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We review CP properties of the Two-Higgs-Doublet model. In particular, we show that sponta-
neous CP violation occurs in the parameter space on the border between regions allowing explicit
CP violation and those where there is another minimum, deeper than the one corresponding to
v = 246 GeV. We discuss weak-basis invariants which describe CP violation and express them
through measurable quantities like coupling constants and masses. Also, we discuss how CP vi-
olation is constrained by the LHC Higgs data. Finally, we identify effective operators that could
be adopted to measure CP-invariants.
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1. Introduction and notation

The Two-Higgs-Doublet model (2HDM) [1, 2] is of great interest since it provides a simple
framework for additional CP violation [3], beyond that of the Standard Model, and may thus facil-
itate baryogenesis [4]. On the other hand, the data on the Higgs particle point to Standard-Model
(SM) couplings (for a review, see [5]), so it is not clear if Nature is making use of this mechanism.
We shall here review some quantities which can be explored in order to identify and quantify CP
violation in this model, and point out that CP violation is still possible.

The scalar potential of the 2HDM shall be parametrized in the standard fashion:
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(1.1)

≡ Yab̄Φ
†
āΦb +

1
2

Zab̄cd̄(Φ
†
āΦb)(Φ

†
c̄Φd). (1.2)

CP violation may be introduced by taking at least two of the parameters m2
12, λ5, λ6, and λ7 com-

plex. The doublet fields are decomposed as

Φ j = eiξ j

(
ϕ
+
j

(v j +η j + iχ j)/
√

2

)
, j = 1,2. (1.3)

where in a CP-violating theory the physical neutral states can be expressed as linear combinations
of the η1 and η2 on the one hand, with η3 on the other:H1

H2

H3

= R

η1

η2

η3

 , (1.4)

where η3 ≡ −sinβ χ1 + cosβ χ2 with tanβ = v2/v1 and R is a rotation matrix diagonalizing the
mass-squared matrix

RM 2RT = M 2
diag = diag(M2

1 ,M
2
2 ,M

2
3), (1.5)

and parametrized e.g. in terms of three rotation angles αi as [6]

R =

 c1 c2 s1 c2 s2

−(c1 s2 s3 + s1 c3) c1 c3− s1 s2 s3 c2 s3

−c1 s2 c3 + s1 s3 −(c1 s3 + s1 s2 c3) c2 c3

 (1.6)

with ci = cosαi, si = sinαi. Note that there is considerable freedom in presenting the potential,
e.g., one can perform U(2) rotations on the two doublets, without changing the physics.
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2. Spontaneous vs explicit CP violation

The presence of CP violation can be determined by investigating parameters of the potential,
and vacuum expectation values (vevs) of the scalar fields. The latter will be parametrized as follows

v̂1 =
v1

v
eiξ1 , v̂2 =

v2

v
eiξ2 , (2.1)

with v = 246 GeV. Then, in order to break CP, at least one of following three invariants1 has to be
non-zero [7, 8, 9, 10]:

Im J1 =−
2
v2 Im

[
v̂∗āYab̄Z(1)

bd̄ v̂d
]
, (2.2a)

Im J2 =
4
v4 Im

[
v̂∗b̄v̂∗c̄YbēYc f̄ Zeā f d̄ v̂av̂d

]
, (2.2b)

Im J3 = Im
[
v̂∗b̄v̂∗c̄Z(1)

bē Z(1)
c f̄ Zeā f d̄ v̂av̂d

]
, (2.2c)

where Z(1)
ad̄ ≡ δbc̄Zab̄cd̄ . In the following we will discuss a model defined by the fact that there

exists a weak basis such that λ6 = λ7 = 0, and vevs are real (we shall refer to this model as the
“2HDM5”). Then it turns out that all three invariants are proportional to Im λ5.

Spontaneous CP violation refers to the situation when a suitable U(2) transformation can bring
the potential into a real form, leaving one vev complex. The following set of invariants can be used
to distinguish between spontaneous and explicit CP violation [11, 10]:

IY 3Z = Im
[
Z(1)

ac̄ Z(1)
eb̄ Zbēcd̄Ydā

]
, (2.3a)

I2Y 2Z = Im
[
Yab̄Ycd̄Zbād f̄ Z

(1)
f c̄

]
, (2.3b)

I3Y 3Z = Im
[
Zac̄bd̄ZcēdḡZeh̄ f q̄YgāYhb̄Yq f̄

]
, (2.3c)

I6Z = Im
[
Zab̄cd̄Z(1)

b f̄ Z(1)
dh̄ Z f ā jk̄Zk j̄mn̄Znm̄hc̄

]
. (2.3d)

If all of these vanish, whereas at least one of the Im Ji is non-zero, then there is spontaneous CP
violation. On the other hand, if at least one of them is non-zero, the CP violation is explicit.

In the 2HDM5 two of these invariants are actually zero. Then the conditions for spontaneous
CP-violation can be expressed as follows [12]

• SCPV1:

4
µ2

v2 Re λ5−4
(

µ2

v2

)2

+(Im λ5)
2 = 0 (or equivalently Im

[
(m2

12)
2
λ
∗
5
]
= 0) (2.4)

• SCPV2:

λ1 = λ2, λ1 = λ3 +λ4 +Re λ5−2
µ2

v2 (or equivalently λ1 = λ2, m2
11 = m2

22), (2.5)

1These are invariant under the U(2) transformations mentioned in section 1.
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where the terminology SCPV1 and SCPV2 distinguishes these two cases. Here, we introduce the
abbreviation µ2 ≡ Re m2

12v2/(2v1v2).

For M1 = 125 GeV, M2 = 250 GeV, µ = 300 GeV, MH± = 600 GeV, and two values of tanβ ,
we show in Fig. 1 where these conditions are satisfied, and also where CP is conserved. More
illustrations of this kind can be found in Ref. [12]. Note that in this “simple” (2HDM5) model,
with λ6 = λ7 = 0, only one quadrant in the α2–α3 space is accessible, either α2 < 0 or α2 > 0 [13].
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Figure 1: Illustration of locations in the α2–α3 space where spontaneous CP violation occurs. Two values
of tanβ (top: tanβ = 2, bottom: tanβ = 5), and two values of α1 are considered (left: α1 = −π/6, right:
α1 = +π/6). White: mathematically inconsistent; Yellow: explicit CP violation; pink: positivity violated;
cyan: global-minimum condition violated. Red curves correspond to parameters that satisfy the SCPV1
condition, (2.4), while red dots satisfy the SCPV2 condition, (2.5). Both of these indicate spontaneous CP
violation. Green lines and dots indicate locations of CP conservation.

3. Physical measures of CP violation

We shall now discuss how to access the quantities (2.2) experimentally. It has been found that
they can be related to the masses of the neutral Higgs bosons, as well as two coupling constants
[7, 8, 14]. In the general case of non-zero λ6 and λ7, but in a basis with ξ ≡ ξ2− ξ1 = 0 (see
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Eq. (1.3)), these required couplings are:

ei ≡ v1Ri1 + v2Ri2, (3.1)

qi ≡ Coefficient(V,HiH−H+)

=
2ei

v2 M2
H±−

Ri2v1 +Ri1v2

v1v2
µ

2 +
gi

v2v1v2
M2

i +
Ri3v3

2v1v2
Im λ5

+
v2 (Ri2v1−Ri1v2)

2v2
2

Re λ6−
v2 (Ri2v1−Ri1v2)

2v2
1

Re λ7. (3.2)

The quantity ei describes the coupling of a neutral Higgs Hi to two Z bosons, or to two W bosons.
It also describes the coupling of two neutral Higgs particles H j and Hk to a Z boson, with i 6=
j 6= k 6= i, and occurs in several other vertices, see [14] for details. The quantity qi represents the
trilinear HiH+H− coupling. Furthermore, MH± refers to the charged-Higgs mass and we have also
introduced the abbreviation

gi ≡ v3
1Ri2 + v3

2Ri1. (3.3)

The quantities (2.2) can then be expressed as [14]

Im J1 =
1
v5

∣∣∣∣∣∣∣
q1 q2 q3

e1 e2 e3

e1M2
1 e2M2

2 e3M2
3

∣∣∣∣∣∣∣ , (3.4)

Im J2 =
2
v9

∣∣∣∣∣∣∣
e1 e2 e3

e1M2
1 e2M2

2 e3M2
3

e1M4
1 e2M4

2 e3M4
3

∣∣∣∣∣∣∣ , (3.5)

Im J30 =
1
v5

∣∣∣∣∣∣∣
e1 e2 e3

q1 q2 q3

q1M2
1 q2M2

2 q3M2
3

∣∣∣∣∣∣∣ . (3.6)

In this form, it is easy to see when any one of them vanishes: two rows or two columns must be
proportional. If any one of the Im J1, Im J2 or Im J30 is non-zero, we have CP violation. Whether it
is spontaneous or explicit, would be determined by the quantities of Eq. (2.3).

4. CP-violating ZZZ vertex

There are various ways in which one could imagine measuring the quantities (3.4)–(3.6) [14].
Perhaps the simplest one would be to determine a non-zero and CP-violating contribution to the
ZZZ coupling. Another would be the ZWW coupling [15]. Such couplings are induced in this
model, at the one-loop level, and would be proportional to Im J2. A characteristic Feynman diagram
for the ZZZ case is shown in Fig. 2.

In the case when two Z bosons (Z2 and Z3) are on-shell, the conventional parametrization of
this vertex [16, 17] is rather simple:

eΓ
αβ µ

ZZZ = ie
p2

1−M2
Z

M2
Z

[
f Z
4 (pα

1 gµβ + pβ

1 gµα)+ f Z
5 ε

µαβρ(p2− p3)ρ

]
. (4.1)
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Hj
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p1 µ
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p3 β

ek

ei

ej

Figure 2: Feynman diagram related to Im J2.

Here, the form factor f4 represents CP violation, whereas f5 represents CP conservation. In the
present model, f4 is directly proportional to Im J2, which again is proportional to e1e2e3, whereas
f5 gets an SM contribution from fermion loops etc.

Now, Im J2, and hence this form factor, will depend on the mixing angles of the neutral sector
via the product e1e2e3. Recent studies constrain the mixing of the CP-even sector (represented by
η1 and η2) with the CP-odd one (represented by η3) [18, 19]. Allowed values of e1e2e3/v3 are
of the order of O(0.01), leading to a prediction for f4 (for masses M2 and MH± of the order of
300–600 GeV) of the order of 10−5. Current experimental bounds on | f4| are of the order of 10−2

[20, 21], so no imminent discovery can be foreseen.

5. The H1SM (alignment) limit

The LHC data show that the observed Higgs boson is SM-like. In particular, the coupling
of the observed Higgs particle (which we identify with H1) to vector bosons is very close to the
SM-value, meaning

e1/v = cosα2 cos(α1−β )' 1, (5.1)

or
α1 = β , and α2 = 0. (5.2)

As an illustration, in the simplified model (2HDM5), and for some specific values of tanβ and
the mass parameters, only the green regions in Fig. 3 are compatible with LHC data.2

Since we must have
e2

1 + e2
2 + e2

3 = v2, (5.3)

it follows that
e2 ' e3 ' 0. (5.4)

We refer to this limit as the H1SM (or alignment) limit.

2Allowing for λ6 and λ7 being non-zero, more of this region around the point (5.2) will be allowed, but it is still
confined to small “radii” [14].

6



P
o
S
(
C
O
R
F
U
2
0
1
4
)
0
8
6

CP violation in the 2HDM P. Osland

Figure 3: The H1SM (alignment) limit: Allowed regions in the α1–α2 plane for the simplified model with
λ6 = λ7 = 0.

It is clear from Eqs. (3.4)–(3.5) that in this case, we have Im J1 ' Im J2 ' 0. However, there
is still the possibility that Im J30 might be non-zero, representing CP-violation in the scalar sector
[14]. In this limit, (3.6) simplifies to

Im J30 =
e1q2q3

v5 (M2
3 −M2

2), (5.5)

with e1 = v. For this to be non-zero, we must have q2 6= 0, q3 6= 0, as well as M3 6= M2. The first
of these conditions means that the two heavier Higgs bosons, H2 and H3, must both have tree-level
couplings to H+H−. Note that this is indeed not possible in the CP-conserving theory, where the
pseudoscalar A does not couple to H+H−.

In the simplified 2HDM5 model, in general q2 and q3 are both non-zero. However, in that
model, when α2→ 0, then also M3→M2 [13, 14]. This leads to the important conclusion that in
order to have CP violation in the H1SM (alignment) limit, we must abolish the 2HDM5 and have

λ6 6= 0, and/or λ7 6= 0. (5.6)

Then, we would have
Im J1 = 0, Im J2 = 0, Im J30 6= 0. (5.7)

In order to discover CP violation in (or near) the H1SM (or alignment) limit one is forced
to look for observables which are ∝ Im J30. As discussed in Ref. [14], the tree-level Feynman
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diagram for Z→ H2H3→ (H+H−)(H+H−) leads to an amplitude proportional to Im J30, as does
the loop diagram corresponding to Z→ H+H−, obtained from closing the former tree diagram by
connecting an H+ to an H−. It would be challenging to access these vertices experimentally.

6. Summary

We have reviewed some issues relevant for CP violation within the 2HDM:

• We have illustrated how, in the parameter space, spontaneous CP violation takes place on
manifolds that are adjacent to where we have explicit CP violation. At points of spontaneous
CP violation, the global minumum of the potential is not unique, but we have two minima of
the same depth. In regions of explicit CP violation, the global minimum of the potential is
unique, meaning that either there is only one minumum, or there exist two minma of unequal
depth.

• We review the relationship between invariants defining CP violation and physical coupling
constants involving the three neutral Higgs bosons. All three are necessarily involved.

• Perhaps the “simplest” consequence of CP violation would be the induction of a ZZZ vertex.
However, this is very constrained by the LHC Higgs data that show the SM nature of the
Higgs boson.

• Even in the alignment limit, there could still be CP violation in this model, but then λ6

and/or λ7 would have to be non-zero. This effect would show up in effective vertices where
a Z boson is coupled (via neutral Higgs bosons) to two or four charged Higgs bosons.
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