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1. Introduction

The aim of the heavy-ion program at the LHC is to study
strongly interacting matter in ultra-relativistic nuclear collisions
where the formation of a quark-gluon plasma (QGP), a decon-
fined state of quarks and gluons, is expected [1]. Hard partons
that propagate through the collision medium lose energy via (mul-
tiple) scattering and gluon radiation [2,3]. Jet measurements are
used to experimentally explore parton energy loss in the hot and
dense medium. Studies at the LHC and RHIC have shown that jet
and high-pr single particle production in heavy-ion collisions are
suppressed with respect to the expected production in a super-
position of independent pp collisions [4-13]. This observation is
consistent with energy loss, which is further supported by mea-
surements of dijet energy asymmetry and di-hadron angular cor-
relations [14-16].

In non-central Pb-Pb collisions, the initial overlap region of the
colliding nuclei projected into the plane perpendicular to the beam
direction has an approximately elliptic shape. Jets emitted along
the minor axis of the ellipse (defined as the in-plane direction) on
average traverse less medium - and are therefore expected to lose
less energy - than jets that are emitted along the major axis of the
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ellipse (the out-of-plane direction). The dependence of jet produc-
tion on the angle relative to the second-harmonic symmetry plane
W, (the symmetry plane angles W, define the orientations of the
symmetry axes of the initial nucleon distribution of the collision)
can be used to probe the path-length dependence of jet energy
loss. This dependence is quantified by the parameter vgh It the
coefficient of the second term in a Fourier expansion of the az-

imuthal distribution of jets relative to symmetry planes Wy,

dN
d ((/)jet - ‘Ijn)

where @je; denotes the azimuthal angle of the jet.

In central collisions, the average distance that a jet propagates
through the medium is approximately equal in the in-plane and
out-of-plane directions, therefore a small vgh It is expected. In
semi-central collisions the average in-medium distance is shorter,
while the relative difference between the average distances in-
plane and out-of-plane is larger, hence a non-zero vgh s ex-
pected. Fluctuations in the initial distribution of nucleons within
the overlap region can lead to additional contributions to vgh Jet
and higher harmonic coefficients in the Fourier decomposition.

The path-length dependence of parton energy loss is of par-
ticular interest because it is sensitive to the underlying energy-

loss mechanism. For collisional (elastic) energy loss, the amount

o
al—}-Zvaftcos [ (@jec — Wn)], (1)

n=1
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of lost energy depends linearly on path length, while for radia-
tive (inelastic) energy loss, the dependence is quadratic due to
interference effects [17,18]. Some strong-interaction models based
on the AdS/CFT correspondence suggest an even stronger path-
length dependence [19,20]. Earlier studies of the v, of high-pr
single particles have already tested the path-length dependence
of energy loss [21-25]. Comparisons of these results to theoret-
ical calculations have shown that the v, is sensitive to several
aspects of the medium evolution, including the effects of longi-
tudinal and transverse expansion and the life time of the system
until freeze-out [26]. It is therefore important to measure multi-
ple observables that are sensitive to the path-length dependence
of energy loss, such as recoil yields of charged particles and jets
[11,27,28]. Jets are expected to better represent the original parton
kinematics and provide more detailed information on energy loss.
Theoretical predictions from JEWEL, which couples parton shower
evolution to the presence of a QCD medium with a density derived
from Glauber simulations [29,30], have shown that a finite v’'
is expected for non-central collisions at the LHC. Similar results

. jet . . . ..
have been found in vJ2 studies in heavy-ion collisions generated

by the AMPT model [31,32]. A first measurement of v;alo Jet of
jets comprising both charged and neutral fragments has been re-
ported by the ATLAS Collaboration [33]. The results presented in
this paper extend the vgh I measurement to a lower pr range
(pt > 30 GeV/c for central collisions and pt > 20 GeV/c for semi-
central collisions).

In this article, measurements of vgh et of R=0.2 charged jets
reconstructed with the anti-kr jet finder algorithm in Pb-Pb colli-
sions with 0-5% and 30-50% collision centrality are presented. The
largest experimental challenge in jet analyses in heavy-ion colli-
sions is the separation of the jet signal from the background of
mostly low-pr particles from the underlying event and from unre-
lated scatterings that take place in the collision. The jet energy is
corrected on a jet-by-jet basis using an estimate of the background
transverse momentum density which takes into account the domi-
nant flow harmonics v, and v3 of the background event-by-event,
as will be described in Sections 2.1 and 2.2. The coefficient vgh et
is obtained from pr-differential jet yields measured with respect to
the experimentally accessible event plane Wgp, », which is recon-
structed at forward rapidities (2.8 < <5.1 and —3.7<n < —-1.7,

Sec. 2.1). The reported vgh Jet has been corrected back to the az-
imuthal anisotropy with respect to the underlying symmetry plane
W, by applying an event plane resolution correction (Sec. 2.4).
Jets are reconstructed at mid-rapidity (|njec| < 0.7) using charged
constituent tracks with momenta 0.15 < pt < 100 GeV/c, and are
required to contain a charged hadron with pr > 3 GeV/c. The
in-plane and out-of-plane jet spectra are unfolded independently
to take into account detector effects and remaining azimuthally-
dependent fluctuations in the underlying event transverse mo-
mentum density (Sec. 2.3). The jet spectra are corrected back to
particle-level jets consisting of only primary charged particles from
the collision.

2. Experimental setup and data analysis

ALICE is a dedicated heavy-ion experiment at the LHC at CERN.
A full overview of the detector layout and performance can be
found in [34,35]. The central barrel detector system, covering full
azimuth, is positioned in a solenoidal magnet with a field strength
of 0.5 T. It comprises the Inner Tracking System (ITS) built from six
layers of silicon detectors (the Silicon Pixel, Drift, and Strip Detec-
tors: SPD, SDD and SSD) and a Time Projection Chamber (TPC). The
two inner layers of the ITS, which comprise the SPD, are located at
3.9 and 7.2 cm radial distance from the beam axis.

The data presented in this paper were recorded in the Pb-
Pb data taking periods in 2010 and 2011 at /sy = 2.76 TeV,
using a minimum-bias trigger (2010) or an online centrality trig-
ger for hadronic interactions (2011), which requires a minimum
multiplicity in both the VOA and VOC detectors (discs of seg-
mented scintillators covering full azimuth and 2.8 <7 < 5.1 and
—3.7 < n < —1.7, respectively). The VO detectors are used to de-
termine event centrality based on the energy deposition in the
scintillator tiles [36] and the event plane orientation, see Sec. 2.1.
Centrality, determined from the sum of the VO amplitudes, is ex-
pressed as percentiles of the total hadronic cross section, with
0-5% referring to the most central (largest multiplicity) events
[36]. The trigger is fully efficient in azimuth in the presented cen-
trality ranges. Centrality estimation using the VO system does not
bias the Wgp, , determination [37]. Time information from the VO
detectors is used to reject beam-gas interactions from the event
sample and the remaining contribution of such interactions is neg-
ligible. Only events with a primary vertex position within 10 cm
along the beam direction from the nominal interaction point were
used in the analysis. A total of 6.8 x 108 events with 0-5% central-
ity and 8.6 x 10° events with 30-50% centrality, corresponding to
integrated luminosities of 18 and 5.6 ub~!, respectively, are used
in this analysis.

Charged particle tracks in this analysis are measured by the ITS
and TPC and are selected in a pseudorapidity range |n| < 0.9 with
transverse momenta 0.15 < pr < 100 GeV/c. To ensure a good mo-
mentum resolution, tracks were required to have at least three hits
per track in the ITS. Since the SPD acceptance is non-uniform in
azimuth for the data sample used in this analysis, two classes of
tracks are used. The first class requires at least three hits per track
in the ITS, with at least one hit per track in the SPD. The second
class contains tracks without hits in the SPD, in which case the
primary interaction vertex is used as an additional constraint for
the momentum determination. For each track, the expected num-
ber of TPC space points is calculated based on its trajectory; tracks
are accepted if they have at least 80% of the expected TPC space-
points, with a minimum of 70 TPC points. Tracks produced from
interactions between particles and the detector, as well as tracks
originating from weak decays (‘secondary tracks’) are rejected. The
contribution of secondary tracks to the track sample is less than
10% for tracks with pt <1 GeV/c and negligible for tracks with
higher transverse momentum.

2.1. Event plane determination
The coefficient v§" ' quantifies azimuthal anisotropy with re-
spect to W,. The azimuthal anisotropy of the underlying event
(‘background flow’) is also described by a Fourier series with har-
monics v, = (cos(n[gp — ¥,])) [38,39] where ¢ denotes the track
azimuthal angle. However, since the initial distribution of nucleons
is not accessible experimentally, the event plane angles Wgp, p, i.e.
the axes of symmetry of the density of outgoing particles in the
transverse plane, are used in place of ¥, when measuring véh Jet
and vy,

The event plane angles Wgp, » and Wgp, 3 in this study, cor-
responding to the two dominant Fourier harmonics, are recon-
structed using the VO detectors. Each VO array consists of four
rings in the radial direction, with each ring comprising eight cells
with the same azimuthal size. The calibrated amplitude of the sig-
nal in each cell, proportional to the multiplicity incident on the
cell, is used as a weight Wy in the construction of the flow vec-
tors Qp [40]

Qn= Z Weell €XP (i 1 @cel) - (2)

cells
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In order to account for a non-uniform detector response which can
generate a bias in the Wgp , azimuthal distribution, the compo-
nents of the Q,-vectors are adjusted using a re-centering proce-
dure [41,42]. The VOA and VOC detectors cover different 7 regions
in which multiplicity N and background flow v, may differ. The
total VO Q -vector is therefore constructed using weights x, [40]
that are approximately proportional to the event plane resolution
in each detector,

Qn,vo = X%VOA Qn,voa + Xr%,VOC Qn,voc, (3)

to achieve the optimal combined event plane resolution. The event
planes are reconstructed from the real and imaginary parts of Qj
as

Wep, , = arctan <§;£Z:]]) /n. (4)

The vgh Je jtself is measured with respect to the second har-
monic event plane angle. It is corrected for the finite precision
with which the true symmetry plane is measured in the VO system
by applying an event plane resolution correction, see Sec. 2.4.

2.2. Jet reconstruction in the presence of background flow

Jet finding is performed using the FastJet [43,44]| implementa-
tion of the infrared and collinear safe kr and anti-kt sequential
recombination algorithms using the pt recombination scheme and
taking massless jet constituents. The resolution parameter R = 0.2
determines the characteristic maximum distance of constituent
tracks to the jet axis in the n-¢ plane.

In heavy-ion collisions, a large combinatorial background is
present from particles that are not related to the hard scattering
that produced a given jet. This background is subtracted from each
jet on an event-by-event basis. The anti-ky algorithm is used to
find signal jets. A fiducial cut of [njec] < 0.7 is applied on the sig-
nal jets to ensure that all jets are fully contained within the ITS
and TPC acceptances and edge effects are avoided. The contribu-
tion of combinatorial (or ‘fake’) jets (clustered underlying event
energy) to the measured jet spectrum is reduced by requiring
that reconstructed jets contain at least one charged particle with
pr > 3 GeV/c and have an area of at least 0.56 m R2. These selec-
tion criteria leave the hard part of the jet spectrum unaltered while
significantly reducing the number of combinatorial jets which sta-
bilizes the unfolding procedure [4,5,45].

The kr-algorithm is used to estimate the average transverse
momentum density of the underlying event, (o), on an event-by-
event basis. The quantity (pc,) is the median of the distribution of
p?‘é‘fljet/A (the ratio of transverse momentum to jet area) of recon-
structed R = 0.2 kr-jets, excluding the leading two jets from the
sample as proposed in [46] and implemented in earlier ALICE jet
studies [4,5,45]. The kr jets are required to lie within |7je| < 0.7
and have an area A > 0.01. The jet area A is determined by em-
bedding a fixed number of near zero-momentum ghost particles
per event prior to jet finding; the number of ghost particles in
each reconstructed jet then gives a direct measure of the jet area.
A ghost density of 200 particles per unit area is used, so that ap-
proximately 25 ghost particles are clustered into a jet with a radius
of 0.2.

In each event, the anisotropy of the underlying event is mod-
eled using the dominant [47] flow harmonics v, and vs,

Pen(@) = po(1+2{vacos[2 (¢ — Wep, 2)]
+ v3cos[3 (¢ — Wep, 3)]})- (5)
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Fig. 1. Transverse momentum density of charged tracks as a function of azimuthal
angle for a single event from the most central 0-5% event class. Data points (blue)
are given with statistical uncertainties only. The red curve is the fit of Eq. (5) to
the distribution, the green and gray curves, obtained from the fit of Eq. (5) as well,
show the independent contributions of v, and v3 to pch(¢). The dashed magenta
line is the normalization constant pg. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Here, pcn (@) is the azimuthal distribution of summed track pt for
tracks with 0.15 < pr <5 GeV/c and |nyack| < 0.9. The parame-
ters pp and v, are determined event-by-event from a fit of the
right side of Eq. (5) to the data. The event plane angles Wgp,
are not fitted, but fixed to the VO event plane angles. A single
event example of this procedure is illustrated in Fig. 1, where the
data points represent the transverse momentum density distribu-
tion in a single event, the red curve represents the full functional
description of pch(¢) (Eq. (5)), the green and gray curves give the
contributions of the separate harmonics v, and v3, and the dashed
magenta line is the normalization constant pg. To reduce the bias
of hard jets in the estimates of v, in Eq. (5) while retaining az-
imuthal uniformity, the leading jet in each event is removed by
rejecting all tracks for which [njec — Wtrack| < R. The 7 separation
between the tracks and the VO detectors also removes short range
correlations between the event planes and tracks.

The number of bins to which Eq. (5) is fitted is set on an event-
by-event basis to the square root of the number of tracks. The fit
maximizes the estimated likelihood [48], which is based on a Pois-
son distribution for the bin content. Since the bin contents are
not pure counts, but weighted by pr, the statistical uncertainties
on each bin o; are estimated as the sum of the squares of the
pr of the individual particles: o; = o (}_pr) = \/Zp%. A scaled
Poisson distribution P(x;/w;i|lmu;/w;) is used as the probability
distribution for the data points in the likelihood calculation, with
a scale factor w; = ol.z/yl- where y; is the bin content and wu;
is the expected signal from the fit function. The compatibility of
each fit with the data is tested by calculating the x2 and eval-
uating the probability of finding a test statistic at least as large
as the observed one in the x?2 distribution. When this probabil-
ity is less than 0.01, the average event background density (och)
is used instead of pch(@); this occurs in 3% (most central) to 7%
(semi-central) of events. The acceptance criterion is varied in the
systematic studies; the sensitivity to it is small.

The corrected transverse momentum p%hjet of a jet of area A is
calculated from the measured raw jet momentum, p%“é‘f}jet, as

chjet raw

Pt = PT.chjet — Pch local A (6)

where pch 1ocal 1S obtained from integration of pcn(@) around
§0jetiR



514 ALICE Collaboration / Physics Letters B 753 (2016) 511-525

8 p,(,)) (GeV/c)

ALICE 30-50% Pb-Pb VENN =276 TeV 10
(a) pT, wrack 0.15 GeVie, |n(rack|<o'9
_20 11 - ‘ L - L ‘ L - L ‘ - - ‘ L - L ‘ L - L l 1 1
0 0.5 1 1.5 2 2.5 3
e Yer2

RC

10°
T 20
> 5
3 10
=
5 10 10
ZI—
(2=}

10°

10?

10 ™= = =
ALICE 30-50% Pb-Pb Vs, =2.76 TeV 10
(o) Pr ek > 0.15 GeV/e, |n"ack|<0.9
ool v v b b b e e b e b By 1
0 0.5 1 1.5 2 25 3
9pc” Yer2

Fig. 2. The §pr distribution (Eq. (8)) from the random cone (RC) procedure as function of cone azimuthal angle grc relative to the event plane. In panel (a) the azimuthally-
averaged background (o) has been subtracted; in panel (b) the azimuthally dependent pc,(¢) from an event-by-event fit of the pr-density with Eq. (5). The solid black

line represents the mean of the §pr distribution.

@+R
Pch local = ;);_c;()) / Pen(@)de. (7)
»—R

The pre-factor of the integral, éﬁ‘/‘;g, is chosen such that integration
over the full azimuth yields the average transverse momentum
density (ocn). The validity of Eq. (5) as a description of the contri-
bution of background flow to the underlying event energy is tested
by placing cones of radius R = 0.2 at random positions (excluding
the location of the leading jet) in the n-¢ plane and subtracting
the expected summed transverse momentum in a cone from the
measured transverse momentum in the cone,

Spr= ZP%‘HCI{S _ anZ. (8)

Here, p is the expected transverse momentum density. This pro-
cedure is repeated multiple times per event, until the full phase
space is covered, to obtain a distribution of §pt values. The Spt
distribution as a function of the cone azimuthal angle ggc relative
to the event plane Wgp, > is shown in Fig. 2. In panel (a) (o) has
been used for the estimation of the underlying event summed pr
and in panel (b) pch(¢). Incorporating azimuthal dependence into
the underlying event description leads to a sizable reduction in the
cosine modulation of the §pt distribution.

The effectiveness of the subtraction of background flow is quan-
tified by comparing the expected and measured widths of the
Spt distribution in the absence of background flow, o (8 p¥“=0) (see
Fig. 2(b)) to the expected and measured widths of the §pr dis-
tribution in the presence of background flow, o (§ p¥") (Fig. 2(a)).
Assuming independent particle emission and Poissonian statistics,
the expected width of the §pt distribution in the absence of back-
ground flow (v, = 0) is given by [45]

o (8pY"=°) = \/NaG2(p) + Na (pr)? 9)

where N4 is the average expected number of tracks within a cone,
(pr) is the mean pt of a single particle spectrum and o (pr) is
the standard deviation of this spectrum. This expectation can be
extended to include contributions from background flow by intro-
ducing non-Poissonian density fluctuations (the background flow
harmonics v;) [45], as

o 6Py = Nac2(pr) + (N4 +2NA (V3 +v3)(pr2.  (10)
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Fig. 3. Centrality dependence of the measured and expected relative change in the
§pr distribution width from using the azimuthally dependent p¢j, 1ocal instead of the
median (pch). The blue points give the expected reduction from simple assumptions
about the behavior of charged particle spectra and flow harmonics v, (following
Egs. (9) and (10)). The red points use the measured widths from dp distributions
directly. Statistical uncertainties are smaller than the marker size. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

The measured widths are obtained from the §pt distributions
directly; the distributions are constructed using as the transverse
momentum density p in Eq. (8) either (pq,) to obtain cr(8p¥”) or

=0
Peh local for o (8pg" ).
Fig. 3 shows the expected and measured relative change in

the width of the é&pt distribution, quantified as (U(Sp%") —

G(Sp‘T”'ZO))/cI (8p¥”), as function of collision centrality. The blue
points give the expected reduction from Eqgs. (9) and (10). The
red points use the measured widths from §pt distributions. The
expected change is in good quantitative agreement with the mea-
sured change over the entire centrality range, indicating that the
width of the §pr distributions can be understood in terms of a
simple independent particle emission model with background flow
contributions.

The background subtraction, unfolding, and correction for the
reaction plane resolution as described in Sections 2.3 and 2.4 were
also validated using events consisting of PYTHIA jets embedded
in heavy-ion background events and toy model events. In the first
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study, full PYTHIA pp events were combined with reconstructed
Pb-Pb collisions to create events with a controlled signal and back-
ground. The signal jets from PYTHIA have no preferred orientation,
vgh Jet — 0, while the heavy-ion events have a non-zero v; of the
soft particles. Jets found in the events were matched to the em-
bedded PYTHIA jets and the analysis was carried out with matched
jets only. After unfolding, the vgh 1 was compatible with 0, as ex-
pected. The other study was based on events generated using a
simple thermal model for soft particle production and a distribu-
tion of high-pr particles that resembles the jet spectrum, as sug-
gested in [49]. A non-zero v = 0.07 was introduced for momenta
pr <5 GeV/c to model the background flow and two variations at
large pr > 30 GeV/c: v; =0 or v, =0.05. In both cases, the input
flow values were correctly reconstructed by the analysis.

2.3. Unfolding

After the subtraction procedure presented in the previous sec-
tion, the measured jet spectrum is unfolded [50,51] to correct for
detector effects and fluctuations in the underlying event transverse
momentum density. Mathematically, the unfolded jet spectrum can
be derived from the measured spectrum by solving

M(PT chet)

_ rec gen gen gen gen

- / G(pT,chjet’ pT,chjet)T(pT,chjet)g(pT,chjet)de,chjet (11 )
for T(p.%.?cnhjet), the unfolded true jet spectrum, where M(pr’ge,) is

the measured jet spectrum, G(pfg e p%e?hjet) is a functional de-
scription (response function) of distortions due to background fluc-
tuations and detector response, and e(pge:hjet) is the jet finding

efficiency. The coefficient vgh ¥ s not affected by the efficiency,

hence s(pge?hjet) will be omitted from here on. Since the measured
jet spectrum is binned, Eq. (11) is discretized by replacing the in-

tegral by a matrix multiplication

Mm=Gm’t'T; (]2)

where Ty is the solution of the discretized equation (the prime
indicates that T; is not corrected for jet-finding efficiency). The
combined response matrix Gm is the product of the response
matrices from detector effects and transverse momentum density
fluctuations, the latter of which are constructed independently for
the in-plane and out-of-plane spectra by embedding random cones
at specific relative azimuth with respect to the event plane (see the
text below Eq. (13) for the definition of the intervals).

The detector response matrix is obtained by matching pp jets
generated by PYTHIA [52] (‘particle-level’ jets) to the same jets af-
ter transport through the detector (‘detector-level’ jets) by GEANT3
[53], where the detector conditions are tuned to those of the
Pb-Pb data-taking periods. Particle-level jets contain only primary
charged particles produced by the event generator, which comprise
all prompt charged particles produced in the collision, as well as
products of strong and electromagnetic decays, while products of
weak decays of strange hadrons are rejected. Matching is based on
the shortest distance in the n-¢ plane between detector level and
particle level jets and is bijective, meaning that there is a one-to-
one correspondence between detector and particle level jets. The
response matrix for background fluctuations is constructed from
the §pt distributions, which, when normalized, are probability dis-
tributions for the change of the jet energy caused by background
fluctuations.

Solving Eq. (12) requires inversion of Gp ¢ and generally leads
to non-physical results which oscillate wildly due to the statis-

tical fluctuations of the measured jet yield. The unfolded solu-
tion therefore needs to be regularized. In general this is done
by introducing a penalty term for large local curvatures associ-
ated with oscillations. Various algorithms for regularized unfolding
exist; the unfolding method based on the Singular Value Decom-
position (SVD unfolding) [54] is used in this study. A comparison
to the unfolded solution from x2 minimization [55] is used in the
systematic studies.

The measured jet spectrum is taken as input for the unfold-

ing routine in the range 30 < p%hjet <105 GeV/c for 0-5% collision

centrality and 15 < p%hjet <90 GeV/c for 30-50% collision central-
ity. The lower bound corresponds to five times the width of the
8 pt distribution, the upper bound is the edge of the last measured
bin which contains at least 10 counts. This configuration was found
to lead to reliable unfolded solutions in Monte Carlo studies [4,49].
The unfolded jet spectrum starts at 0 GeV/c to allow for feed-in
of true jets with low p%hjet. In addition, combinatorial jets which
are not rejected by the jet area and leading charged particle re-
quirements are migrated to momenta lower than the minimum
measured p%hjet. The unfolded solution ranges up to 200 GeV/c
(0-5%) and 170 GeV/c (30-50%) to allow for migration of jets to
a p%hjet higher than the maximum measured momentum. As the
data points of the unfolded solution are strongly correlated for
p%hjet outside the experimentally measured interval, vgh e will be
reported only within the limits of the measured jet spectra.

2.4. Evaluation of vgh Jet

The coefficient vgh Jt js calculated from the difference between

the unfolded pr-differential jet yields in-plane (Nj,) and out-of-
plane (Noyt) with respect to the second harmonic event plane,
corrected for event plane resolution,

hj hj
7 1 Nin(pr™™) = Nour(pr™)

vch jet(pchjet) _
2 T - hi hi
4 Z2 Nin(p7") + Nowt (p7)

) (13)

Eq. (13) is derived by integrating Eq. (1) for n = 2, over inter-
vals [-Z,Z] and [37”57”] for Nj, and [%37”} and [57”77”]
for Nout, substituting Wgp, » for W,. Eq. (13) is sensitive to corre-
lations between even-order harmonics vy, and Wgp, . As a result
of the integration limits however, the first harmonic of the Fourier
expansion that can contribute to the observed vS" ™ is v&" I, The
VO event plane resolution %> is introduced to account for the fi-
nite precision with which the true symmetry plane W, is measured
in the VO system and is defined as

g8 = (cos [2 (W, - w2 ]). (14)

Measuring event planes in multiple 7 regions (sub-events) allows
for the evaluation of the resolution directly from data [56,57]. Us-
ing the full VO detector and negative and positive 1 sides of the
TPC as sub-events, the resolution in Eq. (13) is evaluated as

Gy =
Vo TPC, >0 Vo TPC, <0 1/2
(cos [2 (iR 5 — wany"™") ) (cos [2 (wiR > — wary"™")])

TPC, >0 TPC, <0
(cos [2 (w5 - wery"™) )

(15)

The event plane resolution %, is found to be 0.47 in 0-5% cen-
trality and 0.75 in 30-50% centrality with negligible uncertainties.
The Wgp, » angles in the TPC are obtained following the procedure
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of Eq. (4) on tracks with 0.15 < pr < 4 GeV/c, using unit track
weights in the construction of the flow vectors Q; (see Eq. (2)).

Using the VO detectors for the reconstruction of the event plane
guarantees that the jet axis and event plane information are sepa-
rated in pseudorapidity by |A7n| > 1 and thus removes autocorre-
lation biases between the signal jets and event plane orientation.
The possible non-flow correlation between the event plane angle
and jets due to di-jets with one jet at mid-rapidity and one jet in
the VO acceptance was studied using the PYTHIA event generator.
The rate of such di-jet configurations was found to be negligible
(less than 1 per mille of the total di-jet rate at mid-rapidity) for
p%hjﬁ > 20 GeV. Possible effects from back-to-back jet pairs with a
jet in each of the VO detectors are even smaller.

2.5. Systematic uncertainties
The measured vgh Jet is corrected for experimental effects, such
as the finite event plane resolution and detector effects on the jet
energy scale as well as the effects of the uncorrelated background
and its fluctuations using the corrections outlined in the Sec-
tions 2.1-2.4. Hydrodynamic flow of the background is taken into
account event-by-event in the underlying event description, resid-
ual effects are removed by azimuthally dependent unfolding. The
remaining uncertainties in these correction procedures are treated
as systematic uncertainties. Systematic uncertainties on vgh It are
grouped into two categories, shape and correlated, based on their
point-to-point correlation. Shape uncertainties are anti-correlated
between parts of the unfolded spectrum: when the yield in part of
the spectrum increases, it decreases elsewhere and vice versa. Cor-
related uncertainties are correlated point-to-point. Both types of
uncertainties however have contributions which lead to correlated
changes of Nj, and Noy.

Correlated uncertainties are estimated for the in-plane and out-
of-plane jet spectra independently. Two sources of correlated un-
certainties are considered: tracking efficiency and the inclusion
of combinatorial jets in the measured jet spectrum. The domi-
nant correlated uncertainty (< 10%) arises from tracking and is
estimated by constructing a detector response matrix with a track-
ing efficiency reduced by 4% (motivated by studies [4] comparing
reconstructed tracks to simulations of HIJING [58] events). The
observed difference between the nominal and modified unfolded
solution is taken as a symmetric uncertainty to allow for an over-
and underestimation of the tracking efficiency. The sensitivity of
the unfolded result to combinatorial jets is tested by changing the
lower range of the unfolded solution from 0 to 5 GeV/c, which
leads to an overall (correlated) increase of the unfolded jet yield.
Both correlated uncertainties are added in quadrature and prop-

agated to vgh Jet assuming that variations are strongly correlated
between the in-plane and out-of-plane jet spectra, while still al-
lowing for effects from azimuthally-dependent variations in track
occupancy and reconstruction efficiency, by setting the sample cor-
relation coefficient p = 0; j/(0i0}) to 0.75.

Shape uncertainties fall into three categories: assumptions in
the unfolding procedure, feed-in of combinatorial jets, and the
sensitivity of the unfolded solution to the shape of the underly-
ing event energy distribution. The dominant contribution to the
unfolding uncertainty is related to the regularization of the un-
folded solution. The SVD algorithm [54] regularizes the unfolding
by omitting components of the measured spectrum for which the
singular value is small and which amplify statistical noise in the
result. To explore the sensitivity of the result to the regularization
strength, the effective rank of the matrix equation that is solved
is varied by changing an integer regularization parameter k by +1.
The SVD unfolding algorithm uses a prior spectrum as the start-
ing point of the unfolding; the result of the unfolding is the ratio

between the full spectrum and this prior. The unfolded solution
from the x2 algorithm [55] is used as prior (default) as well as a
PYTHIA spectrum. The bias from the choice of unfolding algorithm
itself is tested by comparing the results of the SVD unfolding and
the x2 algorithm.

The same nominal unfolding approach is used for the in-plane
and out-of-plane jet spectra and the d§pr distributions for the
in-plane and out-of-plane background fluctuations are similar in
width; the unfolding uncertainty is therefore strongly correlated
between the in-plane and out-of-plane jet spectra. These corre-
lations are taken into account by applying the variations in the
unfolding procedure to the in-plane and out-of-plane jet spectra
at the same time and calculating the resulting variations of vgh Jet,
The total uncertainty from unfolding is determined by constructing
a distribution of all unfolded solutions in each p%hjet interval and
assigning the width of this distribution as a systematic uncertainty.

The other two components of the shape uncertainty are the
sensitivity of the unfolded solution to combinatorial jets and un-
certainties arising from the description of the underlying event;
both are estimated on the in-plane and out-of-plane jet spectra
independently and propagated to vgh Jet a5 uncorrelated. A system-
atic uncertainty is only assigned when the observed variation is
found to be statistically incompatible with the nominal measure-
ment. The effect of combinatorial jets is tested by varying the min-

imum p%hjer of the measured jet spectrum by +5 GeV/c, effectively
increasing or decreasing the possible contribution of combinatorial
jet yield at low jet momentum. To test the assumptions made in
the fitting of Eq. (5) the maximum pt of accepted tracks is low-
ered to 4 GeV/c. Additionally, the minimum p-value that is used
as a goodness of fit criterion is changed from 0.01 (the nominal
value) to 0.1. The minimum required distance of tracks to the lead-
ing jet axis in pseudorapidity is enlarged to 0.3.

Table 1 gives an overview of the systematic uncertainties in
terms of absolute uncertainties on vgh Jt for all sources (where
the total uncertainty is the quadratic sum of the separate compo-
nents). High statistics Monte Carlo testing has been used to verify
that uncertainties labeled ‘« stat’ are indeed negligible compared
to other uncertainties.

3. Results and discussion
The coefficients vgh Jet 3s function of p%hjet for 0-5% and
30-50% collision centrality are presented in Fig. 4. Significant pos-
itive v5" * is observed in semi-central collisions and no (signifi-
cant) pt dependence is visible. The observed behavior is indicative
of path-length-dependent in-medium parton energy loss. The ob-
served vgh J in central collisions is of similar magnitude. The
systematic uncertainties on the measurement however are larger

than those on the semi-central vgh et data, in particular at lower

p%hjﬂ, as a result of the larger relative background contribution to

the measured jet energy.

The significance of the results is assessed by calculating a
p-value for the hypothesis that vgh Jet — 0 over the presented mo-
mentum range. The p-value is evaluated starting from a modified
x2 calculation that takes into account both statistical and (corre-
lated) systematic uncertainties, as suggested in [59]. The modified

x 2 for the hypothesis vgh Jet _ 1 is calculated by minimizing

n 2
-2 (v2,i + EcorrOcorr,i + Eshape — i)
X (€corrs Eshape) = E >

i—1 i
2
1<, € h
2 shape
+ Ecorr T 2 : 2 (]6)
n“ o .
i=1 ~shape,i
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Table 1 _
Systematic uncertainties on v5"

for various transverse momenta and centralities. Uncertainties in central and semi-central collisions are given in the same pt ranges. The

definitions of shape uncertainty and correlated uncertainty are explained in Sec. 2.5. Fields with the value ‘« stat’ indicate that no systematic effect can be resolved within

the statistical limits of the analysis.

phet (Gevje) Uncertainty on v§'
30-40 60-70 80-90 30-40 60-70 80-90
Centrality (%) 0-5 30-50
Shape Unfolding 0.017 0.012 0.016 0.016 0.011 0.015
pMe_measured 0.013 < stat < stat 0.024 <« stat < stat
Peh () fit 0.015 < stat 0.016 « stat « stat < stat
Total 0.027 0.012 0.023 0.029 0.011 0.015
Correlated Tracking 0.009 0.009 0.009 0.007 0.007 0.007
p§"*-unfolded < stat < stat < stat <« stat « stat <« stat
Total 0.009 0.009 0.009 0.007 0.007 0.007
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Fig. 4. Second-order harmonic coefficient v} hiet

as a function of p;

20 30 40 50 60 70 80 20 100
p;“ ®(GeV/c)

for 0-5% (a) and 30-50% (b) collision centrality. The error bars on the points represent statistical

uncertainties, the open and shaded boxes indicate the shape and correlated uncertainties (as explained in Sec. 2.5).

with respect to the systematic shifts &shape, £corr,» Where vy ; rep-
resent the measured data (n points), o; are statistical uncertainties
and Oshape,i» Ocorr,i denote the two specific types of systematic un-
certainties. The parameter &cor is @ measure of the fully correlated
shifts; a shift of all data points by the correlated uncertainty ocorr,i
gives a total contribution to ¥2 of one unit. The systematic shifts
for the shape uncertainty are taken to be of equal size for each
point, since this gives the best agreement with the vgh -
hypothesis and thus provides a conservative estimate of the sig-
nificance; the penalty factor is constructed such that an average
shift of all data points by Oshape adds one unit to 2.

The p-value itself is calculated using the x?2 distribution with
n — 2 degrees of freedom. For semi-central collisions a p-value
of 0.0009 is found, indicating significant positive vgh Je 1t should
be noted that the most significant data points are at p%hm <
60 GeV/c; the results in the range 60 < p%hjer < 100 GeV/c are
compatible with vgh _0 (p-value 0.02). In central collisions,
a p-value with respect to the hypothesis of vgh It =0 of 0.12 is
found which indicates that vS" %" is compatible with 0 within two
standard deviations. Following the same approach an upper limit

of vgh Jet _ 0,088 is found within the same confidence interval.

3.1. Comparison to previous measurements and model predictions

To get a better qualitative understanding of the results, the v,

of single charged particles v5*" [21,22] and the ATLAS vgalo jet

measurement [33] are shown together with the vgh Jet measure-

ment in Fig. 5. The ATLAS result is for jets with resolution param-
eter R = 0.2 within |n| < 2.1 comprising both charged and neu-
tral fragments. The event plane angle is measured by the forward
calorimeter system at 3.2 < |n| < 4.9. Jets are reconstructed by ap-
plying the anti-ky algorithm to calorimeter towers, after which, in
an iterative procedure, a flow-modulated underlying event energy
is subtracted. Each jet is required to lie within /An2 + A@2 < 0.2
of either a calorimeter cluster of pr > 9 GeV/c or a pr > 10 GeV/c
track jet with resolution parameter R = 0.4 built from constituent
tracks of pr > 4 GeV/c (the full reconstruction procedure can be
found in [33,60]).

It is important to realize that the energy scales of the ATLAS
vgalo Jet 3nd ALICE vgh J®t measurements are different (as the ALICE
jets do not include neutral fragments) which complicates a direct
comparison between the two measurements. The central ATLAS re-
sults are also reported in 5-10% collision centrality. The ALICE and
ATLAS measurements are in qualitative agreement, both indicating
path-length-dependent parton energy loss. Given the uncertainties,
the difference in the central values of the measurement is not sig-
nificant.

Fig. 5 also shows the v, of single charged particles vgm (from
[21,22]), which is expected to be mostly caused by in-medium en-
ergy loss at intermediate and high momenta (pt 2 5 GeV/c). Even
though a direct quantitative comparison between vgh ¥ and vh
cannot be made as the energy scales for jets and single particles
are different, the measurements can be compared qualitatively, and
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Fig. 5. Elliptic flow coefficient v, of charged particles [21,22] (red, green) and R = 0.2 full jets (comprising both charged and neutral fragments) measured within |n| < 2.1

[33] (blue) superimposed on the results from the current analysis of R = 0.2 charged jets v

gh ¢ In all measurements, statistical errors are represented by bars and systematic

uncertainties by shaded or open boxes. Note that the same parton pr corresponds to different single particle, full jet and charged jet pr. ATLAS vgak’ e and CMS vy from
[22,33] in 30-50% centrality are the weighted arithmetic means of measurements in 10% centrality intervals using the inverse square of statistical uncertainties as weights.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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it can be seen that for central events, the single particle vgart and

vgh Jet are of similar magnitude and only weakly dependent on pr
over a large range of pr (& 20-50 GeV/c). For non-central colli-
sions (30-50%), the measurements of v, for single particles and
jets are also in qualitative agreement in the pr range where the
uncertainties allow for a comparison.

Fig. 6 shows the vgh It of R =0.2 charged jets from the JEWEL

Monte Carlo [29,30] compared to the measured vgh J€t JEWEL sim-
ulates parton shower evolution in the presence of a dense QCD
medium by generating hard scatterings according to a collision
geometry from a Glauber [61] density profile. A 1D Bjorken expan-
sion is used to simulate the time evolution of the medium. After
radiative and collisional energy loss, PYTHIA is used to hadronize
the fragments to final state particles.

The analysis on the JEWEL events is performed with the same
jet definition and acceptance criteria that are used for the vgh Jet
analysis in data, using the symmetry plane ¥, from the simulated
initial geometry as Wgp, . The JEWEL Monte Carlo shows finite

significant vgh It in semi-central collisions; in central collisions

vgh Jet i compatible with zero. The JEWEL result for semi-central

30-50% collisions is compatible with the measured values (p-value
0.4 using Eq. (16) with the JEWEL results as hypothesis w; and
the quadratic sum of the statistical uncertainties of both datasets
as o; in the denominator of the first sum of Eq. (16)). In central

JEWEL collisions vgh Jet is consistent with zero, while the mea-

sured values are compatible with the JEWEL vgh Jt \ithin two

standard deviations. It should also be noted that JEWEL currently
uses an optical Glauber model for the initial state and therefore
does not include fluctuations in the participant distribution due to
the spatial configuration of nuclei in the nucleus. This simplified

treatment of the overlap geometry may underestimate the vgh et

[38,62]. This comparison of vgh Jt in JEWEL to experimental data
complements earlier studies of the path-length-dependent parton

energy loss and model predictions for the jet Raa [5].
4. Conclusion

The azimuthal anisotropy of R = 0.2 charged jet production,
quantified as vgh Jet has been presented in central and semi-
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central collisions. Significant positive vgh It js observed in semi-
central collisions, which indicates that jet suppression is sensitive
to the initial geometry of the overlap region of the collision. This
observation can be used to constrain predictions of the path-length
dependence of in-medium parton energy loss. In central collisions,
the central values of the measurement are positive, but the uncer-
taihnties preclude drawing a strong conclusion on the magnitude of
ch jet
vy, T

The measured vgh et for charged jets is also compared to sin-

gle particle v, from ALICE and CMS and vgalo I from ATLAS. The
measurements cannot be directly compared quantitatively since
the energy scales are different, but qualitatively, the results agree
and indicate a positive v, for both charged particles and jets to
high pr in central and semi-central collisions. This observation in-
dicates that parton energy loss is large and that the sensitivity to
the collision geometry persists up to high transverse momenta.

The JEWEL Monte Carlo predicts sizable vgh ¥ for semi-central

collisions and very small to zero vgh It in central events. These
predictions are in good agreement with the semi-central measure-
ment. For central collisions, the JEWEL prediction is below the
measurement, but more data would be needed to reduce the un-
certainties on the measurement sufficiently to constrain the model.
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