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Velocity and cluster distributions for particles with unidirectional motion in one dimension are studied. The
particles never pass each other, like cars on a narrow road that does not allow overtaking. As a result, particles
cluster behind slow particles �queues are formed behind slow cars�. Thus, the actual velocity of each particle
is to a large extent determined by slow particles further ahead. Considering all possible permutations of
N particles with initial velocities �vi�, the average number of particles with actual velocity vi is �N+1� /
�i�i+1�� �in the sequence �vi�, the initial velocities are listed with monotonically increasing values�. For i large
and vi� i the average number of actual velocities is thus a power law in vi, even though the average cluster
density is found to be independent of cluster size, L. On the other hand, the cluster density varies significantly
with cluster velocity; we obtain ��N− i� ! �N−L�!� / �N ·N ! �N−L− i+1�!�. The average velocity at a given posi-
tion in the sequence of N particles, and the average global velocity are determined. Explicit results for several
distributions of the initial velocities show that the global velocity depends sensitively on the form of this
distribution.
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I. INTRODUCTION

Particle systems have a widespread use as models of
transport processes; from hydrodynamics to emergency
evacuation of buildings. In all cases, configurations of par-
ticles restricted in a certain geometry are updated according
to given rules. With properly chosen updating schemes, par-
ticle systems are able to mimic large classes of transport
phenomena realistically.

When restricted to one dimension, these systems are sus-
ceptible to single particles with irregular behavior. Strong
effects may arise, since one particle potentially may influ-
ence the motion of a large number of others. This is high-
lighted in the asymmetric exclusion process, a simple model
system for nonequilibrium transport in one dimension �1–3�.
Here, each lattice site may be empty or contain one particle.
The particle configuration is updated by shifting a randomly
chosen particle one step in a preferred direction, when pos-
sible �when the neighboring site is empty�. The global par-
ticle current in the system has been found to be very sensi-
tive to boundary conditions �4� as well as sites �5–8� and
particles �9–12� with anomal properties, since bottlenecks
are formed. Experimental situations to which this type of
models are related range from highway traffic �13� to ant
motion on trails �14�.

In this contribution, we analyze a one-dimensional par-
ticle system in which any particle may form a bottleneck.
The particles all have different potential as to formation of
bottlenecks. However, there are no correlations between par-
ticle position and its bottleneck potential. Such a system may
be said to possess hierarchical disorder. We will show that
this seemingly weak property has several striking conse-
quences.

This paper is organized as follows. In Sec. II the particle
system is described and previous results summarized. The
number of clusters formed, as function of cluster size and
cluster velocity, is computed in Sec. III. Based on this result,
we find in Sec. IV the number of particles moving with a
given velocity. The average particle velocity is calculated in
Sec. V for several distributions of the initial velocities. A
discussion of the results and some concluding remarks are
given in Secs. VI and VII, respectively.

II. PARTICLE SYSTEM

Consider particles that move along a line �cars that drive
along a narrow road�, as shown in Fig. 1. All particles have
the same direction of motion. Each particle has an initial
velocity at which it will move if alone, as indicated in the
upper line of the figure. All these initial �preferred� velocities
are different. The particles are not allowed to pass each other,
as with cars on a narrow road that does not allow overtaking.

The order of the particles along the line is random, as
when a large number of cars disembark from a ferry onto a
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FIG. 1. An example of clusters formed with N=8 particles in
unidirectional motion to the right. The upper line shows the initial
velocity of each particle, with values between 0 and 1. The lower
line indicates the clusters formed due to slow particles: cluster sizes
are 2, 1, and 5. The actual velocity of each particle is given in this
line. The numbering of the N sites is indicated: n=1 corresponds to
the foremost particle.
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single-lane road. Thus, there are no correlations between ini-
tial velocity and position. We list the velocities with mono-
tonically increasing values, v1�v2� . . . �vN, which will be
referred to as the sequence �vi�.

Due to clustering behind slow particles �queues behind
slow cars� the actual velocities will differ from the initial
ones. There will be more low velocities and less high veloci-
ties after clustering. This tendency is also seen for the case in
Fig. 1, where the lower line shows the clusters �queues� and
the actual velocities.

Any realization may be represented as a certain permuta-
tion of the initial velocities vi. For the case in Fig. 1 one has
v7v2v3v4v1v5v8v6. We will consider the ensemble of all N!
permutations of velocities vi. For each new realization, new
numerical values are drawn for initial velocities vi. Note that
several of our quantitative results below are independent of
the initial velocity distribution and depend only on the ve-
locity rank number i.

A similar model, with clustering behind slow particles,
was studied by Ben-Naim and co-workers �15�. However,
they focused on the kinetics of the clustering process, where
as our interest is in the statistics of the fully clustered state.
In the literature on exclusion models, these designs belong to
the class of particle-wise disorder �16,17�.

The present particle system was first described by Hem-
mer �18�, who found that on average, that is, per realization
or case, there is 1 cluster of length 1. The argument is re-
viewed in Sec. III A. An extension of this result is given in
Sec. III B.

In Ref. �19� the distribution of actual velocities was
found, as a function of the velocity rank number i. The total
number of occurrences of vi as actual velocity, when consid-
ering all N! permutations, is

Ai =
1

i · �i + 1�
· �N + 1� ! , �1�

which falls off rapidly with increasing i. We will give a more
concise and much shorter derivation of this result in Sec. IV
below.

For any realization �case� one may compute the average
over actual velocities. For the case in Fig. 1 one finds 0.39.
Considering initial velocities uniformly distributed on �0,1�
and averaging over all realizations, the average cluster
�queue� velocity was found in Ref. �19� to be

�v� =
1

N
· 	

i=1

N
1

i + 1
, �2�

which falls off with increasing N. Based on our main result
in Eq. �16�, we rederive this expression in Sec. V.

III. CLUSTER NUMBER DENSITIES

Both the number of clusters and their sizes vary much
from realization to realization. For the case in Fig. 1 there are
three queues, of sizes 2, 1, and 5. However, for N=8, one
may also have only one cluster of size 8 �when the particle in
front has velocity v1�, eight clusters of size 1 �when initial
velocities happen to be arranged with monotonically increas-

ing values along the line�, as well as several other configu-
rations.

The average number of clusters of a given size L is com-
puted in Secs. III A and III B. This quantity, however, only
give partial information on the cluster structures, since actual
velocities are not specified. In Sec. III C we calculate the
average number of clusters, as a function of both size and
actual velocity. The expression obtained in Eq. �16� is the
main result of this paper.

A. Cluster size L=1

In Ref. �18� the average number of clusters of size 1 was
calculated. The average is over realizations, i.e., over the N!
permutations of initial velocities vi. The calculation is re-
viewed here.

Consider N particles with some cluster structure. Let
B1�N� be the average number of clusters of size 1. To calcu-
late this quantity, we remove the particle with the highest
initial velocity �vN�, leaving the remaining structure un-
changed. The average number of clusters of size 1 in the
remaining structure is B1�N−1�. We will now calculate the
average change in the number of clusters of size 1 as the
removed particle is again added to the cluster structure. The
particle is, however, not necessarily added at the position it
had before, but to any of N possible positions in the
N−1-particle structure, with equal probability 1 /N. Thereby,
the average change in the number of cluster of size 1 is
obtained.

The addition of the particle with highest initial velocity
may affect the number of clusters of size 1 in two ways. If
added in front, it will increase the number of clusters of size
1 by 1. At any of the remaining N−1 possible positions, the
particle will be part of a larger cluster, since there will be
slower particles further ahead. In particular, when the par-
ticle is added at the position behind a cluster of size 1, the
number of such clusters will be reduced by 1. This will hap-
pen in B1�N−1� cases. Thus,

B1�N� − B1�N − 1� =
1

N
− B1�N − 1� ·

1

N
, �3�

which may be rewritten as

N · �B1�N� − 1� = �N − 1� · �B1�N − 1� − 1� . �4�

Here, if B1�N−1�=1 one has B1�N�=1. Since B1�1�=1 one
obtains

B1�N� = 1, �5�

for all N. On average, there is 1 cluster of size 1, for any N.

B. Cluster size L�1

In Sec. III A above, the average number of clusters of size
1 was shown to be B1�N�=1 for all N. The average number
of clusters of size L, BL�N�, will now be calculated.

The number of clusters of size L, BL�N�, considering
jointly all permutations of velocities vi, will be found first.
Obviously, BL�N�=BL�N� /N!. Consider the changes in clus-
ters that occurs when all cases for N is generated from all
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cases for N−1 by inserting a new particle, with velocity vN,
at all N possible positions. When vN is located in front, it
forms a new cluster of size 1. Thus, this happens once for
each of the �N−1�! permutations of the N−1 particles.

At all other positions, the new particle will be part of a
cluster of size L�2, increasing its length by 1. Hence a new
cluster of length L is generated when the particle is added to
an existing cluster of size L−1, in L−1 possible positions.
On the other hand, L-clusters are left unchanged, and re-
peated, as the particle is added in N−L different positions.
Thus,

BL�N� = �L − 1� · BL−1�N − 1� + �N − L� · BL�N − 1� . �6�

We will prove by induction that the solution is

BL�N� =
N!

L
. �7�

From Eq. �5� one has B1�N�=B1�N� ·N ! =N ! /1, which has
the form of Eq. �7�. For L=2, Eq. �6� becomes

B2�N� = B1�N − 1� + �N − 2� · B2�N − 1� . �8�

Assuming that B2�N−1�= �N−1� ! /2 one has

B2�N� =
�N − 1�!

1
+ �N − 2� ·

�N − 1�!
2

=
N!

2
. �9�

Since one easily finds that B2�2�=1=2! /2, the induction is
complete for L=2. Successive inductions for higher values of
L establish the expression in Eq. �7� for all values of N and
all L�N. It follows that

BL�N� =
BL�N�

N!
=

1

L
. �10�

The average number of particles that belong to a cluster of
size L is thus L · 1

L =1, for all L and N. Thus, on average there
is 1 particle that is part of a cluster of size L, for each L.
In this sense the cluster structures may be said to be homo-
geneous.

However, this simple result does not allow us to calculate
the average velocity �see Eq. �2� above� or related quantities,
since clusters of the same size will not all move at the same
actual velocity. The cluster number density, as function of
both cluster size and actual velocity, will be calculated in
Sec. III C below. A beautiful structure will emerge when the
homogeneous distribution in Eq. �10� is decomposed.

C. Velocity dependency

We want to determine the average number Ci,L of clusters
�queues� with velocity vi and length L. To determine Ci,L, we
enumerate how many of the altogether N! possible permuta-
tions of the disembarking cars �particles� produce queues as
specified.

Clusters with velocity vi must have particle number i as
the leading one, and all the i−1 slower particles behind this
cluster. For the moment we assume i�1. Moreover, the par-
ticle just behind our cluster must be one of these slower
particles, otherwise no gap will arise. Let there be altogether

be k−1 particles behind the particle with velocity vi. Of
these L belongs to the cluster we consider, with k−L par-
ticles behind the cluster. Of these k−L particles, the one in
front must be one of the i−1 slower particles, with initial
�preferred� velocities lower that vi, while the remaining
i−2 slower particles can be distributed freely among k−L
−1 positions. Thus, there are

�i − 1�
�k − L − 1�!

�k − L + 1 − i�!
�11�

different allowed configurations of the i−1 slowest particles.
When the i �initially� slowest particles are distributed, the

remaining N− i faster particles can be distributed in �N− i�!
different ways among the remaining N− i positions. These
N− i positions include positions inside the cluster considered,
as well as behind it and in front of it. For a fixed position k
of the particle with initial velocity vi there are thus

�i − 1�
�k − L − 1�!

�k − L + 1 − i�!
�N − i�! �12�

allowed permutations of the remaining particles. Summing
over the possible positions for particle i, and dividing by the
total number N! of realizations, we obtain

Ci,L =
1

N! 	
k=L+i−1

N

�i − 1�
�k − L − 1�!

�k − L + 1 − i�!
�N − i�!

=
�i − 1��N − i�!

N! 	
s=i−2

N−L−1
s!

�s − i − 2�!
, �13�

which may be rewritten as

Ci,L =
�i − 1� ! �N − i�!

N! 	
s=i−2

N−L−1 
 s

i − 2
� . �14�

Using the identity

	
s=0

M−1 
 s

j − 1
� = 
M

j
� , �15�

which is proved in the appendix, we find

Ci,L =
�N − i� ! �N − L�!

N ! �N − L − i + 1�!
. �16�

Above we assumed i�1. But the formula in Eq. �16� is also
valid for the slowest particle, with i=1: each of the N pos-
sible positions of the slowest particle occurs with probability
1 /N. For all these positions, a cluster moving with velocity
v1 and extending from the chosen position and backward
throughout the system is generated. Thus, C1,L=1 /N for any
L, in accordance with Eq. �16�. Numerical examples are
shown in Table I.

Note the symmetry Ci,L=CL,i: on average, there are as
many clusters of length L and velocity vi as clusters of length
i with velocity vL. In particular, C1,k=Ck,1, and since C1,L
=1 /N for all L �see above�, all these values are identical, for
each N value �first row and first column as displayed in Table
I�. For fixed i�1, Ci,L falls off with increasing L, the higher
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i value the faster. The expression in Eq. �16� can also be
obtained using methods similar to those in Sec. III B, but the
derivation is more lengthy.

From our main result in Eq. �16�, several additional for-
mulas may be derived. We will start by calculating the total
number of clusters with velocity vi, averaged over realiza-
tions, Di. This corresponds to summing the values in a given
row in Table I. One obtains

Di = 	
L=1

N

Ci,L =
�N − i�!

N! 	
L=1

N
�N − L�!

�N − L − i + 1�!

=
�N − i� ! �i − 1�!

N! 	
L=1

N 
N − L

i − 1
�

=
�N − i� ! �i − 1�!

N! 	
s=0

N−1 
 s

i − 1
� .

By means of the identity �15� we obtain

Di =
�N − i� ! �i − 1�!

N!

N

i
� =

1

i
. �17�

For i=1 we find D1=1, as it should be, since the slowest
particle causes precisely one cluster for any realization. For a
large number of particles the average total number of clusters
grows logarithmically,

Dtot = 	
i=1

N

Di � ln N + C , �18�

where C=0.57722. . . is Euler’s constant.
Due to the symmetry Ci,L=CL,i, summing values in a row

in Table I is equivalent to summing values in the column

with the same value for the velocity rank number i. Thus,
from Eq. �17� BL, the average number of clusters of size L,
irrespectively of velocity, must be BL=1 /L, a result already
obtained in a different way above �see Eq. �10��.

IV. OCCUPATION NUMBERS

In the previous section, expressions for the number of
clusters of different types, averaged over the N! realizations,
were found. For cluster velocity v1 the number of clusters is
constant as a function of L, whereas it falls off with L for any
vi with i�1, see Table I. On the other hand, the larger L, the
more particles in the cluster.

The average total number of particles with velocity vi is

Ai = 	
L=1

N

LCi,L =
�N − i�!

N! 	
L=1

N
L�N − L�!

�N − L − i + 1�!

=
�N − i� ! �i − 1�!

N! 	
L=1

N

L
N − L

i − 1
� . �19�

Using the identity

	
j=1

M

j
M − j

k
� = 
M + 1

k + 2
� , �20�

proved in the appendix, we obtain

Ai =
�i − 1� ! �N − i�!

N!

N + 1

i + 1
� =

N + 1

i�i + 1�
. �21�

This is the same result as in Eq. �1�, since Ai=Ai /N!. Note
that the expression in Eq. �21� does not depend on the prob-
ability distribution function for the initial velocities vi. One
easily finds 	iAi=N, as it should be: for each realization,
there are N particles.

V. AVERAGE VELOCITIES

The results in Secs. III and IV give the average number of
clusters with certain properties �see Eqs. �5�, �10�, and �16��
and the distribution of actual particle velocities �see Eq.
�21��. However, these quantities alone do not allow us to
compute the average velocity �v�, which results from aver-
aging all actual velocities in all clusters under all N! con-
figurations and all choices for initial velocities �see Ref.
�19��. In addition, it is necessary to specify the probability
distribution function from which the initial velocities are
drawn.

A. Initial velocities

As a simple example we assume that the preferred �initial�
velocities are uniformly distributed in an interval �0,Vmax�.
The average value of each initial velocity vi is then given by

�vi� = Vmax
i

N + 1
i = 1,2, . . . ,N , �22�

since the N values for �vi� divides �0,Vmax� in N+1 equal
parts �see also Ref. �19��. The expression in Eq. �22� will be
used in calculations below.

TABLE I. Examples of Ci,L, the average number of clusters with
velocity vi and size L, as obtained from Eq. �16�.

L=1 L=2 L=3 L=4 L=5 L=6

N=2

v1 1/2 1/2

v2 1/2

N=4

v1 3/12 3/12 3/12 3/12

v2 3/12 2/12 1/12

v3 3/12 1/12

v4 3/12

N=6

v1 10/60 10/60 10/60 10/60 10/60 10/60

v2 10/60 8/60 6/60 4/60 2/60

v3 10/60 6/60 3/60 1/60

v4 10/60 4/60 1/60

v5 10/60 2/60

v6 10/60
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More realistically, the preferred velocity could be distrib-
uted uniformly between a minimum and a maximum veloc-
ity. This case is also covered by Eq. �22� by simply adding a
constant.

In Sec. V D we consider other distributions of the initial
velocities, with power-law velocity dependence. While all
results in Secs. V B and V C for the uniform distribution are
exact for any value of N, for the power-law distributions in
Sec. V D we merely give asymptotic results valid for large
N.

B. Global average velocity

Using Eqs. �22� and �21� the average velocity may be
computed as

�v� =
1

N
	
i=1

N

�vi�Ai =
1

N
	
i=1

N

Vmax
i

N + 1

N + 1

i�i + 1�
=

Vmax

N
	
i=1

N
1

i + 1
.

�23�

This is the same result as in Eq. �2�, with Vmax=1.
For large N, �v� is to dominating order

�v� �
ln N

N
Vmax, �24�

which is much smaller than the averaged initial velocity
Vmax /2.

C. Site average velocity

The average value found in Eq. �23� results from averag-
ing also over the N sites available. However, these sites are
not equivalent. At the front site, any particle will move with
its preferred velocity. Thus, at this site, the average velocity
is Vmax /2. On the other hand, the velocity at the last site is
always v1, irrespectively of where the particle with the low-
est preferred velocity is placed. Thus, at this site the average
velocity is �v1�=Vmax / �N+1�. We will show that the average
velocity increases monotonically from the last to the first
site. To obtain these N site average velocities, we compute
first the full probability distribution function for having ini-
tial velocity vi as actual velocity at a given site.

Let us number the cars �particles� by n, starting from the
first car in the train of queues; in other words, according to
the order of disembarking, see Fig. 1. The actual velocity
v�n� of car �particle� number n may be any of the preferred
velocities vi, and we ask for the probability Pn�vi� that v�n�
equals vi. The probability is zero if i�N−n+1, because in
these cases it is impossible that all of the n−1 particles in
front of particle number n have larger velocities than vi.

For particle number n to have velocity vi, one of the n
first particles must have velocity vi, with probability n /N.
Moreover, all particles with velocity lower than vi must be
behind, i.e., at positions n+1,n+2, . . . ,N, which occurs with
probability

N − n

N − 1
·

N − n − 1

N − 2
· . . . ·

N − n − i + 2

N − i + 1

=
�N − n� ! �N − i�!

�N − n − i + 1� ! �N − 1�!
. �25�

We find the probability

Pn�vi� =
n�N − n� ! �N − i�!
�N − n − i + 1� ! N!

=

N − i

n − 1
�


N

n
� . �26�

By means of Eq. �15� one checks that the probabilities for
each value of n sum to unity.

For the first particle in particular P1�vi�=1 /N for all vi, as
it should be. Thus, the average velocity of the foremost par-
ticle equals the average of the preferred velocities, as stated
above. As n increases, there is a shift of probability toward
low i values. As a function of n, the probability for v1 in-
creases linearly, the probability for v2 is symmetric, while
the cases for higher i values becomes more and more asym-
metric.

The average velocity �v�n�� for site number n is obtained
from Eqs. �26� and �22�,

�v�n�� = 	
i=1

N

Pn�vi� · �vi� =
Vmax

N + 1

N

n
�−1

	
i=1

N

i
N − i

n − 1
� .

�27�

By means of the identity �20� we obtain the simple result

�v�n�� =
Vmax

N + 1

N

n
�−1
N + 1

n + 1
� =

Vmax

n + 1
. �28�

The average velocities decrease monotonically with n, from
�v�1��=Vmax /2 for the first car to the lowest preferred veloc-
ity for the last car, �v�N��=Vmax / �N+1�= �v1�. Note that the
final expression in Eq. �28� is independent of N, the number
of particles. We will comment further on this point in Sec. VI
below.

The average velocity �v� for the whole train of queues
�clusters� is now obtained as

�v� =
1

N
	
n=1

N

�v�n�� =
Vmax

N
	
n=1

N
1

n + 1
, �29�

in agreement with Eq. �23�.

D. Power-law distribution of initial velocities

We consider now two power-law probability densities
p�v� for the initial velocities, one increasing as p�v��va, the
other decreasing as p�v��v−b for large v, with a�0 and b
�1. The corresponding cumulative distributions are

P�v� = �v/Vmax�a+1 for v � Vmax

1 for v � Vmax
� , �30�

and
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P�v� = 1 − 
v + v0

v0
�1−b

. �31�

In the calculations below we will need �vi�, the average val-
ues of the initial velocities. For large N we have asymptoti-
cally �20�

P��vi�� �
i

N + 1
. �32�

The form �32� is exact for the uniform distribution P�v�
=v /Vmax �see Eq. �22��.

1. Increasing power law

Using Eq. �32�, we obtain for the increasing power law
�30� the following asymptotic values for the average initial
velocities:

�vi� � Vmax
 i

N + 1
�1/�a+1�

. �33�

The most interesting quantity is the global average veloc-
ity �v�. We have shown in Sec. V B that for any distribution
of the initial velocities �v� is given by

�v� =
1

N
	
i=1

N

�vi�
N + 1

i�i + 1�
. �34�

In the present case we obtain

�v� �
Vmax

N
	
i=1

N 
N + 1

i
�a/�a+1�

·
1

i + 1
. �35�

Compared to the result for a uniform distribution of
initial velocities in Eq. �23�, there is an additional factor
��N+1� / i�a/�a+1�. Since this factor is always larger then 1,
every term in the sum, and therefore the global average ve-
locity, is larger than for the uniform case. The difference
increases with a. In other words, when the values for �vi� for
low i �in particular� are displaced upward in the interval, the
global velocity increases significantly. This is expected, since
the low initial velocities create bottlenecks and thereby ob-
tain large weight in the average value. When N increases the
global velocity decreases, as for the uniform distribution, but
it decreases less fast,

�v� � N−1/�1+a�. �36�

Strong effects from reducing the number of low initial
velocities are also seen for the site average velocities �v�n��.
For the front particle we find the size-independent value
�v�1���Vmax�a+1� / �a+2�, in agreement with the uniform
distribution value Vmax /2 when a=0. The last and slowest
particle, however, has a velocity

�v�N�� = �v1� = Vmax/�N + 1�1/�a+1�, �37�

much larger than the last-particle velocity Vmax / �N+1� for
the uniform distribution.

2. Decreasing power law

Using Eq. �32� for the decreasing power law �31� we find
the asymptotic values

�vi� �
v0


1 −
i

N + 1
�1/�b−1� − v0. �38�

By inserting �38� into Eq. �34� we obtain the global average
velocity

�v� �
N + 1

N
v0	

i=1

N
1

i�i + 1��
1 −
i

N + 1
�−1/�b−1�

− 1� .

�39�

For the special value b=2 this equals

�v� �
N + 1

N
v0	

i=1

N
1

�i + 1��N + 1 − i�
, �40�

which is easily shown to give

�v� � 2v0
ln�N�

N
�41�

to leading order. This is a low global velocity, with the same
dependence upon N as for the uniform distribution, Eq. �24�.

The summand in Eq. �39� decreases with increasing b,
and therefore �41� is an upper limit for the global velocity for
all b�2. To find a lower bound we use the inequality

f�x� = �1 − x�−c � 1 + cx , �42�

a consequence of f�0�=1 and f��x��c for 0�x�1. Using
Eq. �42� in Eq. �39� we obtain the lower bound

�v� �
v0

N�b − 1�	i=1

N
1

i + 1
. �43�

The dominant contribution from the sum is ln�N�. Thus we
obtain

v0

b − 1

ln�N�
N

� �v� � 2v0
ln�N�

N
�44�

for large values of N. Hence, for all b�2 we have a low
global velocity, with the same size dependence as we found
for the uniform distribution of the initial velocities.

The remaining possibility 1�b�2 leads to very different
behavior. That in general �v� will be considerable larger than
the values for b�2 is not surprising since for b�2 the tail of
the probability density p�v� decays so slowly that the aver-
age initial velocity, �vp�v�dv, is not finite. However, we
show below that there are striking effects on the average
velocity when the particle velocities are modified through
clustering �i.e., when initial velocities are replaced by actual
velocities�.

We find that there are two subranges, 3 /2�b�2 and
1�b�3 /2. In the first range the global velocity will de-
crease with increasing N, but more slowly than the previous
size dependence ln�N� /N. In the second range the global
velocity will increase with increasing N. The reason for this
is that with increasing N more and more particles will have a
high initial velocity corresponding to the probability distri-
bution tail. We show below that for both subranges, that is
for 1�b�2, the following relation holds
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�v� � N−2+1/�b−1�. �45�

For the special value b=3 /2 we can evaluate �39� analyti-
cally, with the asymptotic result

�v� � v0�2/6 for b = 3/2. �46�

That the result in this case is independent of N is in agree-
ment with Eq. �45�. More generally, for small values of b
−1 the last terms in the sum �39� are the dominating ones.
Introducing j=N+1− i we have to dominating order

�v�
v0

� 	
j=1

N 
N + 1

j
�1/�b−1� 1

�N + 1 − j��N + 2 − j�
. �47�

The first factor shows that small values of j give the domi-
nating terms in the sum. Assuming that in this range of j

values we may put N− j�N, we find asymptotically

�v�
v0

� N−2+1/�b−1�	
j=1

�

j−1/�b−1� = N−2+1/�b−1�	�1/�b − 1�� ,

�48�

where 	�z� denotes the Riemann zeta function. For the spe-
cial value b=3 /2 the right-hand side of Eq. �48� equals
	�2�=�2 /6, in complete agreement with Eq. �46�. Since
small j values in Eq. �48� are more dominant the smaller b is,
we conclude that the asymptotic result �48� is valid for all
1�b�3 /2.

To sum up, for the decreasing power-law distribution the
size dependence of the global average velocity is as follows:

�v�
v0

� �
ln�N�/N, decreasing toward zero with increasing N for b � 2

N−2+1/�b−1�, decreasing toward zero with increasing N for 3/2 � b � 2

constant for b = 3/2
N−2+1/�b−1�, increasing with increasing N for 1 � b � 3/2

� . �49�

A characteristic site average velocity in the slow end of
the queues is

�v�N�� = �v1� � v0
N + 1

N
�1/�b−1�

�
v0

�b − 1�N
, �50�

of the same order as for the uniform distribution. In the fast
end of the queues, however, the significance of the different
ranges of b shows up. For the front particle we have

�v�1�� = N−1	
i=1

N

�vi� . �51�

The largest contribution in the sum is

�vN�
N

� v0
�N + 1�1/�b−1� − 1

N
� v0N�2−b�/�b−1�. �52�

For b�2 this contribution increases with N, and therefore
the average velocity of the front particle will necessarily in-
crease with N. Since the average velocity for the whole train
is �v�=	i�v�n�� /N, the contribution from the term �52� alone
is of the order

N�3−2b�/�b−1�, �53�

which implies that for 1�b�3 /2 the global average veloc-
ity increases without bound with increasing N, in agreement
with Eq. �49�.

VI. DISCUSSION

The one-dimensional system studied in this paper has a
hierarchy of potential bottlenecks, which spatially are ran-

domly distributed. This leads to a systematic reduction in
actual velocities, as initially fast particles cluster behind
slow ones. The cluster statistics is very different from the
statistics of systems in which local effects or rules drive clus-
tering. In such systems, the number of clusters with given
properties are expected to be proportional to the system size.
This is not the case for our system. As an example, the total
number of clusters grows much slower than linearly with
system size N, as demonstrated in Eq. �18�.

Our main result �16� displays the same nonextensivity.
The number of clusters of size L and velocity vi per site is

ci,L =
Ci,L

N
=

�N − i� ! �N − L�!
N · N ! �N − L − i + 1�!

, �54�

which definitely is not independent of N. Rather, the cluster
number density depends on N in a complicated way.

Note that the expression for the average number of clus-
ters of size L and velocity vi in Eq. �16� and the expression
for the probability to have vi as actual velocity at site n in
Eq. �26� are close to identical, when n and L are exchanged.

Any actual velocity must be one of the preferred (initial)
velocities of that particular realization. Due to the shadowing
from particles with low initial velocities, high velocities are
systematically underrepresented among actual velocities, as
shown by Eq. �21�. Per particle, that is, per position, the
fraction of sites with vi as actual velocity is, on average

ai =
Ai

N
=

N + 1

N
·

1

i�i + 1�
→

N→� 1

i�i + 1�
. �55�

Thus, the limiting values are a1= 1
2 , a2= 1

6 , a3= 1
12 , . . .. Incre-

menting from N to N+1, all values ai with i�N decrease
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toward their limiting values with a total amount equal to
aN+1.

The limiting value a1= 1
2 can be readily understood, since

the particle with v1 as initial velocity may be placed at any of
the N positions, with equal probability. Since in all cases a
cluster will extend from this position throughout the system
backward, the average cluster size is L /2. On the other hand,
for i�1; ai will in principle depend on where the particle
with initial velocity vi is placed relatively to the ones with
lower velocity. Still, remarkably, ai follows the same simple
formula �55� over the entire range, apparently without any
influence from the increasing complexity in where, as i in-
creases, it is possible to form a cluster with actual velocity vi.
However, the placement problem for different values is int-
ervowen, or correlated. In this respect, the expression in Eq.
�55� reflects a highly correlated system.

Considering the uniform distribution of initial velocities
in particular, this may be displayed in a different manner. If
vi is proportional to i, as in Eq. �22�, the probability distri-
bution function for actual velocities is

Pact�v� =
1

K1v�K1v + 1�
� K2v

−2 �56�

for large N and i. Here, K1 and K2 are constants. Thus, the
actual velocities are power-law distributed. The bottleneck
hierarchy leads to scale invariance.

The calculations in Sec. V C allow an interpretation of the
expression for the �global� average velocity �v� in Eqs. �2�
and �23�, which apply to the uniform distribution of initial
velocities. The average velocity �v�n�� at a given site was
found in Eq. �28�. From this expression, which does not con-
tain N, �v� was found by averaging over sites, see Eq. �29�.
Thus, in the expressions given in Eqs. �2�, �23�, and �29�, the
first term in the sum corresponds to the average velocity at
the foremost site, the second term to the site behind it, and so
on. The values that enter the average, Vmax /2, Vmax /3,…, do
not depend on N. The reason that the �global� average veloc-
ity �v� decreases when N increases is therefore not that there
are changes in any �site� average velocities �v�n��, but that
new and low values from the rearmost sites enter the aver-
age.

Alternatively, the terms in the expression for the �global�
average velocity �v� in Eqs. �2� and �23� may be connected
to cluster size L. Suppose one computes the average velocity
for each cluster size separately, that is,

�vL� = 	
i=1

N

�vi�
Ci,L

BL
=

Vmax

N + 1
·

1

BL
	
i=1

N

i · Ci,L, �57�

where �vi� is given by Eq. �22� and the total number of
clusters of size L, BL, as given by Eq. �10�, does not depend
on i. The calculation of the sum is identical to the calculation
in Sec. IV, with i and L exchanged. Therefore, one finds that

�vL� =
Vmax

N + 1
·

1
1
L

·
N + 1

L�L + 1�
=

Vmax

L + 1
. �58�

Note that this expression is independent of N. The total num-
ber of clusters of length L, BL, decreases when L increases.

However, the average number of particles that belong to
clusters of size L is the same for any value of L, see Sec.
III B. Thus, one may obtain directly the �global� average
velocity �v� by averaging over the N values L can have,
using the expression above and equal weight for each L
value. This leads to the expression for the �global� average
velocity �v� in Eqs. �2� and �23�. Therefore, in the expression
for �v�, the first term may be interpreted as the result of
averaging over all clusters of size 1, the second as the result
of averaging over size 2,…. From this perspective, the rea-
son why �v� decreases when N increases is that larger clus-
ters, with low actual velocities, enter the average. The pa-
rameters i, the velocity rank, and L, the cluster size, play a
strikingly similar role.

Our results for clusters and velocities are general and may
be applied to any probability distribution of the initial veloci-
ties. As we have seen, for the uniform distribution exact re-
sults, valid for any N, were obtained. For more general dis-
tributions of the initial velocities, for example the power-law
distributions in Sec. V D, we have to be satisfied with
asymptotic large-N results.

For an increasing power law, p�v��va, the main effect is
a large increase in the global velocity with increasing a, i.e.,
a reduction of the bottle-neck-creating low initial velocities.
For a decreasing power law, p�v��v−b, �v� is crucially de-
pendent upon the value of b. For b�2, the global velocity
has the same qualitative size dependence, �v�� ln�N� /N, as
the uniform distribution. For 3 /2�b�2, �v� decreases less
rapidly than this, while for 1�b�3 /2 the global velocity
increases with increasing N.

For both these two subranges, i.e., for 1�b�2, averag-
ing the initial values �vi� over particles gives a divergent
result when N increases. However, as a result of the mapping
from initial �preferred� velocities to actual velocities �see Eq.
�21��, the �global� average velocity is reduced. For one sub-
range, 3 /2�b�2, the average value over actual velocities
turns out to decrease with increasing N; for the other sub-
range, 1�b�3 /2, the �global� average velocity still di-
verges. At the transition between these two subranges, for
b=3 /2, the �global� average velocity is constant, that is in-
dependent of N, to dominating order. The transition point
divides the interval 1�b�2 in two equal parts.

VII. CONCLUSIONS

We have analyzed a simple one-dimensional particle sys-
tem with a hierarchy of bottlenecks. Many quantities could
be calculated explicitly. A high degree of symmetry was
found. Due to its transparency, this particle system may be a
useful building block when constructing more complex mod-
els.

Our results form a general framework, and can be used to
obtain actual average velocities for any distribution of the
initial �preferred� velocities. We have analyzed three types of
initial velocity distributions, increasing and decreasing
power-law distributions, in addition to a uniform distribu-
tion. For the uniform distribution and for the decreasing
power law, p�v��v−b with b�2, the global velocity �v� is
very low for large N, we found �v�� ln�N� /N. This is due to
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the low initial velocities acting as bottlenecks. When the
number of low initial velocities is reduced, as for the increas-
ing power-law distribution p�v��va, the global velocity de-
creases less rapidly when N is increased.

Interesting results are obtained for the decreasing power
law with b�2, corresponding to a considerable fraction of
high-velocity initial velocities. The effect of these high initial
velocities is that for 3 /2�b�2 the global velocity decreases
with increasing N slower than in the b�2 case, and for 1
�b�3 /2 it even increases with increasing system size.

APPENDIX

We shall evaluate the two sums in Eqs. �15� and �20�. The
first sum is

Sj = 	
s=0

M−1 
 s

j − 1
� . �A1�

Multiplication by xj−1 and summation over j yields

	
j

Sjx
j−1 = 	

s=0

M−1

�1 + x�s =
�1 + x�M − 1

x
= 	

j

M

j
� xj−1.

�A2�

Thus,

Sj = 
M

j
� , �A3�

which is Eq. �15�.
The second sum is

Tk = 	
j=1

M

j 
M − j

k
� . �A4�

Multiplication with xk and summation over k yields

	
k�0

Tkx
k = 	

j=1

M

j�1 + x�M−j

=
�1 + x�M+1 − �M + 1��1 + x� + M

x2

= 	
m�2


M + 1

m
� xm−2 = 	

k�0

M + 1

k + 2
� xk.

Thus,

Tk = 
M + 1

k + 2
� , �A5�

which is Eq. �20�.
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