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Abstract

ALICE Collaboration at CERN is planning major upgrade of the Time Projection Cham-

ber Detector to cope with an increase of frequency and energy of particle collisions after

2020. The first phase of this thesis involves contributing to the design of new hardware to

be installed on the detector by developing a computer model of the readout electronics.

The important part of the readout electronics is CRU – Common Readout Unit module,

which controls the readout process, and prepares data before sending them out to further

parts of the readout chain.

The computer simulation was used to compare performance of several proposed im-

plementations of CRU. Data readout was simulated with different input scenarios to

estimate buffer size required by CRU. Obtained results present an important input for

further improvement of the detector performance.
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Chapter 1

Introduction

1.1 Background

A Large Ion Collider Experiment (ALICE) hosted at CERN, the European Laboratory

for Nuclear Research, is devoted to analyse the outcome produced in collisions between

heavy ions. Heavy-ion collisions make it possible to achieve pressure and temperature

conditions corresponding to the origin of the universe shortly after the Big Bang.

Measuring the results of these collisions requires a large detector. The ALICE exper-

iment is one of the four main experiments on the Large Hadron Collider (LHC) ring.

It is specially designed to study the physics of strongly interacting matter at extreme

energy densities, where a phase of matter called quark-gluon plasma forms. The ALICE

detector is essentially composed of a variety of subdetectors that measure the different

properties of the collision. One of these subdetectors is a Time Projection Chamber

(TPC) detector. The TPC detector is a 5 metre diameter cylindrical chamber consist-

ing of a gas-filled detection volume in an electric field with almost 600 000 channels

distributed over two endplates. To read out data from each of these channels, sophisti-

cated readout electronics are required. Currently FPGA based systems with embedded

Linux are used to monitor and control the read out of data. This system is called a

Readout Control Unit (RCU), and TPC detector has a total of 216 such cards.

After a successful run in 2009 - 2013, the Large Hadron Collider (LHC) at CERN has

been shut down for maintenance and upgrades. Physicists and engineers have used this

break to carry one of the most sophisticated experiments in history even further. The

collider has been upgraded to increase its collision energy and frequency. In 2018 the

LHC will be shut down again for further upgrades. To handle the increased data rate

that is expected by 2020, the TPC detector system will be completely rebuilt. The

1



Introduction 2

upgraded version of RCU will be replaced with the new Common Read-out Unit (CRU)

which is based on a completely new FPGA. The system will be running embedded Linux,

and a large design work is necessary to implement the new drivers and new applications

on this platform. Such a system must be tested and verified thoroughly before being

installed.

1.2 The Assignment

Designing and producing a new electronics for data acquisition system which will be

installed under the second Long Shutdown is a time consuming and challenging pro-

cess. It is almost impossible to produce hardware first and test it after that. This

approach would be a recurrent process which would consume enormous economical and

time resources.

To help to design electronics needed to upgrade the detector and as the most important

part of this assignment - the computer simulation of the readout electronics has been

developed. Each module of the simulated model has been implemented in detail and

described in this report. The purpose of any modules of the hardware was defined

before writing the master thesis but the design of some parts of the system was not

given. Therefore a significant part of the work on master thesis was to propose the

implementation of those modules. Every suggested implementation of any module was

tested using simulation to check if it meets the requirements regarding to real time

performance and quality.

1.3 Report Outline

• Chapter 2 will be a thorough presentation of background theory and will give

introduction to the scientific context of the project by presenting the European

Organization for Nuclear Research - CERN, most important experiments hosted

at CERN and it will explain why such a huge detectors are needed to study the

smallest building blocks of matter.

• Chapter 3 introduces problem description by describing ALICE Experiment, TPC

detector and explaining what is the purpose of upgrading of the readout electronics

installed on the detector and why it is required. The new electronics which will

be used after the Long Shutdown 2 is also presented in this chapter.

• Chapter 4 introduces the methods, tools and techniques used to find the best

solution to the given problem.
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• Chapter 5 describes the structure, design and implementation of the system. This

chapter will contain also evaluation of the implementation, its limitations and all

assumptions which were made.

• Chapter 6 introduces and explains results generated using the computer simulation.

• Chapter 7 presents an evaluation and conclude the outcome of the work with this

report.



Chapter 2

Scientific Context

The general purpose of the Large Hadron Collider is to improve our understanding of the

Universe. Despite the great progress in various fields of science, many basic phenomena

surrounding us remain unexplained. This chapter discusses what scientists from CERN

are looking for and why it is so significant.

2.1 CERN

CERN - the European Organization for Nuclear Research is the world’s largest physics

laboratory established in 1954 as a joint venture between 12 European countries [1].

Meyrin site close to Geneva in Switzerland was selected to host the CERN Laboratory.

CERN from its beginning has been dedicated to study the fundamental structure of the

Universe. It has been done by exploring the basic constituents of matter - the funda-

mental particles. Investigating the smallest building blocks and the fundamental laws of

nature demands large and sophisticated scientific instruments like particle accelerators

and detectors.

2.2 LHC

The Large Hadron Collider is located at CERN in Geneve. It is the world’s largest and

most powerful particle accelerator. It is also the most complicated device constructed

by humans. The LHC is a kind of microscope that allows to explore the world in a very

small scales. In the LHC two particle beams moving in opposite direction are accelerated

close to the speed of light before they are made to collide with each other. An accelerator

4



Scientific Context 5

can only accelerate certain kinds of particles. The LHC accelerates particles which fulfill

the following two requirements:

1. The particle must be charged.

Electromagnetic devices used by the LHC to manipulate beams can have impact only

on charged particles.

2. The particle need not to decay.

The requirements listed above limit the number of particles that can practically be

accelerated to electrons, protons, ions, and all their antiparticles.

The LHC is not an independent construction. It depends on so called accelerating

structure, as shown on figure 2.1, which gradually accelerates particles to achieve higher

energy. For proton runs acceleration starts with hydrogen, whose atoms are composed

of one proton and one electron. These atoms every few hours are taken from a small

cylinder and ionized, or robbed of electrons.

Then, the obtained protons are directed to a linear accelerator, Linac 2, where it accel-

erates until about 30% of the speed of light. Then they go to the PS Booster accelerator

and here their kinetic energy is increased almost 30-fold. From the Booster protons are

transferred to the Proton Synchrotron PS, and then to the Super Proton SPS, at every

stage of increasing energy approximately 20 times. Less than five minutes after leaving

the cylinder protons finally get inside the Large Hadron Collider tunnel [2].

The acceleration of lead nuclei is slightly different then in the case of protons, however

the final stages of their road to LHC run through the PS and SPS accelerators. Every

day during the run at the LHC accelerates just a few nanograms of hydrogen [3].

2.2.1 Operational Specifications

The LHC reused the tunnel from previous LEP accelerator, dismantled in 2000. As a

result of geological consideration and cost it has been decided that excavation of a tunnel

to house a 27-km circumference machine was much cheaper rather then acquiring the

land to build at the surface [5]. In addition the impact on the landscape was reduced to

a minimum. The mean depth of the tunnel is 100 m, and its real depth varies between

175 m under the Jura and 50 m towards Lake Geneva.

The 27-kilometre accelerator ring consists of two adjacent parallel beam pipes sur-

rounded by electromagnets. Both the pipes and magnets are kept in vacuum and are

isolated by thermal shield.
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Figure 2.1: The accelerator complex is composed of a series of accelerators which
work together to push particles to nearly the speed of light. [4]

The electromagnets are used to maintain a strong magnetic field which guides the beams

around the accelerator ring. The beams travel in opposite directions in each pipe and

just prior to collision, they are bend by the another type of magnet that focus the

particle beams to increase the chances of collision.

The electromagnets are built from coils of special electric cable that operates in a su-

perconducting state which make them able to conduct electricity efficiently without

resistance or loss of energy. To achieve this state magnets must be chilled to 1.9 K

(-271.3 ◦C) – a temperature colder than outer space [5].

The liquid helium was chosen as a cooling medium because of its physical properties.

Liquid helium boils at -268.93 ◦C and does not freeze at atmospheric pressure [6]. In ad-

dition in temperature below -271 ◦C liquid helium passes from the fluid to the superfluid

state which provides very high thermal conductivity [7].

The maximum energy obtainable for an accelerator is related to its size. In case of a

collider of a ring shape, energy is a function of the radius of the ring and the strength

of the dipole magnetic field that keeps particles in their orbits. The LHC is designed

to collide beams of protons at a total energy of 14 TeV (teraelectronvolt) per collision

and beams of heavy ions at a total energy of 1150 TeV per collision [9]. Such collision

energy has never been reached before in a lab [4].
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Figure 2.2: Cross section of LHC dipole. [8]

2.2.2 Experiments Installed at the LHC

The purpose of the detectors installed at Large Hadron Collider is to measure various

properties of each collision. Data from detectors enable physicists to characterize all

the different particles that were produced in collision. Some of them can be observed

directly, some are short-lived and have to be reconstructed from their decay products

and some particles like neutrinos escape without leaving any trace.

ALICE

ALICE, the acronym for A Large Ion Collider Experiment is an experiment specialized

in analysing heavy-ion (Pb-Pb nuclei) collisions.

The resulting temperature and energy density of the collisions are expected to be high

enough to produce quark–gluon plasma, a state of matter wherein quarks and gluons are

no longer confined inside hadrons. Such a state of matter probably existed just after the

Big Bang, before particles such as protons and neutrons were formed. The quark-gluon

plasma has been described more detailed later in this section.
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The ALICE Experiment is going to search for the answers to fundamental questions,

using the extraordinary tools provided by the LHC:

• What happens to matter when it is heated to 100,000 times the temperature at

the centre of the Sun?

• Why do protons and neutrons weigh 100 times more than the quarks they are

made of?

• Can the quarks inside the protons and neutrons be freed?

The ALICE experiment involves an international collaboration of more than 1500 physi-

cists, engineers and technicians, including around 350 graduate students, from 154

physics institutes in 37 countries across the world. The experiment continuously took

data during the first physics campaign of the machine from fall 2009 until early 2013

[10].

Quark-Gluon Plasma

The elementary particles create a whole picture of the world we know today. Quarks,

bound by gluons, group together to form hadrons. The example of the most common

stable hadrons are protons and neutrons. They group together to form atomic nuclei.

These atomic nuclei attract electrons, and they group to form atoms. Atoms form

together molecular structures and shape the matter.

However, not always everything is and was so structured and ordered like it is described

above. Physicists think that in the special conditions like extreme high temperatures

and densities the fundamental particles were not formed but constituents were free to

roam on their own.

The state of this matter is called a quark-gluon plasma. It is like a hot, dense soup

which is made of all kinds of particles, mainly quarks and gluons, moving at near light

speed [11].

According to the Big Bang theory, shortly after the creation of the Universe - Big Bang

- the Universe was filled with mentioned quark-gluon plasma. Therefore by recreating

the conditions like they were just after the Big Bang, physicists can go back in time and

study the origin of the world.

ALICE is described more detailed in section 3.1.

The other experiments installed on LHC are: ATLAS, CMS, LHCb, LHCf, MOEDAL

and TOTEM.



Chapter 3

Problem Description

This chapter introduces ALICE Experiment and TPC detector. It also presents a model

of the upgraded readout electronics which is a part of the data acquisition system for

ALICE TPC.

3.1 The ALICE Experiment at LHC

ALICE (A Large Ion Collider Experiment) is a general purpose, heavy-ion detector

placed at one of the four collision points of the Large Hadron Collider. ALICE is

optimized to study collisions between lead nuclei but, as a general purpose detector, it

can collect data from proton-proton collisions as well [12]. High-energy nuclear collisions

allow to reach high enough temperature and energy density to produce quark-gluon

plasma (QGP), a state of matter where quarks and gluons are no longer kept inside

hadrons but they can roam freely. Physicists believe that shortly after the Big Bang,

from picoseconds to about 10 microseconds, the fundamental particles were not formed

yet and the Universe was in state of QGP.

The QGP is required to study the physics of strongly interacting matter. The strong

interaction is the force responsible for binding quarks together in protons and neutrons,

and then protons and neutrons together in the atomic nucleus.

3.1.1 Layout and Technical Solutions

The energy of collisions in the center of the ALICE detector achieves 7000 GeV per

proton, and 14000 GeV in the center of the mass of pair of two protons for the current

9
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Figure 3.1: Computer generated cut-away view of ALICE showing the 18 detectors
of the experiment. [13]

run - RUN 2. In case of the heavy-ions, the energy reaches 5500 GeV per pair of the

nucleus [4].

The ALICE detector is 26 m long, 16 m high and 16 m wide. Its weight is approximately

10000 tonnes. The data acquisition system of ALICE requires data bandwidth of up

to 2.5 GByte/s to record and select the steady stream of events resulting from central

collisions. It results in storage consumptions of up to 1.25 GByte/s in real time when

beams are collided in the accelerator.

The ALICE experiment consists of 18 different sub-detectors and their associated sys-

tems for detector control, trigger, data acquisitions, cooling, gas and power supply. Each

of the detectors is characterized by its own specific technology choices and design devel-

oped to meet physics requirements and to works with experimental conditions expected

at LHC [14].

The central barrel part of ALICE is placed inside a 7800 t solenoid magnet which was

used under the L3 experiment at LEP. The basic purpose of the central part of the

detector is to measure hadrons, electrons, photons and muons. This function is realized

by sub-systems like: Inner Tracking System (ITS), a six-layer, silicon vertex detector,
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and the Time Projection Chamber (TPC). To improve resolution of measurement at high

momentum, the Transition Radiation Detector (TRD) is also used to track particles.

The other sub-detectors installed inside ALICE are: Inner Tracking System detectors

(ITS), three particles identification arrays of Time-of-Flight detector (TOF), Ring Imag-

ing Cherenkov (HMPID) and two electromagnetic calorimeters (PHOS and EMCal).

3.2 TPC

The Time Projection Chamber (TPC) is the main detector dedicated to perform tracking

and identification of charged particles in the ALICE experiment. The ALICE TPC is

composed of a cylindrical gas-filled detection volume divided in two half parts of equal

size by a central high voltage electrode. The inner and the outer radius of the detector

is respectively about 80 and 280 cm, with an overall length of 500 cm in the beam

direction.

Figure 3.2: Model of the ALICE Time Projection Chamber detector. [15]

The basic principle of the ALICE TPC is as follows: once a charged particle is passing

through the gas volume of the detector, it ionizes the gas liberating electrons along its

passage. Depending on the momentum and identity of the particle, the density of the

ionization will be weaker or stronger. Created electrons drift, under the influence of the
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electric field, towards the end plates of the cylinder, ions drift to the central cathode.

The arrival point to the endplates of the cylinder is precisely measured by multi-wire

proportional chambers (MWPC) with wire planes and 560 000 electronics channels.

Together with an accurate measurement of the arrival time the complete 3-dimensional

trajectory of the charged particles traversing the ALICE TPC can be determined with

high precision.

The cylindrical chamber is filled with gas mixture of 90% Ne and 10% CO2. After

extensive study, it was decided to use this mixture of gas under RUN 2 because the

mixture was proved to be an optimal solution which provides low diffusion and large

ion mobility [16]. There are still other solutions under consideration which can be used

under RUN 3. One of the proposed solution assumes adding N2 to the mixture which

should provide higher gas gain stability and better control of the fraction and influence

on the drift velocity.

3.2.1 Data Acquisition

The present ALICE TPC readout is based on Multi-Wire Proportional Chamber (MWPC).

As mentioned in section 3.2 the charged particle traversing the detection volume ionizes

the gas. It results in creating electrons that drift towards the readout end-plates due to

an electric field applied by a high voltage (100 kV) electrode at the middle of the ALICE

TPC. After a few microseconds the drifting electrons reach the Multi-Wire Proportional

Chambers where they are amplified. These MWPCs are arranged with a plane of anode

wires in the azimuthal direction, a plane of cathode wires and a plane of gating wires

which prevent the ions from drifting back to the volume of the TPC detector. The pad

plane is located under the named layers of wires, and it is responsible for reading the

actual signal.

During the Long Shutdown 2 the Multi-Wire Proportional Chambers will be replaced

with the GEM - Gas Electron Multiplier foils [17]. The GEM and the readout electronics

which will be used under RUN 3 is introduced in the next section 3.3 dedicated to the

upgrade of the ALICE TPC for RUN 3.
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3.3 Upgrade for the RUN 3

3.3.1 Physics Background for the Long Shutdown 2

The life cycle of the Large Hadron Collider consists of runs, when the charged particles

are colliding and data are collected, and long shutdowns - periods when there are no

beams in accelerator and the devices installed at LHC are maintained and upgraded.

Every detector during each long shutdown is upgraded to manage to operate in the new

environment of LHC which introduces higher collision rate together with higher energy

of each collision.

Since 2009, the LHC has successfully provided collisions to the four large experiments

mentioned in previous chapters: ALICE, ATLAS, CMS and LHCb. After the RUN

1, the first long shutdown started in February 2013 and during the next 18 months

many improvements were performed. The energy of pp collisions was increased to 13-14

TeV, it is significantly higher compared to the 7-8 TeV for the RUN 1 in 2012, and the

luminosity for Pb-Pb collisions was increased to 1 - 4 x 1027 cm-2s-1 [18], it results in

reaching an interaction rate of about 30 kHz for Pb beams under RUN 2.

The scope of this master thesis is to contribute to the upgrade of ALICE TPC which

is planned to be performed under the second long shutdown. The Long Shutdown 2 is

expected to start in July 2018 and it is planned to take 18 - 21 months. In this period of

time, the LHC will be prepared to handle full luminosity of about L = 2 x 1034 cm-2s-1,

for ALICE the instantaneous luminosity will reach L = 6 x 1027 cm-2s-1 which results

in interaction rate of about 50 kHz for Pb-Pb collisions [19].
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Figure 3.3: Timeline for LHC including the first three long shutdown periods. [20]

The Long Shutdown 2, opposite to the first Long Shutdown during which the read-

out electronics were upgraded, will introduce completely new hardware, designed from
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scratch. All electronics will be removed from the detector to make place for new, faster

and more efficient solutions.

3.3.2 Gas Electron Multiplier - New Readout Technology for RUN 3

The Multi-Wire Proportional Chambers (MWPC), mentioned in 3.2.1, are the first

part of the readout system. The MWPCs are responsible for reading and amplifying

signals coming from the TPC detector. Unfortunately, the MWPC technology limits

the sampling frequency which makes it impossible to record data with collision rate of

50 kHz which is planned for the Run 3.

To overcome this limitation, Multi-Wire Proportional Chambers will be replaced by Gas

Electron Multiplier (GEM) planes. The GEM is essentially Kapton foils placed between

two layers of copper and perforated through each layer with holes of approximately size

of 40 - 70 um diameter and 140 um pitch [21]. Between two layers of copper, a voltage

of 150 - 400 V is generated, to make large electric fields in the holes.

The electrons created by ionizing particles which are traversing the detection volume of

the TPC detector, drift towards the end plates. It is enough that just one single electron

enters any hole to create en avalanche containing hundreds of electrons. The resulting

electrons infiltrate a cascaded structure of several GEM foils where they are amplified,

collected and transferred to the readout electronics, placed just a few centimetres away,

via flexible Kapton cables.

Figure 3.4: On the left: structure of GEM foils and avalanche of electrons, on the
right: electron microscope photography of a GEM foil with hole pitch 140 um. [22]
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3.3.3 Front-end Readout Electronics for ALICE TPC for RUN 3

Replacement of Multi-Wire Proportional Chambers by Gas Electron Multipliers intro-

duces new challenges for front-end electronics. The new readout chain must be re-

designed to comply to the new requirements related to continuous readout, opposite to

trigged readout mode used in RUN 1 and RUN 2, which results in strongly increased

data throughput.

The data collected from the GEMs are processed and digitalized by the Front-End Cards

(FECs) installed on the detector. Each FEC consists of 5 SAMPA chips and 2 GBTx

modules sending data to the Common Readout Unit (CRU). The Common Readout

Unit is responsible for monitoring and controlling front-end electronics and it sorts the

collected data and forwards them to the Online Farm System for further processing.

The schematic picture of the TPC readout electronics is shown in the Figure 3.5.

Reading data from over 500000 channels of TPC detector requires over 280 CRU units

which monitor and receive data from 3400 FECs equipped with 17000 SAMPA chips and

6800 GBTx [23]. However, different solutions for the CRU are still under consideration.

Some of the solutions consider CRU which reads data from 12 FECs, other solution

supports version of CRU which can serve 16 FECs. More information about the different

designs of CRU can be found in section 3.3.7.

Figure 3.5: Schematic of the TPC readout electronics with the Front-End Card as a
front-end electronics and CRU as central part. [24]
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3.3.4 Front-End Cards

The replacement of the existing MWPC-based readout chambers by GEMs during the

second Long Shoutdown involves also the necessity for new readout electronics that

not only enable continuous data readout but also accommodate the opposite signal

polarity [24]. The signals retrieved from the pads of end-plates are read by the front-end

electronics installed in the form of Front-End Cards (FECs) in front of the end-plates.

Front-End Cards are placed in a special frame, called Service Support Wheel (SSW),

which support them mechanically, provides power supply and cooling facilities. FECs

are connected to the pads using flexible Kapton cables mentioned in the section 3.3.2.

Figure 3.6: One sector of readout plate divided into pads and partitions connected
to FECs. [25]

The Front-End Electronics are responsible for reading signals from 552960 channels [24]

of the TPC detector. The electronics have to handle the sampling rate of 10 MHz, what

together with the size of each sample equals to 10 bit and occupancy of pad around

15-27% results in data amount of about 1 TByte/s [24] for the TPC detector.

The front-end electronics distribute this amount of data through Front-End Cards. Each

FEC supplies 160 input channels which can read signals from the same number of pads.

The channels are distributed evenly on 5 SAMPA chips. Figure 3.7 presents the concept

of the FEC and how the SAMPA chips are connected to GBTx.
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Figure 3.7: Schematic of the front-end card with SAMPA and GBTs. [24]

3.3.5 The SAMPA Chip

The main goal of the SAMPA project is to upgrade ALICE TPC Read-Out (ALTRO)

chip which is responsible for reading and processing signals retrieved from pads. Un-

der working on this master thesis, SAMPA chip, successor of ALTRO, was still under

construction.

SAMPA is a mixed analog-digital custom integrated circuit dedicated to reading, digi-

talization and processing of detector signals. The SAMPA chip is developed as CMOS

Application Specific Integrated Circuit (ASIC) in 0.13 µm technology with voltage sup-

ply of 1.2 V. It provides 32 channels, of either negative or positive polarity, what is

especially important because the GEM based readout provides opposite polarity to the

MWPC. The SAMPA ASIC can work in triggered and continuous read-out mode.

Right after the collision, the charged particles ionize the gas in the TPC detection

volume, liberating electrons that drift towards the end-plates covered by pad planes.

The electrons meeting a pad, create a voltage signal which results in changing of the

charge at the pad. The changing of the charge is observed by the first block of SAMPA

chip, named Charge Sensitive Amplifier (CSA) which amplifies the signal induced on the

pad. The next block of SAMPA is called Shaper, and it is responsible for transforming

the incoming pulse into a signal with long enough duration to make it readable with

the sampling rate used by the SAMPA. Finally, the Analog-to-Digital converter (ADC)
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Figure 3.8: Block scheme of SAMPA chip. [24]

generates 10 bits data, called samples, with the frequency of 10 MHz, and forward it to

the digital part of the SAMPA chip.

Each sample leaving the analog part of the SAMPA is passed through digital filters

responsible for compression, formatting and buffering of data. Data compression is done

using zero-suppression algorithm but Huffman encoding is also considered.

Zero-Suppression

The zero-suppression filter reduces the amount of data stored in the buffers by removal

of redundant data like noise. The omitted data consist of samples with signal strength

below the given threshold. Zero-suppression implemented in the SAMPA chip is con-

figurable, meaning that it is possible to change the value of the threshold and even to

deactivate zero-suppression completely to obtain all of the data. It can be useful in some

cases, for example for testing purpose.

The data reduction decreases the amount of needed buffer memory. Alternatively, using

the same buffer size, a higher frequency of collisions can be handled by the readout

chain. Reduced throughput results also in lower demand on bandwidth between each of

modules in the readout electronics.

It is usual that many particles hit a neighbouring pad while arriving to the end-plates of

the detector after a collision. In this case the most central pads detect a stronger signal

and surrounding pads get lower signal but still strong enough to be distinguished from

noise. Such a collection of particles bombarding certain area of detection plate is called
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Figure 3.9: Illustration of the applied zero-suppression algorithm on different scenar-
ios of input signals. The last box shows example of cluster merging. [26]

a particle shower, and the pads hit by a shower are called clusters. A typical cluster has

a Gaussian shape, it spreads over 3 pads and has a width in time of 5 time-bins.

The zero-suppression algorithm which is going to be implemented in SAMPA can recog-

nize clusters and handle them in the same way as a valid signals. Figure 3.9 shows how

the SAMPA handles different scenarios of input signals using different configuration of

the zero-suppression algorithm.

Data Format

Digital data are sent out through four serial output links connected to the GBTx. Every

link can send 1 bit of data with the rate of 320 MHz, which results in throughput of 320

Mbps per serial link [27].

Digitalized samples are stored to the Ring Buffer, before they are sent out. There, they

are waiting up to the end of the current event, called a time window. There are two

buffers per input channel. One of them stores data which are composed of samples, and

the second one stores headers which describe data and are used to construct packets of

data.
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When all samples for the current time window arrive to the buffer, SAMPA creates

a data packet. One packet is created for each of 32 read-out channels. Each packet

contains data and header. Data are stored as a linked list with 10-bit words. The linked

list contains all samples for one channel read during one time window. The size of the

data part of the packet can vary and depends on how many samples were written after

zero-suppression filter to the buffer, but it cannot exceed maximal number of samples

per time window which is a constant number equal to 1021 samples.

After the last sample for the entire channel and time window is collected, SAMPA creates

a header. The main goal of the header is to describe the data stored in the data buffer.

A newly created header is a signal for the output link that the data collected in data

buffer are ready to be sent. The four output channels are connected by default to the

channel buffers in the following way:

• The first output link sends data from channels number 1 - 8

• The second one is connected to channels 9 - 16

• The third link is connected to channels 17 - 24

• And the last one takes channels from 25 to 32

However, the connection of buffers to the output links is configurable and can be changed.

The output links send data independently and simultaneously. It can happen that one

output link must send a much bigger amount of data than another one. The reason is

that some channels can have high momentary occupancy while other channels can have

only a few samples. It is a very important case because in this scenario samples coming

from one time window can be delayed and sent after the next time window. Therefore,

packets must be sorted in runtime to prevent disorder of data in the next parts of the

readout chain. The sorting of packets will take place in the CRU, which is described in

section 3.3.7, but the initial sorting which can help CRU to sort data more efficiently is

also considering to be implement already in SAMPA.
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Figure 3.10: Illustration of packet structure composed by SAMPA.

The SAMPA chip can create different types of packets:

• Data

Data packet consists of header and linked list of samples.

• Neighbour

It can happen that certain SAMPA chips are more loaded with samples than

other chips on the same Front-End Card. Therefore, SAMPA can be configured

to send data from its neighbour chips. The neighbour data packet is the same

as data packet but it contains information in header about containing data from

neighbours chips.

• Heartbeat

Heartbeat is a packet indicating that the detector electronics are operational.

• Channel fill

This type of packet does not contain any data but only header. It is sent if there

is no data in the channel to keep the readout chain synchronized.

Each type of packet has the same header but with different properties. Figure 3.10 shows

the structure of the packet composed by the SAMPA. The header of the packet contains

additional information about the data which is specific to the way the hardware works

and how it has been designed. This information is out of the scope of this master thesis
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as it is not relevant for the simulation of readout electronics and can be omitted during

implementation without any impact on efficiency and performance of the readout model.

The first two bits of the packet contain data about parity of the data section and

the header section of the packet. The Bunch Crossing Counter field is used to store

information about bunch collisions of the LHC and is used to keep the whole front-end

electronics system synchronized. The next 10 bits of the header store the number of

samples in the data section of the packet. The next following fields specify the hardware

address of the SAMPA chip and the input channel of this chip. This information is very

important to map samples to the right sector of the detection end-plates of the TPC

detector. The Data Packet and Packet Type bits inform what packet type, described

above, this is. The last one field in header makes place for redundant bits which can be

used to correct the header of the package.

3.3.6 GBT Module

The SAMPA ASICs are connected to the Common Read-Out Unit through the Gigabit

Transceiver (GBT) system via optical links. The GBT system is a dedicated ASIC

implemented in 120 nm CMOS technology, designed specially to be resistant against

radiation. Each Front-End Card (FEC) contains 2 GBTs. To read data from around 500

000 channels of the TPC detector, the readout electronics foresee to use approximately

6800 GBTs in total.

GBT ASICs provide physics and monitoring data gathered from SAMPAs to the CRU

and lets the CRU send control commands to the SAMPA chips using I2C protocol. Each

GBT provides 10 input e-links which means that it can serve 2.5 SAMPA chips since, as

mentioned in subsection 3.3.5, each SAMPA chip has four output links. The acquired

data from SAMPAs are multiplexed and transmitted to the CRU.

The communication between GBT and CRU is realized through the bi-directional op-

tical transceivers (VTRx) and uni-directional twin transmitters (VTTx) which results

in effective bandwidth of 2 x 3.2 Gbit/s. The data transmission uses a special trans-

port protocol which using forward error correction makes the communication robust and

radiation tolerant.

3.3.7 CRU - Common Readout Unit

The Common Readout Unit (CRU) acts as an interface between the front-end electronics,

placed on detector, and the Trigger System, On-line Farm and the Data Control System

(DCS). The CRU is placed outside the radiation area in the control room and receives
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data from the front-end electronics through optical, radiation tolerant fibers. The CRU

is a successor of RCU2 card used during RUN 2 and its predecessor RCU which was

used under RUN 1.

The CRU is responsible for data readout from the front-end electronics and for steering,

monitoring and controlling the configuration of readout chain.

The input data arrive to CRU via GBTx ASICs with the effective bandwidth of 24 x

3.2 Gbit/s. Received data packets coming from SAMPA chips are sorted in CRU and

sent further consecutively pad-row-by-pad-row.

The biggest challenge related to work with CRU under this master thesis, is that the

final design of CRU is not determined yet. It is known, what CRU is supposed to do,

but nobody knows how it will be realized. There are many ideas around CRU and

the design of CRU is still evolving. It resulted in many specifications of CRU to be

considered during this project.

Figure 3.11: Altera Arria 10 GX card with Dual-core ARM Cortex-A9 MPCore
processor. [28]

The end-plates of the TPC detector are divided into sections, called pad planes. De-

pending on the design choice, one CRU could read data from up to 1920 or up to 2560

pads. The proposed design of the CRU assumes implementation of one input fifo buffer

per one pad. Once each fifo receives data packets containing samples for entire time win-

dow, CRU will send data in a predefined order. It will result in an easy to implement

way for sorting data in the CRU.
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The application of specific functionalities, requires Common Read-out Units to be imple-

mented as electronics boards with custom designed, programmable functionality based

on up-to-date FPGA technology. A FPGA (Field-Programmable Gate Array) is an

integrated circuit designed to be programmed by a customer.

The PCI40 card with the Altera Arria 10 GX is a major candidate to be used as a base

for developing the CRU. The Altera Arria 10 is a high-performance FPGA developed in

20 nm technology [29]. On the board of GX version of Arria 10 is installed Dual-core

ARM Cortex-A9 MPCore processor with clock frequency of 1.5 GHz. The board offers

32 GB of embedded memory which can be extended with external memory. It supports

also PICe x8 interface compatible with the 3rd generation.

However, if it turns out that this board will have not sufficient performance for require-

ments imposed in relation to CRU, an alternative solution will have to be found.

Figure 3.12: AMC40 board with Altera Stratix V processor. [30]

Different Designs of CRU

The CRU will read data from 12 FECs, process them and send them out via one PCIe

x16 3rd generation link. The alternative solutions assume that the CRU would read data

not from 12 FECs but from 16 FECs. It would result in demand for bigger memory size

implemented in CRU.
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Figure 3.13: Different hardware solutions considered to be base for implementation
of CRU. [31]

In addition, the PCIe could be replaced with 8 DDL3 links. DDL3 is a 3rd version of

Detector Data Link which is characterized by its bandwidth of 10 Gb/s.

One of the considered alternatives, during this master thesis, was use of the AMC40

board with Altera Stratix V processor. The AMC40 card is developed to perform data

readout in LHCb experiment. The card has 36 optical input links which means that is

could serve up to 18 FECs.

Alternative FPGAs which can be use to implement CRU, are shown in the table pre-

sented in figure 3.13. The table shows desired buffers structure for CRU and how different

FPGAs fulfill this requirement.
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Location of CRU

The location of the CRU is one of the factors affecting the final design. Two ideas

of location of the CRU were considered by the scientists from CERN and each of the

solutions has its advantages and disadvantages. One of the ideas was to locate the

CRU in the cavern, directly on the front-end electronics, installed on the detector. This

solution foresees usage of 10 GbE long fiber links connecting the CRU to the Online

Farm and further systems. It would result in lower number of used links. Unfortunately,

this solution would require designing CRU based on radiation tolerant FPGAs which

are characterized by comparatively low performance [23].

Finally, it was decided to place the CRU units in the control room, outside the radiation

area. This solution presents a more robust and clean system with more processing power

and not limited access during LHC operation.

The location of the CRU affects its design which also has impact on this master thesis.

The simulation developed during this work was used to compare two different imple-

mentations of output links of the CRU. The usage of eight DDL3 links with bandwidth

of approximately 10 Gb/s each, was compared to the performance reached by the CRU

using one PCIe output link with the third generation of PCI Express x16 and the results

are presented in chapter 6.
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Method Discussion

This chapter introduces major methods and computer tools used to find solution for the

described problem in the previous chapter.

4.1 Research Method

Designing new hardware is a challenging and time consuming process. Many parts

of the readout electronics for TPC detector for RUN 3 are still under consideration.

The computer model of the hardware should help to complete the final design. When

developing a new hardware several questions arise:

• How can we evaluate the correctness and quality of the designed hardware?

– Will the designed hardware work properly? Is the hardware performance

enough to satisfy increasing data rate?

• Is it a better way to design the required hardware? The simulation will help to

find answers to many additional questions, like:

– What buffer size is needed on particular modules? How long will data pro-

cessing take?

By using software development tools and a framework to simulate a hardware, executable

models can be created in order to simulate, validate, and optimize the system being

designed. The simulation will help not only to verify correctness of the design but

also to propose improvements. This thesis supports not only the electronic engineers

in designing the hardware but it contributes to the field of physics as well. If the

28
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performance of TPC can be improved through experimental optimization, this enables

more careful analysis of raw data during the given time frame. The end result should

be higher quality data from the experiment to the particle physics community, a very

important goal for such an enormous experiment as ALICE.

4.1.1 Simulation

The first part of the project is to develop a virtual implementation of the proposed hard-

ware model. The implementation will be used to simulate readout electronics with the

samples of real data from the previous experiments. The challenge is to understand the

model and learn how to use a proper framework for computer modelling and evaluation

of hardware. The simulation can help not only to evaluate the model but also to find

answers to many questions around design of the model. It will also help to plan those

parts of the model which are not designed yet.

4.1.2 Measurement

Observation of the data flow in the system will help to estimate parameter values on

certain modules. A good example here is a buffer size needed by particular elements

in the system. The correct size of the buffers cannot be too small or too large. If the

size of the buffer is too small, it will result in insufficient performance or even worse,

it could affect the results of the experiment. On the other hand, if the buffer size is

overestimated, it will result in unnecessary cost of the hardware, what is quite important

when we realize that the high speed memory is a very expensive part of the hardware.

4.1.3 Test Bench

The development of a test bench is needed to experiment with the model. Since design

of some parts of the hardware is not accomplished yet, these parts will be implemented

in the simulation as black boxes. The SystemC framework [32] will be used to implement

the test bench. SystemC is a library for C/C++ programming language. It provides

specialized data types and classes which help to develop an event-driven simulation.

4.1.4 Evaluation

The main goal of the research is to contribute to the ALICE experiment and the research

should be evaluated against it. The virtual model should help to solve the problems



Method Discussion 30

occurring while designing the hardware for upgrade of TPC. If the time will allow it,

the computer model will be used directly to find solutions for the problems. If not, the

simulation should be an important support tool for designing and testing the desirable

readout electronics.

4.2 SystemC Framework

SystemC is a framework used to develop computer models of hardware systems. Sys-

temC is delivered as an open source library containing structures for modelling hardware

components and their interactions. An important part of SystemC is a simulation kernel

which allows to evaluate behaviour of the designed hardware model through simulations.

SystemC is based on the C++ programming language. It extends the capabilities of

C++ to enable hardware description by adding such important concepts as concurrency,

events and data types [33].

Figure 4.1: Structure of SystemC framework. [34]

By using C/C++ development tools and the SystemC library, executable models can

be created in order to simulate, validate, and optimize the system being designed.

The executable model is essentially a C++ program that exhibits the same behaviour

as the system when executed.
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The simulated system is broken up into smaller, more manageable pieces like:

• Modules

Modules are the basic building blocks of a SystemC design hierarchy. A SystemC

model usually consists of several modules which communicate via ports. The

modules can be thought of as a building block of SystemC.

• Ports

Ports allow communication from inside a module to the outside (usually to other

modules) via channels.

• Processes

Processes are the main computation elements. They are concurrent.

• Channels

Channels are the communication elements of SystemC. They can be either simple

wires or complex communication mechanisms like FIFOs or bus channels.

Different types of channels are: signal (the equivalent of a wire), buffer, fifo, mutex

and semaphore.

• Interfaces

Ports use interfaces to communicate with channels.

• Events

Events allow synchronization between processes and must be defined during ini-

tialization.

• Data types

SystemC introduces several data types which support the modelling of hardware.

4.2.1 SystemC - Code Example

The classical example of SystemC usage is a simple system consisting of two modules:

Producer and Consumer. One module, called Producer, is a module which generates

data and sends them to the second module, called Consumer. The Consumer module

reads data and write information about them to an output.

This simple Producer-Consumer system is used to show how the SystemC framework

can be used in practice. The following code listings show implementation of the example

model.
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The most fundamental methods, used in the example and used very often in this master

thesis, are:

• sc start(value , [sc time unit]);

Initializes simulation for a given running time

• sc stop();

Stops simulation

• sc time stamp();

Returns current simulation time

• wait(time);

Waits for a given period of time

• write();

Writes data to a port

• read();

Reads data from a port

The listing 4.1 shows the implementation of the Producer module.

1 SC_MODULE(Producer) {

2 void t_source(void);

3 sc_port < sc_fifo_out_if <int > > out_port;

4 // Constructor

5 SC_CTOR(Producer) {

6 SC_THREAD(t_source);

7 }

8 }

Listing 4.1: Implementation of Producer module using SystemC.

Modules are the basic building block within SystemC. The keyword SC MODULE(Producer)

is used to initialize a new module named Producer. The macro SC MODULE can be

replaced with the pure C++ syntax like:

1 class Producer : sc_module {

2 // Module body

3 }

Listing 4.2: Alternative implementation of Producer module using SystemC.



Method Discussion 33

Any module in basic should contain ports, constructor, and methods to work on the

ports [35]. There are three types of ports:

• in - Input Ports

• out - Output Ports

• inout - Bi-direction Ports

In general, a port is declared using the class sc port. Both Producer and Consumer use

this class and specify an interface. The producer uses output interface of type fifo, it

declares also that this interface will be used to send integers: sc fifo out if <int>. The

Consumer specifies an input interface in an analogous manner, as shown in the listing

4.4.

1 void Producer :: t_source(void) {

2 int val = 0;

3 for (int packetNumber = 0; packetNumber < 10; packetNumber ++) {

4 out_port ->write(val);

5 cout << sc_time_stamp () << ": Producer (): Wrote " << val << ", to

port " << i << endl;

6 val++;

7 wait(1, SC_NS);

8 }

9 };

Listing 4.3: Implementation of method sending data to port.

The Producer declares the method t source which is used by the thread declared in

constructor on the end of the module. Thread is a kind of process which when called

keeps executing or waiting for some event to occur.

The listing 4.3 shows the implementation of the method t source used by the Producer

to send data to the Consumer module. The code for sending data out is nested inside

the for-loop which repeats a transmission for a given number of times.

1 SC_MODULE(Consumer) {

2 void readInput(void);

3 sc_port < sc_fifo_in_if <int > > in_port;

4

5 // Constructor

6 SC_CTOR(Consumer) {

7 SC_THREAD(readInput);

8 }

9 };

Listing 4.4: Implementation of Consumer module.
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After each transmission, the thread waits 1 nanosecond. The waiting time and unit

is specified as parameters for the wait(...) method. In real scenarios, it is natural to

calculate a real time it takes to send data, based on data size and speed of the link

between modules.

1 void Consumer :: readInput(void) {

2 int val;

3 while(true) {

4

5 if (in_port ->read(val)) {

6 cout << sc_time_stamp () << ": Consumer (): Received "

7 << val << ", on port " << i

8 << endl;

9 } else {

10 cout << sc_time_stamp () << ": Consumer (): FIFO empty." << endl;

11 }

12 // Check back in 5ns

13 wait(5, SC_NS);

14 }

15 };

Listing 4.5: Implementation of method reading data from port.

The Consumer module uses the readInput method to receive data from the Producer

module. The part of implementation responsible for reading data from channel, is nested

inside a while-loop which is executed all time during running of simulation.

1 int sc_main(int argc , char* argv []) {

2 Consumer consumer ("Consumer");

3 Producer producer ("Producer");

4

5 sc_fifo <int > fifo_channel = new sc_fifo <int >(5);

6

7 producer.out_port(fifo_channel);

8 consumer.in_port(fifo_channel);

9

10 sc_start (100, SC_NS);

11 return 0;

12 }

Listing 4.6: Creation and connecting together modules in the main method.

Data are read from a channel by the SystemC read(...) method and are saved into the

val variable. This method provided by SystemC library returns true if data were read

from the channel and false if the channel was empty. The returned boolean value is used

to decide if the received data should be written out to the screen or not. The SystemC

method sc time stamp() is used as part of the output string which writes information
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about current, real time in the simulation. Before data is received, the Consumer waits

5 nanoseconds.

In the main method, shown in the listing 4.6, all modules are connected together. The

modules Consumer and Producer are instantiated. The channel between the output

port for Producer module, and the input port for the Consumer module is created and

then used to connect them together.

At the end, the simulation is started for 100 nanoseconds. The program terminates

when the computer simulation is done.



Chapter 5

Implementation

This chapter describes the structure, design and implementation of computer model of

the readout electronics and test bench used to run simulation.

5.1 Simulation of the Readout Electronics

The programming language C++ and SystemC framework were used to develop a com-

puter model of the readout electronics. As mentioned already in section 4.2, SystemC is

a framework used to develop computer models of hardware systems. SystemC is based

on the C++ programming language and it extends the capabilities of C++ to enable

hardware description by adding such important concepts as concurrency, events and

data types.

The simulation which enables to test the model is essentially a C++ console application.

It can be compiled and then run both on Linux and Microsoft Windows operating

systems.

During the early phases of the project, the source code was developed in Microsoft Visual

Studio. This tool was used to experiment and to explore the capabilities delivered by

the SystemC framework.

Running the simulation is time consuming. Depending on the input scenario, it takes

2-3 days to run simulation over tens of time windows. The number of time windows

to be simulated has a great impact on running time, but this is not the only relevant

parameter. The running time is affected largely by the complexity of the model which is

supposed to be simulated. For instance, to test the SAMPA chip, one SAMPA module,

and generated input data to its 32 channels is required. Testing the CRU in realistic

36
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conditions requires to connect all 12 or 16 FECs, depending of design choice, which

results in 60-80 SAMPA chips and from 1920 to 2560 readout channels.

Many tests and experiments which allowed to discover and remove programming bugs

and finally to check correctness of developed software, were executed on a simplified

model which consisted of only 1 FEC.

On this stage of the project it was clear, that it would not be possible to generate

any final results using the simulation before the deadline of the master thesis without

optimization.

The code optimization and a few tricks allowed to reduce running time of the simulation

to about one day for about 50 time windows without any impact on the final results.

In addition, the simulation was run in parallel in a several virtual machines on several

physical data machines. The virtual machines helped to clone the development environ-

ment together with all required libraries and tools to run the simulation. The source

project was ported from Microsoft Windows environment to Linux environment to avoid

the limitation imposed by the licensed software.

The freeware version of WMware Player was used to create and run virtual machines.

Linux Mint was chosen to be installed as a guest operating system. The source code has

not used any system calls specific to the operating system, and therefore the porting

process was easy and it was not time consuming.

To make the simulation operational on a Linux system, a makefile was created. A

makefile instructs a compiler to compile source code in a proper way. There were a few

problems during porting related to use of threads by SystemC and to support of the

new C++11 standard by the compiler. To solve these problems, a few extra parameters

had to be added to the final makefile to compile code using SystemC correctly.

The simulation uses a configuration file to setup the model and to specify the running

parameters. Using a configuration file it is possible to set many properties of the simula-

tion, like for example: number of time windows to simulate, number of samples in each

time window, sampling rate, many properties of the readout electronics model and each

module like for instance: number of FECs, clock time for each chip, number of channels

between modules, and much more.

It turned out that this approach is very flexible and running of the simulation can be

automated. The simulation can be started by a custom developed bash script, which can

change the properties of the simulation and setup the model. Then, when simulation

is done, the script can take care for results, change simulation parameters and run it

again.
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5.2 Data Generator

The Data Generator, implemented in the DataGenerator class, acts as a detector in the

computer model of the readout electronics, which supplies the model with input data.

The Data Generator is implemented as SystemC module which is connected with each of

the SAMPA chips by ports. The number of output ports Data Generator has, depends

on the number of SAMPA chips used in the simulation and on the number of input

channels each SAMPA chip has. These values are easily customizable by changing the

parameters in the configuration file. There are also other parameters in the configuration

file which control the behaviour of the Data Generator. The code listing 5.1 shows the

part of the configuration file used to configure Data Generator. The five parameters are:

1. NUMBER TIME WINDOWS TO SIMULATE

This parameter is used to manipulate the number of time windows, during which

input data are generated. The simulation can run longer than the set number of

time windows by this parameter, but after this time the model will not be supplied

with input data.

The value of this parameter, and the next one described, has directly impact on

the real running time of the simulation.

2. NUMBER OF SAMPLES IN EACH TIME WINDOW

The parameter determines the number of samples which can be read by the

SAMPA during one time window. The standard value in the real model of the

readout electronics is 1021 samples per time window and it was no need to change

this parameter often. However, it is a good practice to avoid hardcoding any num-

bers in the code. It would result in source code which is difficult to maintain and

to understand.

3. DG WAIT TIME

The time between each series of new generated samples is set in this parame-

ter. The waiting time must be given in nanoseconds. The waiting time for the

Data Generator is a calculated time based on the sampling rate of the SAMPA

chips. The time when the Data Generator creates a new series of samples must be

synchronized well with the time when the SAMPA reads data from its channels.

4. DG OCCUPANCY

This parameter is used by the Static Data Generator, described later in this chap-

ter. The occupancy parameter determines average occupancy of data for all input

channels over each time window. For instance, if there is maximum 1021 samples
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per channel in each time window and occupancy is set to 30%, so in average each

channel during each time window receives approximately 306 samples.

5. DG GENERATE OUTPUT

This parameter simply decides if there will be generated log entries in the log file

by Data Generator module. The parameter is a boolean value.

1 //Data Generator

2 const int NUMBER_TIME_WINDOWS_TO_SIMULATE = 20;

3 const int NUMBER_OF_SAMPLES_IN_EACH_TIME_WINDOW = 1021;//1021 std value

4 const int DG_WAIT_TIME = 100; //ns , 10MHz

5 const int DG_OCCUPANCY = 30; //%

6 const bool DG_GENERATE_OUTPUT = false;// writing to logfile

Listing 5.1: Part of the configuration file showing parameters for the Data Generator

module.

5.2.1 Implementation Details

The Data Generator module is implemented in two files: header file (.h) and source file

(.cpp). The header file declares the module with all its data structures and methods,

while the source file defines the implementation of the module.

1 SC_MODULE(DataGenerator)

2 {

3 public:

4

5 void t_sink(void);

6 void write_log_to_file_sink(int _packetCounter , int _port , int

_currentTimeWindow);

7

8 sc_port < sc_fifo_out_if <Sample > > porter_DG_to_SAMPA[

9 constants :: NUMBER_OF_SAMPA_CHIPS*constants :: SAMPA_NUMBER_INPUT_PORTS

10 ];// number of sampa * number input ports per sampa

11

12 // Constructor

13 SC_CTOR(DataGenerator)

14 {

15 SC_THREAD(t_sink);

16 }

17 };

Listing 5.2: Part of the header file of Data Generator.
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The computer model of the readout electronics has been tested with three different

input scenarios and for that reason, three different editions of the Data Generator were

created. The general implementation shared by the three Data Generator modules is

discussed below. The implementation details, specific for each Data Generator variant,

are described in the following subsections.

The base part of the header file, common for each Data Generator module, initializes two

methods: ”t sink” and ”write log to file sink”, an array of output ports: ”ports DG to

SAMPA” and the constructor which initializes a thread based on ”t sink” method as

shown in the listings 5.2.

The ”t sink” method in the Data Generator is a main method responsible for creating

of samples which are injected to the channels connecting the Data Generator with the

SAMPA chips. The implementation of the method consists of the while-loop which is

executed one time for each time window being simulated.

Inside the while-loop a for-loop which enumerates input channels for each SAMPA chip is

implemented. In this place of the model, a simplification which makes implementation

much less complex and much more clear was made. Because the concept of Front-

End Cards was not introduced into computer model, the connection between the data

generator and SAMPAs was much easier to implement. The SAMPA chips do not need

to be addressed in any way. It is known that each SAMPA chip has a certain and fixed

amount of input channels. Based on this knowledge the iteration of the SAMPA chips

and the channels was very easy to achieve in the code. The principle of addressing input

channels is as follows:

If it is given by the configuration file, that the model will consist of 12 FECs, each FEC of

5 SAMPA chips and each SAMPA chip will have 32 input channels, so there must be 12

* 5 = 60 SAMPAs and 60 * 32 = 1920 input channels. Using the mathematical modulo

operation with index of certain input channel as a dividend, and divisor equal to the

number of channels for each SAMPA, it is possible to calculate from which SAMPA chip

and channel each sample is coming from. For example, if a given sample is addressed

with number 75:

75 / 32 gives SAMPA[2]

75 mod 32 gives channel[11]

It results in SAMPA[2] and channel[11]

It means that the sample was read by SAMPA chip indexed with number 2 and by its

channels number 11. Because the indexing starts from [0] the sample comes from the

twelfth channel of the third SAMPA chip installed on the first FEC. If FEC would be
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needed to be implemented in the computer model for some reason, it could be calculated

in an analogous manner.

The mechanism described above is simple but powerful. In spite of its simplified imple-

mentation, it allows to send data to the exactly specified input port, belonging to the

specified SAMPA chip, which are placed on the particular FEC. The implementation is

shown in the listing 5.3

1 // Produce samples for given number of time windows

2 while(currentTimeWindow < constants :: NUMBER_TIME_WINDOWS_TO_SIMULATE)

3 {

4 // foreach channel for every SAMPA chip

5 for(int i = 0; i < (constants :: NUMBER_OF_SAMPA_CHIPS * constants ::

SAMPA_NUMBER_INPUT_PORTS); i++)

6 {

7 [...]

8 }

9 }

Listing 5.3: Part of the implementation of main loop inside the data generator.

Samples are created and sent to the channels inside the for-loop. Each sample is an

instance of the Sample class, which is a custom defined object type. The Sample class

is used by all implementations of Data Generator. The table 5.1 shows structure of the

Sample class.
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Class Element Description

Sample ID Each sample get its unique id. The id is an

integer generated by a counter inside the Data

Generator. The id makes it easier to debug the

simulation and it allows to track precisely the

path of each sample.

Time Window Stores the information about during which time

window the sample was generated.

Signal Strength This variable is used by the Black Event Data

Generator to store data about charge value for

each generated sample. The charge value is used

by zero-suppression algorithm, implemented in

SAMPA, to filter out noise.

Constructor There are two constructors implemented in Sam-

ple class. The standard constructor, initializing

all variables to its standard values, and the spe-

cial constructor, allowing to set the desired val-

ues of the class variables.

Output operator << Overloading of output operator is required by

SystemC library for objects to be sent through

ports implemented using SystemC.

Assignment operator = Like described above, assignment operator is

also required because of the SystemC framework

specification.

Table 5.1: Structure of the Sample class.

The Sample class is used as shown in the listing 5.4. An instance of the Sample class is

created by using the special constructor with specified time window, sample id and the

value of charge. After being created, each sample is sent to the appropriate output port

of the Data Generator by the ”nb write” method.

1 Sample sample(currentTimeWindow , packetCounter , 0);

2 //Send a sample to appropriate SAMPA and SAMPAs channel

3 porter_DG_to_SAMPA[i]->nb_write(sample);

4 //Save event to the logfile

5 write_log_to_file_sink(packetCounter , i, currentTimeWindow);

Listing 5.4: Creating and sending samples by data generator.
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The last set of instructions to be executed in the while-loop, shown in the listing 5.5,

consists of an if-test which checks number of samples to be sent in the current time

window. If the number of samples sent for each channel is equal to the number of

samples set in the configuration file, then the condition of the if-test is positive and the

contents of if block is executed. The Time Window Counter is incremented and the

number of samples sent during the time window is reset to zero. The information about

the progress of simulation is written to the output.

Irrespective of the result of the if-test condition, after each series of sent samples to the

output ports, the Data Generator waits a certain period of time. This time is set by the

configuration file and it is based on the sampling ratio of SAMPA chips, as described in

point 3 of the parameters list for Data Generator module.

When the while-loop has been executed for the last time window, the work of the Data

Generator module is done. The method generating samples will not be executed any

more, and no more samples will be created. However, the simulation will still be running.

Buffers on particular modules will be drained out from the data and SAMPA chips will

generate only empty packets, without any samples.

1 //If this time window is done , go to next time window

2 if(currentSample == constants :: NUMBER_OF_SAMPLES_IN_EACH_TIME_WINDOW )

//1021 samples

3 {

4 currentTimeWindow ++;

5 currentSample = 0;

6 cout << "currrent time window: " << currentTimeWindow << ", TimeStamp

: " << sc_time_stamp () << endl;

7 }

8 //Each sample get its own unique id (currentSample)

9 //Can be used to identify samples and to track path of the sample in

logfile

10 //or in the code

11 currentSample ++;

12 //SAMPA receives 10-bit data on 10 MHz

13 wait(constants :: DG_WAIT_TIME , SC_NS);

14 }

Listing 5.5: Part of the loop implemented in the data generator, responsible for

creating and sending samples to SAMPA chips.

5.2.2 Various Implementations of Data Generator

Together with the simulation follow three different versions of the Data Generator which

serve three alternative kinds of input data to the model. All three variants are based
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on the same principle of sending samples to the SAMPA chips, but the implementation

of the part responsible for generating input varies. The three Data Generator modules

used to test CRU are:

1. Static Data Generator

2. Gauss Data Generator

3. Black Event Data Generator

5.2.3 Static Data Generator

The Static Data Generator is the first and the simplest implementation of Data Gen-

erator module. It uses a random generator to introduce the concept of probability of

occurrence of a signal on a certain reading pad. As mentioned already, one input channel

is connected to one pad on the end-plates of the detector.

The basic principle of the Static Data Generator is as follows:

The main while-loop is iterating time windows and samples during each time window.

Inside the while-loop a for-loop which iterates input channels is implemented. Finally,

the if-test decides if there will be a signal, which is used to create a sample, for each

channel or not. The implementation of this solution is shown in the listing 5.6.

The if-test uses DG OCCUPANCY, mentioned in point 4 of the parameters list for

Data Generator module, to set the probability for creating a sample. The method

”generate(...)” from the custom class RandomGenerator is called with two parameters.

The parameters provide the range of numbers generated by the random generator. In

this case, the parameters are 0 and 100, which means that an integer between those

two numbers inclusive will be returned by the method. Then, the if-test compares the

generated integer to the value of occupancy provided by the configuration file. If the

integer is lower or equal to the occupancy, the sample will be created and sent to the

SAMPA. If the test condition is not fulfilled, then no sample will be generated and the

data generator will jump over to the next channel and perform the test again.

The two input parameters set to 0 and 100 makes a range of integers corresponding to

the 0 - 100% scale of probability. If the occupancy parameter in the configuration file

is set to be for instance 30%, it means that the integers from 1 to 30 fullfills the test

condition, which results in chance of 30% to generate a sample.

This solution generates flat occupancy over channels and over time. However, on account

of using a random generator, small variations of data distribution over channels can

occur.
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1 // Decide whether sending a sample to the particular channel or not

2 if(randomGenerator.generate(0, 100) < constants :: DG_OCCUPANCY)

3 {

4 // Create a new sample

5 Sample sample(currentTimeWindow , packetCounter , 0);

6 //Send a sample to appropriate SAMPA and SAMPAs channel

7 porter_DG_to_SAMPA[i]->nb_write(sample);

8 //Save event to the logfile

9 write_log_to_file_sink(packetCounter , i, currentTimeWindow);

10 }

11 // Bypass Data Generator with for instance:

12 //else if(( currentTimeWindow == 0 || currentTimeWindow == 1) && (i

< 30))

13 else if (false)

14 {

15 [...]

16 }

Listing 5.6: Part of Static Data Generator.

As shown in the listing 5.6, on the end of the if-test section is made place to create

a next test condition by else if(...) structure. In this place the test based on random

generator can be bypassed by another condition. The comments in the code listing show

an example usage of secondary if-test which ensures that the first 30 input channels will

get 100% occupancy during the first two time windows. Using this solution, many

additional tests can be performed using only the Static Data Generator. The example

of usage of bypassing the first if-test can be for instance testing behaviour of one SAMPA

chip which can get a much higher amount of data than the other SAMPA chips.

5.2.4 Gaussian Data Generator

The main purpose of developing a Gauss Data Generator was to create a more realistic

input scenario to the computer simulation. The Gauss Data Generator is an extension

of the Static Random Generator, and it is meant to generate input based on Gaussian,

called also normal, distribution of samples.

The Gaussian distribution is described by the form 5.1.
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Figure 5.1: The form of the Gaussian function.

The parameter a is the height of the curve’s peak, b is the position of the center of the

peak and c is the standard deviation which controls the width of the ”bell” curve. The

example of the curve generated by the Gaussian distribution is shown in the figure 5.2.

Figure 5.2: Example of normal distribution Bell Curve. [36]

The idea behind the Gauss Data Generator is to distribute data over input channels and

over time. In the first scenario the data is distributed over channels like in the figure

5.2, where the horizontal axis represents channels and the vertical axis amount of data.

In the second scenario the horizontal axis represents time, and amount of data varies

from time window to time window but it is equal for each channel during a particular

time window.

The occupancy based on a Gaussian distribution was implemented as an array storing

the occupancy for each port or each time window. The Gauss Data Generator instead

of using occupancy parameter from the configuration file, uses occupancy based on

Gaussian distribution. This value is put into if-test which determines creation of samples.
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5.2.5 Black Event Data Generator

The third implementation of the Data Generator, called Black Event Data Generator,

uses black events as input data to the simulation. The Data Generator reads first file

containing input data, looking for the events with recorded samples. When some event

containing data is found, then the channel address, value of detected charge and time is

stored in the memory. When reading the file, the data generator decodes the address of

input channels to make it possible to inject the sample to the appropriate SAMPA chip

and input port.

Black Events

The black events are real data collected during the RUN 1 of the Large Hadron Collider

by the ALICE Experiment. Some of black events based also on simulated data. The

black events data are delivered as a text files which were converted from the files sup-

ported by the computer program AliRoot. The AliRoot is a software used in ALICE

experiment for off-line data analysis, reconstruction and as data simulation tool [37].

The approximate size of one file with black events is 3.5 GB. The file contains information

about the signal charge detected on the pads, time when the charge was detected and

address for readout channel connected to the pad.

Figure 5.3: Part of the text file containing black event.
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Figure 5.3 shows an example of a part of the file with black events. The file lists events

as ”ev x”, where x is ordinal number of an event. Most of events do not contain any

information. The figure above shows that all events until event number 217 do not have

any data. Then, the event 217 stored data for 952 timebins, started from timebin 1014

to 62. The data consist of readout branch and address of the pad, timebin - when data

was recorded for the listed address and the value of charge on the pad. The example in

the figure 5.3 can be read as follows:

The input data were detected for the event number 217 and contain charge values for

952 timebins read from branch and channel with address 1025. The charge values are:

during timebin 1014, charge value is equal to 49,

during timebin 1013, charge value is equal to 50, ...

When all values of charge for the given address are listed, then the file goes to the next

addresses, and list charge values for the next pads.

Address Decoding

The implemented logic for reading the file with black events tries first to find an event

containing data. It is realized by searching the ”hw” string in the line. If the string is

found then it is known that the event has stored data and the reading procedure for

samples for this address is started. When reading the data for the particular address is

done, then the logic goes to the next address and repeats the reading procedure for this

address.

To address an input channel in the computer model correctly, it is required to know the

channel and the SAMPA chip it belongs to. The address in the files with black events

is given as a decimal number like for example ”hw 2358”.

To decode the address, the decimal number is first converted to the binary format. The

address is decoded from the four groups of bits:

• 0 - 3 Channel

• 4 - 6 SAMPA chip

• 7 - 10 Front-End Card

• 11 - 15 Branch

For instance, the given address ”hw 2358” is decoded to be the channel number 6 belong-

ing to the SAMPA number 3 installed on FEC number 2. It is important to remember



Implementation 49

that ordering of channels, SAMPA chips and FECs starts from zero. The computer

model simulates only one branch of the readout electronics so it is not needed to decode

the branch number. However, the branches with low numbers belong to IROCs - Inner

ReadOut Chambers, which have higher occupancy, which results in the worse input sce-

nario based on black events. Therefore, the branch with index number 0 was used in

the simulation. Figure 5.4 shows the example of address encoding.

Figure 5.4: Encoding of the hardware address from file containing black events.

A careful reader could notice a quite significant problem related to this method of

hardware addressing. The hardware address in binary form uses 4 groups of bits to

addressing. A four bits address allows to store 16 values what is sufficient for FECs and

SAMPAs but not for 32 input channels for each SAMPA.

The black events based on data read out by the electronics used during the RUN 1 which

results in different setup of addressing. The predecessor of SAMPA - ALTRO chip could

read data only from 16 instead of 32 channels. To solve this problem, empty channels

were mapped to the channels which get data to reuse signals twice.

The address encoding is implemented by using bitshift operators and binary mask. The

binary masks used for address encoding are shown in the figure 5.5.

Figure 5.5: Binary masks used to decode hardware address.

The binary address is stored in the code as a bitset containing 16 bits. The implemen-

tation of the method encoding channel from the whole hardware address is shown in the

listing 5.7.



Implementation 50

1 int DataGenerator :: decodeChannelAddress(unsigned int _hw)

2 {

3 unsigned int channelMask = 15;

4

5 std::bitset <16> channelAdd{_hw & channelMask };

6 unsigned int channelNo = channelAdd.to_ulong ();

7

8 return channelNo;

9 }

Listing 5.7: Implementation of the method returning channel in decimal format

decoded from the hardware address.

The other methods for encoding addresses for SAMPA, FEC and branch based on the

same principle as the method for channel encoding but they used a proper binary mask

and executed the bitshift operation. The example of using bitshift operation for address

encoding of SAMPA chip is shown in the listing 5.8.

1 unsigned short hwAdd2 = (hwAdd & sampaMask) >> 4;

Listing 5.8: Code example of applying binary mask together with bitshift operation.

Injecting Black Event to the Computer Model

The data retrieved from the file with black events are stored in the custom created object

type, called Signal. The table 5.2 shows the structure of the Signal class with its class

members.

Signals are put into a two-dimensional vector data structure where the first dimension

is a timebin and the second a channel number:

1 std::vector < std::vector <Signal > > signalArray;

2 signalArray.resize (1021 , std::vector <Signal >(1920));

3 //To make the code example more readable , parameters from configuration

file were replaced with the real values.

Listing 5.9: Creating a two-dimensional vector to store data from input file.
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Class Element Description

Timebin Stores the information about timebin the signal

was detected according to the data from input

file containing black events.

Address The original hardware address read from input

file.

Signal Strength The value of charge.

Channel Address Decoded channel address.

SAMPA Address Decoded SAMPA address.

FEC Address Decoded FEC address.

Branch Address Decoded branch address.

Constructor Standard and special constructors.

Table 5.2: Structure of the Signal class.

The Data Generator is reading the right location from the vector while iterating the

channels to retrieve the proper signal object. The signal object is the basis for creating

the sample object which is sent to the SAMPA.

5.3 SAMPA

There are totally 60 instances of the SAMPA chip in the standard setup of the computer

model with 12 FECs. SAMPA chips are configurable by the configuration file and all

the parameters related to the SAMPA are shared between each SAMPA instance.

According to the standard configuration of the computer model, each SAMPA chip has

32 input channels, called readout channels. Each channel can sample 10 bits of data with

a frequency of 10 MHz. The readout channels read data in parallel and asynchronous.

After collecting 1021 samples per readout channel, SAMPA creates one data packet per

channel with the samples read by this channel. The time it takes to collect 1021 samples

is called a time window. The data packets are stored in the output buffer where they

wait for departure. The data packets are sent through four serial links. The data are

sent out in parallel but the time of sending each data packet can vary depending on the

size of the particular packet. The size of the packet depends on the number of samples

collected by the particular readout channel.
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The description given above of how SAMPA works is mentioned to help to understand

the implementation of the SAMPA chip in the computer model. More detailed descrip-

tion of the SAMPA chip is given in section 3.3.5.

5.3.1 Reading Input Data

SAMPA reads data, generated by the Data Generator module, using ”t source” thread.

The main part of the thread is an infinite while-loop which is executed during the whole

simulation time. To present the algorithm implemented inside the while-loop, in clear

way, the instructions are described in the list below, in the order of execution:

1. Wait a certain amount of time

The first thing SAMPA does, is to wait for the Data Generator which needs time

to send samples for the first timebin. The waiting time is based on the sampling

frequency and allows to synchronize SAMPA with the Data Generator module.

2. Read samples from the input channels

A for-loop is used to iterate all 32 input channels. A sample of data is read

from each channel. If data come from the Black Event Data Generator then,

zero-suppression is performed to discard samples containing only noise. The im-

plementation of the zero-suppression algorithm is described in subsection 5.3.3. If

samples were generated by the Static Data Generator or the Gauss Data Genera-

tor, there is no need to perform zero-suppression, because the occupancy is already

taken into account by the data generator module.

3. Save sample in data buffer

Samples are saved in the data buffer. There is one data buffer per readout channel.

4. If all sampling for the current time window was performed, start sampling for the

new time window

After reading samples 1021 times from each readout channel, SAMPA creates data

packets which are ready to be sent and starts sampling for the next time window.

The procedure starts again from the first point.

The reading of the samples from input channels is performed in parallel so there is no

waiting time while SAMPA jumps from one channel to another. After reading data from

all input channels, SAMPA waits for the next sampling. The waiting time is set by the

configuration file and it is based on the frequency of sampling. The waiting time is equal
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to the waiting time used by the Data Generator module and it is one shared parameter

in the configuration file.

The data buffer is implemented as an array of lists. There is one data buffer per readout

channel and the array makes it easy to navigate to the proper buffer.

5.3.2 Creating Data Packets

When all samples within one time window are read, the ”makeHeader” method is called.

The method iterates data buffers for each port to find the number of stored samples for

the given time window. This number is used to create a data packet.

The data packet used in the computer model was simplified compared to the real hard-

ware model. The data packet in the simulation consists only of a header, the payload is

omitted. There is actually no need in the simulation to take care about content of the

samples. To estimate buffer usage and the time it takes to send data between modules,

it is enough to know the size of the data.

The method creating the data packet - header, counts the number of samples retrieved

during one time window and puts the number of samples into the header. Knowing the

number of samples per data packet and that one sample has a size of 10 bits, the size

of the whole data packet can easily be calculated on each step of the simulation. The

structure of the Packet class is shown in the table 5.3.
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Class Element Description

Packet ID Each packet get its unique id. The id is an inte-

ger generated by a counter inside the SAMPA.

The id makes it easier to debug the simulation

and allows to track precisely path of each packet.

Time Window Stores the information about during which time

window the data packet was generated.

Channel Address Decoded channel address.

SAMPA Address Decoded SAMPA address.

Number of Samples Decoded branch address.

Buffer Overflow Some samples were discarded due to buffer size

limitation.

Constructor Standard and special constructors.

Output operator << Overloading of output operator is required by

the SystemC library for objects to be sent

through ports implemented using SystemC.

Assignment operator = Like described above, assignment operator is

also required because of the SystemC framework

specification.

Table 5.3: Structure of the Packet class

5.3.3 Implementation of Zero-Suppression

In the real, physical detector, lots of samples contain only noise. The samples containing

data from collisions make about 15 - 26% of all samples [24]. The noise is removed to

limit the amount of data sent through the readout electronics. Removal of noise is

realized by use of the zero-suppression algorithm implemented in SAMPA chips.

The simplified algorithm of zero-suppression was implemented in the computer model.

The algorithm is looking for two consecutive samples with signal strength above the

given threshold. The threshold for the input data based on black events is set to 50.

The figure 5.6 illustrates how the implemented algorithm works.
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Figure 5.6: Decision tree illustrating the implemented zero-suppression algorithm.

The implemented zero-suppression algorithm is based on a worst case scenario. Before

any sample is discarded, it is first saved in the buffer. It ensures that the usage of the

buffer implemented in the SAMPA will always be as realistic as possible. The imple-

mented algorithm was tested on different input scenarios shown in figure 5.7. The same

figure illustrates also the result of applying the implemented zero-suppression algorithm.
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Figure 5.7: Illustration of results after applying the implemented zero-suppression
algorithm to the different input scenarios. Only green samples were saved in the buffer

after end of a time window.

5.3.4 Sending Data Out from SAMPA

The four output links of SAMPA are implemented as four independent threads. Every

output thread sends data concurrently and asynchronously. To send data out of the

SAMPA, every thread calls the ”sendDataThroughSerialLink” method with different

parameters. Every thread using this method specifies a range of input channels to read

data from and index of output link to send data through.

1 Packet temp = headerBuffers[i].front ();

2 //(x number of samples * 10 bit + 50 bit header) / 320 * 10^6 b/s *

10^9 ns

3 wait (((0.0 + temp.numberOfSamples * 10 + 50) / 320) * 1000000 ,

SC_PS);

4 //Send data to GBT

5 ports_SAMPA_TO_GBT[_outputPort]->nb_write(temp);
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6 // delete header from header buffer

7 headerBuffers[i].pop();

8

9 while (! dataBuffers_queue[i]. empty() && dataBuffers_queue[i]. front()

.timeWindow == temp.timeWindow)

10 {

11 // delete data from data buffer

12 dataBuffers_queue[i]. pop_front ();

13 }

14 }

Listing 5.10: Part of the implementation of the SAMPA chip responsible for sending

data packets to the GBT.

The ”sendDataThroughSerialLink” method iterates header buffer for each channel spec-

ified within the given range. If there is a header in the header buffer, it means that a

data packet is ready to send. The method calculates the time it takes to send a partic-

ular data packet and using the ”wait(...)” method, it is pausing the execution of one of

the four threads as shown in listing 5.10. After the calculated waiting time, the data

packet is sent and removed from the data and header buffer. The execution of thread is

resumed.

5.4 Implementation of GBT

The GBT module is implemented in a very basic way in the simulation. It has only two

threads. One thread reads data from SAMPAs and saves them in a queue buffer. The

second thread, removes data packets from the buffer and sends them to the CRU. The

GBT’s clock frequency is set by the configuration file. In addition, GBT introduces a

latency between reading in and sending out data. GBT can count number of samples

received in data packets, and write information to the log file.

The functionality of GBT can be simply extended by implementing more details to the

GBT if needed.

5.5 Implementation of CRU

There are three different implementations of the CRU. The most relevant design of the

CRU is the model which reads data from 12 FECs and sends data out by one PCIe

link. This design of CRU is most supported by ALICE collaboration by now. However,

before this design was chosen as a favourite implementation of the CRU, a few other
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implementations were developed and tested. Other implementations are described briefly

at the end of this section.

1 // Constructor

2 SC_CTOR(CRU)

3 {

4 SC_METHOD(prepareMappingTable);

5 SC_THREAD(readInput);

6 SC_THREAD(sendOutput);

7 SC_THREAD(t_sink_0);

8 numberSentPackets = 0;

9 }

Listing 5.11: Constructor initializing all threads and methods used by the CRU.

The four methods, shown in the listing 5.11, control and steer all work of the CRU. The

method ”prepareMappingTable” is called only once, when the CRU module is being

initialized. This method reads mapping table from the file which is used to map input

channels to input fifos implemented in the CRU. It enables to change order of reading

data from channels. To make this change as easy as possible, the source file with the

mapping table is an Excel sheet. By using MS Excel or freeware alternatives like Libre

Office Calc, it is possible to map all 1920 channels to 1920 fifos in an efficiently way.

1 while(true)

2 {

3 for(int i = 0; i < NUMBER_OF_CHANNELS_BETWEEN_GBT_AND_CRU *

CRU_NUMBER_INPUT_PORTS; i++)

4 {

5 while (porter[i]->nb_read(val))

6 {

7 numberOfSamplesReceived += val.numberOfSamples;

8 //Put data packet to the appropriate fifo

9 input_fifos [(( val.sampaChipId * SAMPA_NUMBER_INPUT_PORTS) + val.

channelId) % (SAMPA_NUMBER_INPUT_PORTS * NUMBER_OF_SAMPA_CHIPS)].push(

val);

10 // Update monitoring of buffer usage

11 cruMonitor.addPacketToBuffer(val , (val.sampaChipId *

SAMPA_NUMBER_INPUT_PORTS) + val.channelId , sc_time_stamp ().value());

12 // Write event to log file

13 write_log_to_file_source(val , i, numberOfSamplesReceived);

14 }

15 }

16 //Wait one clock cycle

17 wait(CRU_WAIT_TIME , SC_PS);

18 }

Listing 5.12: Part of implementation of thread reading input data in the CRU. Some

namespaces of constants were omitted to make code listing easier to read.
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The ”readInput” method is implemented as a thread which is scanning all 1920 input

ports continuously. If there is a data packet which arrived to the port, it is read out

from the channel and it is added to one of the input fifos. The ”addPacketToBuffer”

method of the CRU monitor is called to inform the monitor that some data were written

to the buffer. The monitoring of buffer usage for the CRU is described more in section

5.6. The thread is also logging the event by calling dedicated method to update log file.

If there is no data packets to read from particular port, the thread is going to check

next port and repeats the whole procedure described above.

The source code of ”readInput” method is shown in listing 5.12. To make the code more

readable for the purpose of this rapport, the namespaces of parameters were omitted.

1 if(! output_fifo.empty ())

2 {

3 Packet temp = output_fifo.front ();

4

5 //The real time it takes to send the packet through one DDL3 link

or PCIe link

6 // Packet size / Throughput * 10^9 ns

7 //(x number of samples * 10 bit + 50 bit header) / 10 * 10^9 b/s *

10^9 ns

8 wait (((0.0 + temp.numberOfSamples * 10 + 50) / 128) * 1000000 ,

SC_FS);

9

10 //The worst case , first packet must be sent in 100% after that it

can be deleted from buffer

11 output_fifo.pop();

12 write_log_to_file_sink(temp , _link);

13 cruMonitor.deletePacketFromBuffer(temp , temp.sampaChipId *

SAMPA_NUMBER_INPUT_PORTS + temp.channelId , sc_time_stamp ().value());

14 }

15 else

16 {

17 //Time it takes to jump to the next fifo

18 wait(constants :: CRU_WAIT_TIME , SC_PS); //320 MHz

19 }

Listing 5.13: Part of the implementation of the thread which sends data out from the

CRU.

The thread ”sendOutput” is responsible for preparing data before sending them out

from the CRU. Depending on the design of the CRU, the first instruction executed by

this thread is to check if all needed data packets arrived for entire time window. There

is one proposed design of the CRU which always waits for all data packets from all 1920

input channels, to sort them and after that send them. Another proposed design does
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not sort data pad-by-pad but padrow-by-padrow. In this case, data can be sent out from

the CRU, once some padrow has received data from each readout channel.

If there are some data packets ready to be sent, the thread copies the pointer to the

data packet to the output fifo. It is a signal for the CRU to send those data out.

The thread ”t sink 0”, shown in listing 5.13, is monitoring the output fifo, mentioned

above, continuously. If the fifo is not empty, the thread calculates the time it takes

to send data from the fifo and using the ”wait(...)” method from the SystemC library,

pause its execution. When the waiting time is over, the data packet is sent out from the

CRU module. The CRU removes the data packet from the fifo buffer, updates the buffer

monitor and writes the event to the log file. A data packet is never removed from the

buffer before it is sent out from the CRU. It guarantees that the monitoring of buffer

usage is made in a proper way.

For the implementation using PCIe as output link, there is only one ”t sink 0” thread

implemented. For eight DDL3 links, CRU uses 8 such a threads to send data out from

output fifos concurrently. There is also a difference in calculation of time it takes to send

data via the link. The time calculation is based on bandwidth for each type of link.

The only difference between CRUs reading data from 12 FECs and 16 FECs is number

of input fifos. In the first case, there are implemented 1920 input fifos and for 16 FECs

- 2560 fifos. Such values as number of fifos in the CRU are not hardcoded. The fifo-

buffers are created dynamically based on calculation of input channels defined by the

configuration file.

5.6 Monitoring of CRU

A CRU Monitor class is attached to each of the CRU instances. Every time the CRU

writes or removes some data packet from the buffer, the monitor is informed by calls to

the appropriate method.

The CRU Monitor stores maximal buffer usage of each fifo-buffer for each time window.

These data are stored in a two-dimensional vector. One dimension determines the time

window, and other the index of the fifo.

When the simulation is done, the CRU Monitor saves data into a MS Excel file. The

Excel sheet makes it very easy to analyse raw data generated by the CRU Monitor, by

using various formulas supported by Excel.
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5.7 Implementation of Test Bench

All of the code responsible for setting up the computer model of the readout electronics

and initializing test bench used to run simulation, is implemented in the main method.

The main method reads the configuration file and uses the parameters provided by the

file to create and to initialize all modules.

1 // Module creation

2 DataGenerator dg("DataGenerator");

3 SAMPA *sampas[constants :: NUMBER_OF_SAMPA_CHIPS ];

4 GBT *gbts[constants :: NUMBER_OF_GBT_CHIPS ];

5 CRU *crus[constants :: NUMBER_OF_CRU_CHIPS ];

Listing 5.14: Creation of modules by the test bench.

Listing 5.14 shows creation of all module types used in the computer model. The data

generator has only one instance in the simulation and therefore, it is created and initial-

ized statically by a call to the constructor.

Other modules like SAMPA, GBT and CRU are created dynamically. The number of

instances of a particular module can be manipulated by changing parameters in the

configuration file. For instance, just by changing configuration file, it is possible to

change the computer model of the readout electronics to consist of for example 1 FEC

(5 SAMPA chips and 2 GBTs) connected to one CRU or, for example 24 FECs connected

to 2 CRUs. Number of ports and channels between module is configurable as well. All

these changes do not require any modifications of the source code.

1 // Module initialization

2 //CRU

3 for(int i = 0; i < constants :: NUMBER_OF_CRU_CHIPS; i++)

4 {

5 module_name_stream << "CRU_" << i;

6 module_name = module_name_stream.str();

7 crus[i] = new CRU(module_name.c_str ());

8 module_name_stream.str(string ());

9 module_name_stream.clear();

10 }

Listing 5.15: Initialization of the CRU by the test bench.

The three dynamic arrays are created to store pointers - addresses to the memory, to

each instance of modules like SAMPA, GBT and CRU. The size of these arrays are

determined in the runtime and it is based on the number of instances of particular

modules supplied by the configuration file.
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Each module must be initialized after creation. The listing 5.15 shows initialisation of

all CRU instances. The for-loop iterates each instance of the CRU chip. Inside the loop,

each instance is assigned a unique name which is used as a parameter while calling a

constructor for the object.

Channels are objects which are used to connect ports of modules together. Channels

are delivered by the SystemC library and there is no need to implement them manually.

There are different types of channels, for purpose of this model, channels of type fifo

were used. They are provided as template objects which make it possible to send a

custom object type, like for instance Packet, via them.

The listing 5.16 shows creation of channels which are used to connect GBT chips with

the CRU. Channels are stored in dynamically created ”fifo GBT CRU” array and then,

for-loop is used to initialize them.

1 // Channel initialization

2 //GBT -CRU

3 sc_fifo <Packet >* fifo_GBT_CRU[constants ::

NUMBER_OF_CHANNELS_BETWEEN_GBT_AND_CRU * constants ::

NUMBER_OF_GBT_CHIPS ];

4 for(int i = 0; i < constants :: NUMBER_OF_CHANNELS_BETWEEN_GBT_AND_CRU *

constants :: NUMBER_OF_GBT_CHIPS; i++)

5 {

6 fifo_GBT_CRU[i] = new sc_fifo <Packet >( constants ::

BUFFER_SIZE_BETWEEN_GBT_AND_CRU * constants :: NUMBER_OF_CRU_CHIPS);

7 }

Listing 5.16: Creation of channels used to connect GBTs with the CRU together.

The last step to fulfil building of the computer model of the readout electronics is to use

channels to connect modules with each other. The main principle of connecting modules

is as follows:

The output port number 1 of module A is connected to channel X. Then, the input port

number 1 of some other module B, is connected to the same channel X. It allows data

flow from the port number 1 of module A to the port number 1 of module B.

1 // Connecting Port -Channel -Port

2 //GBT -CRU

3 for (int i = 0; i < constants :: NUMBER_OF_GBT_CHIPS * constants ::

NUMBER_OF_CHANNELS_BETWEEN_GBT_AND_CRU; i++)

4 {

5 if (i != 0 && i % constants :: NUMBER_OF_CHANNELS_BETWEEN_GBT_AND_CRU

== 0)

6 {

7 gbt_number ++;
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8 gbt_port = 0;

9 }

10

11 if (i != 0 && i % constants :: CRU_NUMBER_INPUT_PORTS == 0)//24 gbt per

1 cru

12 {

13 cru_number ++;

14 cru_port = 0;

15 }

16 gbts[gbt_number]->porter_GBT_to_CRU[gbt_port ++](* fifo_GBT_CRU[i]);

17 crus[cru_number]->porter[cru_port ++](* fifo_GBT_CRU[i]);

18 }

Listing 5.17: Using channels to connect GBTs to the CRU.

The for-loop is used to iterate each channel. The implementation uses modulo operation

to connect the proper port of the right GBT to the correct CRU module and its appro-

priate port. The same approach is used to connect SAMPA’s port to the data generator

and to GBTs.

1 //start simulation

2 sc_start(constants :: SIMULATION_TOTAL_TIME , SC_US);

Listing 5.18: Using sc start method to start running of the simulation.

At the end, the simulation is started by calling the method ”sc start(...)” from the

SystemC library. The time and unit is specified as parameters. It is possible to call the

method without any parameters, then SystemC will stop the simulation automatically.

SystemC is monitoring all channels and if there is no data sent via them for a certain

amount of time, the simulation is stopped. However, this solution was used in the earlier

phases of the development and it was a source of many problems which were difficult to

discover. Because of SAMPA’s sampling rate, SystemC sometimes terminated running

of the simulation before the simulation was done.
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Results Generated by the

Simulation

This chapter presents results generated by running the simulation with different imple-

mentations of the hardware model and using various scenarios of input data.

Different implementations of the Data Generator module were used to run the simulation

and to measure buffer usage for the CRU in diverse conditions. Different implementa-

tions of the CRU were also tested and compared to each other. Generating results

needed to run simulation many times and each running was a time consuming process.

The results are presented below by ordering them by different input scenarios to make

them more intelligible and clear.

6.1 Flat Occupancy

This section presents results generated by the simulation using flat occupancy of data as

input. Flat occupancy in this case, means that every readout channel receives the same

amount of data. The input data is generated by the Static Data Generator described

in section 5.2.3. Production of data in the Static Data Generator is based on a random

generator. For this reason some fluctuation between channels can occur.

64
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Figure 6.1: The maximal buffer usage for three different values of static occupancy.

The input data, which are generated based on flat occupancy, are not the most realistic

scenario which can be observed in the TPC detector. However this scenario was used to

test the simulation and to ensure that everything works fine before testing the computer

model with more advanced input data scenarios. In addition, this scenario illustrates

well how the simulation works and how the data flow through each module looks like.

The Static Data Generator was set to generate input data of 26 to 30 % occupancy. One

simulation was run for each value of occupancy, six simulations totally. Each simulation

was running independently and the computer model was supplied with new data during

the first 30 time windows.

For each scenario, one channel with the highest peak usage of input buffer in the CRU,

was picked and presented on the plot. All six scenarios are quite similar to each other,

and therefore only three of them (26-28-30%) were presented on the plot to make the

plot clearer. The plot is illustrated in figure 6.1. The horizontal axis of the plot is a

time axis, and it shows time windows. The vertical axis shows buffer usage in bits.

The max buffer usage oscillates around a level of 3000 bits for each value of occupancy.

The occupancy of 26%, the dark blue line, stays a little bit under 3 kb with the peak

at 6150 bits. A little bit higher occupancy - 28%, generates higher buffer usage but still

around 3 kb, and the highest - 30% occupancy - has the average buffer usage over 3 kb.
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All of the three graph lines make one or more peaks. These peaks have values about two

times higher than the median. It means that during these time windows, the CRU was

not able to send a packet from the input buffer, before a next packet arrived. Therefore

it needed to store two data packets in the buffer in the same time.

Figure 6.2: Illustration of time needed to process all generated samples by computer
model.

The simulation can measure the time it takes to process all samples. The start point

for time measurement is when the first sample is generated by the data generator. The

time measurement is finished when the CRU sends out the last one sample generated

by the data generator. The plot in figure 6.2 shows the time measurement for all six

input scenarios. As it is shown in the plot, the higher occupancy demands more time

for processing all samples.

The simulation stores also number of samples received by each GBT and by the CRU.

These values were very useful under development and for evaluating the simulation.

Using this information and log files generated by the simulation, it is possible to track

each sample, which was quite helpful for examining data flow and for debugging. Table

6.1 shows how samples were distributed over 24 GBT for 30% occupancy.
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GBTx Number of Sam-

ples Received

GBT 0 752074

GBT 1 742781

GBT 2 741248

GBT 3 740527

GBT 4 742725

GBT 5 741938

GBT 6 742794

GBT 7 742350

GBT 8 742725

GBT 9 741786

GBT 10 741185

GBT 11 741457

GBT 12 742328

GBT 13 740965

GBT 14 741508

GBT 15 743737

GBT 16 742387

GBT 17 741936

GBT 18 742251

GBT 19 742060

GBT 20 743611

GBT 21 743303

GBT 22 742440

GBT 23 741969

CRU 0 17812085

Table 6.1: Number of samples received by each GBT for 30% occupancy.

The number of samples received by the CRU should be always equal to the sum of

received samples by all GBTs.

One GBT forwards data from 2.5 SAMPA, which gives 80 readout channels:

2.5 SAMPA chips * 32 readout channels per SAMPA gives 80 readout channels

Each channel can read maximum 1021 samples per time window. For the simulation

described above, input data were supplied during the first 30 time window. It means
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that every channel can detect 30630 samples during 30 time window if the occupancy

would be 100%:

1021 samples per time window * 30 time window gives 30630 samples per channel

Then, 80 readout channels can read 2450400 (80 * 30630) samples at 100% occupancy.

For 30% occupancy it should give 30% * 2450400 = 735120 samples per GBT. Compared

to the table 6.1, the number of received samples per GBT is around the calculated value.

The small difference can be caused by the implementation of the random generator.

In addition, because the creation of samples is based on probability, sometimes the

occupancy can be a little bit higher and sometimes a little bit lower. Therefore, it is

important to repeat the simulation a few times and compare the results. It can be

extremely relevant if the buffer usage is very close to the maximum size of the buffer

which is decided to be implemented in the real hardware model.

According to the simulation for 30% occupancy, the 17812085 samples were generated

and received by the CRU. For 100% occupancy, the total number of samples should be

equal to:

1920 readout channels * 1021 samples per time window * 30 time frames window

58809600 at 100% occupancy

The real occupancy for the simulation was:

17812085 generated samples / 58809600 maximum number of samples, gives 0.30287

It means that occupancy generated by the data generator during this run of the simu-

lation was about 30.3%.

The simulation measures also the maximal total buffer usage for the CRU. The max-

imal total buffer usage describes total amount of memory used by all input buffers

implemented in the CRU. The measurements are shown in table 6.2.

Occupancy Total Memory Usage by the

CRU [bit]

26% 5346220

27% 5538040

28% 5739820

29% 5929640

30% 6123580

Table 6.2: The maximal buffer usage for all input fifos implemented in the CRU.
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6.2 Gaussian Distribution of Occupancy

According to the Technical Design Report for the Upgrade of the ALICE Time Projection

Chamber [24], the average number of interactions within a time window of 100 µs is

equal to 5 for 50 kHz interaction rate. It results in expected average occupancy of 15%,

increasing up to 27% for the innermost pad row. Occasionally, for central collisions,

occupancy can increase up to 42% during one event. For the most extreme scenario,

occupancies of up to 80% may be reached. It was estimated that the probability to reach

such a high occupancy is less than 0.3% [24]. The expected occupancies were estimated

based on measurements made under RUN 1.

6.2.1 Gaussian Distribution of Samples over Pads

The first attempt to use a Gaussian distribution as input to the simulation, was to

distribute samples over pads - channels. The average occupancy of 30% was used as

the first input scenario. The same input pattern was repeated during the first 30 time

windows. Figure 6.3 shows how the samples with data were distributed over input

channels. Some of the channels have got flat occupancy of 50% while some other channels

were empty.

Figure 6.3: The distribution of samples over readout channels.

After applying this input pattern, it turned out that the buffer usage has not reached

any stable level. During each time, when input data were delivered to the computer

model, buffer usage was increasing until it reached the level of 36270 bits during 32.

time window. Analysing the Excel sheet with the generated results, it is possible to
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see that the channels which had occupancy of 0% of all time, had 500 bits saved in the

buffer during 32. time window.

When the time window is done and there is no sample for a certain channel, then SAMPA

creates an empty packet, which consists only of a header and no data. This procedure is

described more detailed in section 3.3.5, it is important here to mention that the header

has a fixed size of 50 bits.

When the input buffer in the CRU had 500 bits and it is known that this channel has

never received any samples, it is clear that the buffer must contain 10 headers.

It means that during the time when buffer usage was highest - during 32. time window,

the CRU had to store data from 10 time windows at the same time.

Figure 6.4: Maximal buffer usage for channel which had the highest peak usage of
memory during run of the simulation.

Another input scenario based on Gaussian distribution was applied as well. The average

occupancy was set to 22% and it was distributed over channels from 5% of occupancy

to 35% with some fluctuations. The input pattern is shown in the figure 6.5.
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Figure 6.5: Input pattern for the next run of the simulation.

The maximal buffer usage was oscillating around 4000 bits. Only once during 40. time

window, the CRU did not manage to send out all samples during one time window and

it resulted in a peak usage of memory on the level of about 7000 bits, as shown in the

figure 6.6.

Not only amount of data but also the distribution of those data over channels has a

crucial meaning for memory usage in the CRU for one buffer fifo. When a flat occupancy

of 30% required buffer size of about 3000 bits, shown in figure 6.1, 22% occupancy

distributed over channels demands fifo size of at least 4000 bits.
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Figure 6.6: Buffer usage for Gaussian based input data with average occupancy of
22%.

6.2.2 Gaussian Distribution of Samples over Time

In this input scenario, input data were distributed over time. It means that every channel

has got approximately the same amount of data during the time window. The amount of

data was changing over the time using a Gaussian distribution. The distribution followed

a Gaussian curve with 5% occupancy for the first time window, peak occupancy equal

to 35% during seventh time window, and at the end 5% occupancy for the fifteenth time

window. This pattern was repeated over 100 time windows.

The results of the buffer usage are shown in figure 6.7. The peak buffer usage was 7370

bits and was recorded for input channel 1905. Time needed to process all data was 10.3

ms (10316687866 ps). The average occupancy of channels was equal to 22%.
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Figure 6.7: Buffer usage for Gaussian based input distributed over the time with
average occupancy of 22%.

Using the Gauss Data Generator it is possible to generate many different input scenarios.

Only steering the parameters used to make a Gauss curve, like for example a width of

curve, and the top of curve, it is possible to change the results generated by simulation

dramatically. Therefore, it is important to find an input scenario which is as close as

possible to the real condition in the TPC detector. This part of work is out of scope for

this master thesis. However, the results above show features and possibilities which the

simulation gives and show how the computer model can be tested with different custom

input scenarios.

6.3 Real Data as Input to the Simulation

The files with black events were supplied as input data to the simulation of the readout

electronics. The concept of black events and the way how they were used as input data,

is described in section 5.2.5.

6.3.1 Running Simulation for 30 Time Windows with Direct Address-

ing of Channels

The first simulation with real data was run over 30 time windows. In this time, input data

were supplied to the model and repeated for each time window. In the first experiment of

running simulation on real data, all readout channels were mapped exactly to the given
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addresses determined by the input files. As mentioned already in section 5.2.5, real data

were based on the readout electronics which used the predecessor of SAMPA chip which

had 16 readout channels - exactly half the amount the SAMPA chip has. It means that

many channels never receive any data and it resulted in low average occupancy.

Figure 6.8: Buffer usage for one channel with highest peak usage.

Figure 6.8 shows the memory usage for the input fifo which had the maximal peak

buffer usage. This fifo was responsible for buffering data coming from the readout

channel number 196. The buffer usage for the fifo increased gradually during supplying

the input data and reached 19260 bits at the highest point. When new input data were

not supplied any longer, the buffer usage decreased to the minimum.

The input data for the channel number 196 is shown in the figure 6.9. The threshold

for zero-suppression was set to 50.
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Figure 6.9: Amplitude for channel 196 supplied as input data based on black events.

Analysing results based on the black events as input data, without changing mapping of

channels, shows that only 7 of 24 GBTs had received any data. The average occupancy

was only 3.54% and the CRU had received totally about 20860 kb of data. The maximal

total memory usage by the CRU, sum of memory used by all 1920 fifos, was 2154 kb.

The model of readout electronics needed exactly 3.35 ms (3349032410 ps) to process the

last generated data packet.

Examining the generated plot, it is difficult to recognize if the buffer usage was stabilized

on some level or not. Therefore it was decided to run the simulation again, but over

longer period of time.

6.3.2 Running Simulation for 100 Time Windows with Direct Address-

ing of Channels

The number of time windows, when input data were supplied to the model, was set to

100. The plot presented in figure 6.10 shows the memory usage for the one input fifo

which had the maximal peak usage. In this scenario, the input fifo with the highest

memory usage was again fifo number 196.
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Figure 6.10: Buffer usage for fifo-buffer number 196 over time. Input data were
supplied during the first 100 time windows.

The plot shows clearly that buffer usage has not been stable. It was increasing all the

time while the input data were supplied to the model.

6.3.3 Running Simulation for 30 Time Windows with Readdressed

Channels

A creative mapping of the readout channels, allowed to reuse signals, and apply them

to the channels which were empty previously. The simulation was run with black events

two times: the first running, where input data were supplied over 30 time windows, and

the second time - when input data were supplied over 100 time windows.

For this scenario, where data were generated during first 30 time windows, the CRU

received approximately 80980 kilobit totally. The remapping of the readout channels

allowed to achieve occupancy of 13.7%. The occupancy is almost four times higher, but

it is still relatively low compared to the expected occupancy described in the Technical

Design Report, namely 15 - 27%.

All GBTs have received a certain amount of data. The total time needed to proceed

all samples by the readout electronics was 3.4 ms (3364660580 ps). The maximal total

memory usage by the CRU was 7908 kb.

There were three input fifos which had the same peak usage of memory. One of them was

channel number 196 and the two other channels were the channels which were mapped

to the same address as channel 196, and have got the same input data.
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The highest needed buffer size for one fifo was 19260 bits, exactly the same value as

for scenario before remapping channels. It means that even the average occupancy

increased, it did not affect the buffer usage for the channel which received the highest

amount of data.

The maximal buffer usage for the fifo for readout channel 196 is exactly the same as

shown in figure 6.8 for the previous input scenario.

6.3.4 Running Simulation for 100 Time Windows with Readdressed

Channels

The simulation with remapped channels was run over 100 time windows as well. There

was no difference in maximal buffer usage compared to the simulation without remapped

channels. However, the average buffer usage for the input fifo number 196 was higher in

this case. The figure 6.11 presents plot with the maximal buffer usage for one channel

in each time window.

Figure 6.11: Buffer usage for channel number 196. Input data were supplied during
first 100 time windows and they were reused by delivering them to the empty channels.

This input scenario needed 10.9 ms (10926409225 ps) to process all data packets. The

CRU received 26949800 samples which corresponds to about 269938 kb of received data.

The maximal total memory usage by the CRU was approximately 18294 kb.
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6.3.5 Channels Mapped Dynamical over Time

Results based on the input scenarios described above, show that it is impossible to find

a fixed buffer size for some of the input fifos implemented in the CRU, which could store

all needed data.

Disadvantage of this testing approach was that the same input data, the same black

event, was repeated over each time window. The result of that was that the same

amount of data were delivered to the same channels all the time. Despite the fact that

input data were based on real data, it turned out that it was not realistic to repeat those

data during each time window to the same channels.

To solve this problem and to test the model with more realistic input data, it was

decided to remap channels dynamically during the simulation. For each time window,

the address for each channel was moved upwards by one, for instance, after first time

window, channel with index 0 was mapped to be a channel 1, and channel indexed 1919

was mapped to index 0. All addresses were moved in a circle.

Figure 6.12 shows a plot illustrating maximal memory usage over 30 time windows for

channels with the highest peak buffer usage. The maximal buffer usage was observed

to be equal to 12140 bits. There were three channels with the same values of maximal

buffer usage and they were presented on the plot.

Figure 6.12: Maximal buffer usage for three channels with the highest peak memory
usage. Addressing of channels was dynamically remapped during running the simula-

tion.
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The model of the readout electronics needed 3.2 ms (3186798080 ps) to process all data.

The maximal total buffer usage for the CRU was 2923980 bits. During this run, there

were generated 8084940 samples, which resulted in occupancy of 13.7%.

The plot shows one highest peak for each channel. Away from the peaks, the buffer

usage oscillated between 3000 and 4000 bits.

It was decided to run the simulation with the same input scenario for longer period of

time - 100 time windows, to see if the peak usage of one of the input buffers will tend

to increase.

Figure 6.13: Buffer usage for six channels. Data were supplied over 100 time windows.

The figure 6.13 illustrates a simulation run with the same input scenario described above

but for longer period of time.

The plot shows clearly that the highest buffer usage did not increase. The average buffer

usage is still oscillating at the same level.

For comparison and for clearer overview all key results were put into table 6.3. The

two last presented input scenarios are the two most realistic scenarios. The data used

during those tests are based on the real data from previous experiments. The injection

of the input data were dynamically changed over time, like during real collisions of the

particles.
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Input Scenario Avg. Occu-

pancy [%]

Total

Time [ns]

Max Total

Memory Usage

[bit]

Max Memory

Usage per Fifo

30 TW 3,54 3349032 2154160 19260

100 TW 3,54 10910780 4970500 44940

30 TW, statically

remapped

13,7 3364660 7908210 19260

100 TW, statically

remapped

13,7 10926409 18293950 44940

30 TW, dynamically

remapped

13,7 3186798 2923980 12140

100 TW, dynamically

remapped

13,7 10340415 2923980 12140

Table 6.3: Comparison of results based on real data.

Many files containing black events were delivered during this master thesis, and because

of limited time of this project, only several of those files were used to deliver real data to

the simulation. Therefore, it is strongly recommended to run the simulation using more

black events as input data. It is possible that the highest buffer usage would increase

for some events which could generate higher data density.

6.4 Comparison of Different Designs of CRU

On request of scientists from the ALICE Collaboration, two additional simulations were

performed. The aim was to compare different design propositions for the CRU. The four

CRU designs considered in this section are:

• CRU supporting 12 FECs vs CRU supporting 16 FECs

• CRU sending data out via 8 DDL3 links vs CRU sending data out via 1 PCIe link

The first test was executed to compare the two versions of the CRU which could read

data from 12 or 16 FECs. It is obvious that the CRU serving 16 FECs will need more

memory. However, it is not easy to predict if the change will be proportional to the

number of the readout channels or maybe needed memory will increase dramatically. In

addition, the simulation should show how the time needed to process all samples will

change.
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Figure 6.14 presents plots which compare the two mentioned CRU designs. The Statical

Data Generator was used to supply input data to the computer model. The highest

noticed buffer usage for CRU reading data from 12 FECs is approximately of 6000 kbit,

and for 16 FECs, buffer usage reached about 8000 kbit.

The results show that buffer usage for this input scenario is proportional to the number

of FECs - and thereby to the number of input channels. Time needed to process all data

was longer for 16 FECs but not significantly. Because the CRU can read data parallel

from its ports, the total time was affected only by additional time it takes to send more

data out from the CRU.

Figure 6.14: Comparison of two implementations of the CRU. One CRU which reads
data from 12 FECs and the second one which reads data from 16 FECs.

To compare the two implementations of the CRU which use 8 DDL3 links or 1 PCIe

link, the Static Data Generator was used. Figure 6.15 shows total memory usage for all

input fifos of the CRU for 30% occupancy of channels. The differences in buffer usage

are not huge. Memory usage for the CRU with PCIe is lower in average but around 12.

time window it reached a little bit higher level than the CRU with DDL3 links. Running

simulation for longer period of time shows that buffer usage for both implementations

oscillates around the same values.
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Figure 6.15: Comparison of buffer usage for CRUs which send data out by 8 DDL3
links vs one PCIe link.

The custom input scenario was developed to test behaviour of those two implementations

in more extreme conditions. The Static Data Generator was modified to deliver 100%

occupancy for the first 30 readout channels during the two first time windows. All other

channels has got 30% occupancy. The plot in figure 6.16 shows that maximal buffer

usage for the CRU in both cases is almost the same. No significant difference in memory

usage for any of implementations of the CRU was observed.
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Figure 6.16: Comparison of buffer usage for two implementations of CRU tested
during custom input scenario.



Chapter 7

Conclusion and Outlook

7.1 Summary

CERN – the European Organization for Nuclear Research is the world’s largest physics

laboratory which is dedicated to study the fundamental structure of the Universe. In-

vestigating the smallest building blocks of the fundamental laws of nature demands

large and sophisticated scientific instruments like particle accelerators. Scientists from

CERN have developed the Large Hadron Collider, the largest and most powerful particle

accelerator ever built by humans, to explore the world in very small scales.

Various properties of collisions are measured by seven detectors installed on the LHC

ring. One of them is ALICE – A Large Ion Collider Experiment, which is specialized in

analysing heavy-ion collisions. ALICE uses a Time Projection Chamber detector as its

main detector responsible for tracking and identification of charged particles.

Under the Long Shutdown 1, the TPC detector has been prepared to the RUN 2. The

readout electronics installed on the detector have been upgraded to meet new conditions

introduced by higher energy and frequency of collisions. After the Run 2, the LHC will

be shut down again. During this time, the accelerator and all detectors installed on it

will be prepared to even higher energy of collisions. The expected data rate for TPC

detector for RUN 3 is about 1 Tbyte/s. To handle the increased data rate, the readout

electronics for TPC will be completely rebuilt.

The purpose of this master thesis is to contribute to designing a new readout electronics,

which will be used during RUN 3, by developing computer simulation of the part of the

readout system. Developing a new hardware is a complicated and time consuming

process. It is almost impossible to produce hardware first and test it after that. This

84
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approach would be a recurrent process which would consume enormous economical and

time resources.

As an answer to the research question, a computer simulation of the readout electronics

for the TPC detector has been developed. The computer model of the hardware and

test bench allow to study data flow between implemented modules and it is a powerful

tool for estimating many parameters of the designed electronics.

The computer simulation was developed using C++ as programming language, and

the SystemC framework which extends the capabilities of C++ to enable hardware

description by adding important concepts as concurrency, events and data types. The

computer model is essentially a C++ program that exhibits the same behaviour as the

designed system when executed.

The SAMPA, GBT, and CRU were implemented in the computer model as three main

modules. Additional modules like Data Generator and CRU Monitor were implemented

as well to enable the computer model to be simulated and to generate results based on

the behaviour of the model. Each module of the simulated model has been implemented

in detail and described in this report.

SAMPA is implemented as a module which samples data from Data Generator and uses

them to create data packets which are sent through GBT. The GBT is implemented as

a basic module which forwards data further to the CRU.

The CRU module is the main focus of this master thesis. The design of the CRU has been

evolving all the time during the work on this project. Many different design solutions

have been proposed by the scientists from CERN, and to help to choose the best one,

many of design propositions were implemented and tested using the simulation.

Required buffer size and time needed to process data by readout electronics were es-

timated for four different implementations of the CRU. The CRU reading data from

12 FECs was compared to the CRU which reads data from 16 FECs. Two different

interfaces for sending data out from the CRU were compared as well. The CRU with

implemented output link as PCIe was compared to the CRU which uses eight DDL3

links. The estimation of needed memory by CRU is an important factor in choosing

proper FPGA board for hosting the CRU.

The three different implementations of Data Generator, and some variations of them,

were used to study the behaviour of CRU under diverse conditions. The computer

model was supplied with input data based on: Static Data Generator, Gaussian Data

Generator and Black Events Data Generator. Results generated based on different input

scenarios give an indication of required memory size by CRU. The most realistic results
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achieved during this master thesis are results based on black events. In this scenario the

real data from RUN 1 were injected into the computer model. In addition, the input

data were distributed dynamically over time to change the occupancy of channels to

extend one event, supplied by an input file, over many time windows. The results were

presented, described and analysed in this report.

7.2 Outlook

Many files with black events, both including real data and simulated data, have been

delivered to test on different stages of this master thesis. Many of them were used as

input data to the simulation. However, because of limited time of this master thesis,

not all available files were used to test the computer model of the readout electronics.

Therefore, it is strongly recommended to run the simulation with different black events,

both those which were available during this master thesis, and those which will be

created in the future.

The computer model which has been developed during this master thesis is a powerful

tool for simulating and studying the behaviour of the readout electronics for the ALICE

TPC detector. The simulation can be used to make the final design better but also for

planning future upgrades of the electronics. The simulation is very flexible which makes

it possible to have different implementations of modules and to compare them with each

other. Changing of the model setup is realized by manipulating the configuration file.

Just by changing parameters in the configuration file, it is possible to change number of

module, like for example number of FECs, and CRUs. Many additional parameters can

be changed by using the configuration file. It is also possible to extend the computer

model by adding additional modules.

7.3 Reflections

The major outcome of this master thesis is a contribution to the ALICE Experiment.

The work on this project was very challenging but also rewarding. The complexity of the

readout systems for TPC detector, and need to learn new SystemC framework turned

out to be a steep learning curve. The characterization of this project required to gain

knowledge in fields of physics and electronics. Implementing the CRU was challenging

due to the constantly evolving design and limited available human resources that had

the required knowledge about its design.
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All things considered, it was privilege to contribute to such a sophisticated experiment as

ALICE is, and it turned out to be a unique experience that has been greatly appreciated.



Abbreviations

ADC Analog-to-Digital Converter

ALICE A Large Ion Collider Experiment

ALTRO ALICE TPC Read-Out

ASIC Application Specific Integrated Circuit

ATLAS A Toroidal LHC ApparatuS

CERN The European Laboratory for Nuclear Research

CMOS Complementary Metal-Oxide-Semiconductor

CMS Compact Muon Solenoid

CRU Common Read-out Unit

CSA Charge Sensitive Amplifier

EMCal Electromagnetic Calorimeter

FEC Front-End Card

FPGA Field-Programmable Gate Array

GBT GigaBit Transceiver

HMPID The High Momentum Particle Identification Detector

IROC Inner ReadOut Chamber

ITS Inner Tracking System

LEP Large Electron-Positron Collider

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty

LHCf Large Hadron Collider forward

MoEDAL Monopole and Eexotics Detector At LHC

MWPC Multi-Wire Proportional Chamber

PHOS PHOton Spectometer

PS Proton Synchrotron
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QGP Quark-Gluon Plasma

RCU Readout Control Unit

SSW Service Support Wheel

TOTEM TOTal Elastic and Diffractive Cross Section Measurement

TOF Time-of-Flight detector

TPC Time Projection Chamber

TRD Transition Radiation Detector
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