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Introduction

The number e is one of the most indispensable numbers in mathematics. This
number is also referred to as Euler’s number or Napier’s constant. Classically
the number e can be defined as (see [1, 5, 7-9], and and references therein)

1 n
e= lim <1 + ) , (1)
n—oo n
Note that we could also define the number e through the limit
1 n+0.5
e= lim <1 + ) . (2)
n—0oo n

Let us see the motivation behind the above result. The reader can observe
that the limit (2) is modestly different than the classical limit (1). Let us
approximate e from these two limits using n = 1000. From the classical limit,
we get e & 2.71692393; which is accurate only to 3 decimal places. From the
new limit (2), we get e =~ 2.71828205; which is e accurate to 6 decimal places.
Thus, the new limit appears to be a big improvement over the classical result.

It is well known that for any value of n > 1 (see [1]),

1 n
e><1+> .
n

In this work, we present three proofs of the inequality:

1 n+0.5
e < <1 + > .
n

For deriving the inequality, we use the Taylor series expansion and the Hermite
Hadamard inequality. Let us now present our first proof through the Taylor
series expansion.



Proof through the Taylor series expansion

Proof: The Taylor series expansion of the function In(1 4 x) around the point
x = 0 is given by the following alternating series (see [4, 6] or calculus book)

ln(1+x):a:—x—+ ————— 4+ 1<z <1

Let us replace « by 1/n in the above series, and multiply both the sides by n:

nln 1+l _1_L+L_L_L+
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Replacing n by 2n and —2n in the above series gives the following two series:
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Adding the above two series we get:
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Next we divide both sides by 2:
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Now replacing n by n + 0.5 gives the following series:

I (22 ”*0'571+ 1 N 1 N
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Therefore
1 n+0.5
In (1 + 7) > 1;
n
So

e<(1+i)m“5 ()

Now let us prove the above inequality through the Hermite Hadamard inequality
[2].



Proof through the Hermite Hadamard inequality

If a function f is differentiable in the interval [a,b] and its derivative is an
increasing function on (a,b); then for all z1,29 € [a,b] such that 1 # x2; the
following inequality holds [2, 3]:

f (x“;“) < mixl / " fa) da.

The above inequality is referred to as the Hermite Hadamard inequality.
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Figure 1: Graph of f(x) = 1/z. The shaded area is equal to In(1 + /n).

Proof: Let us consider the function f(x) = 1/x on the interval [n,n + 1]. Figure
1 shows the graph. It may be seen that the derivative f'(z) = —1/«2 is an
increasing function in the interval (n,n + 1). Thus, the Hermite Hadamard
inequality holds. Applying the Hermite Hadamard inequality to the function
for xt1 =n and z2 = n + 1 we get:

r() < [ @ 5)
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The Third Proof

n+F(n) _

For n > 0, we define function F(n) by the equation (1+ 1/n) e.
Solving this equation for F(n), we find that
1
Fln)= —— —n. 6
)= ar) " (6)

Now let us first show that F(n) is a monotonically increasing function. That is;
for all n > 1, F'(n) > 0. The derivative of this function is

1
Fl(n) = 5 -1 (7)
(In (14 %/n))"n? (1 + Y/n)
To show the positivity of F'(n), let us consider the following functions:
f(x) =In(1 + z);

g(z) = ——

Vitz

The difference between the first derivatives of the above two functions is

71x+2—2\/1+m
2 (142

g'(x) = f'(x)

Since (x +2) > 21+ x for all z > 1.
g' (@) = f'(x) > 0;

and therefore

X

Vitz

Now substituting = 1/n in the above inequality and squaring both the sides
will show that

In(1+2) <

1

5 > 1.
n? (1+1/n) (In(1+1/n))

From equation (7) and the above inequality, we see that F'(n) > 0.

Therefore the function (6) is strictly increasing. To show that the function is
bounded from above, let us find the limit

1 l—nln<1+71l). .

1n<1+> ln(1+>
n n




Substituting the power series of In(1 4 1/n) = 1/n — 1/2n2 4+ 1/3p3 — - +;

1
l—-nln(1+=
. nn( +n> . 1_”[1/n—1/2n2+1/3n3—...]
= 1 = Jm Un — Uan? + /353 ;
n—oo 1n(1+) n—oo [7z—/2n+/3n_..,]
n

=0.5.

Since the function F(n) is strictly increasing function, and lim,, ., F(n) = 0.5,
we can conclude that F(n) < 0.5, and therefore

1 n+F(n) 1 n+0.5
e:<1+) <<1+) |
n n

1 n+Fn
e= (1 + ) and lim F(n)= 0.5;
n

n—oo

The facts

suggests that, among approximations of the form e ~ (1 + 1/n)"+a, the best
approximations for large n is achieved by using a = 0.5. Furthermore, if a < 0.5,
then for sufficiently large n we will have F(n) > a, and therefore

1 n+a 1 n+F(n)
<1+) <<1+> =e.
n n
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