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Abstract 

Ballast water may, when discharged, cause the spread of nonindigenous and potentially invasive species. International ballast 
water treatment regulations have accelerated the development of new methods to detect, enumerate and assess the status of 
organisms in the water to be discharged. Flow cytometry (FCM) is a powerful technique with a broad range of applications 
with the possibility for multi-parametric analysis and the potential of combining it with other techniques being two strong 
advantages. This review will discuss whether FCM is suitable for ballast water analysis according to international ballast water 
regulations, and sum up the advantages and disadvantages. It will also give an overview of available labeling techniques. 
Finally, a discussion on the knowledge gaps and future potential for FCM within ballast water analysis is presented. 
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Ballast water—a vector for spreading of 
organisms in marine environments 

In ports, water is pumped into the ballast tanks of 
ships with little cargo to ensure stability and trim 
during the voyage, and to maintain structural integrity 
and safety. Ballast water is then discharged again 
when cargo is loaded in a new port. Thus organisms 
are transported across nature’s own barriers, including 
variable salinities and temperatures, with the risk of 
spreading non-native and possibly invasive species 
(i.e. species that are established outside of theirs 
natural past or present distribution, whose intro-
duction and/or spread threaten biological diversity). 
Many organisms do not survive in the ballast tank 
because of suboptimal and variable conditions. Several 
studies have shown that the abundance and diversity 
of microorganisms like plankton, bacteria and viruses, 
decreases over time in the ballast tanks (Williams et 
al. 1988; Lavoie et al. 1999; Gollasch et al. 2000; 
Drake et al. 2002). Temperature, low oxygen satura-
tion, and the presence of chemical pollutants all play 

a crucial role in selectivity of organisms in the 
ballast tank (López-Amorós et al. 1997; Joachimsthal 
et al. 2003; Drillet et al. 2013; Zaiko et al. 2015). 
Sometimes, non-native species possess a competitive 
advantage in their recipient environment. It has been 
proposed that bloom forming species are those able 
to escape predation pressure at the beginning of the 
bloom by utilizing a so called loophole—a set of 
deterrence or avoidance mechanisms (e.g., toxin 
production, increasing large body size to prevent 
ingestion, etc.) (Irigoien et al. 2005). The environ-
mental status of the receiving area is another 
important factor for the colonization success of 
invasive species. Natural stress (e.g. variable salinities), 
or stress caused by human influence, like organic 
enrichment, pollution, physical habitat alterations 
etc., favors the spread of invasive species, whereas a 
robust native ecosystem represent a natural impedi-
ment to bioinvasions (Occhipinti-Ambrogi and Savini 
2003). Even though successful invasions are rare, they 
are difficult to control once they have occurred (Hoddle 
2004), leading to biodiversity loss, ecosystem 
imbalance, and fishery and tourism impairment. 
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Research on ballast water introduced organisms 
has focused mostly on metazoans, especially the zebra 
mussel’s invasion of the Great lakes of North America 
(Griffiths et al. 1991; Strayer 2010). However, micro-
organisms and viruses are numerically dominant in 
the environment, found in densities up to 1011 L-1 in 
sea water (Delong 1992; Wommack and Colwell 
2000; Curtis et al. 2002). They are therefore most 
likely to arrive in the highest number in the ballast 
tanks (Ruiz et al. 2000). Of particular concern are 
ballast water dispersed pathogenic bacteria that may 
affect human health directly. Historically there are 
several examples of presence of Vibrio cholerae, the 
causative agent of human cholera, in ship’s ballast 
water (McCarthy and Khambaty 1994; Ruiz et al. 
2000), although the concentration of bacteria in general 
is lower in ballast water samples than in coastal 
water samples (Ruiz et al. 2000). Another concern is 
Harmful Algal Blooms (HABs). Such blooms can 
cause widespread harmful impact, including anoxic 
conditions (Tango et al. 2005; Nelson et al. 2008) and 
the release of toxic compounds (Anderson 2009). 

It is well known that microorganisms can employ 
survival strategies to withstand periods of unfavorable 
conditions such as a dark ballast tank or starvation. 
These strategies include formation of cysts (Grigorszky 
et al. 2006) and the ability to enter a viable but non-
culturable (VBNC) state. Both indicator bacteria and 
pathogenic species have been recorded in a VBNC 
state in marine and aquatic environments (Barcina et 
al. 1997; Liu et al. 2009; Fernandez-Delgado et al. 
2015; Kaberdin et al. 2015), potentially posing a health 
risk by remaining contagious, producing toxins (Krebs 
and Taylor 2011), or by recovering from the VBNC 
state as a result of altered environmental conditions 
(Liu et al. 2009; Fernandez-Delgado et al. 2015) upon 
discharge. Another survival strategy in a ballast tank 
can be the formation of biofilms, also referred to as 
“interior hull fouling” (Drake et al. 2005). Such 
biofilms establishments can offer the bacterial cells 
protection against physical, chemical or biological 
stress (Decho 2000), and thus may represent an 
additional risk of microbial invasion when released 
into water during normal ballasting operations (Drake 
et al. 2005). 

Ballast water regulations and compliance 

In February 2004 the International Maritime Organi-
zation (IMO) adopted “the International Convention 
for the Control and Management of the Ships’ 
Ballast Water and Sediments (IMO 2004)”, or the 
“IMO convention”. The IMO convention was 
ratified the 08th of September 2016, entry into force 
will take place the 08th of September 2017. Once 

entered into force, ballast water will need to be treated 
before discharge, or otherwise managed, as formula-
ted in annex section D-1 and D-2 (IMO 2008a). 
According to the D-2 standard the discharged ballast 
water must contain less than: 

1. A total of 10 viable organisms per m3 (for orga-
nisms  50 µm) 

2. A total of 10 viable organisms per ml (for orga-
nisms  10–<50 µm) 

3. A total of 1 colony forming unit per 100 mL of 
Vibrio cholerae (serotypes O1, O139) 

4. A total of 250 colony forming unit per 100 mL of 
Escherichia coli 

5. A total of 100 colony forming unit per 100 mL of 
intestinal Enterococci 

The D-2 standard is based partly on size; organisms 
 50 µm include macroalgae, large protists, zoo-
plankton, and fish larvae, whereas the  10–<50 µm 
size group is dominated by phytoplankton. Individual 
species identification is not required with the excep-
tion of a few indicator bacteria with a human health 
impact; V. cholerae (O1 and O139), E. coli, and 
intestinal Enterococci. Notice that apart from the 
indicator bacteria the standard does not address 
organisms < 10 µm, even though several bloom-
forming harmful algae can be found in this size-
class, e.g. Phaeocystis spp., and Chrysochromulina 
spp. (Seoane et al. 2012). Viruses are also excluded 
from the performance standard. 

To comply with the D-2 standard, most ships will 
need to install ballast water treatment systems 
(BWTS) to purify their ballast upon discharge. UV-
irradiation is a popular disinfection technology, used 
by about 30% of today’s BWTS (Delacroix et al. 
2013). Other technologies used for ballast water 
disinfection include chemical treatments (e.g. chlori-
nation, ozonation and electrolysis) and/or physical 
(e.g. heat and cavitation) treatment technologies. IMO 
has provided guidelines for the approval of BWTS, 
the G9 and G8 guidelines, with and without the use 
of active substances, respectively (IMO 2008a, IMO 
2008c). Several BWTS have been evaluated on both 
land based test facilities and on shipboard trials 
(Veldhuis et al. 2006; Echardt and Kornmueller 
2009; Wright et al. 2010; Delacroix et al. 2013; 
Bakalar 2016) and in 2012 the US Coast Guard 
(USCG) published a final rule in the Federal Register 
(USCG 2012) which comprises a separate certification 
program for ships entering U.S. waters. Verification 
testing of technologies is described in the ETV 
protocol, but different certification protocols have 
created uncertainty on how to simultaneously meet 
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U.S. and IMO regulations and testing regimes. There 
has been some criticism to the IMO guidelines for 
approval of BWTS for not taking into account water 
temperature differences among testing sites and 
seasons, however the G8 guidelines are now being 
revised to also include issues like temperature. Tempe-
rature may affect grazing, growth, reproduction rates, 
and natural decay amongst various organisms, but 
may also have an impact on the treatment 
technologies e.g. the efficacy of chemical treatments 
and the decay of disinfectants (Drillet et al. 2013). 
Various treatment technologies should therefore be 
clarified in relation to the temperature of the water. 

Once the IMO Convention enters into force, ships 
may be subjected to inspections by port state controls 
for compliance control of the discharged ballast water. 
Compliance control can be performed in two steps; 
an indicative test and a detailed compliance test (IMO 
2008b). Indicative tests are used to identify potential 
non-compliance at an early stage. Non-compliance 
or doubts whether the discharged ballast water is 
compliant will require a detailed compliance test. A 
detailed compliance test may be performed without a 
prior indicative test. 

There has been some irregularity in terminology 
affecting the evaluation of discharged ballast water. 
The IMO Convention and the revised G8 guidelines 
refers to “viable” cells, where viable organisms are 
organisms that are reproductively viable, however 
the USCG also use the term “living” in their final 
rule. For owners and producers of BWTS based on 
UV technology, the difference between living and 
viable is of major importance. UV-induced DNA-
damages sometimes cause cells that are vital but 
non-viable (Olsen et al. 2015). Photoreactivation and 
dark repair mechanism can counteract such DNA 
lesions, but DNA damages may escape without repair. 

Available methods for ballast water compliance 
control 

Microscopy is a sensitive method that is frequently 
used for detailed compliance testing today. It not 
only allows for quantification of microorganisms 
and for characterization of cell morphology, but can 
also account for cellular features that can inform 
about viability, or be combined with staining techni-
ques for live/dead evaluations. The method is however, 
time-consuming and only small volumes can be 
analyzed, and it requires a high level of expertise 
(Stehouwer et al. 2013). Other methods for quanti-
fication of microorganisms, such as the plate count 
technique and the most-probable number (MPN), 
rely on growth, which can also be time consuming, 
especially for slow growing species. Selective growth 

media can allow some degree of microbial diffe-
rentiation but species- or strain-identification will 
require additional analysis. Moreover, growth based 
methods will often underestimate the number of living 
cells since many organisms are unable to grow and 
reproduce under laboratory conditions (Amann et al. 
1995; Rappe and Giovannoni 2003; Allen et al. 2004; 
Tyson and Banfield 2005), as well as the VBNC 
cells. Discrepancies between laboratory results and 
reality is likely when using solid media (plate 
counts) as the ballast water organisms originate from 
liquid medium (sea-, brackish- or fresh water). 
Recently, the USCG concluded that the most probable 
number (MPN) method was not a satisfactory method 
for determining the number of living organisms in 
the  10–<50 µm size class during type approval of 
BWTS. The regulations require BWTS to be 
evaluated based on their ability to remove or kill 
certain organism (EPA 2010), whereas the MPN 
method according to the USCG assess the viability 
of an organism to colonize after treatment and is 
hence a different standard than that required. 

Due to the above mentioned shortcomings of 
traditional methods to assess the effectiveness of a 
BWTS, cell counts detecting living, damaged, dormant, 
VBNC, and dead cells are better obtained by direct 
single cell measurements for the  10–<50 µm size 
class. Flow cytometry (FCM), a technique that 
provides high precision detection and analysis of live 
and dead microorganisms by light scattering and/or 
fluorescence, represents such methodology. FCM is 
applied to liquid samples for detection and analyses 
of particles hydrodynamically or acoustically focused 
in a stream so that they, one by one, pass light beams 
from one or more lasers. The scatter and fluorescence 
intensity is measured by sensitive photomultiplier 
tubes. This allows individual measurements according 
to size (forward scatter), surface/granularity/comple-
xity (side scatter), and fluorescence either caused by 
own pigments or by fluorescent dye markers. The 
FCM technology can also be used for cell counting, 
cell sorting and biomarker detection. 

FCM was first developed in the 1960s (Fulwyler 
1965; Fulwyler 1968; Dittrich 1971) and initially 
applied in clinical microbiology for detection of 
bacteria in blood (Mansour et al. 1985). FCM has 
rapidly become an essential tool in microbiology with 
increased popularity and widespread applications. 
Today FCM is routinely used in the diagnosis of 
health disorders such as cancer (Racila et al. 1998). 
Other applications of FCM in basic research vary 
from studies of cell cycles (Muller et al. 2010), 
microbial community analysis (Zubkov et al. 2000; 
Muller and Nebe-von-Caron 2010), microbial moni-
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toring of sea- and drinking water (Joachimsthal et al. 
2003; Berney et al. 2008; Hammes et al. 2008), to 
evaluations of bacterial susceptibility to antibiotics 
(Pore 1994; Roth et al. 1997). Phytoplankton are 
particularly suited for FCM studies due to their auto-
fluorescence as demonstrated by the discovery of the 
presence of genus Prochlorococcus (Campbell and 
Vaulot 1993; Campbell et al. 1994) as well as the 
smallest eukaryote in the ocean, Osterococcus tauri 
(Courties et al. 1994; Chretiennotdinet et al. 1995). 

Reasons for FCM’s popularity include the possi-
bility for rapid and multi-parametric analysis and for 
detecting microbial cells irrespective of their culti-
vability. The technology offers opportunities for 
analysis at both community and single-cell levels. 
Also, it is possible to combine FCM with various 
stains or labels, thereby marking target cells with 
fluorescent molecules that separate them from abiotic 
particles. FCM is considered a promising tool for type 
approval testing and possibly for detailed ballast 
water analysis, since it offers the possibility to 
measure relative size of organisms, the number of 
organisms, and the vitality of organisms in a sample 
(Bakalar 2014; Olsen et al. 2015; Olsen et al. 2016a; 
Olsen et al. 2016b). 

Evaluating methods for ballast water 
compliance control—FCM a promising tool 

Primarily, a ballast water compliance method must 
differentiate cells into size according to the D-2 
standard. The size of the organisms should be docu-
mented according to their minimum dimension (the 
smallest part of their body). FCM can estimate 
particle size based on scattering signals and compare 
with calibrated spherical microbeads with a known 
diameter. For FCM instruments detection of mini-
mum dimension is challenging, and it is easier to 
measure the maximum dimension of an organism 
(Gollasch and David 2015). For organisms in the 
 50 µm size-group, FCM instruments with a wide 
size range must be used, as organisms  50 µm can 
block the fluidics system of many FCM instrument. 
Detection can also be difficult due to limitations in 
the forward scatter. For organisms in the  10–<50 
µm size group, on the other hand, FCM is more 
appropriate. Chlorophyll a auto-fluorescence is used 
to identify phytoplankton (Veldhuis and Kraay 2000), 
the dominant organisms of this size group. Previous 
studies have shown that FCM is a well suited 
method for measuring the number of phytoplankton 
cells, providing comparable numbers to microscopy 
(Stehouwer et al. 2013). It is important to be aware, 
however, that single cell suspensions are essential for 
accurate enumeration of cells with FCM, as cell 

aggregates give rise to a single event only and thus 
cause problems for cell enumeration of colony forming 
algae and bacteria (Veldhuis et al. 2005; Christaki et al. 
2011; Zhou et al. 2012). 

Secondly, a compliance method must be able to 
detect the viability of cells. Often, fluorescent stains 
are used to evaluate cell vitality. Table 1 gives an 
overview of some available dyes to stain intact cells, 
dead cells and total cells, respectively. When choosing 
a stain, excitation and emission maximum has to be 
considered according to available lasers and detectors 
in the flow cytometer. Detection of a cell’s viability 
is complex, and it is therefore increasingly common 
to use indirect single cell measurements, like metabolic 
activity, membrane potential, oxidative stress, and 
membrane permeability, to analyze one or more 
cellular functions (see details in Box 1). A common 
approach for classifying live cells is to subtract dead 
cells from total cells. Exclusion dyes are used to 
label cells with compromised membranes, an indicator 
of dead cells since these cannot maintain their mem-
brane potential, e.g. propidium iodine (PI) (Berney 
et al. 2007; Schenk et al. 2011), SYTOX Green 
(Brussaard et al. 2001; Steinberg et al. 2012) and 
SYTOX Blue (Olsen et al. 2016a). For ballast water 
analysis PI fluorescence cannot be detected together 
with chlorophyll a, since their emission spectra 
overlaps. PI is therefore not applicable for analysis 
of phytoplankton species but is suitable for analysis 
of bacteria and other heterotrophic organisms. 
Alternatively, permeable vital stains (like FDA, 
CMFDA or CFDA-AM) can be used directly to 
enumerate living cells (Lee et al. 2015; Olsen et al. 
2015). Today, the USCG follows the Environmental 
Technology Verification (ETV) protocol during 
approval of BWTS, where the stains FDA and 
CMFDA in combination are used to evaluate viability. 
Recently, a study of 24 different phytoplankton species 
from seven divisions were analyzed, where living 
and heat-killed cells were stained by FDA/CMFDA. 
The results revealed acceptable accuracy for only 10 
out of 24 species, and combining CMFDA with 
FDA did not improve the performance of FDA alone 
(MacIntyre and Cullen 2016), in contrast to other 
reports (Peperzak and Brussaard 2011; Steinberg et 
al. 2011). One problem using the vital stains is the 
likelihood of overestimating living cells in UV-
irradiated samples since damaged and non-viable cells 
will be detected as living (Olsen et al. 2015; Olsen et 
al. 2016a). This will, however, most likely not affect 
the assessment of BWTS that use other disinfection 
technologies than UV-irradiation. Studies that com-
bine dyes have improved evaluations of UV-irradiated 
samples by generating more information of each cell. 
FCM  analysis  can  at  an  early  stage after UV- 
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Table 1. Some available dyes for vitality analysis by FCM. 

Target 
Cell 

functionality 
Dye 

Flourescence 
excitation/emission maxima 

(in nm) 
Reference 

In
ta

ct
 c

el
ls

 

Metabolic 
activity 

ChemChrome dyes (CY, CB, CV6)  
(esterase activity) 

488/520 
Diaper and Edwards 1994; Porter et 
al. 1995a; Catala et al. 1999; 
Parthuisot et al. 2000 

CMFDA, FDA, CFDA, CFDA-AM 
(esterase activity) 

493/517 (CMFDA) 
495/517 (FDA, CFDA) 
485/535 (CFDA-AM) 

Breeuwer et al. 1994; Peperzak and 
Brussaard 2011; Schenk et al. 2011; 
Lee et al. 2015; Olsen et al. 2015; 
MacIntyre and Cullen 2016; Olsen et 
al. 2016a,b 

Calcein dyes 
(esterase activity) 

493/514 (Calcein-AM) 
360/455 (Calcein Blue-AM) 
400/452 (Calcein Violet-AM) 

Brussaard et al. 2001; Peperzak and 
Brussaard 2011 

CTC 
(respiratory activity) 

450/630 
del Giorgio et al. 1997; Joux et al. 
1997; Yamaguchi and Nasu 1997; 
Rezaeinejad and Ivanov 2011 

Membrane 
integrity/ 
membrane 
potential/pump 
activity 

Rh123 
(mitochondrial membrane pot.) 

507/529 
Diaper and Edwards 1994; López-
Amorós et al. 1995 

DiOCn 

(mitochondrial membrane pot.) 
484/501 (DiOC6(3)) 
482/497 (DiOC2(3)) 

Zuliani et al. 2003; da Silva et al. 
2005; Reis et al. 2005; Novo et al. 
1999; Novo et al. 2000 

JC-1 (mitochondrial membrane pot.) 498,593/525,585 Zuliani et al. 2003. 

DiBAC4(3) (plasma membrane pot.) 493/516 
López-Amorós et al. 1997; Berney et 
al. 2006; Peperzak and Brussaard 
2011; Rezaeinejad and Ivanov 2011 

Indo-1 (cytoplasmic Ca2+) 350/405  Bailey and Macardle 2006 

Oxidative stress CellROX Oxidative Stress reagent 
644/665 (CellROX Deep Red) 
545/565 (CellROX Orange) 
485/520 (CellROX Green) 

Davila et al. 2015; Tormos et al. 2015

D
ea

d
 c

el
ls

 

Membrane 
permeability 

SYTOX dyes 

504/523 (SYTOX green) 
444/480 (SYTOX blue) 
547/570 (SYTOX orange) 
640/658 (SYTOX red) 

Veldhuis et al. 2006; Steinberg et al. 
2012; Martinez et al. 2013; Olsen et 
al. 2016a 

Propidium iodide (PI) 538/617 

López-Amorós et al. 1997; Williams 
et al. 1998; Lehtinen et al. 2004; 
Berney et al. 2007; Shi et al. 2007; 
Schenk et al. 2011 

7AAD 546⁄647 Herault et al. 2002; Quinn et al. 2007 

T
ot

al
 c

el
ls

 

Intact and 
permeabilized 
cells 

SYTO  
485/498 (SYTO 9) 
488/506 (SYTO 13) 

Guindulain et al. 1997; Lebaron et al. 
1998b; Lebaron et al. 2001; Lehtinen 
et al. 2004; Berney et al. 2006 

Hoechst 33342 352/455 
Marie et al. 1996; Joux et al. 1997; 
Shi et al. 2007 

DRAQ5 647/681 Edward 2012 
DAPI 358/463 Marie et al. 1996; Shi et al. 2007 
Ethidium bromide 524/605 Berney et al. 2006 

LDS751 543⁄712 
Bischoff et al. 1998; Mundle et al. 
1999 

SYBR green 497/520 
Marie et al. 1999; Berney et al. 2008; 
Hammes et al. 2008 

Fluorescein (FITC) 490/525 
Hedhammar et al. 2005; Canovas et 
al. 2007 

 

irradiation separate cells that are UV-damaged from 
live cells (Olsen et al. 2016). 

Thirdly, a detailed compliance test must be able 
to identify certain species; V. cholerae (O1 and O139), 
E. coli, and intestinal Enterococci. Stehouwer et al. 
(2013) performed analysis using cluster software on 

FCM data, but concluded that species identification 
is not straight forward. Physiological changes within 
a species over time, for example changes in size and 
fluorescence under nutrient limitation, complicated 
the cluster analysis (Stehouwer et al. 2013). A more 
promising approach is the use of species-specific 
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Box 1. Cell viability - target sites for FCM analysis. 

Metabolic activity. Enzyme activities, such as esterase, provide indication of metabolic activity in a cell. 
Non-fluorescent substrates diffuse into the cells and are converted into fluorescent products by intracellular 
enzymes. However, detection of fluorescent products only demonstrates the cells ability to synthesize 
enzymes in the past (and to maintain them in an active form), since enzyme reactions usually are energy 
independent. Importantly, enzyme activity might not be detectable temporarily, for examples in cases of 
cell damage, dormancy or starvation; or it may remain below the detection limits. Also, presence of active 
ion pumps can interfere in metabolic activity evaluations (Breeuwer et al. 1994; Amor et al. 2002; Hoefel et 
al. 2003). 

Membrane integrity / membrane potential / pump activity. Membrane integrity demonstrates the protection 
of cell constituents. Ion concentration gradients and active transport of ions across the cytoplasmic 
membrane create a difference in voltage across the membrane. In microorganisms it is typically in the order 
of 100 mV, with the interior negative. Only live cells are able to maintain this membrane potential. The 
membrane potential decreases in cells with damaged membranes, whereas dead cells cannot generate or 
maintain a membrane potential since the ions move freely across the membrane. Membrane potential can be 
detected using dyes that accumulate in the cells according to their charge. Their fluorescent signal can be 
directly related to the cell energy levels. Since membrane integrity studies do not require cell activity, it is 
suitable for detection of starved, dormant or injured cells (Vives-Rego et al. 2000). 

Oxidative stress. In live cells, reactive oxygen species (ROS) are generated at controlled rates. However, 
under conditions of oxidative stress, production of ROS increases. Special fluorogenic probes have been 
developed for measuring oxidative stress in cells. These dyes are non-fluorescent in a reduced state and 
emit fluorescence upon oxidation. 

Membrane permeability. Exclusion dyes are used to detect permeable membranes. Cells with intact 
membranes are impermeable to these dyes, whereas the dyes enter cells with damaged membranes and 
fluoresce upon nucleic acid binding. It is important to be aware that dead cells can be underestimated when 
DNA is degraded, or altered to such a degree that the dye is unable to bind (Lebaron et al. 1998a; Olsen et 
al. 2016a). Membrane permeability can also be reversed or just a temporary condition (Duffy et al. 2000; 
Shi et al. 2007; Davey and Hexley 2011). It is therefore important to allow sufficient time for membrane 
repair before analysis. 

Multicolor approaches. When using a single dye, overestimation of subpopulations (metabolic active or 
dead) can occur (Olsen et al. 2015; Olsen et al. 2016b). Combining dyes allows for differentiation based on 
cellular functions. Dual-staining protocols that combine permeable and impermeable dyes have been able to 
distinguish between active, damaged and dead cells (López-Amorós et al. 1997; Lehtinen et al. 2004; 
Herrero et al. 2006; Quiros et al. 2007; Olsen et al. 2016a). For bacteria analysis, a total cell count dye is 
commonly added to distinguish between cells and noise.  

Limitation: None of the staining techniques can give a definite answer about the cells reproductive growth. 

 
fluorescent antibodies, immuno FCM (Peperzak et al. 
2000), for identification. The technique has been used 
successfully to identify various species; for example, 
the brown tide algae Aureoumbra lagunensis (Koch 
et al. 2014), Cryptosporidium parvum (Barbosa et al. 
2008), and Legionella pneumophila (Fuechslin et al. 
2010). But the technique is not well established in 
ballast water analysis. Probes used for immuno FCM 
are designed for a specific species or group, and can 
be applied to any microorganism if specific antibodies 
are available, but require a priori knowledge of which 

species to look for in a sample. One general problem 
with immunofluorescence detection of microorga-
nisms, is that the antibodies often only covers some 
subgroups within the indicated species. Alternative 
methods for species identification include combining 
FCM with fluorescent in situ hybridization (FISH) 
(Joachimsthal et al. 2004), using rRNA-targeted oligo-
nucleotide probes (Simon et al. 1997; Joachimsthal et 
al. 2004), FCM cell sorting followed by identification 
of groups or single cells (Wallner et al. 1997), or com-
bining FCM with digital photography of particles 
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(such as FlowCam, CytoSense and ImageStream flow 
cytometers) (Zetsche et al. 2014). It is important to 
bear in mind that species identification must be 
combined with proofs that the cells are alive. 

The most obvious advantages of using FCM for 
ballast water analysis are: (1) Rapid analyzes with 
thousands of events being detected per second enabling 
large(r) volumes to be analyzed (from rates of µL/min 
up to mL/min) and reducing fading of the fluorescent 
signals as dyes are prone to degradation over time 
when exposed to light (Johnson and Araujo 1981). 
(2) Analyzes of microorganisms irrespectively of their 
cultivability enabling detection of e.g. viable but 
non-culturable (VBNC) cells (Porter et al. 1995b). 
(3) Limited sample handling; filtration to prevent 
clogging when the ballast water contains large 
particles or organisms and/or addition of fluorescent 
stains when appropriate being the only. (4) High 
sensitivity; particles down to 50 nm can be detected 
(Steen 2004), meaning even marine viruses can be 
detected (Marie et al. 1999; Brussaard et al. 2000; 
Larsen et al. 2001; Marie et al. 2001). 

FCM is indeed a promising tool for assessment of 
BWTS but there are still some disadvantages:  
(1) Apparatus costs are still somewhat expensive 
(although prices are decreasing). (2) Enumeration of 
rare events can be extremely difficult (Joux and 
Lebaron 2000; Lemarchand et al. 2001) (although 
rare events are also problematic with other analysis 
methods like microscopy). Methods used for ballast 
water analysis must be able to detect a few living 
organisms amongst high concentrations of dead 
cells. It is therefore essential to validate the sensi-
tivity of the method to ensure that low densities of 
variable organisms will be detected. (3) Most FCM 
apparatus are not applicable for detection of 
organism in the  50 µm size-group, the exception is 
instruments with digital photography options which 
can detect particles up to mm size. Also, another 
issue is the volume for this size class (less than 10 
organisms per cubic meter). Even with concentration 
of volume, the analysis would take a long time. 

Knowledge gaps and future applications for 
flow cytometry within ballast water analysis 

As of today, FCM is a promising technology for 
detection and quantification of microorganisms 
according to the IMO convention, and is also included 
in the IMO “Circular 42” document containing a list 
of available methods for ballast water compliance 
monitoring. However, most FCM research has focused 
on the  10–<50 µm size group, and rational monito-

ring may result in different protocols for the various 
groups in the convention. For example, to circumvent 
clogging of the FCM apparatus when analyzing larger 
organisms ( 50 µm), protocols using special flow 
cytometers, like e.g. the FlowCam, must be deve-
loped. But when using such instruments, a database 
of reference pictures is required to distinguish 
between organisms and particles. Furthermore, it is 
uncertain whether FCM is the best option for 
identifying bacterial species, since a protocol must 
separate one species from its close relatives, and at 
the same time combine this with information of the 
cells viability. To do that with FCM, it is possible to 
combine either immuno FCM or FISH (Joachimsthal 
et al. 2004) with live/dead staining (López-Amorós et 
al. 1997; Lehtinen et al. 2004), however this approach 
has not been applied to ballast water samples, to our 
knowledge. Also, in the D-2 standard, concentration 
of bacteria are given in cfu/100 mL, so methods for 
detection are based on growth and not single cell 
analysis. 

Most research relevant for FCM analysis of ballast 
water is so far performed on species representative 
for a size group, like the phytoplankton Tetraselmis sp. 
(Steinberg et al. 2012; Carney et al. 2013; Olsen et al. 
2016a,b), or indicator bacteria like E. coli and Vibrio 
sp. (López-Amorós et al. 1997; Joachimsthal et al. 
2004; Lehtinen et al. 2004) (for overview see Table 
2). Tetraselmis sp. represents marine organisms in 
the  10–<50 µm size category in the D-2 standard 
and is sometimes used in test water to fulfill the 
biological water quality criteria during approval of 
BWTS. Tetraselmis sp. is, however, not as abundant 
in coastal waters as diatoms, dinoflagellates and 
prymnesiophytes species and little research is per-
formed on FCM analysis of natural water samples 
after treatments simulating that of BWTS. In natural 
waters, the microbial community is diverse and 
varies according to location, season and environ-
mental conditions (Barcina et al. 1997; Zubkov et al. 
2000; Drillet et al. 2013). Such variations can influence 
cell activities between species, or within a single 
species. Also, organisms occurring in natural waters 
are sometimes associated with other organisms 
(Khandeparker and Anil 2013), or particles, which may 
affect the resistance to UV-radiation, heat or chemicals 
(Hess-Erga et al. 2010; Tang et al. 2011). Further 
research should therefore be focused on validating 
FCM protocols for more species, as well as for natural 
waters containing different organisms. Even though 
microorganisms smaller than 10 µm and viruses are 
not included in the D-2 standard today, they may be 
important in the future, not the least as pathogen 
carriers. FCM is a good candidate for their detection. 
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Table 2. Overview of publications relevant for FCM analysis of ballast water. 

Target organisms Method of choice Reference 
Dinoflagellates, diatoms, green algae  and 
microalgae 

Green auto-fluorescence detection by FCM Tang and Dobbs 2007 

Cysts of dinoflagellate (Alexandrium 
catenella) 

Viability analysis using SYTOX green stain and FCM  Binet and Stauber 2006 

Phytoplankton 
Clustering analysis by FCM based on size/forward 
scatter, and various fluorescence signals (green 525 nm, 
yellow/orange 575 nm, and red 620 nm). 

Stehouwer et al. 2013 

Phytoplankton (Chaetoceros calcitrans, 
Chlorella autotrophica and Phaeocystis 
globose) 

Enumeration and size detection by forward scatter, 
green auto-fluorescence detection by FCM, and 
viability analysis using SYTOX green stain and FCM  

Martinez et al. 2013 

Phytoplankton Viability analysis using SYTOX green stain and FCM  Veldhuis et al. 2006 

Phytoplankton (Tetraselmis impelludicida) 
Viability analysis using SYTOX green stain and FCM, 
as well as SYTOX green stain and FlowCam analysis 

Steinberg et al. 2012 

Phytoplankton (Tetraselmis suecica) 
Viability analysis using CFDA-AM staining and FCM, 
and CFDA-AM/CYTOX Blue dual-staining and FCM 
analysis 

Olsen et al. 2015; Olsen et 
al. 2016a; Olsen et al. 
2016b 

Phytoplankton (40 different strains) 
Viability analysis using various stains (Calcein-AM, 
CMFDA, DiBAC4(3), FDA, H2DCFDA, and SYTOX-
Green) and FCM 

Peperzak and Brussaard 
2011 

Seawater algae (Isochrysis galbana and 
Phaeodactylum tricornutum) and freshwater 
algae (Selenastrum capricornutum and 
Scenedesmus obliquus) 

Viability analysis using FDA stain and FCM Lee et al. 2015 

Brown tide causing pelagophyte (Aureoumbra 
lagunensis) 

Immune FCM (fluorescently labeled antibodies against 
A. lagunensis) 

Koch et al. 2014 

Prokaryotic and eukaryotic cells Enumeration and size detection by forward scatter  Joachimsthal et al. 2003 

Bacteria (E. coli) 
Viability analysis using SYTO9/PI dual staining and 
FCM, and green-fluorescent protein (GFP)/PI analyzed 
with FCM 

Lehtinen et al. 2004 

Bacteria (E. coli and Salmonella typhimurium) 
Viability analysis using various stains (Rh123, 
DiBAC4(3), PI, and CTC) and FCM 

López-Amorós et al. 1997 

Bacteria (total bacteria count, Enterobacteria, 
Vibrio spp., and Escherichia coli  

FISH and FCM Joachimsthal et al. 2004 

 

Some studies have looked at the ability of different 
species to regrow after UV-irradiation (Hess-Erga et 
al. 2010; Martinez et al. 2012; Martinez et al. 2013; 
Stehouwer et al. 2013). Analysis at the NIOZ testing 
facility (Texel, The Netherlands) proved that the 
genera Thalassiosira, Skeletonema, Pseudo-nitzscia 
and Chaetoceros are able to survive harsh UV-
treatments (some even double UV-treatments) and 
regrow afterwards (Stehouwer et al. 2013). Identi-
fication of such resistant species can be used to develop 
more robust testing regimes for BWTS when 
desirable. A few studies have identified the lethal 
UV-doses for specific species (Ou et al. 2012; Olsen 
et al. 2016b). FCM has the advantage of giving rapid 
feedback whether the UV-dose applied is immedia-
tely lethal or not. However, variable results especially 
when low UV doses are applied, demonstrates the 
challenge of giving definite recommendations for 
UV-treatments. 

Introducing irradiated species into rich growth 
medium after irradiation simulate the conditions arising 

when ballast water is discharged and has shown to 
affect the recovery of cells after UV-irradiation. Cell 
recovery was slower (due to acclimatization) but in 
total higher (greater) in a rich growth medium 
compared to the original environment (Martinez et al. 
2013). Identification of regrowing species can provide 
important information of potential future invaders. A 
second factor that may influence the recovery of 
cells after irradiation is the introduction of irradiated 
cells into light. Recovery and regrowth are expected 
to increase under such conditions, due to the photo-
reactivation mechanisms (Carney et al. 2011). FCM 
is therefore well suited to analyze cell recovery after 
UV-irradiation, which is not sufficiently considered 
in the IMO guidelines today. More research focus in 
this field will provide important information on the 
likelihoods of DNA repair. 

FCM analysis has been used to study water treated 
with UV-irradiation (Berney et al. 2006; Schenk et 
al. 2011; Ou et al. 2012; Martinez et al. 2013; Olsen 
et al. 2015). Other studies have applied FCM to 
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analyse water treated with chlorination (Wang et al. 
2010), electrolysis (Song et al. 2012), and ozonation 
(Bai et al. 2016). However, still more research should 
focus on validating FCM protocols for various water 
treatment technologies, also for BWTS installed 
onboard ships. 

FCM already holds several advantages for ballast 
water analysis and the development will continue. 
Further advances of fluorescent dyes and probes, as 
well as progress in labeling protocols, is expected. 
Indeed, functional probes which can detect the 
physiological and metabolic status of the cells will 
improve the FCM analysis. Methods using immuno-
fluorescent technology or fluorescence labeled oligo-
nucleotide probes, and FCM cell sorting techno-
logies, will improve species identification. Also, 
FCM can be combined with other technologies, 
including genomics and proteomics and in the 
future, possibly have integrated protein analysis or 
DNA sequencing options. For field biosafety analysis, 
a more user-friendly instrument would be desirable; 
such as a portable or even online flow cytometer 
combined with straightforward interpretation. A few 
portable/online instruments are available today, but 
as far as we know continuous monitoring of ballast 
water by FCM have yet to be achieved. Vibrations 
onboard that potentially effects the alignment of 
lasers, or clogging of the device, are potential obstacles. 
However, such real-time methods could also be 
useful for drinking water monitoring (Berney et al. 
2008). Real-time FCM was first applied in 1980 
(Martin and Swartzendruber 1980), and recently a series 
of demonstrative examples of potential applications 
was performed. Some relevant suggested applications 
were: “(1) fluorescent labeling of heat-induced 
membrane damage in a autochthonous freshwater 
bacterial community, (2) initial growth response of 
late stationary E. coli cells inoculated into fresh 
growth media, and (3) oxidative disinfection of a 
mixed culture of auto-fluorescent microorganisms” 
(Arnoldini et al. 2013). Real-time monitoring of 
treated ballast water with FCM could discover 
potential problems or failings with BWTS, preventing 
the release of potentially invasive species. 

Conclusion 

In summary, FCM is a powerful technique with a 
great potential for ballast water monitoring as well 
as detailed compliance testing. As of today, FCM is 
best suited for analysis of the  10–<50 size class in 
the D-2 standard, and samples should be brought to 
labs onshore for analysis. Sample analysis is fast, so 
results should be available the same day (assuming 
lethal doses of treatment). 
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