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Abstract. Model-Driven Software Engineering (MDSE) is an
approach for design and implementation of software applications, that
can be applied across multiple domains. The advantages include rapid
prototyping and implementation, along with reduction in errors
induced by humans in the process, via automation. Wireless Sensor
Actuator Networks (WSANs) rely on resource-constrained hardware
and have platform-specific implementations. Medium Access Control
(MAC) protocols in particular are mainly responsible for radio
communication, the biggest consumer of energy, and are also
responsible for Quality of Service (QoS). The design and development
of protocols for WSAN could benefit from the use of MDSE. In this
article, we use Coloured Petri Nets (CPN) for platform independent
modeling of protocols, initial verification, and simulation. The
PetriCode tool is used to generate platform-specific implementations
for multiple platforms, including MiXiM for simulation and TinyOS for
deployment. Further the generated code is analyzed via network
simulations and real-world deployment test. Through the process of
MDSE-based code generation and analysis, the protocol design is
validated, verified and analyzed. We use the GinMAC protocol as a
running example to illustrate the design and development life cycle.

Keywords: Model-Based Development, Code-generation, Medium
Access Control Protocols, Colored Petri Nets, Simulation,
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1 Introduction

A wireless network of connected sensors and actuators operating to fulfill a
specific collective goal constitutes a Wireless Sensor-Actuator Network
(WSAN). The sensors and actuators are resource-constrained devices operating
on batteries. Among several application domains, process automation and
factory automation are important application areas in the industrial domain.
Specifically, the application of a WSAN in control-loop automation is an
important research area. These applications have strict real-time requirements
and are in many cases safety critical (e.g., nuclear power plants). Thus, the
design of solutions that include software for the network nodes is required to



have sound design and development methodology to result in a verified and
validated design that also satisfies the real time requirements. The classical
design methodology is to: (1) outline the requirements to the solution; (2)
design a solution based on the requirements; (3) carry an analytical evaluation
of the performance of the solution; and (4) do a manual conversion of the
design into simulation code for further performance analysis, and (5) convert
the design into implementation code and perform deployment test on hardware.

The Dual-Mode Adaptive MAC protocol (DMAMAC) [10] is a Medium
Access Control (MAC) protocol for process control applications. The
traditional design methodology was employed for DMAMAC protocol design
[10] based on application requirements and further evaluated analytically. The
DMAMAC protocol was simulated and evaluated for performance [9]. Further,
was evaluated with real-world deployment [11] (these steps correspond to
1,2,3,4 & 5). Three important issues that can arise in the general design
methodology are: human induced errors in manual conversion, time consuming
manual conversion, and the requirement to make manual changes at each step
when changes are required to the design or the requirements. With the use of
emerging software engineering practices, one can improve the design and
development process. This could help in further strengthening the reliability of
the software part of the solution, while additionally reducing the time from
design to development, thus reducing the cost. Model-Driven Software
Engineering (MDSE) [3] is one such approach that has long been seen as a
prominent approach for software engineering. MDSE is currently used in
several industrial application domains [6]. In this article, we attempt to create
a MDSE approach with MAC protocols in focus. The DMAMAC protocol is
rather complex compared to the GinMAC protocol upon which the DMAMAC
protocol design is based. Thus, we use the GinMAC protocol as a basis to build
the MDSE approach and then proceed towards applying the principle to the
DMAMAC protocol as well.

In the MDSE approach, we start with an abstract platform independent
representation of the solution, protocols for example. Abstraction allows for
focusing on behaviour of the protocol. Using formal approaches on the abstract
models allows for verification of the behaviour of the protocol via model
checking or theorem proving. This abstract model can further be simulated to
obtain an initial performance assessment. Thus, the protocol can be validated
for performance requirements, and verified for software requirements. One tool
that allows both model-checking and simulation is CPN Tools [7]. CPN Tools
is based on the expressive Colored Petri Nets (CPN) language combined with
the Standard ML programming language. Previously, CPN has been used for
modeling and verification of network protocols [1]. Further, we use Petricode
[20] tool for the semi-automatic code generation part. This forms the MDSE
approach proposed previously in [12]. In this article, we extend this work to
complete the code generation for the simulation platform and hardware
platform. The generated code is used to analyze the protocol performance via
network simulations on MiXiM, and via deployment in a real-world setting of

194 PNSE’16 – Petri Nets and Software Engineering



the TinyOS code. We also discuss the methodology used to design the CPN
model. We use GinMAC [21] protocol as a running example to present our
MDSE approach.

Related Work. A model-based development approach has been applied in the
WSAN domain [15, 22, 19]. Multiple works have proposed frameworks for rapid
prototyping of the development model, mostly based on either, Domain
Specific Modeling Languages (DSML) [2, 4] or the Unified Modelling Language
(UML) [15, 22, 19]. In [16], the authors propose a design framework to convert
models created in Simulink to platform specific code for the platforms TinyOS
and MANTIS operating system. They also provide simulation and behavioural
analysis. An Architectural framework for Wireless Sensor Actuator Networks
(ArchWiSeN) was proposed in [18]. This is based on the generic modeling
platform, UML, for abstract and platform independent representation of the
models. Platform specific code generation is performed to obtain code for
TinyOS, and simulated using the Micaz platform provided in the TOSSIM [14]
simulator by TinyOS.

In this article, we choose to create the platform-independent abstraction of
the model in CPN Tools. CPN tools allows state-space based verification, and
simulation. We specifically focus on behavioural modeling of the protocol design.
A typical WSN node implements an application protocol, a routing protocol, a
MAC protocol, and a link layer protocol. Thus, the solution in its entirety is made
up of multiple protocols, making up a complex solution. In [16, 18], the authors
view the solution as multiple nodes depicting common WSN behaviour. Further,
in this article, we provide platform specific code generation for MiXiM, a network
simulator specifically built for wireless networks. Also, the deployment specific
code generation targets the TinyOS platform and is tested via deployment on
Zolertia Z1 [23] motes.

The rest of the paper is divided into five sections. We revisit our
model-based development approach and PetriCode [20] in Section 2. Also, the
GinMAC protocol [21] which is used as an example is introduced. In Section 3,
we describe the CPN model of the GinMAC protocol. The code generation
templates, pragmatics used, and the generated code for MiXiM-OMNeT are
discussed in Section 4. Code generation for TinyOS is discussed in Section 5.
Finally, in Section 6, we sum up conclusions and discuss future work. The
article assumes prior knowledge of Petri nets. The MDSE approach and
Model-based Development approach are used interchangeably, and means the
same in this context.

2 MDSE and PetriCode

The MDSE approach is shown in Fig. 1. Compared to the MDSE approach
presented in the previous article [12], we have realized the work in progress
(now the working part), and have implemented and analyzed the generated
code via simulation and deployment. This includes the design of an example
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MAC protocol, code generation for the simulation platform MiXiM [8] based
on OMNeT, and for the operating system TinyOS [13] for hardware platforms.
The GinMAC [21] protocol is used as a running example for the code
generation case study and is introduced later in this section. Following the
MDSE approach the GinMAC protocol is first designed using CPN Tools.
Initial design verification, validation, state-space analysis, and simulation are
performed using CPN Tools. Further, platform dependent code generation is
performed to obtain code for MiXiM and TinyOS. The code generation is done
using the PetriCode tool as described below.

Fig. 1. MDSE approach for protocol design [12]

PetriCode. We use the PetriCode [20] tool for the code generation. PetriCode
is a template based code generation tool designed to transform a subclass of
CPN models called Pragmatic Annotated-CPNs (PA-CPN) to implementations.
PA-CPN models enforce a hierarchical structure on the models with three levels.
The top level module in a PA-CPN model is called the Protocol System Module
(PSM). The PSM contains the principal agents of the protocol and the channels
between them. Each principal in the PSM contains sub-modules that are on
the principal level. The principal level modules (PLMs) contain the services
that are provided by the principal as well as places that are common among
the services of the principal, and life-cycle variables that control when services
can be invoked. Each service in the PLMs has sub-modules on the service level.
Service level modules (SLMs) contain the actual behaviour of each service. SLMs
are further decomposable into control-flow blocks that represent structures such
as loops and conditionals. In addition to enforcing a hierarchical structure, PA-
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CPNs allow model elements to be annotated with code generation pragmatics.
The pragmatics allow the code generator to identify the elements of the PA-
CPN model and to find appropriate templates for the code generation. The code
generation process in PetriCode starts by reading and parsing a PA-CPN model.
Then the PA-CPN model is transformed into an intermediary representation
called an Abstract Template Tree (ATT). The ATT mirrors the hierarchical
structure of a PA-CPN model. PetriCode exploits the pragmatics, to decide
what templates to execute at each node in the ATT. The generator executes
templates for each of the nodes in the ATT. Finally, the code generated for
the ATT nodes are combined to obtain the complete code for each principal.
In this article, we design and develop separate templates for the MiXiM and
TinyOS platforms. Based on these templates the final platform dependent code
is obtained.

Code Generation Goals. The code generation phase assists in reducing errors
induced by humans in programming and streamlines the implementation
approach based on a modular implementation approach. Also, the conversion
to simulation platform assists in analyzing the design of the protocol in the
simulated world to assess the performance. Network simulators specialized in
wireless simulations offer emulated environments of wireless channels, energy
consumption, data transmission, and other services. The conversion to MiXiM
code for simulation has two advantages: firstly, performance analysis of the
designed protocol; secondly, comparison of the protocol with existing protocols
based on selected performance metrics. The conversion to TinyOS supporting
Network Embedded Software C (nesC) code allows the protocol to run across
multiple hardware components that support the TinyOS platform. This also
allows the users to validate the operation of their protocol on existing
hardware, and provides opportunities for further testing in a real environment.

2.1 The GinMAC Protocol

GinMAC is a Time Division Multiple Access (TDMA) protocol, proposed in
the GINSENG project [17]. GinMAC was developed to address the real-time
requirements for industrial monitoring and control applications. A typical
GinMAC superframe is shown in Fig. 2(b). A Finite State-Machine (FSM)
representation of a node working on the GinMAC protocol is shown in Fig.
2(a). The main features of the protocol are: Offline Dimensioning, Exclusive
TDMA, and Delay Conform Reliability Control. Offline Dimensioning means
that deployment and delay requirements are planned before deployment, and
all scheduling decisions are made offline prior to deployment. Exclusive TDMA
means that all TDMA slots are exclusive and are not re-used. Delay Conform
Reliability Control means that GinMAC uses reliability control mechanisms in
the form of additional re-transmission slots to increase reliability. The number
of additional slots required are calculated based on the wireless channel
conditions in the area of deployment. The GinMAC protocol is designed for
networks having a tree topology. It has three types of slots: basic, additional,
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and unused. Basic slots are for regular sensor and actuator data. The
Additional slots feature is intended to increase robustness in poor channel
conditions. Unused slots are sleep slots for duty cycling and energy
conservation.

Fig. 2. The GinMAC superframe (a) and the GinMAC Finite State Machine (b)

3 CPN Model
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Fig. 3. Top-level CPN module

As a first step we create a CPN model
for the GinMAC protocol. The top
level module (Protocol System Mod-
ule) of a sensor/actuator node within
the GinMAC protocol is shown in Fig.
3. The platform independent CPN
model includes an application/net-
work module, the GinMAC module, a
radio module, and a wireless channel
module for data exchange. The prag-
matics assisting in the code genera-
tion are by convention written inside
<<>>.

3.1 The GinMAC Module

We use a modular modeling approach
for design. Different MAC protocols
share common features that can be
designed as basic re-usable compo-
nents which further increases the re-
usability of protocol design and also
the code generation approach. The
abstract model in CPN is platform
independent, hence the model can be
used to generate code-specific to different platforms as well. The re-usability
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Fig. 4. CPN model of a MAC protocol

allows different MAC protocols to be modeled and code to be generated for the
same platform. The detailed GinMAC layer in the principal (second) level is
shown in Fig. 4. This model contains the GinMAC functions including: send/re-
ceive data packets, slot scheduler, and control packets handler. The send/receive
of data packets facilitates the data transfer for the application through the entire
network and is handled by two services: Sender and HandleRadioPacket. The
radio control packet handling is local to the node and is handled by the service
HandleRadioControl. The slot scheduler manages the operation to be performed
at the node at each instant of time based on the superframe. The slot scheduler
service is handled by Slotter. The main set of operations in GinMAC also called
as MAC states includes: send, wait (receive), and sleep as depicted in the FSM
in Fig 2(a). These operations of the GinMAC protocol are grouped as services
which are defined in more detail in the service level of the PetriCode approach.
The operations defined here are also basic MAC operations for other protocols
including the DMAMAC protocol, and hence can be re-used.

3.2 The Slotter Function

Fig. 5 shows the slotter function of the protocol used to implement different
slots based on the timer. These slots represent one of the operations to be
performed. Since GinMAC is a TDMA-based protocol, a timer is used to run
through the slots. The slotter function calls services based on the operations:
send (SEND_DATA/ACK), receive (WAIT_DATA/ACK), and sleep,
appropriately depending on the time. Based on the slot type, an appropriate
service is called to handle the operation: Receive, Transmit, or Sleep. In Fig. 5,
we have omitted send and wait for notifications to keep the figure simple and
small, but the design of notification slot is included in the complete model and
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in the code generation templates. Notifications are an alternative
representation of the configuration commands used by GinMAC protocol, a
generic concept used by MAC protocols to send network wide updates.
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Fig. 5. Slotter function of the MAC protocol

One of the services used by Slotter, the Sender service for transmitting packets
is shown in Figure. 6. The service handles all outgoing packet types including
data, ack, and notification packets. It sends the packet to the radio service for
further handling of the physical transmission.

4 MiXiM Code Generation

OMNeT++ is graphical modeling framework along with discrete event-based
simulation and analysis extensions with graphical user interface support.
MiXiM [8] is a modeling framework, which is a result of integrating several
OMNeT++ frameworks, designed specifically for simulating mobile and fixed
wireless networks. MiXiM is a modular framework consisting of pre-installed
implementation code for radio modules, and base modules for application,
network (routing), and the MAC layer. The workflow for simulation-analysis
including the node software architecture in MiXiM is shown in Fig. 7.

MiXiM simulations are specified using a combination of source files, NED
files (Network Descriptors), configuration.ini (configuration file), and other XML
files describing the physical attributes of the network. The source C++ files are
mainly used describe the protocols at each layer. The NED files are used to
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Fig. 6. Transmit Packet function of the GinMAC protocol

Fig. 7. MiXiM node software architecture with simulation and analysis flow
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describe each type of physical node in the network, the network configuration
defining how these nodes connect with each other, and the user defined module
to be used in these nodes. The configuration.ini file allows the user to define
explicitly various parameters concerning each layer (physical, MAC, application
and network). It also includes position data for nodes (if required) and multiple
configurations for simulation. Further, XML files are used to define the path-
loss models, packet loss, signal to noise ratio (SNR), and decider configurations.
These features are specific to the MiXiM simulation platform and are generated
for basic configuration using the code generation templates, and are not a part
of the CPN model. Apart from the generation of the MAC source files, NED
files for basic network layer configuration, basic configuration files, and network
configuration XML files are also generated.

4.1 MiXiM MAC model

Fig. 8. An abstract UML view of the source code for a node

The focus is to generate the MAC layer implementation code, and hence we
use the existing modules of the MiXiM framework to construct the complete
implementation. Creating a new module in MiXiM includes implementing the
base functions for that module (BaseMacLayer) and extending it with the
protocol specific functions. We use the code templates to generate the protocol
with methods extended from the BaseMacLayer. The generated MiXiM source
code from the protocol model is then used as the MAC protocol, and other
modules (application/routing) are used to complete the node software
architecture to make it simulation ready. An abstract UML representation of
the generated source code (GinMAC) put in context along with the existing
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modules is shown in Fig 8. The GinMAC source code generated for MiXiM
inherits from the BaseMacLayer, and extends it with its functions and
characteristics. The functional view of the GinMAC protocol is shown in Fig.
9. The functional view corresponds to the principal level of the CPN model
shown in Fig. 4. The MAC protocol handles application/network packets and
incoming packets from other nodes, and sends them over the radio channel to a
corresponding node based on a pre-decided schedule determined by the
GinMAC superframe structure shown in Fig. 2(b).

Fig. 9. A graphical representation of the functions in the MiXiM MAC protocol

4.2 PetriCode

The MAC protocol designed in CPN is used to generate a MiXiM equivalent.
We use the PetriCode tool [20] for the code generation. The PetriCode tool,
based on the code generation templates developed for the MiXiM platform,
generates the required C++ source code. An example template for the
GinMAC states SEND_DATA, WAIT_DATA, and SLEEP are presented in List.
1.1. The main GinMAC states are: SEND_DATA, SEND_ACK,
SEND_NOTIFICATION, WAIT_DATA, WAIT_ACK, WAIT_NOTIFICATION
and SLEEP. A MAC state represents the type of operation being performed at
a given time. Each of the MAC states have an associated code template for
generation. Based on these code templates, we obtain the main source code.
The code template example for MAC states is shown in List. 1.1. The params
variable in the template checks for the parameters within the keyword
(macState) for the associated template, then generates the code for it. The
generated C++ source code for the Slotter function shown in Fig. 5 is
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presented in Listing 1.2. Three of the MAC states SEND_DATA, WAIT_DATA
and SLEEP have been presented along with the generated code. In the full
version implemented, all the MAC states have their respective code templates
as opposed to only three shown here.

Listing 1.1. PetriCode C++ code generation template
Pragmatic : <macState(SLEEP)>
Template code for MiXiM:
<% i f(params[0].toString() == "SLEEP")
{%> currentMacState = SLEEP;

debugEV << "Going to Sleep" <<endl;
phy->setRadioState(MiximRadio::SLEEP);
/∗ @brief Finds the next s lot after getting up ∗/
findDsitantNextSlot();

<%}

Pragmatic : <macState(WAIT_DATA)>
Template code for MiXiM:
<% i f(params[0].toString() == "WAIT_DATA")
{%> currentMacState = WAIT_DATA;

debugEV << "My rece i ve s l o t " <<endl;
phy->setRadioState(MiximRadio::RX);
debugEV << "Switching Radio to rece i ve mode" << endl;
/∗ @brief Procedure for finding nextSlot ∗/
findImmediateNextSlot(currentSlot, slotDuration);
currentSlot++;
currentSlot %= numSlots;

<%}

Pragmatic : <macState(SEND_DATA)>
Template code for MiXiM:
<% i f(params[0].toString() == "SEND_DATA")
{%> currentMacState = SEND_DATA;

i f (mySlot == transmitSlot[currentSlot]){
i f(macPktQueue.empty()){

debugEV << "No Packet to Send ex i t i ng " << endl;
findNextSlot(currentSlot, slotDuration);

}else{
phy->setRadioState(MiximRadio::TX);
debugEV << "Waking up in my s l o t .

Radio switch to TX command Sent" << endl;
findImmediateNextSlot(currentSlot, slotDuration);

}
currentSlot++;
currentSlot %= numSlots;

<%}

Listing 1.2. C++ source code
//GinMAC C++ f i l e
void GinMAC::Slotter(message_t msg){
i f( msg == sleep){

currentMacState = SLEEP;
debugEV << "Going to Sleep" <<endl;
phy->setRadioState(MiximRadio::SLEEP);
/∗ @brief Finds the next s lot after getting up ∗/
findDsitantNextSlot();

}
else i f( msg == waitData){

currentMacState = WAIT_DATA;
debugEV << "My rece i ve s l o t " <<endl;
phy->setRadioState(MiximRadio::RX);
debugEV << "Switching Radio to rece i ve mode" << endl;
/∗ @brief Procedure for finding nextSlot ∗/
findNextSlot(currentSlot, slotDuration);
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currentSlot++;
currentSlot %= numSlots;

}
else i f( msg == sendData){

currentMacState = SEND_DATA;
i f (mySlot == transmitSlot[currentSlot]){

i f(macPktQueue.empty()){
debugEV << "No Packet to Send ex i t i ng " << endl;
findNextSlot(currentSlot, slotDuration);

}else{
phy->setRadioState(MiximRadio::TX);
debugEV << "Waking up in my s l o t .

Radio switch to TX command Sent" << endl;
findImmediateNextSlot(currentSlot, slotDuration);

}
currentSlot++;
currentSlot %= numSlots;

}}

4.3 MiXiM Simulation

The MiXiM simulation engine allows for simulation, and statistics collection,
which can be further used to generate graphs. The graphs support the assessment
of the performance of the protocol. Statistics can be collected in either scalar or
vector form. For our simulation test we used the scalar forms. We performed test
simulation on a small network with 7 nodes and 1 sink. The node configuration
used for the study is shown in Fig. 10. We used the CC2420 radio decider module,
the CC2420 radio power consumption values, and switch times to obtain accurate
results.

Fig. 10. The network topology used for simulation

The resulting graph from counting the number of packets transmitted and
received for each node is given in Fig. 11. Also, a graph with network lifetime
based on a given initial battery capacity is shown in Fig. 11. The lifetime is
related to the starting capacity. Given the load, it is evident that node 2 depletes
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Fig. 11. The packet reception and transmission statistics for the GinMAC protocol (a)
and Network life time in terms node deaths (b)

its energy first among all the nodes in the network and thus is the first to die
as shown in Fig. 11. The data transmission graph shows the amount of data
transmission being handled for a given simulation duration, 1500 seconds for
our case. In the process two nodes die, node 2 and node 3.

5 TinyOS nesC Code Generation

TinyOS is one of the commonly used operating systems for resource limited
WSAN hardware implementations. nesC is a component-based programming
language for the TinyOS platform. It mainly consists of components which are
represented using modules and configurations. These components generally
provide services to other components and use functions provided by other
components via a set of interfaces. The implementation part uses commands
and events which are called or signaled, respectively. Commands are used to

Fig. 12. nesC implementation, deployment and analysis flow
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define operations that can be triggered. Events represent hardware events that
is similar to an interrupt to indicate an event occurring, e.g. reception of a
packet. Tasks are also a part of the programming language which can be called
from both events and commands. The workflow for implementation on TinyOS
using the generated nesC source code, and further performing deployment and
analysis is shown in Fig. 12. For evaluation of the generated nesC code the
presented workflow is used. The generated source code along with an
application is compiled for the platform hardware Zolertia Z1 [23].
Furthermore, based on pre-decided topology, schedule, and location, we
conducted an experiment. The collected results are placed in a log file, which is
used by python scripts to generate graphs and statistics. The generated
GinMAC source code uses multiple off the shelf components to complete the
solution, e.g., the CC2420ActiveMessageC radio module provided by TinyOS.

5.1 MAC nesC Model

The component graph of the GinMAC nesC module is shown in Fig. 13. The
GinMAC protocol uses the radio functions provided by the existing component
in TinyOS, the CC2420ActiveMessageC component. For time synchronization, an
essential function required for Time Division Multiple Access (TDMA) protocols
like GinMAC, we use the TimeSyncC component. The TimeSyncC provides the
Flooding Time Synchronization Protocol (FTSP). As a scheduler, the GinMAC
component uses the GenericSlotterC component. The scheduler goes through the
superframe structure and executes the corresponding slot for the given instance.
The component QueueC is used to create a packet buffer for incoming packets
to be forwarded. The incoming arrows to the GinMAC module are the features
that are provided by the GinMAC module to the application or the network
modules that use GinMAC. In the current version, we generate code that uses
the radio layer in an abstract form. Whereas a more detailed and explicit control
of radio can be implemented similar to the MiXiM code. This is detailed in the
implementation of MAC layers in TinyOS 2 [5]. With such explicit control, a
MAC protocol can control the transmission power at which each packet is sent.

5.2 PetriCode

Similar to the MiXiM code generation, the GinMAC protocol designed in CPN
is used for nesC code generation targeting TinyOS. PetriCode, based on the
templates defined for nesC code generation, generates the nesC code. We
present the same three GinMAC states and the template for code generation as
in MiXiM. The GinMAC states SLEEP, WAIT_DATA and SEND_DATA are
presented along with the employed code generation templates as shown in List.
1.3. The generated nesC source code for the Slotter function shown in Fig. 5 is
presented in List. 1.4.

Listing 1.3. PetriCode nesC Template
Pragmatic: macState<SLEEP>
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Fig. 13. GinMAC protocol nesC component model

Template code for nesC:
i f(params[0].toString() == "SLEEP")
{%> currentMacState == "SLEEP";

i f(!radioOff){
printfz1("Calling radio sleep");
ca l l RadioPowerControl.stop();
ca l l Leds.led0Off();

}<%}%>

Pragmatic: macState<WAIT_DATA>
Template code for nesC:
i f(params[0].toString() == "WAIT_DATA")
{%> currentMacState == "WAIT_DATA";

printfz1("Waiting for Data");
/∗ @brief Switching on Radio i f OFF, there should be an event i f packet i s arrived ∗/
i f(radioOff){

ca l l RadioPowerControl.start();
ca l l Leds.led0On();

}<%}

Pragmatic: macState<SEND_DATA>
Template code for nesC:
else i f(params[0].toString() == "SEND_DATA")
{%> currentMacState == "SEND_DATA";

/∗ @brief Checking i f the s lot i s the node ’ s transmit s lot ∗/
data = (data_t*)ca l l Packet.getPayload(&dataPkt,s izeof(data_t));
data->nodeId = TOS_NODE_ID;
data->destinationId = sinkId;
data->dataSeqNo = dataSeqCount;
i f (phyLock == FALSE){

i f(radioOff){
/∗ @brief Switching on the Radio ∗/
printfz1("Waking up");
ca l l RadioPowerControl.start();
ca l l Leds.led0On();

}
ca l l ACK.requestAck(&dataPkt);
/∗ @brief Sending Data via radio/phy interface ∗/
i f(ca l l PhySend.send(parentId[TOS_NODE_ID],

&dataPkt,s izeof(data_t)) == SUCCESS){
atomic phyLock = true;
post taskPrint(data);

}}<%}
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Listing 1.4. nesC source code
//necC code generated for s lotter service
event void Slotter.fire(uint8_t slot)
{
i f(slot == sleep){

currentMacState == "SLEEP";
i f(!radioOff)
{ printfz1("Calling radio sleep");

ca l l RadioPowerControl.stop();
ca l l Leds.led0Off();

}}
else i f(slot == waitData){

currentMacState == "WAIT_DATA";
printfz1("Waiting for Data");
i f(radioOff){

ca l l RadioPowerControl.start();
ca l l Leds.led0On();

}}
else i f(slot == sendData){

currentMacState == "SEND_DATA";
/∗ @brief Checking i f the s lot i s the node ’ s transmit s lot ∗/
data = (data_t*)ca l l Packet.getPayload(&dataPkt,s izeof(data_t));
data->nodeId = TOS_NODE_ID;
data->destinationId = sinkId;
data->dataSeqNo = dataSeqCount;
i f (phyLock == FALSE){

i f(radioOff){
/∗ @brief Switching on the Radio ∗/
printfz1("Waking up");
ca l l RadioPowerControl.start();
ca l l Leds.led0On();

}
ca l l ACK.requestAck(&dataPkt);
/∗ @brief Sending Data via radio/phy interface ∗/
i f(ca l l PhySend.send(parentId[TOS_NODE_ID],

&dataPkt,s izeof(data_t)) == SUCCESS){
atomic phyLock = true;
post taskPrint(data);

}}}

5.3 Implementation Evaluation

Fig. 14. The network topology
used for the deployment analysis

We evaluated the generated nesC source
code on a hardware platform (Zolertia Z1
[23]) as mentioned in the nesC work flow
shown in Fig. 12. Zolertia nodes are pow-
ered by an MSP430F2617 low power micro-
controller with 16-bit RISC CPU operating at
16 MHz clock speed. It also packs in 92KB
flash memory and 8KB RAM. The node is
IEEE 802.15.4 compliant and uses a CC2420
transceiver operating at 2.4GHz with a data
rate of 250 Kbps. Contrary to the simulation
experiments, we performed certain link qual-
ity measurements using the hardware plat-
form. We use a smaller topology than the one
used in MiXiM shown in Fig. 14 to keep the
experiment simple. We deployed these nodes in a corridor with each node placed
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at a distance of 5m from its parent. Thus, farthest nodes are 10m away from the
sink. The corridor also had constant movement of humans. For implementation
based evaluation we focused on two new metrics and mainly performed link
quality assessment for presentation of basic results. Two metrics used for the
assessment are Received Signal Strength Indicator (RSSI) and Link Quality
Indicator (LQI). The RSSI measured for the nodes in the network is shown
in Fig 15 (left) and the link quality is shown in Fig. 15 (right). RSSI indicates
the strength at which the receiver receives the signal (range -45dBm to -95 dbm
(lowest possible)). The LQI is a calculated assessment of the link quality based
on lost bits in received packets given by TinyOS, the value ranges from 50 to 110,
with values towards 110 considered to be optimal. These values were obtained
from the built in TinyOS functions provided by the interface CC2420Packet.
The obtained RSSI graph shows varying levels of RSSI for the nodes, which is
generally based on the distance between the sender and the receiver. RSSI is also
affected by interference, mainly from people moving through the corridor time
to time and also, the WiFi service operating in the vicinity. LQI levels mostly lie
in between 95-110 indicating the link quality is good between the nodes despite
of the RSSI differences. The LQI also falls very low for one of the nodes between
rounds 50 and 100 (node 4), this might be caused by continuous packet failure
during a period. Further reasons for this are not provided in the basic analysis
provided here since it is beyond the scope of this article. However, this is an
important result since it shows the possible variation in a real environment. The
LQI and RSSI values combined give a collective picture of link quality between
two nodes. If both RSSI and LQI values are considered for node 4 that is affected
between rounds 50 and 100 in LQI, the RSSI graph also has correspondingly low
readings for those same rounds.

Fig. 15. Link quality based on RSSI (a) and LQI (b)
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6 Conclusions and Future Work

Model-driven software engineering is a popular approach for design and
development of general computing applications. We have used MDSE principles
and applied it to protocol design and development in the WSN domain. In this
article, we have used model-based development techniques to generate code for
two different platforms: simulation and deployment, from a CPN model of the
GinMAC protocol. We have used the PetriCode tool for code generation. We
developed templates for MiXiM, a wireless network simulator platform, and
TinyOS, an operating system for hardware platforms. We have also analyzed
the generated program code to present some performance evaluations that can
be obtained based on the generated code. We performed separate analyses on
these two: energy consumption and lifetime on the MiXiM simulator platform,
and link quality assessment using Zolertia nodes operating on TinyOS code.
One important comparison between the classical methodology used for the
DMAMAC protocol to the MDSE methodology used here is that the generated
platform specific models are closely linked to the CPN model, thus provide a
higher confidence in the generated code. The models in each step of the
classical methodology on the other hand, are entirely based on requirement
specification and no direct conversions are made.

In terms of future work and extension, we would like to mainly extend the
code generation to specialized formal analysis tools like Uppaal or PRISM, which
allows for further validation, and verification of real-time requirements of the
protocols. Also, to extend the code generation to multiple platforms by exploiting
their similarity with the existing code generation templates. Importantly, this
applies to Castalia for simulation and Contiki OS for deployment. Castalia, is
another wireless network simulation framework based on OMNeT++ and shares
similarities with MiXiM. Contiki OS, an event-based operating system similar to
TinyOS is an emerging operating system for low power sensor hardware, and is
gaining market share rapidly. Apart from this, we would like to apply the MDSE
approach to the DMAMAC protocol requirements to validate its usability.
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