


 
 

 

 

Sinking Islands in the Sky 

Projecting the future distributions of Ranunculus glacialis, Poa flexuosa and 

Trisetum spicatum in Jotunheimen, Norway under climate change 

 

 

 

 

 

Sigbjørn Throndsen 

Department of Environmental Sciences, Faculty of Engineering and Science 

WESTERN NORWAY UNIVERSITY OF APPLIED SCIENCES 

Master Thesis in Climate Change Management 

 

 

Sogndal 

[May 2018] 

  



 
 

  



 
 

 

 

 
 

Sinking Islands in the Sky 
Projecting the future distributions of Ranunculus glacialis, Poa flexuosa and 

Trisetum spicatum in Jotunheimen, Norway under climate change 

Master thesis in Climate Change Management 

 

Author: 

Sigbjørn Throndsen 

 

Author sign. 

Thesis submitted:  

 

Spring 2018 

 

 

Open thesis 
 

Main Supervisor: 

Julien Martin Marie Vollering 

Co-supervisors: 

Mark Gillespie and Knut Rydgren 

Keywords: 

Species distribution modelling, Maxent, 

alpine ecology, alpine plants, climate change, 

distributional shift. 

 

             Number of pages: 39 

                    + 

              Appendix: 7 

 

 

              Sogndal, 28.05.2018 

                        

 

This thesis is a part of the master’s program in Climate Change Management (Planlegging for 

klimaendringer) at the Department of Environmental Sciences, Faculty of Engineering and 

Science at the Western Norway University of Applied Sciences. The author(s) is responsible 

for the methods used, the results that are presented and the conclusions in the thesis. 

 

 

  



 
 

  



 

I 
 

Preface 
 

This Master thesis is the final work in the master’s program Climate Change Management at Western 
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Abstract 
 

Introduction 

Changes in species distributional range as a response to climate change is well documented. The changes 

are substantial along elevational gradients, and the general trend is that the warming has caused an 

upward elevational shift for several alpine plants. The aim with this study is to project changes in (1) 

suitable habitat, (2) elevational range (3) and the level of habitat fragmentation for Ranunculus glacialis, 

Poa flexuosa and Trisetum spicatum under two different climate change scenarios in Jotunheimen. 

Method 

Species presence records and five pre-selected predictors, selected from a set of topographic and climatic 

variables, were used to model the species distributions. Projections for the year 2070 under climate 

change scenarios RCP4.5 and RCP8.5 were derived from the models of the current distributions using the 

Maxent software. Changes in suitable habitat were analyzed using ArcGIS.  

Results  

All species were projected to lose suitable habitat with an average reduction of 70 % under RCP8.5 and 48 

% under RCP4.5. All species were projected to disappear from their lowest elevations, and the average 

elevational range contraction for the species was 524 m under RCP8.5 and 243 m under RCP4.5. The level 

of habitat fragmentation was projected to increase with an average increase in patch number of 72 % and 

67 %, and an average reduction in patch size of 82 % and 65 %, under RCP8.5 and RCP4.5 respectively.  

Discussion 

All model results have a good or fair predictive performance measured by their AUC values. A sampling 

bias correction was done using locations of species from the same genus as the focal species (target group) 

as background points. There was large differences in the future projections between the models with no 

sampling bias correction and the models with correction. As the corrected models might “over” correct 

due to a narrow environmental range from which background was drawn, the truth would lie somewhere 

in between. The precipitation variable contributed the most to all models suggesting that precipitation is 

more influential than temperature on the species distributions within the study area.    

Conclusion 

These results was produced to gain knowledge on the expected vegetation changes in an alpine ecosystem 

of national interest. The projections show that all species will lose suitable habitat supporting previous 

findings that alpine habitats are particularly vulnerable to climate change.  

 

 

 

 

 



 

IV 
 

Sammendrag på norsk 
 

Introduksjon 

Endringer i arters utbredelse som en respons på klimaendringer er vel dokumentert. Endringene er 

betydelige langs høydegradienter, og den observerte trenden er at oppvarmingen har forårsaket en 

forskyvning oppover i høyden for flere alpine planter. Målet med dette studiet er å finne endringene i (1) 

egnet habitat, (2) høydegradienten (3) og nivået av habitatfragmentering for Ranunculus glacialis, Poa 

flexuosa og Trisetum spicatum under to forskjellige utslippsscenarioer i Jotunheimen. 

Metode 

Artsobservasjonsdata og fem forhåndsvalgte prediktorer, valgt fra et sett med topografiske og klimatiske 

variabler, ble brukt til å predikere artenes utbredelse. Projeksjoner for år 2070 under utslippsscenarioene 

RCP4.5 og RCP8.5 ble utarbeidet med utgangspunkt i modellene av den nåværende utbredelsen ved hjelp 

av programvaren Maxent. Endringer i egnet habitat ble analysert ved hjelp av programvaren ArcGIS. 

Resultat 

Alle artene ble projisert til å miste egent habitat med en gjennomsnittlig reduksjon på 70 % under RCP8.5 

og 48 % under RCP4.5. Alle artene ble projisert til å forsvinne fra deres lavest liggende områder, og den 

gjennomsnittlige sammentrekningen av høydegradienten for artene var på 524 under RCP8.5 og 243 under 

RCP4.5. Nivået av habitat fragmentering er projisert til å øke med en gjennomsnittlig økning i antal 

separate habitater på 72 % og 67 % og en gjennomsnittlig reduksjon i habitat størrelse på 82 % og 65 % 

henholdsvis under RCP8.5 og RCP4.5.  

Diskusjon 

Alle modell resultatene har god eller akseptabel prediksjonsverdi målt ut ifra deres AUC verdier. En 

korreksjon for eventuelt partisk artsdata påvirket av tilgjengelighet, ble gjennomført ved å bruke arter fra 

samme slekt som fokus artene som bakgrunn. Det var stor forskjell mellom modellene med denne 

korreksjonen og de uten korreksjon. Ettersom modellene med korreksjon sannsynligvis korrigerer for mye 

grunnet den smale rekkevidden på miljøvariablene bakgrunnen ble tatt fra, ligger sannheten et sted 

imellom de to modellsettene. Nedbørsvariabelen bidro mest til alle modellene noe som indikerer at 

nedbør har større påvirkning på artenes utbredelse enn temperatur innenfor området.  

Konklusjon 

Resultatene fra dette studiet bidrar til økt kunnskap rundt de forventede endringene i vegetasjonen i et 

alpint økosystem av nasjonal interesse. Projeksjonene viser at alle artene kommer til å miste egnet habitat, 

og støtter dermed tidligere studier som har vist at alpine habitat er sårbare for klimaendringer.  
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1. Introduction 
 

Climate change is a major threat to biodiversity (Settele et al., 2014; Thuiller, Lavorel, Araújo, Sykes, & 

Prentice, 2005). The different components of climate change (e.g. changes in temperature, rainfall, 

extreme events, Co2 concentrations) are expected to affect different levels of biodiversity, from individual 

organisms, up through populations, species, communities, ecosystems and up to biomes, which are all 

different levels of biodiversity (Bellard, Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012). Threats to 

the higher levels of biodiversity are often the result of changes at the lower levels. For example, climate 

change could decrease genetic diversity of populations due to migration and directional selection of 

individuals, which again is likely to affect ecosystem functioning, production and resilience (Bellard et al., 

2012; Botkin et al., 2007). Climate change effects are commonly studied at intermediate and higher levels 

of biodiversity (Bellard et al., 2012). Specifically, impacts on species are commonly explored since they 

often are used as discrete entities in ecosystems, and since a lot of ecological theory applies at the species 

level. 

At the species level, the three different changes as a response to climate change are changes in physiology, 

changes in phenology and changes in range (Bellard et al., 2012; Root et al., 2003). Physiological changes 

as evolutionary responses – as opposed to plastic responses at the individual level – are likely to occur 

when species adapt to changing climatic conditions within their local range rather than tracking their 

current optimal environmental conditions (Bellard et al., 2012). Examples of this can be when species 

develop a higher tolerance to warmer and drier conditions, or behavioral modifications of their diet, 

activity and energy budget (Bellard et al., 2012). Changes in phenology – or the timing of life cycle events, 

such as flowering, fruiting and seasonal migration – as a response to climate change is already well 

documented (Bellard et al., 2012; Parmesan, 2006). A wide range of plants and animals has experienced a 

significant shift in key phenological events the last 50 years (Root et al., 2003). Finally, species can also 

shift their range as a response to climate change. In this case range shifts or distributional shifts are related 

to a species’ climatic tolerance, and species track their optimal environmental conditions to a greater or 

lesser extent (Bellard et al., 2012). 

Some species will show larger changes in distributions than others in the face of climate change (Chapin & 

Shaver, 1985; Lenoir, Gégout, Marquet, Ruffray, & Brisse, 2008; Parmesan, 2006). The different responses 

can be related to the different species’ traits such as reproductive and dispersal ability, ecological 

tolerance and life-form (Klanderud & Birks, 2003; Lenoir et al., 2008). For example, species that have a 

restricted range due to a lower temperature boundary might shift their range as new areas become 

suitable with increasing temperatures, and species characterized by faster population turnover is likely to 

have a larger shift than others (Lenoir et al., 2008). Plant distributions are affected by climate and biotic 

interactions (Cornelissen et al., 2001; Thuiller et al., 2008; Woodward, 1987), which means that changes 

to these variables can lead to changes in species distributions.  

Several studies have shown changes in species distributions as a response to climate change (Chen, Hill, 

Ohlemüller, Roy, & Thomas, 2011; Parmesan, 2006; Parmesan & Yohe, 2003; Rosenzweig et al., 2008; 

Walther, 2010). The changes are substantial along elevational and latitudinal gradients, which is expected 

since surface air temperatures decrease with increasing elevations and latitudes. A recent study has 

estimated that species distributions have shifted to higher elevations at a median rate of 11 meters per 

decade, and a shift towards higher latitudes at a median rate of 16.9 km (Chen et al., 2011).  
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Alpine species are especially likely to be negatively affected by climate change. Specifically, distributional 

changes are likely to be larger in areas where temperature changes are predicted to be more pronounced, 

like in alpine areas (Chen et al., 2011). Moreover, the upper elevational boundary of alpine plants is 

strongly determined by temperature (Körner, 2003), so the expected warming will likely have a strong 

effect on this distributional limit of alpine plants. Changes in alpine areas are already observed, and on a 

global scale the upper treeline has had an upward elevational shift as a response to warmer temperatures 

(Harsch, Hulme, McGlone, & Duncan, 2009). The same trend is also observed over the last century in 

several alpine plants and increased precipitation is identified as a contributing factor (Felde, Kapfer, & 

Grytnes, 2012; Klanderud & Birks, 2003; Lenoir et al., 2008; Odland, Høitomt, & Olsen, 2010). This upward 

shift is followed by an increased abundance of vascular plants in European alpine areas (Gottfried et al., 

2012; Odland et al., 2010; Pauli et al., 2012). These observed changes over the last century are likely to 

continue under a future warming of the earth. As species temperature niche expand upwards due to a 

warmer climate, the lower elevation areas of alpine habitats are predicted to be colonized by new 

competitors from lower areas (Choler, Michalet, & Callaway, 2001; Körner, 2003; Thuiller et al., 2008). The 

lower elevational boundary for alpine plants is often determined by competition from other species 

(Choler et al., 2001; Kulonen et al., 2017). This in combination with the expected upward shift will likely 

reduce suitable habitat for alpine plants due to mountains roughly conical shaped topography.  

Reduction in habitat size is likely to be accompanied by changes in the composition of the habitat matrix 

– that is, in the level of habitat fragmentation. As suitable habitat disappears a fragmentation process, 

defined as a process of breaking up habitat into smaller patches (Forman, 1995), will occur as the distance 

between patches of suitable habitat increases and patches become more isolated (Andrén, 1994). The 

main causes of habitat fragmentation has usually been related to human activities, specifically through 

land use changes (Bogaert, Farina, & Ceulemans, 2005), but a changed composition of the habitat due to 

an upward elevational shift – as a response to climate change – could also break up habitats. Negative 

effects of habitat fragmentation impact particularly genetic biodiversity through a reduction in gene flow 

among populations leading to an increase in genetic drift, and potentially inbreeding (Young, Boyle, & 

Brown, 1996). It has been suggested – in combination with altered mating systems and changes in 

pollinator behavior – that this could lead to a reduced individual fitness and in the worst case increase the 

extinction risk of populations (Young et al., 1996). In addition, dispersal generally and habitat tracking 

specifically is compromised in a fragmented landscape, due to increasing areas of unfavorable conditions 

between suitable areas (Honnay et al., 2002; Thuiller et al., 2008).  

Effects of fragmentation may be more pronounced for alpine species, for which lowland areas may act as 

barriers to dispersal. The increased isolation can cause problems for alpine species within isolated 

populations, as they might be unable to migrate to new suitable locations as their current locations 

become unsuitable (Jump & Peñuelas, 2005). As the dispersal abilities in alpine ecosystems are limited 

(Körner, 2003; Ryvarden, 1971; Scherrer & Körner, 2011), and the migration between populations is very 

restricted (Körner, 2003), it is likely that increased isolation will have negative effects on migration. In 

addition to increased distance between populations due to topography, lowland species that have moved 

upwards could compromise the dispersal abilities of alpine plants. Species from lower elevations have 

different growth strategies than alpine plants such as they grow larger in size and have a higher specific 

leaf area (Steinbauer et al., 2018), which could act as barriers for dispersal of seeds and propagules from 

alpine plants. 
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Reduction in total suitable habitat or in amount of contiguous habitat may affect the abundance of the 

species negatively. This is because habitat size and abundance is often highly correlated (Roque, Koptur, 

& Sah, 2017). Isolated populations are also more likely to experience a reduction in genetic diversity than 

others, which can decrease individual fitness (Jump & Peñuelas, 2005). Small and isolated populations will 

be prevented from being rescued by migration from other populations, and have a higher probability of 

extinction, because of their lower number of individuals (Leimu, Vergeer, Angeloni, & Ouborg, 2010). The 

combination of reduced fitness due to changing climatic conditions, and a potential reduction in diversity 

may compromise species abundance in alpine habitats, and in the worst case lead to local and widespread 

extinctions (Jump & Peñuelas, 2005). In addition, increased competition from lowland species such as 

shrubs is documented to decrease the species richness of alpine vascular plants (Klanderud & Birks, 2003; 

Wilson & Nilsson, 2009). 

Predicting future distributional changes can help management decisions surrounding alpine vegetation. 

Any decisions around the management of a species arises from the identification of a problem (Guisan et 

al., 2013). Future predictions of distributional changes allows for an early detection of potential future 

problems that is likely to be caused by climate change (Araújo, Alagador, Cabeza, Nogués-Bravo, & Thuiller, 

2011). Identifying problems at an early stage or even before they occur can allow conservation managers 

to define objectives, look at possible actions and explore the consequences of these actions before 

implementing them (Guisan et al., 2013). Predictions of the future spatial distribution of a species 

occurrence allows for a better understanding of a species response to certain environmental variables 

such as temperature and precipitation.  

Future distributions can be predicted by characterizing the present distribution in terms of environmental 

predictors. In species distribution modelling – also known as habitat suitability modelling or ecological 

niche modelling (hereafter only referred to as SDM) – field observations of a species are linked with 

environmental variables to spatially predict a species distribution within an area (Guisan et al., 2013). The 

models builds on statistically and theoretically derived response curves that best reflects the ensemble of 

ecological requirements of the species (Guisan, Thuiller, & Zimmermann, 2017), and predicts the area of 

suitable habitat under a given set of environmental conditions. Future predictions are made by projecting 

the model on to a set of future environmental conditions while assuming no change in the relationship 

between species performance and the environmental variables (Pearman, Guisan, Broennimann, & 

Randin, 2008). The use of SDM has increased over the last few decades (Guisan et al., 2013), and this has 

led to an improvement of the computing tools used (Guisan et al., 2017). Today, SDM is the most popular 

method to derive spatial explicit predictions of environmental suitability for species (Guisan et al., 2013).  

SDMs describe a species distribution in terms of the environmental variables that structure it. The 

environmental variables that affect growth, development, survival and distribution of plants can be 

divided into three groups; resource, direct and indirect variables (Guisan & Zimmermann, 2000). Resource 

variables are the matter and energy consumed by plants (e.g. nutrients, water, light). Direct variables, like 

climate or soils, are also of physiological importance but are not used up or consumed. Indirect variables 

such as topography have no direct physiological relevance for species performance but may affect the 

species indirectly through the action of a related resource or direct variable. These variables in 

combination determine species distributions. For modelling however, the scale determines which 

variables are relevant to use as predictors (Guisan & Zimmermann, 2000). At relatively coarse scales, 

climatic and topographical variables are the main structuring factors. Data sets offering these variables on 

a global scale are widely available and easy to obtain. This makes modelling at coarse scale popular. For 
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example, recent SDMs using these kinds of variables have predicted that between one third and half of 

alpine species across all major European mountain ranges will lose more than 80 % of their suitable habitat 

by the end of the century (Engler et al., 2011). 

Thus, this study aims to predict how much range shift will occur in three alpine plant species in a nationally 

important alpine region in Norway. I use occurrence data and environmental variables in SDM to predict 

the future distributions of Ranunculus glacialis, Poa flexuosa and Trisetum spicatum under two different 

climate change scenarios in Jotunheimen. Specifically, I have looked in to the expected changes in (1) 

suitable habitat, (2) elevational range (3) and the level of habitat fragmentation for the three species. 

 

2. Methods 
 

2.1.  Study area 
The study area selected for this study is Jotunheimen, a Caledonian mountain chain that is located in 

central Norway (Figure 1). The area is situated within 61˚ 05’ – 61˚ 55’ N and 7˚ 24’ – 9˚ 38’ E. The 

elevational range of the study area is from 0 to 2469 m a.s.l. The bedrock in the area consists of Pyroxene 

Granulite, with compositions of Gabbro, Quarts and Mangerite. Amphibolite which is transformed from 

Pyroxene Granulite, is also found (Geological Survey of Norway, 2018b). The soil found in the area is mainly 

moraine cover, with a thin moraine cover dominating in the western parts, and a thicker moraine cover 

dominating in the east, and consists of bare rock at higher elevations (Geological Survey of Norway, 

2018a). The vegetation in the area consists mostly of broadleaved forests, mainly birch in the lower lying 

areas in combination with bilberry heaths, and some snowbed areas at higher elevations (NIBIO, 2018). 

The topography in the area varies from high mountains with steep slopes in the western parts, to lower 

and more rounded mountains in the east. The area is the highest lying area in the Scandes, and the 

watershed between western and eastern Norway runs through the study area (Odland et al., 2010). The 

area has the highest climatic treeline (1200 m a.s.l. on south facing slopes) and altitudinal vegetation belt 

in Scandinavia (Klanderud & Birks, 2003). The upper limit of the low alpine zone has been recorded to be 

at 1400 m a.s.l. (Odland et al., 2010). Jotunheimen National park is located within the study area, mainly 

above the treeline. The national park was established in 1980, and makes up 1151 km2 (Snøtun, 2011).   

An important climatic gradient in the study area runs from west to east. The western parts have a more 

coastal climate with milder winter temperatures and cooler summer temperatures compared to the 

eastern parts. Data from a weather station at Fanaråkki in the western part, based on monthly normals 

from 1961-1990, shows that the mean temperature in January is -9.5 ˚C and the mean July temperature is 

2.7 ˚C, with a mean annual temperature of -4.4 ˚C (Norwegian Meteorological Institute, 2018a). A station 

located in Sikkilsdal in the eastern part of the study area shows a mean temperature in January of -10.2 ˚C 

and a mean July temperature of 10.4 ˚C, with a mean annual temperature of -0.2 ˚C (Norwegian 

Meteorological Institute, 2018b). Precipitation data for the same weather stations shows a mean annual 

precipitation of 100 mm at Fanaråkki, and 79.1 mm at Sikkilsdal. The last century there has been a 

temperature increase in the region, with a mean annual temperature increase of 0.4-1.2 ˚C. (Hanssen-

Bauer & Nordli, 1998). The mean annual precipitation increased in the same period by 5-18 %, mainly 

caused by an increase in autumn precipitation (Hanssen-Bauer & Førland, 1998). 
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Jotunheimen is a well studied area by botanists, and plant occurrence data for the region dates back to 

the early 20th century (Jørgensen, 1933; Nordhagen, 1943). Since the area is well studied, there is a high 

abundance of occurrence data available in  the Norwegian Species Map Service (Artskart). These historical 

records have also provided the basis for previous studies of Jotunheimen in regards to changing 

distributions of alpine plants the last century (Felde et al., 2012; Klanderud & Birks, 2003). 

 

 

Figure 1: (a) Location of study area within Norway (red outline), and (b) elevation within the study area. 

 

2.2. Species 
The focal species in this study are Ranunculus glacialis, Poa flexuosa and Trisetum spicatum. These species 

were selected based on three requirements. The first selection criterion was that the species should be 

restricted to alpine habitats. Secondly, the species needed to be abundant in the study area, or at least 

have widely available occurrence data in Artskart. The final criterion stipulated that the species should be 

previously studied in relation to changing distributions or habitat fragmentation. The species needed to 

be alpine or subalpine since I aimed to investigate changes to alpine habitats. A sufficiently high abundance 

of occurrence data is needed for the models to make accurate predictions of the suitable habitat. 

Previously studied species gives the opportunity to compare the modeled predictions to empirical 

historical trends. In addition to the set requirements, the species were selected to compare species with 

different life history traits (e.g. stress tolerance, adaptable or competitive species versus species at the 

other end of the scale) in order to compare responses of more generalist species to more specialist species. 

The focal species are all sub-alpine vascular plants, and they are all previously studied in regards to 

changing distributions the last century and they are all found to disappear from their lower elevations 

(Klanderud & Birks, 2003). 

R. glacialis is a long lived perennial herb adapted to low temperatures and the unpredictable seasonal 

conditions of high mountains (Körner, 2003) (Figure 2). It is considered an arctic-alpine pioneer species, 

and is found in sparsely vegetated snowbeds and in high alpine areas in Scandinavia and the European 

Alps (Totland & Alatalo, 2002; Wagner, Steinacher, & Ladinig, 2010). The plants can grow 10 – 15 cm and 

the color of the flower is white, and gradually changes to pink and finally to a deep purple color (Gjærevoll, 
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1989). R. glacialis is mainly pollinated by small flies which are weak pollinators (Wagner et al., 2010). A 

long flower lifetime, however, increases the frequency of pollinator visits and increases the probability of 

reproductive success (Wagner et al., 2010). R. glacialis flower early in the growing season, because of floral 

preformation – by which two future cohorts of flowers are initiated as the plant enter winter (Körner, 

2003). The early development of seeds is advantageous for colonizing cool and wet sites where the 

growing season is short (Wagner et al., 2010). Flowering usually occurs 2 – 3 weeks after snowmelt 

(Totland & Alatalo, 2002). A study examining the effects of experimental climate change on R. glacialis, 

using open-top chambers for three seasons at Finse, an alpine site in Southern Norway (60˚ 36’ N, 7˚ 30’ 

E), found that the reproductive abilities, growth and phenology was not affected by climatic warming 

(Totland & Alatalo, 2002). The study also found that the reproductive output and ramet size differed little 

from year to year, despite large differences in average date of snowmelt. Felde et al. (2012) found a range 

contraction for R. glacialis, with a 111 m upward shift in the lower elevation limit and a 36 m downward 

shift in the upper elevation limit in Sikkilsdalen located in Jotunheimen. The observed elevational range 

for R. glacialis in this study was between 1336 and 1514 m a.s.l., while a study by Holten et al. (2011) 

conducted in a transect covering a large part of central Scandinavia, found an elevational range between 

305 and 1910 m a.s.l. The highest elevation recorded for R. glacialis in Norway is 2370 m a.s.l. (Holten et 

al., 2011). 

P. flexuosa is a member of the Poaceae family and is considered rare (Figure 2). It prefers moist, exposed, 

rocky and gravel dominated soils in the mountains, but is also found in snowbeds, scree slopes and on 

ledges (Mossberg & Stenberg, 2012). It grows in tight tussocks, and the top is 2 -5 cm long with a grey-

violet color that develops between 2 – 4 flowers (Mossberg & Stenberg, 2012). The species is not nutrient 

demanding (Lid, Lid, & Elven, 2005), and the distributional range in Scandinavia is between 750 and 1910 

m a.s.l., and the highest elevation recorded in Norway is 2350 m a.s.l. (Holten et al., 2011). 

 

Figure 2: The focal species in this study. (a) Ranunculus glacialis (Glacier buttercup) (photo by Rigmor Wang), (b) Poa 
flexuosa (Wavy Meadow-grass) (photo by Rolv Hjelmstad) and (c) Trisetum spicatum (Spike false oat) (photo by Rolv 
Hjelmstad). 

T. spicatum is a member of the Poaceae family and is considered a pioneer species (Figure 2). It is often 

prominent in the early successional stages on glacier forelands (Matthews & Whittaker, 1987). It can grow 

to heights between 10 – 25 cm and is often found on meadows, heaths and ledges, and prefers alkaline 

soils (Gjærevoll, 1989). The top is short and small, tight and plump and has a brown-black color, and 

develops 3 flowers (Lid et al., 2005). Felde et al. (2012) reports a small elevational range contraction for T. 
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spicatum, with a 45 m upward shift in the lower elevation limit and 28 m downward shift in the upper 

elevation limit. This study reports that the observed elevational range is between 1270 and 1512 m a.s.l. 

in Sikkilsdalen, Jotunheimen, while the study by Holten et al. (2011) found the elevational range to be 

between 730 and 1810 m a.s.l. The highest elevation recorded for T. spicatum in Norway is 2220 m a.s.l. 

(Holten et al., 2011).  

 

2.3. Climate change scenarios 
This study uses representative concentration pathway (RCP) scenarios to model the future distribution of 

the focal species. The RCP scenarios are designed to explore a wide range of future climates characterized 

by future concentration of different greenhouse gases and other anthropogenic forcing agents including 

consistent short-lived gases and land use changes (Collins et al., 2013; Cubasch et al., 2013). The scenarios 

are identified by their 21st century peak or stabilization value of radiative forcing (RF) derived by a 

reference model and given in W m-2 (Collins et al., 2013). The scenarios used in this study are RCP4.5 and 

RCP8.5. RCP4.5 – which is considered a medium low emission scenario – aims at stabilizing the RF at 4.5 

W m-2 around 2100, while RCP8.5 – which is the highest emission scenario – implies an RF of 8.5 W m-2 by 

2100 but a rise in RF beyond that date (Cubasch et al., 2013). These scenarios were chosen to reflect a 

broad spectrum of the future emission scenarios. 

 

2.4. Data collection and preparation 

2.4.1. Predictor data 
The predictor data to be used in the distribution models consisted of climatic and topographic variables. 

Specifically, the climate data consisted of 19 bioclimatic variables in 30 arc second resolution, obtained 

from Worldclim.org (version 1.4) (Table 1). The bioclimatic variables are derived from the monthly 

temperature and rainfall values in order to generate more biologically meaningful variables. The variables 

represent annual trends (e.g. mean annual temperature and annual precipitation), seasonality (e.g. annual 

range in temperature and precipitation), and extreme or limiting climatic factors (e.g. temperature of 

coldest month and warmest month, and precipitation of the wettest and driest quarters) (Hijmans, 

Cameron, Parra, Jones, & Jarvis, 2005). 30 arc second resolution is equivalent to a raster cell size of 

approximately 500 x 500 meters at the latitude of the study area and represents the finest resolution 

climate data available for the study area. Values for the bioclimatic variables were obtained for current 

climatic conditions (WorldClim, 2005c) and for projected conditions in the year 2070 under the RCP4.5 

scenario (WorldClim, 2005a) and the RCP8.5 scenario (WorldClim, 2005b). The values for current 

conditions are interpolated from weather station data (Hijmans et al., 2005), while the values for the 

projected future conditions are derived as downscaled results from a general circulation model called 

CCSM4 developed by the National Center for Atmospheric Research in the U.S.. This particular circulation 

model has high horizontal (surface) resolution over land and ocean (Flato et al., 2013). 

To obtain square cells of equal size, the climatic raster data was projected to the WGS 1984 UTM zone 33N 

coordinate system in ArcGIS. In the reprojection, cell size was set to 500 x 500 m, and values were 

resampled from the original raster by bilinear interpolation. The extents of all rasters were set to line up 

exactly. All GIS work was done using the Esri software ArcGIS version 10.5.1. 
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Environmental 
index 

Code Description Unit Source 

Climatic variables 

Bio1 Annual mean 
temperature 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio2 Mean diurnal range 
(mean of monthly (max 
temp – min temp)) 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio3 Isothermality 
(Bio2/Bio7)*100 

Dimensionless http://www.worldclim.org 

Bio4 Temperature seasonality 
(standard deviation * 
100) 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio5 Max temperature of 
warmest month 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio6 Min temperature of 
coldest month 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio7 Temperature annual 
range (Bio5-Bio6) 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio8 Mean temperature of 
wettest quarter 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio9 Mean temperature of 
driest quarter 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio10 Mean temperature of 
warmest quarter 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio11 Mean temperature of 
coldest quarter 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio12 Annual precipitation Millimeters http://www.worldclim.org 

Bio13 Precipitation of wettest 
month 

Millimeters http://www.worldclim.org 

Bio14 Precipitation driest 
month 

Millimeters http://www.worldclim.org 

Bio15 Precipitation seasonality 
(coefficient of variation) 

Fraction http://www.worldclim.org 

Bio16 Precipitation of wettest 
quarter 

Millimeters http://www.worldclim.org 

Bio17 Precipitation of driest 
quarter 

Millimeters http://www.worldclim.org 

Bio18 Precipitation of warmest 
quarter 

Millimeters http://www.worldclim.org 

Bio19 Precipitation of coldest 
quarter 

Millimeters http://www.worldclim.org 

Topographic 
variables 

DTM 50 Elevation  Meters http://www.kartverket.no 
Slope Slope Degrees Derived from DTM 
Aspect Aspect Cos (degrees) Derived from DTM 

Table 1: The 19 bioclimatic variables and the topographic variables derived from the DEM that was downloaded and 
prepared for modelling.  
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The topographic data consisted of three variables obtained from a digital elevation model (DEM) for the 

study area: elevation, slope and aspect. The DEM was obtained from the Norwegian Mapping Authority 

(Kartverket) with a cell size of 50 x 50 m. To get a DEM that covered the study area, the DEM tiles 6701, 

6702, 6801 and 6802 from the DTM 50 dataset were merged into one raster dataset using the mosaic tool 

in ArcGIS. Values for areas of overlap between tiles were set to the mean value of the overlapping pixels. 

The DEM was then reprojected from EUREF 89 UTM zone 33N to WGS 1984 UTM zone 33N coordinate 

system with a cell size set to 500 x 500 m and the extent set to line up with the climatic rasters. Bilinear 

resampling was used during the reprojection. This reprojected DEM was used as one of the variables in 

the distribution models, and it was also used to calculate aspect and slope. Slope was calculated in degrees 

(range 0-90) as was aspect (range 0-360, where 0 and 360 represent North-facing aspect). For modelling, 

the cosine of the aspect in degrees was used to make the aspect variable represent the magnitude of 

“northness”.  

 

2.4.2. Species occurrence data 
Georeferenced species occurrence data for the three focal species were downloaded from Artskart 

(downloaded 15.10.2017) and added to ArcGIS (Artsdatabanken, 2017a, 2017b, 2017c). The coordinates 

of the species occurrence records were projected to the coordinate system WGS 1984 UTM zone 33N in 

order to overlay them on the climatic and topographic raster data. Only occurrence records inside the 

rectangular study area extent were retained for modelling.  

 

2.4.3. Pre-selecting predictors 
A correlation analysis was done in R-studio to pre-select the variables to be used as predictors in the 

models. Specifically, the Pearson correlation coefficient was calculated for all pairs of predictor variables 

across the study area. Pairs or groups of variables with high internal correlations (|Pearson r| > 0.7) were 

reduced to a single variable. Elimination of strong correlation structure in the predictor data improves 

model fitting, simplifies the interpretation of the model, and increases the reliability of model predictions 

in a different spatial or temporal context. Specifically, coefficients may be biased among highly correlated 

variables, and variable selection may approach random selection. In addition, if the high correlation does 

not hold true in a new space or time, the model will produce biased predictions (Guisan et al., 2017). By 

pre-selecting predictors for the models it is also possible to prescribe which of the highly correlated 

predictors are most ecologically meaningful to use in the model, based on prior knowledge of the species’ 

autoecology.  

Among the topographic and climatic predictors that were checked for high correlation, a high correlation 

was found among several of the predictors (see Appendix, Figure A 1). Bio13, bio16, bio19, bio14, bio12, 

bio17, bio18 (Table 1) and elevation was a group of highly correlating variables, were bio19 was selected 

as a predictor in the models. Bio19 is precipitation in the coldest quarter, meaning that it is the only 

predictor that can be related to snow conditions, and was selected since snow cover is a limiting factor for 

alpine plants. Bio8, bio2, bio4, bio7, bio1, bio15, bio10 and bio5 was another group of highly correlated 

variables. All of these, however, were strongly negatively correlated with the previous group of correlating 

variables and were therefore left out of the models. The last group of highly correlated variables was bio6, 
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bio11 and bio9, which are all temperature related. Bio6, which is the mean temperature of coldest month, 

was selected as a predictor since it’s a temperature variable that provides a cold extreme. Finally, the 

variables bio3, aspect and slope were not highly correlated with any of the other variables, and were all 

included as predictors in the model.  

 

Environmental 
index 

Code Description Unit Source 

Climatic 
variables 

Bio3 Isothermality 
(Bio2/Bio7)*100 

Dimensionless http://www.worldclim.org 

Bio6 Min 
temperature of 
coldest month 

Degrees 
Celsius*10 

http://www.worldclim.org 

Bio19 Precipitation of 
coldest quarter 

Millimeters http://www.worldclim.org 

Topographic 
variables 

Slope Slope Degrees Derived from DTM 
Aspect Aspect Cos (degrees) Derived from DTM 

Table 2: The five pre-selected predictor variables used in the Maxent models. 

 

2.5. Species distribution modelling 
All species distribution models (SDMs) were developed using the Maxent software (version 3.4.1) for 

distribution modelling. Maxent uses a maximum entropy algorithm designed for distribution modelling 

that relates species occurrence data to a set of environmental predictors. One important advantage 

Maxent offers compared to other modelling methods, is that its designed for use with presence-only data 

together with environmental information for the study area to predict species’ relative occurrence rate 

(Phillips, Anderson, & Schapire, 2006). This is practical since absence data is difficult to obtain, and was 

not available for Jotunheimen either. The Maxent distribution is calculated over a set of background cells 

which represents the variety of environmental conditions present in the data. As a default setting, Maxent 

uses a sample of 10.000 random background cells, and the distribution is then calculated over the union 

of the background cells and the sample of the species being modelled (Phillips et al., 2006).  

The feature types – or transformation types – allowed in the models were linear features, quadratic 

features and hinge features. These feature types are described in Phillips et al. (2006) and the Maxent help 

page as follows: “Linear features constrain the output distribution for each species to have the same 

expectations of each of the continuous environmental variables as the sample locations for that species. 

A linear feature is simply one of the continuous environmental variables. Quadratic features (when used 

together with linear features) constrain the output distribution to have the same expectations and 

variance of the environmental variables as the samples. A quadratic feature is the square of one of the 

continuous environmental variables. Hinge feature is derived from a continuous environmental variable. 

It is like a linear feature, but it is constant below a threshold value”. 

Response curves were created for all models. The output format used for all models was raw, which 

corresponds to the relative occurrence rate. Relative occurrence rate is a meaningful measure when 

population size is unknown, and refers to the probability that a cell within the study area contains presence 

samples (Merow, Smith, & Silander, 2013).  
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Distribution models were trained using the pre-selected predictors under current climatic conditions and 

projected to the two different RCP scenarios using the same predictors but under future climate 

conditions. For each species, two distinct models and associated RCP projections were produced. The first 

used randomly selected background locations, while the second used a target group as selected 

background locations, as described in further detail below. In both cases all presence locations were added 

to the background. Finally, all model outputs were imported to ArcGIS for further interpretation and 

analysis 

 

Model Species Scenario Background points (nr. of points) 

Pf-T Poa flexuosa Training Random (10 000) 

Pf-45 Poa flexuosa RCP4.5 Random (10 000) 

Pf-85 Poa flexuosa RCP8.5 Random (10 000) 

Rg-T Ranunculus glacialis Training Random (10 000) 

Rg-45 Ranunculus glacialis RCP4.5 Random (10 000) 

Rg-85 Ranunculus glacialis RCP8.5 Random (10 000) 

Ts-T Trisetum spicatum Training Random (10 000) 

Ts-45 Trisetum spicatum RCP4.5 Random (10 000) 

Ts-85 Trisetum spicatum RCP8.5 Random (10 000) 

Pf-T-TG Poa flexuosa Training Poa (886) 

Pf-45-TG Poa flexuosa RCP4.5 Poa (886) 

Pf-85-TG Poa flexuosa RCP8.5 Poa (886) 

Rg-T-TG Ranunculus glacialis Training Ranunculus (919) 

Rg-45-TG Ranunculus glacialis RCP4.5 Ranunculus (919) 

Rg-85-TG Ranunculus glacialis RCP8.5 Ranunculus (919) 

Ts-T-TG Trisetum spicatum Training Trisetum, Anthoxanthum, Melica (740) 

Ts-45-TG Trisetum spicatum RCP4.5 Trisetum, Anthoxanthum, Melica (740) 

Ts-85-TG Trisetum spicatum RCP8.5 Trisetum, Anthoxanthum, Melica (740) 

Table 3: The models produced in Maxent and there specifications. 

 

2.5.1. Sampling bias 
It is highly likely that the occurrence data for the study area is biased. Collecting efforts are known to be 

influenced by accessibility, meaning that occurrence data often are highly correlated to the nearby 

presence of roads, rivers or other access points. (Reddy & Dávalos, 2003). In addition, sampling intensity 

and sampling methods are likely to be varied throughout the study area since the occurrence data is based 

on records  dating back almost a century. Sampling bias in occurrence data can lead to overrepresentations 

of certain environmental conditions, which again can lead to uncertainties in the species’ characterization 

of the environmental niche (Loiselle et al., 2008). With the goal to correct for the potential sampling bias 

and improving model accuracy I produced a second model for each species using a target group as selected 

background locations, rather than randomly selected background locations (Table 3). This method was 

originally described by  Ponder, Carter, Flemons, and Chapman (2001). By using a target group which is 

likely to be captured by either the same collection methods or collectors as the focal species as background 
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locations, target group background selection aims to select background locations where the focal species 

is more likely to be truly absent rather than present but unsampled. This works as a surrogate for absence 

data, which is nearly impossible to obtain in the real world given the ad hoc nature of collection effort. 

For each species the target group consisted of all species within the same genus as the focal species. For 

example, all species from the genus Ranunculus were used as a target group for R. glacialis. For T. spicatum 

two additional genera were also included as a target group in order to get a sufficient number of 

background point to characterize the study area. Specifically, the genera Trisetum, Anthoxanthum and 

Melica where used as a target group for T. Spicatum. Occurrence records within the study area for each of 

the target groups were downloaded from Artskart (downloaded 16.02.2018) (Artsdatabanken, 2018a, 

2018b, 2018c). The presence location coordinates were converted to raster files with the same extent and 

resolution as the predictor data, where cells containing at least on target group presence were assigned 

the value 1 and cells without target group presence were assigned No Value. For the second set of models 

the relevant target group raster file was added as a bias file in the software instead of using the default 

10.000 random background locations.  

 

2.5.2. Threshold 
In order to calculate the reduction in area of suitable habitat a threshold value is needed to translate 

continuous model predictions in the form of relative occurrence rate into binary presence-absence 

predictions. The threshold value determines the boundary between predicted presence and absence of 

the modeled species. The highest possible value that omitted less than 5 % of the recorded presence in 

the training data (omission < 5 %) was used as the threshold for each model. This threshold gives relatively 

larger areas of predicted presence than most other common threshold selection methods and was used 

in order to avoid underestimation of the future distribution of the species and to give conservative 

estimates of habitat reduction. This user specified threshold is recommended by Freeman and Moisen 

(2008) when the goal is to predict all potential habitats and map with high sensitivity is required. This 

threshold provides a map with a sensitivity of 0.95. The threshold values where calculated using R-studio 

(Appendix, Table A 4).   

 

2.6. Interpretation and analysis 

2.6.1. GIS analysis 
All of the Maxent model predictions were analyzed and visualized using ArcGIS. The total area of suitable 

habitat was calculated for each model from binary predictions by taking the number of presence cells 

multiplied by the cell size. The elevational range and mean elevation of the area predicted to contain 

species presence was gathered using zonal statistics in ArcGIS. The level of habitat fragmentation was 

calculated by converting the binary raster data into vector data. Specifically, areas of predicted presence 

were converted into polygons. The attribute tables of the vector data provided statistics on the number 

of patches and the mean patch size for each species, under each model, in the different scenarios.   

According to ecological theory species optimum is found somewhere in the middle of its total elevational 

range, and the outer boundaries of a suitable habitat is considered less than optimal or even marginal 

(Thuiller et al., 2008). In order to determine how much of the suitable habitat that is likely to be marginal 

for the focal species, I have calculated the amount of marginal habitat or edge habitat (herafter only 
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referred to as edge habitat) that was located within 500 meters from the low elevation habitat edge. The 

edge habitat was calculated using ArcGIS. By using the buffer and clip tools, the part of the suitable habitat 

that was within 500 meters (1 cell width) of a boundary between predicted presence and predicted 

absence was isolated and its total area was calculated. This was done for each model result.  

For each species-model combination, the absolute and percent change in predicted suitable habitat area 

was calculated for the different future scenarios using Microsoft Excel.  

 

3. Results 
 

For each species two sets of models are presented in the results; the first set of models uses random 

background locations, while the second set of models uses a target group as background locations.  

 

3.1. Maxent models 
The equation to calculate the predicted value (raw output) of the Maxent model is given as: 

 

𝑃(𝑥) = exp(𝑐1 ∗ 𝑓1(𝑥) + 𝑐2 ∗ 𝑓2(𝑥) + 𝑐3 ∗ 𝑓3(𝑥)… ) /𝑍 

 

Here c1, c2, c3 etc. represents the coefficients for each model while f1, f2, f3 etc. are the corresponding 

features, or transformed variables. The predicted value (P) of the model is calculated independently for 

each raster cell. Z is a scaling constant, referred to here as the linear predictor normalizer (Table A 1, Table 

A 2 & Table A 3 in Appendix).  

 

3.1.1. Model performance 
The area under the receiver operating characteristic curve (AUC) values, calculated using the training data 

are higher for the models with a random background (Table 4). The average difference between the two 

sets of models were 0.079. Between species, the two P. flexuosa models have the highest AUC value in 

both model sets, while T. spicatum models have the lowest.  

 

Species Model AUC 

Ranunculus glacialis 
Random background 0.773 

Target group background 0.668 

Poa flexuosa 
Random background 0.841 

Target group background 0.768 

Trisetum spicatum 
Random background 0.720 

Target group background 0.659 

Table 4: AUC values for the training data. 



 

20 
 

3.1.2. Variable importance 
The predictor bio19 was of greatest importance in all the Maxent models (except for R. glacialis in the 

models with random background) (Table 5). Bio6 is almost equal to bio19 in the models with a random 

background, but loses importance – or contributes less – in the models with a target group background. 

Bio19 is the only predictor that gains importance as bio6 contributes less. The biggest difference in 

predictor contributions between background types is found in the models of T. spicatum, where the 

contribution of the predictor slope varies from 15.5 in the models with random background, to 0 in the 

models with a target group background. Bio3 and aspect have a low contribution in all the Maxent models, 

with small differences between the two models sets and between the three species. 

Species Model Predictor Permutation 
importance 

Poa flexuosa 

Random 
background 
 

bio3 1.5 

bio6 44.4 

bio19 45.0 

aspect 3.4 

slope 5.7 

Target group 
background 

bio3 0.0 

bio6 20.2 

bio19 75.3 

aspect 3.8 

slope 0.7 

Ranunculus glacialis 

Random 
background 
 

bio3 2.0 

bio6 46.5 

bio19 43.5 

aspect 1.4 

slope 6.6 

Target group 
background 

bio3 2.0 

bio6 31.3 

bio19 66.2 

aspect 0.3 

slope 0.2 

Trisetum spicatum 

 
Random 
background 
 

bio3 2.4 

bio6 29.3 

bio19 52.0 

aspect 0.7 

slope 15.5 

Target group 
background 

bio3 1.3 

bio6 17.6 

bio19 75.7 

aspect 5.4 

slope 0.0 

Table 5: The contribution of each predictor used in the Maxent models, measured by permutation importance. 
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3.1.3. Species response 
The modeled species respond differently to the variables used as predictors in the models. A difference in 

the response curves was found between the models with a random background and the models with a 

target group background.  

 

 

Figure 3: The species response to the environmental variables used as predictors in the models using a random 
background.  



 

22 
 

 

Figure 4: The species response to the environmental variables used as predictors in the models using a target group 
background.  

For the predictors bio19, bio6 and slope the environmental range (y-axis) is different between the two 

model sets. Bio19 and bio6 – the two most influential variables in the models – tend to have a local optima 

in the models with a random background (Figure 3) , while they show a more monotonic increase (bio19) 

or decrease (bio6) – without local optima – in the models with a target group background (Figure 4). The 

local optima observed in bio19 in the models with a random background is very similar for all species. P. 

flexuosa is the only species showing signs of having a local optima in response to bio19 in the models with 
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a target group background. In the models with a random background, bio6 is the variable with the largest 

variance in response between species. This variance was however minor, with small differences in the 

range on the y-axis, and small variations in the response curves. In the response to aspect, the local 

optimum shifts from being closer to zero in the first set of models to closer to one in the models with 

sampling bias correction. The response to bio3 is nearly identical in all models. 

 

3.2. Distributional changes 

3.2.1. Changes in habitat size 
Based on topographical and climatic conditions (with a cell resolution of 500 x 500 m), all species were 

projected to lose suitable habitat under the two climate change scenarios (Figure 5 & Figure 6). The 

reduction in area of suitable habitat is greater in the models using a random background, compared to the 

models using a target group background (Table 6 & Figure 7). A larger reduction in suitable habitat was 

also found under the RCP8.5 scenario compared to the RCP4.5 scenario in all model results. The average 

size of current predicted distribution was 63 % of the study area (random background), and 67 % (target 

group background). The average projected loss of suitable habitat in the models using a random 

background under the RCP8.5 scenario was 4 030 374 km2, which represents 70 % of predicted current 

distribution. In comparison, the average loss of suitable habitat in the same scenario in the models with a 

target group background was 2 324 142 km2 or 38 % of predicted current distribution. 

Model Suitable 
habitat (km2) 

Reduction in 
suitable 
habitat (km2) 

Reduction in 
suitable 
habitat (%) 

Pf-T 5131599 - - 

Pf-45 2119634 3011965 58.7 

Pf-85 1167848 3963751 77.2 

Rg-T 5681621 - - 

Rg-45 2293192 3388429 59.6 

Rg-85 804540 4877081 85.8 

Ts-T 6454030 - - 

Ts-45 4483666 1970364 30.5 

Ts-85 3203739 3250291 50.4 

Pf-T-TG 5125021 - - 

Pf-45-TG 4186138 938883 18.3 

Pf-85-TG 3711004 1414017 27.6 

Rg-T-TG 6041893 - - 

Rg-45-TG 3728967 2312926 38.3 

Rg-85-TG 2235002 3806891 63.0 

Ts-T-TG 7125745 - - 

Ts-45-TG 6300712 825033 11.6 

Ts-85-TG 5374226 1751519 24.6 

Table 6: The current prediction and the projected changes in suitable habitat size under climate change scenarios 
RCP4.5 and RCP8.5 for the year 2070.  
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The absolutely largest reduction in area of suitable habitat was projected for R. glacialis under the RCP8.5 

scenario in the models using a random background, for which the total area of suitable habitat was 

projected to be reduced by 85 % (Table 6). In the models using a target group background, the reduction 

in area of suitable habitat under the same scenario was projected to be 63%. P. flexuosa was projected to 

have 77 % reduction in suitable habitat under the RCP8.5 scenario in the models using a random 

background, while the reduction was 27 % under the same scenario in the models using a target group 

background (Table 6). T. spicatum was projected to have the lowest reduction in area of suitable habitat 

of the species modeled, in both model sets, and under both RCP scenarios modelled. The reduction under 

the RCP8.5 scenario was 50 % in the models with a random background and 24.6 % in the models with a 

target group background (Table 6).  

 

 

Figure 5: Maps of the current predictions and the projected changes in suitable habitat (green areas) from models 
using a random background. The maps are portraying the predicted current distributions and the projected future 
distributions under RCP4.5 and RCP8.5 for (a)(b)(c) R. glacialis, (d)(e)(f) P. flexuosa and (g)(h)(i) T. spicatum. 
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Figure 6: Maps of the current predictions and projected changes in suitable habitat (green areas) from models using 
a target group background. The maps are portraying current predicted distributions and the projected future 
distributions under RCP4.5 and RCP8.5 for (a)(b)(c) R. glacialis, (d)(e)(f) P. flexuosa and (g)(h)(i) T. spicatum. 

 

Figure 7: The projected absolute reduction in suitable habitat under climate change scenarios RCP4.5 and RCP8.5 
from (a) models using a random background and (b) models using a target group background. 
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3.2.2. Changes in elevational range 
All species was projected to disappear from their lowest elevations in both RCP scenarios modeled, and in 

both model sets (Table 7 & Figure 8). Except for T. spicatum in the models using a random background 

under the RCP8.5 scenario, all species was projected to remain at their highest elevations. In other words, 

the upper elevational boundary remained constant, as all species already were predicted to occur at the 

highest elevation under current conditions.  

In the models with a random background, the biggest reduction in elevational range was found under the 

RCP8.5 scenario, with an average reduction of 524 m. The average reduction in elevational range under 

the same scenario, in the models with a target group background was 484 m. R. glacialis was the only 

species that was projected to have a larger reduction in elevational range in the models using a target 

group background, with a reduction of 868 m under RCP8.5 (Table 7). The biggest difference between 

species was found between R. glacialis and P. flexuosa in the models with a target group background under 

the RCP8.5 scenario with a difference of 656 m. 

 

 

Figure 8: The projected changes in the species elevational range under climate change scenarios RCP4.5 and RCP8.5. 
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The mean elevation of the area predicted as suitable was projected to increase for all three species under 

both the scenarios modeled (Table 7). The increase was highest in the models using a random background 

for all three species with an average increase of 111 m under the RCP4.5 scenario and 204 m under the 

RCP8.5 scenario. In comparison, the average increase in mean elevation in the models using a target group 

background was 58 m under the RCP4.5 scenario and 110 m under the RCP8.5 scenario. R. glacialis was 

projected to have the biggest increase in mean elevation in both sets of models with a 280 m increase in 

the models with a random background and 198 m in the models using a target group background under 

the RCP8.5 scenario. The smallest change in mean elevation was projected for T. spicatum in all scenarios 

except for the RCP8.5 scenario (target group background). 

 

Model Minimum 
elevation 

Maximum 
elevation 

Elevational 
range 

Mean 
elevation 

Elevational 
range 
contraction 

Change in 
mean 
elevation 

Pf-T 0 2442 2442 1384 - - 
Pf-45 99 2442 2343 1532 99 148 
Pf-85 517 2442 1925 1602 517 218 
Rg-T 0 2442 2442 1369 - - 
Rg-45 384 2442 2058 1498 384 129 
Rg-85 627 2442 1815 1649 627 280 
Ts-T 0 2442 2442 1320 - - 
Ts-45 248 2442 2194 1378 248 58 
Ts-85 384 2396 2012 1435 430 115 

Pf-T-TG 0 2442 2442 1404 - - 
Pf-45-TG 115 2442 2327 1448 115 44 
Pf-85-TG 212 2442 2230 1469 212 65 
Rg-T-TG 0 2442 2442 1376 - - 
Rg-45-TG 715 2442 1727 1473 715 97 
Rg-85-TG 868 2442 1574 1574 868 198 
Ts-T-TG 0 2442 2442 1318 - - 
Ts-45-TG 168 2442 2274 1352 168 34 
Ts-85-TG 374 2442 2068 1387 374 69 

Table 7: The current predictions and the projected changes in elevational range and mean elevation for all species 
under climate change scenarios RCP4.5 and RCP8.5. All numbers are given in meters.  

 

3.2.3. Habitat fragmentation 
Number of patches of suitable habitat was projected to increase for all species, and the mean patch size 

projected to decrease for all species in both scenarios and in both model sets (Table 8). The change in 

number of patches was greater between the two model sets than between the two scenarios. The number 

of patches increased the most in the models with a random background. The difference in mean patch size 

was also larger between the two sets of models than between scenarios. The mean patch size for the 

current distribution was predicted to be largest in the models with a target group background. The 

reduction in mean patch size was projected to be largest under the RCP8.5 scenario in both model sets. 

The projected reduction was 93 975 km2 (70 %) in the models using a target group background and 32 754 

km2 (82 %) under the RCP8.5 scenario.  
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R. glacialis showed the biggest reduction in mean patch size in both sets of models, and under both RCP 

scenarios. The biggest reduction in mean patch size was a 92.8 % (35 986 km2) reduction found in the 

models using a random background under the RCP8.5 scenario.  

 

3.2.4. Edge habitat 
The share of edge habitat, defined as the area within a 500 m buffer from the habitat edge, was projected 

to increase for all species (Table 8 & Figure 9). Across scenarios, the share of edge habitat was largest in 

the models with random background. The largest share of edge habitat was projected under the RCP8.5 

scenario with an average of 67.9 % of the suitable habitat defined as edge for all three species. In 

comparison, the average share of edge habitat predicted under the same scenario in the models with a 

target background set was 31 %.  

The largest increase in edge habitat was projected for R. glacialis, with a 65.3 % increase in edge habitat 

in the models using a random background, and a 25 % increase under the same scenario in the models 

using a target group background. The smallest increase in edge habitat was projected for T. spicatum in 

both sets of models and under both RCP scenarios. (See Figure A 2 & Figure A 3 in Appendix)  

 

Model Number 
of 
Patches 

Mean 
patch size 
(km2) 

Reduction in 
mean patch 
size (km2) 

Reduction in 
mean patch 
size (%) 

Edge habitat 
(km2) 

Edge 
habitat 
(%) 

Pf-T 171 30198 - - 1604675 31.1 

Pf-45 314 6696 23502 77.8 1221779 58.1 

Pf-85 260 4430 25768 85.3 906971 78.7 

Rg-T 147 38798 - - 1252518 22.0 

Rg-45 265 8612 30186 77.8 1209255 53.0 

Rg-85 277 2811 35986 92.8 680136 87.3 

Ts-T 129 50186 - - 1131767 17.5 

Ts-45 171 26290 23895 47.6 1342164 29.9 

Ts-85 234 13678 36507 72.7 1206106 37.7 

Pf-T-TG 43 120160 - - 1301279 25.2 

Pf-45-TG 83 50799 69360 57.7 1371490 32.5 

Pf-85-TG 95 39298 80861 67.3 1359323 36.4 

Rg-T-TG 53 114113 - - 723819 12.0 

Rg-45-TG 122 30536 83576 73.2 1072459 28.8 

Rg-85-TG 176 12590 101523 89.0 830324 37.5 

Ts-T-TG 43 165943 - - 739343 10.4 

Ts-45-TG 98 64360 101582 61.2 965342 15.3 

Ts-85-TG 81 66401 99541 60.0 1030567 19.2 

Table 8: The projected level of habitat fragmentation. Showing changes in number of patches, mean patch size and 
share of edge habitat for all species under climate change scenarios RCP4.5 and RCP8.5.  
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Figure 9: The predicted current and the projected future changes in share of edge habitat for all species under 
climate change scenarios RCP4.5 and RCP8.5 from (a) models with a random background and (b) models with a 
target group background. 

 

4. Discussion 
 

4.1. Maxent models 
All models perform markedly better than a random prediction according to their AUC values. They provide 

`fair´ predictive ability (0.70 < AUC < 0.90) after a scale by Halvorsen (2013), and in a five grade scale 

developed by Araújo, Pearson, Thuiller, and Erhard (2005) they fall in the two categories `fair´ accuracy 

(0.70 < AUC < 0.80) and ̀ good´ accuracy (0.80 < AUC < 0.90). This demonstrates that the selected predictors 

in the models account for a fair amount of variation in the occurrence of these species, and suggests that 

these predictors are ecologically meaningful. However, these AUC values were calculated using the same 

presence only data used to train the models. It would have been better to evaluate the models predictive 

abilities using an independent data set. Since the amount of presence data for the focal species within the 

area was limited, all available presence data was used to train the models. Sampling of an independent 

data set to test the models predictive ability would have been preferable, but not realistic given the limited 

time – and the time of year – for this study. 

The presence records used in this study are dating back a century, and with little knowledge about the 

sampling effort and the sampling methods used, it is highly likely that these records are biased. This is why 

the second set of models attempts to correct for this sampling bias using a target group as background 

locations. In biased presence data, certain environmental conditions suitable for the species will be 

overrepresented, resulting in a model that might project too much reduction in suitable habitat under new 

conditions. The presence data used here are likely biased by accessibility from roads, lower lying areas and 

towards the national park located within the area. This bias might have led to an underestimation of future 

suitable habitat size under the different climate change scenarios. Some studies have showed that using a 

target group as background to correct for this bias have improved model accuracy and performance 

(Phillips et al., 2009; Ranc et al., 2017). In the study by Ranc et al. (2017) the effects of sampling bias 

correction was tested in a geographically biased virtual species system. They found that relative 
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occurrence area was the most important factor driving species vulnerability to sampling bias, meaning that 

widespread species were more affected and more likely to benefit from sampling bias correction 

compared to narrow ranging species. The species used in this study showed a high relative occurrence rate 

(> 50 %) within the study area which was the motivation for using a target group to correct for sampling 

bias. A concern associated with using a target group background is that the predictions are made focusing 

only on a small part of the geographic, and thus environmental space that contains presence samples 

compared to a random background that takes background locations from the entire study area (Phillips et 

al., 2009). The limited number of background locations (pseudo-absence) (Table 3) used in this study lead 

to lower AUC values in the models using a target group background compared to the models using a 

random background (Table 4). VanDerWal, Shoo, Graham, and Williams (2009) showed that drawing 

pseudo-absence from a small part of an area could produce incorrect models. Simultaneously, pseudo-

absence drawn from too large of an area can lead to artificially inflated AUC values and predictions of 

species distributions as well as potentially producing less informative response curves. These errors will 

be propagated when projections are made onto a new set of environmental variables, and thus provide 

misleading results (VanDerWal et al., 2009).  

A target group that covered a wider range of environmental conditions in the area would likely have 

produced models with a performance closer to the models with a random background. However, selecting 

an appropriate target group proved difficult given the lack of knowledge about the collection efforts in the 

area. By selecting from the same genus as the focal species, the assumption was that the collector who 

sampled a species from the target group also would have collected the focal species if it was present. From 

the presence records used, it can be seen that several of the same institutions have collected the focal 

species and species from the target groups. This, and the fact that records are collected within the same 

alpine area, makes it likely that the focal species would have been collected if it were present in a target 

group location. Then again, some of the collection effort can be part of studies that are studying a 

restricted number of species, and the focal species from this study might not have been collected. For 

example, a study that focuses on the sampling of Poa alpina is likely to exclude any occurrences of Poa 

flexuosa at the same location. In addition to lower performance statistics, the low number of background 

locations used to determine the distributions compared to the size of the study area, suggests that the 

target group represents a narrow portion of the total range of environmental conditions found within the 

area. This restricted background are likely to have led to an “over” correction for the sampling bias. This 

could mean that the models using a target group background overestimates the amount of suitable 

habitat. Assuming that there is some sampling bias in the data, then the truth, by definition, would lie 

somewhere in between the models with no correction and the models with over-correction. To further 

evaluate which of the two model sets are more accurate, an independent unbiased data set would be 

needed to check model performance. 

Threshold selection of continuous model output strongly influences predictions. Nenzén and Araújo (2011) 

found that the choice of threshold stood for 25 % of the variability in model results. This is a high variability 

considering that thresholds usually are determined subjectively (Freeman & Moisen, 2008), as is also the 

case in this study. Several studies argue that threshold selection should be determined based on the 

purpose of the study (Freeman & Moisen, 2008; Jiménez-Valverde & Lobo, 2007). Freeman and Moisen 

(2008) showed that species with poor model quality or low prevalence within the study area were more 

sensitive to the choice of threshold, resulting in greater variability between model results depending on 
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the threshold used. A default threshold of 0.5, often used in forest management, was shown to strongly 

underestimate the prevalence of the species (Freeman & Moisen, 2008). 

Given the goal to determine the level of habitat reduction under climate change for the focal species, a 

user specified threshold that gives the highest possible specificity while not omitting more than 5 % of 

observed presence was chosen. The goal with the selected threshold was to avoid exaggeration of the 

habitat reduction by misclassifying true presence as predicted absence. This threshold is recommended 

by Freeman and Moisen (2008) when the goal is to predict all potential habitats. A threshold that 

maximizes training sensitivity plus specificity, which is one of the standard threshold selection methods in 

Maxent, was also considered for this study, but this threshold penalizes lower specificity (false positives) 

which is not appropriate when using presence only data to calculate the threshold. The specified threshold 

used in this study made more conservative projections of minimum suitable habitat. 

 

4.2. Distributional changes 
As expected, based on previous studies (Engler et al., 2011; Felde et al., 2012; Klanderud & Birks, 2003; 

Odland et al., 2010; Steinbauer et al., 2018) and ecological theory, the model results projects a significant 

loss of habitat for the focal species in the future under climate change. A study by Engler et al. (2011) 

projected that 25 % of the species modelled across European mountain ranges would lose all of their 

suitable habitat, and that half of the species would lose 80 % of their suitable habitat by 2070-2100. The 

Norwegian Scandes was found to be least vulnerable to climate change of the European mountain ranges, 

where less than 10 % of the species are projected to lose all suitable habitat (Engler et al., 2011). One 

possible explanation for this could be the expected increase in precipitation along with the climatic 

warming in the Scandes (Engler et al., 2011). These findings are similar to the projections in this study. 

However, my study uses a different set of climate change scenarios and a different spatial resolution, so a 

direct comparison is difficult. The spatial resolution used in my study was 500 m, while Engler et al. (2011) 

used climatic and topographic variables with a spatial resolution of 100 m. The coarse resolution used in 

my study could suggest that my projections overestimates habitat loss, but it could also mean that habitat 

loss is underestimated. Specifically, topographic variations not captured at the 500 meter scale could 

provide patches of suitable habitat in areas predicted to be unsuitable, but at the same time areas 

predicted as suitable are likely to contain unsuitable areas. Which of these effects outweighs the other is 

unknown. A finer resolution would have given more precise estimates of change.  

The reduction in suitable habitat is strongly linked to the contraction of elevational range. This range 

contraction was only projected for the lower elevational boundaries, because all species were predicted 

to already occur at the highest elevations within the study area. This is due to the coarse resolution, which 

allows a species to be predicted to occur at the highest possible elevation if presence is found within a 500 

meter cell located at the highest elevation. In addition to the previously observed range contraction of the 

lower elevational boundary (Klanderud & Birks, 2003; Odland et al., 2010), Felde et al. (2012) found that 

the upper limit shifted downwards for a few species, including R. glacialis and T. spicatum. They explained 

these findings with a prolonged snow cover at higher elevations. These findings is however not coherent 

with the findings of Klanderud and Birks (2003), which found that R. glacialis shifted their lower elevational 

range upwards and increased in abundance at higher elevations. A downward shift of the upper elevational 

boundary was not predicted for R. glacialis in this study. T. spicatum did however show sign of range 

contraction at the upper limit, with a downwards shift of 46 meters in the RCP8.5 scenario (Random 
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background). T. spicatum is the species with the lowest upper elevational boundary currently observed of 

the three focal species (Felde et al., 2012; Holten et al., 2011), which could suggest that it is more sensitive 

to snow cover than the other two. R. glacialis was projected to have larger elevational range contraction 

– and thereby lose more suitable habitat – than the other species. This indicates that the species currently 

found at the highest elevations will be affected the most by climate change. 

The projected habitat fragmentation might compromise the species’ reproductive success. This breaking 

up of habitat is associated with several negative effects such as reduced gene flow between populations, 

inbreeding within populations, increased genetic differentiation between populations, which again is 

associated with increased vulnerability (Young et al., 1996). The increased isolation between populations 

can also prevent rescue by immigration from other populations (Leimu et al., 2010), which can be linked 

to the limited dispersal abilities in alpine ecosystems (Körner, 2003). For P. flexuosa and T. spicatum the 

majority of seeds have been found to disperse less than 5 meters from its origin (Ryvarden, 1971), 

suggesting that fragmentation could isolate populations. However, if pollination still occurs between 

populations the short distance dispersal might not have severe negative effects.  R. glacialis is also 

expected to have a restricted dispersal ability, but must be capable of long distance dispersal due to its 

broad geographical distribution which includes arctic islands (Schönswetter, Paun, Tribsch, & Niklfeld, 

2003). The focal species in this study all have the ability to reproduce clonally, but sexual reproduction is 

considered the most important, especially for R. glacialis (Körner, 2003), which is pollinated by small flies 

which are weak pollinators (Wagner et al., 2010). Habitat fragmentation could affect pollinator behavior 

(Aguilar, Ashworth, Galetto, & Aizen, 2006), and the level of habitat fragmentation is projected to be 

strongest for R. glacialis. But in order to speculate around how this might affect the reproductive abilities 

of R. glacialis more knowledge about the spatial population dynamics and genetics in the area is needed.  

The analysis of marginal habitat in this study was a heuristic way of examining how the amount of sub-

optimal habitat as a proportion of the total habitat is likely to change. Here marginal habitat – or edge 

habitat – was calculated as all habitat within 500 meters from the habitat edge (1 cell size). This estimation 

of marginal habitat could also have been executed by isolating all cells that fall just above the threshold 

and in that way getting habitat that was environmentally marginal rather than geographically marginal. 

Even though we don’t know what parts of the habitat could actually be considered marginal, this simple 

definition was used to get an idea of any changes in trend.  

Towards the edge of suitable habitat growth and establishment is reduced, and growth efficiency-related 

mortality increases (Thuiller et al., 2008). The projections show that the share of edge habitat increases as 

the habitat gets more fragmented, which suggests that larger portions of the habitat could fall outside 

species optimum. As all models project the distributions to extend to maximum altitude the edge habitat 

was found at the lower elevations. In reality, observations suggest that the highest altitudes also are sub-

optimal. The main limiting factor at lower elevations are thought to be competition from other species, 

and this is supported by studies showing that alpine plants can grow and reproduce at lower elevations 

through transplantation (Hautier, Randin, Stöcklin, & Guisan, 2009). The increased edge habitat could 

suggest that the species will be more prone to competition in these areas, and increased competition from 

other species is documented to affect R. glacialis negatively through reducing leaf size (Kulonen et al., 

2017). In addition to resolution being an issue when determining the amount of edge habitat, the negative 

effects associated with edge habitats depends on the new competitor’s abilities to spread upwards or track 

their environmental conditions.  
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Climatic warming has previously been identified as the main driver for changing distributions. Odland et 

al. (2010) however observed an increasing number of species associated with wetter habitats on mountain 

summits in a study conducted within the same study area used here. Another study by Felde et al. (2012), 

also located within the same study area, found that changes in precipitation rates were more pronounced 

than changes in temperature the last decade, suggesting that changing water dynamics and balance may 

be important drivers for the observed changes. In addition to these observational studies, Grytnes et al. 

(2014) found no positive correlation between warming and the upward range shift for alpine species, 

suggesting that temperature is not the main driver of the upward elevational shift observed in alpine areas. 

They go on to present a hypothesis that more melting snow and ice has revealed more areas for 

colonization as an explanation for why the observed patterns of upward shift is not directly linked to the 

climatic warming through the physiological effects of temperature on the plants. Another explanation 

could be that the interpolated surface air temperatures in the climate models will differ from the actual 

temperature alpine plants experience given their low stature (Grytnes et al., 2014). 

In my results, bio19 (precipitation of coldest quarter) contributed the most to all models, followed closely 

by bio6 (minimum temperature of coldest month) in the models using a random background (Table 5). 

The variables aspect and slope showed low contribution in all models, which is expected since these 

variables only affect species indirectly. The high contribution of bio19 suggests that snow cover is strongly 

affecting the species distributions, which is meaningful since snow cover is a limiting factor for plant 

growth. The high correlation found between bio19 and the other precipitation variables (Figure A 1 in 

Appendix) also suggests that year round precipitation and the water dynamics in general within the area 

have a strong impact on the species distributions, as other studies have found.  

In response to bio19 all species show a wide range in their local optima, suggesting that the species have 

a relatively wide tolerance for winter precipitation. As precipitation increases all species are negatively 

affected, but for R. glacialis the curve does not drop to zero suggesting it can tolerate the most extreme 

precipitation currently found within the area. The full response is however not ecological meaningful since 

it shows sign of an optimum at the low end of the precipitation scale, before dropping to zero and then 

rising to its absolute optimum as precipitation increases. This response is likely a case of model overfitting 

of the presence data by Maxent. In response to bio6, all species have a drop in response as the 

temperature gets warmer than -16 ˚C. The range in local optima is narrow in bio6 compared to bio19, 

which suggest that in this study area temperature is more of a limiting factor for the species than 

precipitation. It also suggests that the species will have a higher tolerance for increased precipitation than 

for the increased temperatures. This could support the findings of Engler et al. (2011) that the projected 

increase in precipitation in the Scandes will make this area less vulnerable to climate change compared to 

other European mountain ranges. Between the two model sets the main difference between the response 

curves is due to the low number of background locations used in the models with a target group 

background. This leads to a narrower environmental range in the response curves, resulting in different 

fitted responses. 

To what extent the projected changes in suitable habitat come true depends on the species ability to track 

their optimal environment. In this study, species are only projected to lose habitat, meaning the 

projections doesn’t account for any new areas that might open up for colonization. In reality it is likely that 

new areas will open up for the species as snow and ice melts in a warmer climate, like Grytnes et al. (2014) 

hypothesized. For alpines plants, their growth and dispersal abilities determines how fast they can track 

their optimal habitat. Opening of new areas can facilitate the focal species in tracking their optimal 
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environmental conditions. Strong wind often found in alpine areas, can also facilitate species to track their 

optimal habitat as it shifts upwards.  

Species distributions are likely not to shift as fast as climatic conditions changes. Tracking of habitat takes 

time since plant growth – and thereby movement – is limited. Their tracking abilities can be further 

restricted through short distance dispersal, topography, increased habitat fragmentation or amount of soil 

available for them to grow in at high elevations. This time lag makes it likely that species will persist within 

areas even after they have become unsuitable. This is known as extinction debt, meaning species 

eventually will become extinct from an area due to changes that already have occurred (Kuussaari et al., 

2009). Dullinger et al. (2012) found that almost half of the alpine species that was part of their study were 

likely to occupy areas classified as climatically unsuitable by the end of this century due to the delayed 

response. It is highly likely that the focal species in this study will persist outside areas classified as suitable 

in this study by the year 2070. One reason being the extinction debt within the area, another being that 

the coarse resolution of the models might not capture smaller patches of suitable habitat.  

 

5. Conclusion 
 

The results was produced for setting bounds on the magnitude of expected changes in vegetation in an 

alpine ecosystem of national interest. 

All species in this study was projected to have an upward elevational shift under climate change, which 

leads to a reduction in suitable habitat and increased habitat fragmentation. In addition to having less area 

to occupy, the focal species might experience increased competition from lowland species, increased 

isolation between populations and having larger shares of their suitable habitat outside species optimum. 

The projections was different for the three species, and the high alpine specialist R. glacialis was projected 

to be affected the most of the focal species. This suggests that species currently found at the highest 

elevations are the most vulnerable to climate change. These projections support previous findings that 

alpine species will be negatively affected by the upward elevational shift predicted under climate change.  

At this scale, and in this study area, precipitation was found to be the environmental variable that affected 

the species distributions the most, followed by temperature. This supports previous findings that water 

dynamics is an important driver of distributional changes in alpine habitats along with temperature. The 

expected increase in precipitation and rising temperatures are likely to be the causes of the upward 

elevational shift for the focal species.  

The expected distributional changes will change the alpine vegetation cover as we know it today in 

Jotunheimen, leading to a changed composition of the ecosystem. To further evaluate the performance of 

these projections and to establish whether the models using a random background or the models using a 

target group background are more accurate, sampling of an independent and unbiased data set is needed. 
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7. Appendix 
7.1. Coefficient values 

Poa flexuosa 

Random background Target background 

Variable Feature Coefficient Variable Feature Coefficient 

aspect linear -0,108 aspect linear 0,177 

aspect quadratic -0,228 aspect quadratic -0,199 

aspect reverse hinge -0,516 aspect reverse hinge -0,980 

aspect reverse hinge -1,134 aspect reverse hinge -0,053 

aspect forward hinge 0,136 bio3 linear 0,034 

aspect forward hinge 0,586 bio6 linear 0,000 

aspect forward hinge -0,117 bio6 quadratic 2,093 

bio3 linear 0,000 bio6 forward hinge -0,891 

bio3 quadratic 1,274 bio6 reverse hinge -0,089 

bio6 linear -0,879 bio6 forward hinge -0,205 

bio6 quadratic 5,326 bio19 linear 0,268 

bio6 reverse hinge 0,201 bio19 reverse hinge -0,247 

bio6 reverse hinge -1,317 bio19 reverse hinge -0,793 

bio6 forward hinge -0,070 bio19 reverse hinge -0,222 

bio6 forward hinge 1,107 bio19 reverse hinge -1,084 

bio6 reverse hinge 0,019 bio19 forward hinge -0,023 

bio19 linear 0,513 bio19 forward hinge -0,118 

bio19 reverse hinge -2,262 bio19 reverse hinge -1,568 

bio19 forward hinge -0,488 bio19 reverse hinge -0,215 

bio19 forward hinge -0,963 bio19 forward hinge -0,332 

bio19 forward hinge -0,975 bio19 reverse hinge -0,140 

bio19 reverse hinge -1,390 bio19 forward hinge -0,031 

slope linear 1,705 slope linear 0,235 

slope reverse hinge -0,042 
   

slope reverse hinge -0,104 
   

slope forward hinge -0,979 
   

slope reverse hinge -0,124 
   

slope forward hinge -0,290 
   

slope reverse hinge -0,020 
   

slope forward hinge -0,058 
   

Linear predictor normalizer 6.785 Linear predictor normalizer 2.304 

Table A 1: Coefficient values for P. flexuosa, used for calculating the models predicted value. 
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Ranunculus glacialis 

Random background Target background 

Variable Feature Coefficient Variable Feature Coefficient 

aspect linear 0,043 aspect linear 0,069 

aspect quadratic -0,169 aspect quadratic -0,008 

aspect reverse hinge -0,082 aspect reverse hinge -0,170 

aspect reverse hinge -0,500 aspect forward hinge 0,171 

aspect reverse hinge -0,743 aspect forward hinge 0,052 

aspect forward hinge 0,017 bio3 linear 0,148 

aspect reverse hinge -0,017 bio3 quadratic 0,301 

aspect forward hinge -0,809 bio6 linear 0,000 

aspect reverse hinge 0,059 Bio6 quadratic 0,426 

aspect forward hinge 0,011 bio6 forward hinge -1,509 

aspect forward hinge 0,438 bio6 reverse hinge -0,095 

aspect forward hinge 0,018 bio6 forward hinge -0,147 

aspect reverse hinge 0,040 bio6 forward hinge -0,349 

aspect forward hinge 0,226 bio6 reverse hinge -0,019 

aspect forward hinge 0,018 bio19 linear 0,322 

aspect forward hinge 0,133 bio19 reverse hinge -0,515 

aspect reverse hinge 0,010 bio19 reverse hinge -0,224 

bio3 linear 0,806 bio19 reverse hinge -0,608 

bio3 quadratic 0,356 bio19 reverse hinge -0,228 

bio3 forward hinge -0,071 bio19 reverse hinge -0,163 

bio6 linear -0,887 bio19 reverse hinge -0,481 

bio6 quadratic 3,893 bio19 reverse hinge 1,934 

bio6 reverse hinge -0,271 bio19 reverse hinge 1,042 

bio19 linear 0,000 bio19 reverse hinge -0,357 

bio19 quadratic -0,437 bio19 reverse hinge -0,812 

bio19 reverse hinge -0,632 bio19 reverse hinge -0,088 

bio19 forward hinge -0,651 slope linear 0,000 

bio19 reverse hinge 1,619 slope quadratic -0,063 

bio19 reverse hinge -0,576 slope reverse hinge 0,187 

bio19 reverse hinge 2,136 
   

bio19 reverse hinge -3,071 
   

bio19 forward hinge -0,115 
   

bio19 forward hinge -0,319 
   

bio19 reverse hinge 1,013 
   

bio19 reverse hinge 0,418 
   

slope linear 1,436 
   

slope reverse hinge -0,005 
   

slope reverse hinge 0,409 
   

slope forward hinge -0,296 
   

slope forward hinge -0,173 
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slope reverse hinge 0,054 
   

slope forward hinge -0,179 
   

slope reverse hinge -0,120 
   

slope forward hinge -0,301 
   

slope reverse hinge -0,036 
   

slope reverse hinge 0,036 
   

slope reverse hinge -0,051 
   

slope forward hinge -0,101 
   

Linear predictor normalizer 4.710 Linear predictor normalizer 0.981 

Table A 2: Coefficient values for R. glacialis, used for calculating the models predicted value. 

 

Trisetum spicatum 

Random background Target background 

Variable Feature Coefficient Variable Feature Coefficient 

aspect linear -0,012 aspect linear 0,198 

aspect quadratic -0,165 aspect quadratic 0,009 

aspect reverse hinge 0,080 bio3 linear 0,458 

aspect reverse hinge -0,088 bio3 quadratic 0,077 

aspect reverse hinge 0,035 bio6 linear 0,000 

aspect reverse hinge -0,166 bio6 quadratic 0,458 

aspect forward hinge -0,194 bio6 forward hinge -1,450 

aspect forward hinge 0,053 bio6 forward hinge -1,856 

aspect reverse hinge 0,006 bio19 linear 0,139 

aspect reverse hinge 0,023 bio19 reverse hinge -0,188 

bio3 linear 0,436 bio19 reverse hinge -0,218 

bio3 quadratic 0,466 bio19 reverse hinge -0,537 

bio3 forward hinge 0,289 bio19 reverse hinge -0,760 

bio6 linear 0,000 bio19 reverse hinge -0,067 

bio6 quadratic 1,158 bio19 reverse hinge -0,525 

bio6 forward hinge -3,526 slope linear 0,140 

bio6 reverse hinge -0,219 slope reverse hinge -0,064 

bio6 reverse hinge -0,553 slope forward hinge -0,519 

bio6 reverse hinge 0,427 
   

bio6 reverse hinge 0,265 
   

bio6 forward hinge -0,620 
   

bio19 linear 0,000 
   

bio19 quadratic -0,688 
   

bio19 reverse hinge -0,058 
   

bio19 reverse hinge -0,959 
   

bio19 reverse hinge -0,754 
   

bio19 reverse hinge -0,159 
   

bio19 forward hinge -0,443 
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bio19 forward hinge -1,252 
   

bio19 forward hinge -1,193 
   

bio19 reverse hinge -0,550 
   

bio19 reverse hinge -0,115 
   

bio19 reverse hinge -0,083 
   

slope linear 1,981 
   

slope reverse hinge -0,671 
   

slope reverse hinge -0,024 
   

slope reverse hinge -0,043 
   

slope forward hinge -0,433 
   

slope reverse hinge -0,047 
   

slope forward hinge -0,916 
   

slope forward hinge -0,494 
   

slope reverse hinge -0,050 
   

Linear predictor normalizer 2.574 Linear predictor normalizer 1.154 

Table A 3: Coefficient values for T. spicatum, used for calculating the models predicted value. 

 

 

7.2. Threshold values 
 

Species Model Threshold 

Poa flexuosa 
Random background 2.7093e-05 

Target group background 5.2502e-04 

Ranunculus glacialis 
Random background 3.8354e-05 

Target group background 4.4503e-04 

Trisetum spicatum 
Random background 3.8420e-05 

Target group background 3.6290e-04 

Table A 4: Threshold values used to convert relative occurrences to binary predictions. 
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7.3. Correlation matrix 

 

Figure A 1: The correlation matrix used to eliminate highly correlated variables within the study area. The 
correlation analysis was done using R-studio. 
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7.4.  Edge habitat 

 

Figure A 2: Map showing the current predictions and the future projections under RCP4.5 and RCP8.5 of changes in 
suitable habitat with the estimated edge habitat from the models with a random background. The edge was 
calculated as all habitat within 500 meters from the habitat edge. 
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Figure A 3: Map showing the current predictions and the future projections under RCP4.5 and RCP8.5 of changes in 
suitable habitat with the estimated edge habitat from the models with a target group background. The edge was 
calculated as all habitat within 500 meters from the habitat edge. 

 


