basis. As for invariants constructed by contracting barred and unbarred
indices from the tensors, our desire is to express these in terms of masses and couplings, and
thereby relating them to physical quantities. It has been pointed out by several groups [2, 7] that
the 2HDM has only 11 independent physical parameters. This is consistent with our findings, that
all basis invariants can be expressed in terms of the following set of masses and couplings already
encountered,

P ≡ {M2
H± ,M

2
1 ,M

2
2 ,M

2
3 ,e1,e2,e3,q1,q2,q3,q}. (6.1)

We have explicitly shown that all masses and couplings are basis invariant. The challenge ahead
of us is to find a way to translate a basis invariant expression into a combination of masses and
couplings contained in the physical parameter set P . The method developed uses the freedom to
choose a particular basis, namely the Higgs-basis in which only the first doublet has a non-zero
VEV, which is real.

〈Φ1〉HB =
1√
2

(
0
v

)
, 〈Φ2〉HB =

(
0
0

)
Next, we find the relation between parameters and physical quantities we seek in this particular
basis. Finally, we use the fact that the quantities we translated into a combination of physical
masses/couplings is basis invariant, hence the relations we found in the Higgs-basis must be valid
in any basis.

6.1 The translation

We start by working out the stationary-point equations in the Higgs-basis. They become

Y11 = −v2

2
Z1111, (6.2)

ReY12 = −v2

2
Re Z1112, (6.3)

ImY12 = −v2

2
Im Z1112. (6.4)
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Next, we find the masses of the charged scalars,

M2
H± = Y22 +

v2

2
Z1122. (6.5)

The neutral-sector squared mass matrix is given by

M 2 = RT diag(M2
1 ,M

2
2 ,M

2
3)R

= v2

 Z1111 Re Z1112 −Im Z1112

Re Z1112
1
2(Z1122 +Z1221 +Re Z1212)+

Y22
v2 −1

2 Im Z1212

−Im Z1112 −1
2 Im Z1212

1
2(Z1122 +Z1221−Re Z1212)+

Y22
v2

 .(6.6)

We treat (6.5) and (6.6) as seven equations and solve them to get

Y22 = M2
H±−

v2

2
Z1122, (6.7)

Z1111 =
R2

11M2
1 +R2

21M2
2 +R2

31M2
3

v2 , (6.8)

Z1221 =
−2M2

H±+(R2
12 +R2

13)M
2
1 +(R2

22 +R2
23)M

2
2 +(R2

32 +R2
33)M

2
3

v2 , (6.9)

Re Z1112 =
R11R12M2

1 +R21R22M2
2 +R31R32M2

3
v2 , (6.10)

Im Z1112 = −
R11R13M2

1 +R21R23M2
2 +R31R33M2

3
v2 , (6.11)

Re Z1212 =
(R2

12−R2
13)M

2
1 +(R2

22−R2
23)M

2
2 +(R2

32−R2
33)M

2
3

v2 , (6.12)

Im Z1212 = −2
R12R13M2

1 +R22R23M2
2 +R32R33M2

3
v2 . (6.13)

Next, we work out the scalar couplings to find

qi = v(Ri1Z1122 +Ri2Re Z1222−Ri3Im Z1222), (6.14)

q =
1
2

Z2222. (6.15)

We treat these as four equations and solve to get

Z1122 =
R11q1 +R21q2 +R31q3

v
, (6.16)

Re Z1222 =
R12q1 +R22q2 +R32q3

v
, (6.17)

Im Z1222 = −R13q1 +R23q2 +R33q3

v
, (6.18)

Z2222 = 2q. (6.19)

We are now able to replace all the parameters of the potential with masses, scalar couplings and el-
ements from the rotation matrix R. It turns out that all the combinations of rotation-matrix elements
appearing in basis invariants during this translation is expressible in terms of the three elements Ri1

of the first column using the fact that R is orthogonal. Finally, we turn to the factors appearing in
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the gauge couplings. In the Higgs-basis these are simply ei = vRi1, so indeed we manage to express
all invariants in terms of the physical parameters of P .

Applying the translation technique oulined above, we find

Yaā = M2
H±−

1
2v2 (e

2
1M2

1 + e2
2M2

2 + e2
3M2

3)−
1
2
(e1q1 + e2q2 + e3q3),

Zaābb̄ = 2q+
1
v4 (e

2
1M2

1 + e2
2M2

2 + e2
3M2

3)+
2
v2 (e1q1 + e2q2 + e3q3),

Zab̄bā = 2q− 4
v2 M2

H±−
1
v4 (e

2
1M2

1 + e2
2M2

2 + e2
3M2

3)+
2
v2 (M

2
1 +M2

2 +M2
3),

all now translated into masses and couplings.

7. Applying the technique to CP odd invariants

CP violation in the bosonic sector of the 2HDM has been extensively studied by many groups
with different approaches [8, 9, 5, 10, 11, 12, 13, 14, 15, 16, 17]. The three invariants we translated
at the end of the previous section were all CP even since they contain no imaginary part. In [5],
the conditions for CP conservation were formulated in terms of three CP odd invariants expressed
using the tensors Y , V and Z. If at least one of these is non-zero, then the 2HDM violates CP, and
if all three invariants vanish it is CP conserving. The three invariants are

Im J1 =−
2
v2 Im

[
VdāYab̄Zbc̄cd̄

]
, (7.1a)

Im J2 =
4
v4 Im

[
Vab̄Vdc̄YbēYc f̄ Zeā f d̄

]
, (7.1b)

Im J3 = Im
[
Vab̄Vdc̄ZbḡgēZch̄h f̄ Zeā f d̄

]
. (7.1c)

We translate these using the technique described to get

Im J1 =
1
v5 ∑

i, j,k
εi jkM2

i eiekq j, (7.2)

Im J2 = 2
e1e2e3

v9 (M2
1 −M2

2)(M
2
2 −M2

3)(M
2
3 −M2

1), (7.3)

Im J3 =
2
v4

[
(e2

1M2
1 + e2

2M2
2 + e2

3M2
3)+ v2(e1q1 + e2q2 + e3q3)+2v2M2

H±
]

Im J1

+Im J2 +
4
v7 ∑

i, j,k
εi jkeiM4

i e jqk +2Im J30, (7.4)

where

Im J30 =
1
v5 ∑

i, j,k
εi jkqiM2

i e jqk. (7.5)

These results were obtained and presented in [6], where a more complicated technique than the
one presented here was used. If Im J1 = Im J2 = 0, we find that Im J3 = Im J30, so a simpler
way to express the conditions for CP conservation is to say that the model conserves CP iff
Im J1 = Im J2 = Im J30 = 0. Othervise it violates CP. Putting Im J1 = Im J2 = Im J30 = 0, we
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immediately find the following six cases of CP conservation:
Case 1: M1 = M2 = M3. Full mass deceneracy.
Case 2: M1 = M2 and e1q2 = e2q1.
Case 3: M2 = M3 and e2q3 = e3q2.
Case 4: e1 = 0 and q1 = 0.
Case 5: e2 = 0 and q2 = 0.
Case 6: e3 = 0 and q3 = 0.

If none of these are satisfied, the model violates CP.
The technique can also be applied on the four invariants needed to determine if CP is violated

explicitly or spontaneously presented in eqs. (23) - (26) of [5], arriving at much simpler conditions
given in terms of masses and couplings, presented in eqs. (III.5) - (III.7) of [18].

8. Summary

We have discussed the importance of basis invariants in the 2HDM and shown how the
masses and some couplings of the theory are invariant under a change of basis. We have also
discussed how to construct basis invariants in a systematic way by use of the Y -, V - and Z-tensors.
We have presented a simple, yet powerful method to translate invariant expressions into
combinations of 11 masses and couplings and demonstrated its powerfulness and simplicity by
applying the method to some CP-even invariants as well as the three CP-odd invariants needed to
determine the CP properties of the theory. The technique can be applied to any invariant
expression of the 2HDM. This technique could be extended also to the three-Higgs-doublet model
in order to study the CP properties of the 3HDM.
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