

 STUDENT REPORT

Boks 523, 6803 FØRDE. Tlf: 57722500, Faks: 57722501 www.HiSF.no
TITLE

GestuRemote
REPORTNR.

1.0
DATE

23.05.13

PROJECT TITLE
 HO2-300 Bachelor Report

ACCESS

Open
PAGES

63

AUTHORS
Pål Rambjørg (Project leader) [5]

John André Grimseth [14]
Tormod Eikelid [8]

Fredrik Myrvang [18]

SUPERVISOR
Joar Sande

EMPLOYER
Høgskulen i Sogn og Fjordane

SUMMARY
Gesture Development Team (GDT) consists of the members Pål Rambjørg (Project

leader), Tormod Eikelid, John Andre Grimseth and Fredrik Myrvang.

By using Java (Recognition), Arduino (Universal IR Remote) and Raspberry Pi
(Media Center++), a simple wave becomes an action.

GestuRemote is meant to replace the traditional "OLD" TV-remote.
Plus adding some extra features.

SUBJECT
Hand Gestures, Home Theater PC, Recognition software, OpenCV/JavaCV, Kinect,

Webcam, Raspberry Pi, Arduino, XBMC, Universal IR remote, RF remote.

Preface

Our last semester at Høgskulen i Sogn og Fjordane, department for Engineer-
ing and Science, the students was to conduct a bachelor project as close to
reality as possible. We are encouraged to define a project ourselves or get
an external client, where the latter is preferable. We decided to look into
gesture based software on our own initiative.

This is a technical project where we look at the technical and theoretical
solutions. We chose this project to get an insight of tomorrow’s technology
and hopefully be a part of it.

Førde, Thursday 23rd May, 2013

Pål Rambjørg Tormod Eikelid

John A. Grimseth Fredrik Myrvang

i

Abstract

GestuRemote Development Team (GDT) consists of Pål Rambjørg, Tormod
Eikelid, John Andre Grimseth and Fredrik Myrvang.

By using Java (Recognition), Arduino (Universal IR Remote) and Rasp-
berry Pi (Media Center++), a simple wave becomes an action. GestuRemote
is meant to replace the traditional/outdated TV-remote, plus adding some
extra features.

GestuRemote Project takes use of multiple platforms in its creation;
Webcam (Java), Kinect (C++), Raspberry Pi (XBMC) and Arduino (Wiring)
GDT have been working parallel with two solutions from the start; Webcam
and Kinect. The Kinect part was put on ice approximately one month before
project closure (3.2.4).

www.GestuRemote.tk

www.GestuRemote.tk

Sammendrag

GDT består av Pål Rambjørg, Tormod Eikelid, John Andre Grimseth og
Fredrik Myrvang.

Ved å bruke Java (Gjenkjenning), Arduino (Universal IR kontroll) og
Raspberry Pi (Media Senter++), blir eit enkelt vink til ein kommando.
GestuRemote sitt mål er å erstatte den tradisjonelle/utdaterte fjernkontrollen,
pluss litt ekstra funksjoner.

Prosjektet GestuRemote tar i bruk fleire plattformar i sin oppbygging; We-
bkamera (Java), Kinect (C++), Raspberry Pi (XBMC) og Arduino (Wiring)
GDT har i frå starten jobba parallelt med to løysingar; Webkamera og Kinect.
Kinect delen blei satt på is ca. ein månad før prosjekt fullføring.

www.GestuRemote.tk

www.GestuRemote.tk

Abbreviations

HiSF Høgskulen i Sogn og Fjordane
GDT GestuRemote Development Team
PC Personal Computer
OS Operating System
SDK Software Development Kit
NUI Natural User Interface
GUI Graphical User Interface
HTPC Home Theater PC
USB Universal Serial Bus
JavaCV Java Open Source Computer Vision Library
OpenCV Open Source Computer Vision Library
OpenNI Open Natural Interaction
NiTE Natural Interaction Middleware
CMS Content Management System
PHP Hypertext Preprocessor
SSH Secure Shell
TCP Transmission Control Protocol
FFMPEG Fast Forward Moving Picture Experts Group
BLOB Binary Linked Object
RGB Red Green Blue(Color Model)
PGR FlyCapture Point Grey FlyCapture
HSV Hue Saturation Value
AR Augmented Reality
ARToolKitPlus Augmented Reality Tracking Library
XBMC Xbox Media Center
HDMI High-Definition Multimedia Interface
CPU Central Processing Unit
GPU Graphics Processing Unit
MaxMSP Max Max Signal Processing
GPIO General Purpose Input/Output
DC Direct Current
CSI Camera Serial Interface
DSI Display Serial Interface
RCA Radio Corporation of America

LED Light-Emitting Diode
SD-Card Secure Digital Card
ICSP In Circuit Serial Programming
UART Universal Asynchronous Receiver/Transmitter
ARM Acorn Reduced Instruction Set Computing Machine (Microcontroller Single Chip)
AVR’s Microcontroller Single chip
SOC System On a Chip
SRAM Static Random-Access Memory
EEPROM Electrically Erasable Programmable Read-Only Memory
PWM Pulse-Width Modulation
IR Infrared Light
RF Radio Frequency
PiHat Rasberry Pi Home Automation Transmitter
PiFM Raspberry Pi Frequency modulation Transmitter
AMS American Mathematical Society
JSON-RPC JavaScript Object Notation Remote Procedure Call
HTTP HyperText Transfer Protocol
HTML HyperText Markup Language
CAD Computer-Aided Design
TV TeleVision
DVD Digital Versatile Disc
CD Compact Disc

LATEX Quote from www.latex-project.org

GestuRemote Bachelor Project Report is written/compiled with LATEX[1]

LaTeX is a document preparation system for high-quality type-
setting. It is most often used for medium-to-large technical or
scientific documents but it can be used for almost any form of
publishing.
LaTeX is not a word processor! Instead, LaTeX encourages authors
not to worry too much about the appearance of their documents
but to concentrate on getting the right content.

LaTeX contains features for:
– Typesetting journal articles, technical reports, books, and slide
presentations.

– Control over large documents containing sectioning, cross-references,
tables and figures.

– Typesetting of complex mathematical formulas.
– Advanced typesetting of mathematics with AMS-LaTeX.
– Automatic generation of bibliographies and indexes.
– Multi-lingual typesetting.
– Inclusion of artwork, and process or spot color.
– Using PostScript or Metafont fonts.

www.latex-project.org

Contents

1 Introduction GestuRemote 3
1.1 Motivation . 3
1.2 Literature . 4
1.3 Previous work . 4
1.4 Outline of the bachelor report . 5

2 Challenges 7
2.1 GestuRemote . 7

3 Kinect 9
3.1 Kinect for Xbox 360 . 9

3.1.1 How the Kinect works? . 10
3.2 How we use Kinect . 12

3.2.1 Implementations in Source Code 12
3.2.2 Candescent NUI . 13
3.2.3 Sigmanil NUI Quote from Kinecthacks.com 13
3.2.4 Sigmanil versus Candescent . 14

4 Java 17
4.1 Java . 17
4.2 OpenCV Quote from OpenCV.org . 25
4.3 Our hierarchy . 27

5 Communication 29
5.1 What we needed . 29
5.2 How we solved it . 30

6 Raspberry Pi 33
6.1 How Raspberry Pi works Quote from HowStuffWorks.com 33

6.1.1 Raspberry Pi Model B Card . 34
6.2 How we use Raspberry Pi . 35
6.3 Raspberry Pi Tools . 36

7 Arduino 37
7.1 How Arduino works Quote from Arduino.cc 37

7.1.1 Arduino GUI . 38
7.1.2 Arduino Mega Card . 39

7.2 How we use Arduino . 40

xi

7.2.1 About the Merge . 41
7.2.2 GestuRemote IR Remote . 42
7.2.3 Fritzing, an Arduino Sketcher . 43
7.2.4 Why we use Fritzing . 43

8 Website 45
8.1 GestuRemote website . 45

8.1.1 Domain . 45
8.1.2 Wordpress . 46

8.2 Website Design . 46

9 GestuRemote Administration 47

10 Discussion 49

11 Results 53
11.1 Graphical Project Description . 54

12 Further Work 55

13 Conclusion 57

References 59

Appendices
A System documentation 61

B Source Code 63

List of Figures

3.1 Kinect for Xbox 360 . 9
3.2 Kinect Sensor . 10
3.3 Kinect Hardware . 11
3.4 How we use Kinect . 12
3.5 Some Sigmanil Gestures . 14
3.6 The Different Kinect versions . 15

4.1 Webcam image . 18
4.2 Webcam image after color filtering . 18
4.3 Normalization Process . 19
4.4 Canny edge detection . 20
4.5 Result from our edge detection . 21
4.6 Cylindrical description of HSV . 21
4.7 The result after HSV-filtering . 22
4.8 Hand and face, separated. 22
4.9 Object diagram . 23
4.10 Our hand detection . 24
4.11 Description of the Hierarchy class . 27

5.1 Communication illustrated . 29

6.1 Raspberry Pi Model B . 33
6.2 Raspberry Pi Details . 34
6.3 Raspberry Pi, Connected . 35
6.4 Xbox Media Center (XBMC) . 36

7.1 Arduino GUI . 38
7.2 Arduino Mega 2560 . 39
7.3 GestuRemote IRremote . 40
7.4 GestuRemote IR Remote Flowchart . 42
7.5 Fritzing Programming Sketch . 43

8.1 GestuRemote.tk . 46

9.1 Administration for GestuRemote . 47

11.1 Process grid . 54

1

2 LIST OF FIGURES

Chapter1Introduction GestuRemote

We present GestuRemote, a research into computer vision and communication.

1.1 Motivation

The original idea was to replace the old Television (TV) remote with a camera and hand
gestures. But why stop there? If we got our gestures recognized, why not use that to
control everything in the house? Like the stereo, navigation within game consoles, Digital
Versatile Disc (DVD) players, and the coffee maker in the kitchen. So it’s like an easy
implementation of a smart house.

To walk in a dark room and illuminate it by the wave of a hand, dragging the curtains
without touching them and turning on the media center in a manner that seems natural
and self explanatory is the way we want to control our houses. This is not something we
were aiming towards though, but we wanted to research the possibilities and see how
close our prototype could get.

3

4 1. INTRODUCTION GESTUREMOTE

1.2 Literature

In the first stages of the project we were searching the internet looking for literature on
similar projects just to get a point of view.

Our greatest sources of information:

– Questions concerning Java and C#, there was an amazing wealth of informa-
tion available from:

◦ http://stackoverflow.com/
◦ http://opencv.org/

– Questions concerning Arduino, there were many project-sketches and other
information available from:

◦ http://arduino.cc/en/
– Questions concerning Raspberry Pi, there was much information available
from:

◦ http://www.raspbmc.com/
◦ http://xbian.org/

1.3 Previous work

When performing literary searches on the web one is likely to find similar works performed
by other people. We found a lot of projects and information concerning gesture recognition
online.

Some of the projects we took a closer look at were:

– JavaCV and OpenCV
– NiTe 2, PrimeSense
– CandeScent
– TipTep Skeletonizer
– SigmaNIL Framework

We chose to put our main focus on CandeScent NUI and JavaCV

1.4. OUTLINE OF THE BACHELOR REPORT 5

1.4 Outline of the bachelor report

The contents of each chapter in the bachelor report are as follows.

Chapter 1: Introduction

We present GestuRemote, a research into computer vision and communication.

Chapter 2: Challenges

Before we started our research, we had to set the challenges we had to overcome.

Chapter 3: Kinect

Kinect is a motion sensing input device by Microsoft for the Xbox 360 video game console
and Windows PCs.

Chapter 4: Java

An effort in detecting a hand with webcam.

Chapter 5: Communication

We needed our devices to communicate, to forward our wave gestures.

Chapter 6: Raspberry Pi

Raspberry Pi is a credit card-sized single-board computer.

Chapter 7: Arduino

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use
hardware and software.

Chapter 8: Website

As project documentation and presentation evolves, a website is a good way to present
results to the public.

Chapter 9: GestuRemote Administration

GestuRemote Administration consists of; Pål Rambjørg, Tormod Eikelid,
John A. Grimseth and Fredrik Myrvang. GestuRemote is contracted by HiSF.

6 1. INTRODUCTION GESTUREMOTE

Chapter 10: Discussion

Through this project we have had several unknown challenges we had to overcome.

Chapter 11: Results

The resulting software does recognize a gesture, under the right circumstances.

Chapter 12: Further Work

Our open source code will be published on our webpage so anyone who want to develop
it, borrow a method or just get some inspiration are welcome to try it out.

Chapter 13: Conclusion

This project was meant to teach us more about “gesture based” software, and what it
actually takes to control objects with gesture tracking/recognition.

Appendices

The bachelor report is concluded with 7 appendices:

– Logbook
– HiSF Contract
– Meeting Minutes
– GestuRemote Budget
– Quality and Risk Assessment Scheme
– Gantt-Chart
– GestuRemote IR Remote Sketch

Chapter2Challenges

Before we started our research, we had to set the challenges we had to overcome.

2.1 GestuRemote

Gesture

– First of all we need to recognize our hand, face or something we could make
several different gestures with.

– We want to use a Webcam or Microsoft Kinect. Kinect already got different
solutions that recognize gestures, but the programs are complex. It is also
not as universal as the webcam, which you find everywhere.

Recognition

– For recognition we have several programs to choose from. The logical choice
would be Java, since we in earlier semesters have had good experience with
the language.

– In Java there are many steps to find the specific hand or face;
◦ Take a picture with a webcam
◦ Live stream using a webcam
◦ Color filters to find skin color
◦ Edge detection
◦ Hand algorithm
◦ Recognize gestures made by a hand
◦ Create commands based on gestures

7

8 2. CHALLENGES

Communication

– The gestures we make or catch with the webcam needs to communicate with
other devices, we think Raspberry Pi is suitable for our project considered
it’s potential power versus size and prize.

Report

– We are self-employed, and have never done a project of this magnitude
or relevance. This makes planning our progress and use of time mainly
guesswork, but with previous projects we have had some experience, and use
this to produce our Gantt chart and preliminary report. For the rest of our
progress we have to rely on our growing experience to make sure the project
is completed within its timeframe.

Chapter3Kinect

Kinect is a motion sensing input device by Microsoft for the Xbox 360 video game console
and Windows Personal Computer (PC).

3.1 Kinect for Xbox 360

Kinect for Xbox 360 (3.1) is revolutionizing gaming with motion detection technology. It
changes how we play the game, how we watch TV, listen to music, and watches movies.
With Kinect there are no physical controllers or remotes, there is just you!

Kinect Makes You The Remote

– Kinect registers how you move and mimics every movement onto screen.
– Kinect inspires people to get off the couch and take control of the game.

Figure 3.1: Kinect for Xbox 360

http://0.tqn.com/d/familyinternet/1/0/L/2/-/-/Kinect_Lifestyle1.jpg

9

http://0.tqn.com/d/familyinternet/1/0/L/2/-/-/Kinect_Lifestyle1.jpg

10 3. KINECT

3.1.1 How the Kinect works?

Kinect was originally launched as a gesture-based game controller for Microsoft’s Xbox
360 console. But Kinect offers a lot more to its consumers than just a game controller
for Xbox 360!

The Kinect Sensor Quote from HowStuffWorks.com

The innovative technology behind Kinect is a combination of hardware and
software contained within the Kinect sensor (3.2) accessory that can be added
to any existing Xbox 360. The Kinect sensor is a flat black box that sits on
a small platform, placed on a table or shelf near the television you’re using
with your Xbox 360.
Newer Xbox 360s have a Kinect port from which the device can draw power,
but the Kinect sensor comes with a power supply at no additional charge for
users of older Xbox 360 models.
For a video game to use the features of the hardware, it must also use the
proprietary layer of Kinect software that enables body and voice recognition
from the Kinect sensor[2].

Figure 3.2: Kinect Sensor

http://mygggo.com/wp-content/uploads/2010/06/kinect12.png

http://mygggo.com/wp-content/uploads/2010/06/kinect12.png

3.1. KINECT FOR XBOX 360 11

There’s a trio of hardware innovations working together within the Kinect
sensor:
– Color VGA video camera; This video camera aids in facial
recognition and other detection features by detecting three color
components: red, green and blue. Microsoft calls this an "RGB
camera" referring to the color components it detects.

– Depth sensor; An infrared projector and a monochrome CMOS
(complimentary metal-oxide semiconductor) sensor work together
to "see" the room in 3-D regardless of the lighting conditions.

– Multi-array microphone; This is an array of four microphones
that can isolate the voices of the players from the noise in the room.
This allows the player to be a few feet away from the microphone
and still use voice controls.

A further look at the technical specifications for Kinect reveal that both the
video and depth sensor cameras have a 640 x 480-Pixel resolution and run at
30 FPS (frames per second).
The specifications also suggest that you should allow about 6 feet (1.8 meters)
of play space between you and the Kinect sensor, though this could vary
depending on where you put the sensor [source: Microsoft Store].
The Kinect hardware (3.3), though, would be nothing without the break-
through software that makes use of the data it gathers. Leap forward to the
next page to read about the "brain" behind the camera lens.

Figure 3.3: Kinect Hardware

http://images.pcworld.com/news/graphics/209834-ifixitkinectteardown_original.jpg

http://images.pcworld.com/news/graphics/209834-ifixitkinectteardown_original.jpg

12 3. KINECT

3.2 How we use Kinect

Using the Kinect sensor (3.4) when playing Xbox games is a great experience but Kinect
really shine when you connect it to a PC!

Kinecthacks.net[3] is a site where one can find many cool "hacks" which allow Kinect
to be used by a computer rather than a Xbox. By using these hacks, we gain access to
Kinect’s cameras (color and depth), Light-Emitting Diode (LED), accelerometer and
motor. With both the raw and the depth image obtained from the Kinect, we can easier
build Machine Vision applications.

But the Kinect device can’t work it’s magic without body-tracking algorithms.
Fortunately, PrimeSense, the company behind Kinect, released Open Natural Interaction
(OpenNI) framework and Natural Interaction Middleware (NiTE). With these powerful
tools available we now can access Kinect features such as real-time skeleton tracking,
gesture recognition, wave detection and much more!

Figure 3.4: How we use Kinect

3.2.1 Implementations in Source Code

By taking use of Kinect and its powerful hardware we encountered a bigger problem; the
source code. Libraries for Kinect are huge and are dependant upon middleware software
to execute the different functions within the libraries.

Middleware Software’s are everywhere and serve all kinds of purposes, we needed
something more centered around our task and goals which were handtracking, handshape
recognition and hand gestures.

To be able to design our software we wanted a library that was not only open source,
but also clean and stable. Candescent[4] is such a software but it still presented us with
instability and crashes.

3.2. HOW WE USE KINECT 13

3.2.2 Candescent NUI

Candescent Natural User Interface (NUI) is a hand and finger tracking software that
uses Kinect depth data. Candescent is developed with OpenNI and Microsoft Kinect
Software Development Kit (SDK), Language: C#

Its creator is Stefan Stegmueller and it is open source software which we could modify
under license demands[5].

3.2.3 Sigmanil NUI Quote from Kinecthacks.com

SigmaNIL[6] is, according to the developer, “the most powerful vision frame-
work for natural user interfaces.” The tool also comes with elaborate features
such as finger level precision hand shape recognition, hand gesture recognition,
and hand skeleton tracking.
For those looking for more, SigmaNIL framework also provides customization
tools for each of these advanced features. SigmaNIL is designed to support
all depth sensor devices and base libraries such as OpenNI and KinectSDK.
It is also designed so that developers can enhance it by adding new powerful
modules.
The tool is composed of the following parts; SigmaNIL Core (source code in-
cluded), SigmaNIL Modules (HandSegmentation, HandSkeleton, HandShape
and HandGesture) SigmaNIL Tools (Mainly training tools to customize
the modules by creating relevant data files. Current distribution includes
HandShapeTrainingTool only)

Sigmanil is a made by SigmaRD and is an "open source" software which we thought
we could modify under license demands (3.2.4).

14 3. KINECT

3.2.4 Sigmanil versus Candescent

Sigmanil NUI had a pre-stored gesture library in its source which includes:

– Circle Counter Clockwise
– Circle Clockwise
– Sigma
– Triangle
– Lightning
– Cross
– X
– Z
– N

Out of all the pre-made gestures we found that; Circle-CCW, Circle-CW, Sigma, Z
and N were the most stable and easiest to reproduce on command.

SigmaNil was probably the most promising software we found, that was close enough
to our vision. But sadly SigmaNil license states that their software isn’t completely open
source, which meant we couldn’t implement our commands to it’s source code!

SigmaNil HandGesture Software(3.5) showed us some good responses to following
examples:

(a) Circle Clockwise (b) Circle Counter-CW (c) Sigma

Figure 3.5: Some Sigmanil Gestures

3.2. HOW WE USE KINECT 15

Candescent NUI also had hand tracking and gesture capabilities but the software
were not optimalized for "Kinect for Xbox 360" rather "Kinect for Windows" (3.6).

(a) Kinect for Xbox 360 (b) Kinect for Windows

Figure 3.6: The Different Kinect versions

Conclusion: Based on experiences gathered while trying the different softwares:

– Sigmanil was the best candidate considering looks and stability.
– Sigmanil is an acknowledged product who has won several competitions related

to depth sensor technology.
– Sigmanil was not as open source as we first thought and we had to put it on
ice.

– Candescent was not optimized for our Kinect hardware.
– Candescent fortunately was sufficiently open source.

Despite Candescents slight issues with our Kinect it still worked on some levels and
was still our most logical candidate, considering.

We decided to put the Kinect part of the project on ice in favor of our Java software.

Chapter4Java

An effort in detecting a hand with webcam.

4.1 Java

Java is a programming language we were all familiar with, so we wanted to research the
hand detection possibilities within java using a webcam. After doing some research around
Java image processing and shape recognition, some names kept repeating themselves.
Open Source Computer Vision Library (OpenCV) with the Java Open Source Computer
Vision Library (JavaCV) libraries were used in almost every example we found.

JavaCV provides wrappers to commonly used libraries in the field of computer vision
like: OpenCV, Fast Forward Moving Picture Experts Group (FFmpeg), libdc13941, Point
Grey FlyCapture (PGR FlyCapture), OpenKinect, videoInput, and Augmented Reality
Tracking Library (ARToolKitPlus). We can call on these libraries using utility classes
in java. This way java can reach down in to the computer to get a faster graphical
calculation. Detection becomes easier using pre built image processing classes.

We were hoping to find some open source projects that at least had found the hand
for us, so that we only had to implement the functions and bring them out to the
"transmitting part" of the project. We had no such luck. The ones we found in a language
we could understand were just bits and pieces of what we had in mind. So we started to
think for ourselves. But how can we detect a hand in a picture. Skin color maybe?

1Library that provides a complete high level application programming interface

17

18 4. JAVA

The colors in an image (4.1) can be made by mixing three specific colors, Red Green
Blue(Color Model) (RGB). By measuring each pixel RGB values, we can find the color
value of our skin.

Figure 4.1: Webcam image

When we have the color of our skin we can try to filter it out from the rest of the
image by adjusting the image threshold. We made a new image (4.2), where if the RGB
was "skin color" we put the pixel white and if not, black.

Figure 4.2: Webcam image after color filtering

4.1. JAVA 19

We then encountered a problem with our filtering. Because of the quality of our,
and most webcams, we did not only get skin color. The webcam has a light adjusting
function which changes the RGB value of the whole Picture. Since it was winter and
some of us had a skin color that was almost gray, we could not filter out the background
in a good way.

To try to filter out illumination we studied normalization. In normalization we use
the three values in RGB to remove light difference. Red, Green and Blue values stretch
from 0, which is black, to 255 which is white. When we move between pixels within
the same color, but with different illumination, the three colors increase and decrease in
value with about the same amount.

NormalizedRed = Red√
Red2 + Green2 + Blue2

NormalizedGreen = Green√
Red2 + Green2 + Blue2

NormalizedBlue = Blue√
Red2 + Green2 + Blue2

From this we get a number scaling from 0-1, so we need to multiply it with 255 so
the scale matches the RGB scale. So we get the value [Red, Green, Blue] from each Pixel
and replace it with [Normalized Red, Normalized Green, Normalized Blue].

When we have the normalized (4.3) picture we can use the same color filter as before
to set the color ranges we want.

(a) Original Photo (b) Normalized Photo (c) Filtered Photo

Figure 4.3: Normalization Process

20 4. JAVA

Trying to improve our hand detection we wanted to find an edge detection method.
One of the better ones was Canny Edge detection (4.4) which is developed by John F.
Canny. His intension with the Canny Edge was to improve/enhance the already existing
edge detectors.

Canny Edge is based on these three criteria’s; First criteria and also the most obvious
one, is to get a low error rate. This means that every spot there is an edge occurrence
will be marked, and that non edges won’t be marked. Second criteria is that the edge
point will be localized, that means that the drawn edge is a minimum from the actual
edge. The third criterion is to have only one response to a single edge.

Figure 4.4: Canny edge detection

Based on these criteria’s, the “steps” in the canny edge detection is as follows; First
it smoothes the image to eliminate the noise. It then uses high spatial derivatives to
highlight regions where it find the image gradient. Then an algorithm tracks along these
regions and suppresses any pixel that is not at the maximum. Gradient array reduced
by hysteresis, which is used to track along the remaining pixels that have not been
suppressed. Hysteresis uses two thresholds. If the magnitude is below the first threshold,
it is then set to zero and then made as a non-edge. If the magnitude is above the high
threshold, it becomes an edge. If it is between it depends on if there is a path from this
pixel to another pixel with a gradient above the second threshold.

4.1. JAVA 21

We designed a simple edge detection algorithm (4.5), using some if sentences. In
short: if major difference in color, there’s an edge. This actually worked very well but
we got some noise in the edge image.

To remove some of the noise we used an algorithm where we summed all pixels in
an 5x5 grid around each pixel. If there were more than "X" black pixels in the grid, the
middle pixel stayed black, else it was painted white.

Figure 4.5: Result from our edge detection

The last skin color filtering method we tried was to convert the camera image to the
Hue Saturation Value (HSV) plane. In the HSV plane (4.6) there are no red, green and
blue as the three variables that makes every color. Instead there is Hue, Saturation and
Value, hence the name. Hue says what color the image is, while saturation tells us how
much color, where no saturation is white. And lastly value tells us the intensity of the
color, where no intensity is black.

Figure 4.6: Cylindrical description of HSV

http://upload.wikimedia.org/wikipedia/commons/0/0d/HSV_color_solid_cylinder_alpha_lowgamma.png

http://upload.wikimedia.org/wikipedia/commons/0/0d/HSV_color_solid_cylinder_alpha_lowgamma.png

22 4. JAVA

We got the skin color values from another skin detection project at [7]. This worked
very well with the right lighting on Tormods PC, but was not so functional on Fredriks
PC. This is probably caused by difference in camera quality and light adjusting functions.
So here our program split in two, where we had one based on normalization-filtering,
and one based on HSV.

When we have our filtered, black and white representation of our webcam image
(4.7), we have to make the computer "find" the white objects. Luckily JavaCV got a
class called cvFindContours which finds all the binary linked objects (Binary Linked
Object (BLOB)) and puts them in an hierarchy.

Figure 4.7: The result after HSV-filtering

By using the predefined hierarchy we can now try to remove the objects that is not
hand. We set a max and min to the object area so the noise and large objects is ignored.
We then try to separate a hand from a face by defining a hand as a object with less than
two holes and a face as an object with two or more holes (4.8).

Figure 4.8: Hand and face, separated.

4.1. JAVA 23

To get some understandable data to save as a gesture, we cropped the image around
the object that is most likely to be a hand. We then summed the number of Pixels, that
were white, for every x and y value and put them in to two arrays. To make it easier for
us we made two diagram (4.9) representations of the arrays.

Figure 4.9: Object diagram

The diagrams show that when we hold up our hand with the thumb out, the first x
values are low and ending up in a large spike in the end, while the y values are around
middle values and ending in a low spike. These are values we can use to recognize
gestures (4.10). To get a more reliable recognition we also have to get enough hits per
second, where hits is when the object is within the right values.

To have the ability to navigate in menus in a good way we wanted some movement
commands. From the cvFindContours we can get the width, height and the position of
the upper left corner of the square surrounding the object. The outer edges of the object
is flickering allot, so we added half the width and height to the position components
so we had the middle point of the object. This point is much more stabile. By making
arrays, where we put the x and y value of the middle point, we can see what direction
the object is moving. If the values is increasing or decreasing enough over a one sec
period we acknowledge this as a up, down or sideway command. With the width and
height we also made an array with the area of the square. This area was used to see if
the object was moving towards or away from the camera.

24 4. JAVA

At this point we did not have time to continue improving the recognition part and
had to concentrate on documenting what we had done. Here is what the recognition part
looked like in the end (4.10).

Figure 4.10: Our hand detection

4.2. OPENCV QUOTE FROM OPENCV.ORG 25

4.2 OpenCV Quote from OpenCV.org

OpenCV[8] is an open source computer vision and machine learning software
library. OpenCV was built to provide a common infrastructure for computer
vision applications and to accelerate the use of machine perception in the
commercial products.
Being a BSD-licensed product, OpenCV makes it easy for businesses to utilize
and modify the code.
The library has more than 2500 optimized algorithms, which includes a
comprehensive set of both classic and state-of-the-art computer vision and
machine learning algorithms.

These algorithms can be used to:
– Detect and recognize faces
– Identify objects
– Classify human actions in videos
– Track camera movements
– Track moving objects
– Extract 3D models of objects
– Produce 3D point clouds from stereo cameras
– Stitch images together to produce Hi-Res image
– Find similar images from database
– Remove red yes from images
– Follow eye movements
– Recognize scenery and establish markers for AR
– Etc...

26 4. JAVA

OpenCV has more than 47 thousand people of user community and estimated
number of downloads exceeding 5 million. The library is used extensively in
companies, research groups and by governmental bodies.
Along with well-established companies like Google, Yahoo, Microsoft, Intel,
IBM, Sony, Honda, Toyota that employ the library, there are many startups
such as Applied Minds, VideoSurf, and Zeitera, that make extensive use of
OpenCV.
OpenCV’s deployed uses span the range from stitching streetview images
together, detecting intrusions in surveillance video in Israel, monitoring mine
equipment in China, helping robots navigate and pick up objects at Willow
Garage, detection of swimming pool drowning accidents in Europe, running
interactive art in Spain and New York, checking runways for debris in Turkey,
inspecting labels on products in factories around the world on to rapid face
detection in Japan.
It has C++, C, Python and Java interfaces and supports Windows, Linux,
Android and Mac Operating System (OS). OpenCV leans mostly towards real-
time vision applications and takes advantage of MMX and SSE instructions
when available.
A full-featured CUDA interface is being actively developed right now.
There are over 500 algorithms and about 10 times as many functions that
compose or support those algorithms.
OpenCV is written natively in C++ and has a templated interface that works
seamlessly with STL containers.

4.3. OUR HIERARCHY 27

4.3 Our hierarchy

That any command can come at any time is not a good way to control more than one
device. So we made a hierarchy (4.11) of confirmation commands before the computer
sends the execute command out to the signal-mimicking devices (Arduino and Raspberry-
Pi)

Figure 4.11: Description of the Hierarchy class

As you can see the hierarchy waits for the "Hi" command, which is a left hand palm.
Before this command, no other gesture will do anything. After getting the "Hi" command
it’s possible to choose which device to enter. We have illustrated three options, but the
real program has one more (three devices). The options give the opportunity to choose a
device or go back to the waiting stage.

We have also inserted a timer which is renewed every time the program gets a gesture
usable in that part of the hierarchy. If this timer runs out, the program goes back to
the waiting stage. If a device is chosen we can execute a "send" command, go back, or
directly change device. We choose the execute command with the vector algorithms.
Then, depending on what device you are in and what vector command, the program
choose a communication method and sends the given command.

Chapter5Communication

We needed our devices to communicate, to forward our wave gestures.

5.1 What we needed

We thought of different possible solutions to communicate between our recognition
software in Java and our Raspberry Pi. We needed a simple but effective communication
(5.1), that could send specific commands our Raspberry Pi would be able to execute and
perform our given tasks.

Some of our thoughts where Bluetooth and Infrared communication, since we knew
that Xbox Media Center (XBMC) on the Raspberry Pi supported this. After some
thought we figured that this would only complicate the matter, and new issues like Line
of sight would be needed. Eventually we checked raw Transmission Control Protocol
(TCP) communication, and found that XBMC on Raspberry Pi had compatibility with
TCP commands over JavaScript Object Notation Remote Procedure Call (JSON-RPC).
This gave us a simpler solution, since we then just had to create a means of sending
JSON parsed strings to Raspberry Pi and it would know what we wanted it to do.

Figure 5.1: Communication illustrated

http://pdsgn.files.wordpress.com/2009/11/mpj0439347000011.jpg

29

http://pdsgn.files.wordpress.com/2009/11/mpj0439347000011.jpg

30 5. COMMUNICATION

JSON-RPC Quote from Wiki.Xbmc.org

JSON-RPC[9] is a stateless, light-weight remote procedure call (RPC) proto-
col. Primarily this specification defines several data structures and the rules
around their processing. It is transport agnostic in that the concepts can be
used within the same process, over sockets, over HTTP, or in many various
message passing environments. It uses JSON (RFC 4627) as data format.
It is designed to be simple!

By using this already implemented software in XBMC we would also not have to
redo our “receiving methods” when XBMC eventually is updated, only if they change
JSON-RPC for something else.

5.2 How we solved it

By using JSON-RPC socket based communication, we could write a simple java method
that used basic socket programming to connect to Raspberry Pi and send preset commands
already implemented in the library, and achieve control. We would then link these
commands to our recognition software already written in Java, and then be able to send
commands from the same software, with no additional tweaking.

This solved how to control XBMC, but it did not work controlling our light sockets.
To do this, we had a program inside the XBian distro on our Raspberry Pi. This software
needed some inputs to be able to work as we intended it to, so we made a new Java
program. This time, we made an Secure Shell (SSH) method. SSH is a secure method
to send text commands to systems, mostly used by Linux and other secure devices. It
requires a user and a password to be able to connect to the server.

5.2. HOW WE SOLVED IT 31

SSH Quote from Techterms.com

SSH[10] is a method of securely communicating with another computer. The
"secure" part of the name means that all data sent via an SSH connection
is encrypted. This means if a third party tries to intercept the information
being transferred, it would appear scrambled and unreadable. The "shell"
part of the name means SSH is based on a Unix shell, which is a program
that interprets commands entered by a user.

By using SSHTools[11] we wrote a program in Java that opened a new SSH session at
the start of our program, and when it had sent our command string, closed the session,
but did not terminate the connection, so it did not have to go through the login process
again.

By sending strings to Rasberry Pi Home Automation Transmitter (PiHat)[12] inside
XBian we would then tell the software that we now wanted the light to toggle with a
gesture, then send the command to Raspberry Pi, and then send it over radio frequency
to our power sockets and toggle the lights.

Now the only thing left was to communicate with our Arduino that replicated remote
Infrared Light (IR) signals. Our program had a webserver running on it with a web
interface for us to toggle sending commands. What we did, was to use the Hypertext
Transfer Protocol (HTTP) command "GET" to get a connection with the server, be
accepted by the server, and then sending a string to it, so that our program could find
this string to know what to send.

Chapter6Raspberry Pi

Raspberry Pi is a credit card-sized single-board computer.

6.1 How Raspberry Pi works Quote from HowStuffWorks.com

The Raspberry Pi[13] is developed in the UK by the Raspberry Pi Foundation
with the intention of promoting the teaching of basic computer science in
schools.
The Raspberry Pi device looks like a motherboard, with the mounted chips
and ports exposed (something you’d expect to see only if you opened up your
computer and looked at its internal boards), but it has all the components
you need to connect input, output, and storage devices and start computing.
You’ll encounter two models of the device: Model A and Model B. The only
real differences are the addition of Ethernet and an extra Universal Serial
Bus (USB) port on the more expensive Model B (6.1).

Figure 6.1: Raspberry Pi Model B

http://www.hoektronics.com/wp-content/uploads/2013/04/RaspberryPi.jpg

33

http://www.hoektronics.com/wp-content/uploads/2013/04/RaspberryPi.jpg

34 6. RASPBERRY PI

6.1.1 Raspberry Pi Model B Card

We chose the Raspberry Pi Model B (6.2) card because of it’s very potent power to size
ratio.

Figure 6.2: Raspberry Pi Details

http://www.RaspberryPi.org/wp-content/uploads/2011/07/RasPiModelB.png

Raspberry Pi Connectors

– Ethernet; This connector allows for wired network access (Model B).
– USB; 2.0 Ports(2x)
– Audio; 3.5 mm Stereo Output
– RCA/"Phono"; Video Output Radio Corporation of America (RCA)
– GPIO; General Purpose Input/Outputs
– SD-card slot; OS installed on Secure Digital Card (SD-card) is required for
booting the device.

– MicroUSB; This is a 5V Micro USB power connector.
– HDMI; This connector allows you to hook up a high-definition television.
– LED’s; Light Emitted Diodes.

Processor ARM CPU/GPU; This is a Broadcom BCM2835 System On a Chip (SOC)
that’s made up of an Acorn Reduced Instruction Set Computing Machine (ARM) central
processing unit (Central Processing Unit (CPU)) and a Videocore 4 graphics processing
unit (Graphics Processing Unit (GPU)). The CPU handles all the computations that
make a computer work (taking input, doing calculations and producing output), and the
GPU handles graphics output.

http://www.RaspberryPi.org/wp-content/uploads/2011/07/RasPiModelB.png

6.2. HOW WE USE RASPBERRY PI 35

6.2 How we use Raspberry Pi

The Raspberry Pi (6.3) sits in the center of our project, since the little mini-computer
first of all is our media center, but also a hub that connects our software with the rest
of our devices. The Pi is loaded with XBian, a simplified version of the Linux distro
Debian, designed to run on ARM Architecture devices. This gives us a stable operative
system with the added goods of XBMC which was developed for the original Xbox but
grew in popularity and got ported to other devices.

With Linux running underneath, it gives us the complexity to add other programs,
execute scripts and commands for other tasks. What we have added, is a library to
interpret commands over SSH and control our NEXA power sockets. The NEXA power
sockets are activated and controlled by our Raspberry Pi via our Java program that
recognizes gestures. When a gesture is recognized and “light control” is selected, JAVA
sends commands to our Pi over SSH, and the Pi uses the PiHat library to send the
command to our power sockets.

Figure 6.3: Raspberry Pi, Connected

36 6. RASPBERRY PI

6.3 Raspberry Pi Tools

To load our OS onto the Raspberry Pi, we need to format our SD-card, and write a
pre-created image. We use XBian as it is the most stable of the different XBMC (6.4)
versions.

Figure 6.4: Xbox Media Center (XBMC)

http://xbmc.org/wp-content/uploads/2012/11/xbmc_beta_front.jpg

When the image has been written to the SD card, we just plug the micro USB into the
Pi and with Ethernet connected, the distro automatically starts comPiling and checking
online if there are any available updates. After a few minutes we get the XBMC home
screen, and it is fully functional.

We have added add-ons for Youtube and some other “nice to have” add-ons, and
PiHat. The library designed by Jon Petter Skabmo, evolved from the project Raspberry
Pi Frequency modulation Transmitter (PiFM). This library makes the Pi transmit radio
frequencies that we can use to control our power sockets.

The possibilities with the Raspberry Pi are immense. The little credit size computer
is being used for more than the developers could dream of. It has quickly become a
favorite of both people that want to explore the technology and people that just want a
cheap computer.

http://xbmc.org/wp-content/uploads/2012/11/xbmc_beta_front.jpg

Chapter7Arduino

Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use
hardware and software.

Arduino is intended for;

– Artists
– Designers
– Hobbyists

Arduino is basically for anyone interested in creating interactive objects or
environments.

7.1 How Arduino works Quote from Arduino.cc

Arduino[14] can sense the environment by receiving input from a variety of
sensors and can affect its surroundings by controlling lights, motors, and
other actuators.
The microcontroller on the board is programmed using the Arduino program-
ming language (based on Wiring) and the Arduino development environment
(based on Processing).
Arduino projects can be stand-alone or they can communicate with software
running on a computer (e.g. Flash, Processing, Max Max Signal Processing
(MaxMSP)). The boards can be built by hand or purchased preassembled;
the software can be downloaded for free.
The hardware reference designs/Computer-Aided Design (CAD) are available
under an open-source license, you are free to adapt them to your needs.
Arduino received an Honorary Mention in the Digital Communities section of
the 2006 Ars Electronica Prix. The Arduino team is: Mssimo Banzi, David
Cuartielles, Tom Igoe, Gianluca Martino, and David Mellis.

37

38 7. ARDUINO

7.1.1 Arduino GUI

The Arduino Graphical User Interface (GUI) (7.1) offers a simple editor interface, that
reflects the simplicity and flexibility of the Arduino cards.

– Button Bar
Compile, Upload, New, Load and Save Buttons

– Input/Edit Area
Simple Editor with highlighting function.

– Status Bar
– Notification Area

Figure 7.1: Arduino GUI

7.1. HOW ARDUINO WORKS QUOTE FROM ARDUINO.CC 39

7.1.2 Arduino Mega Card

GestuRemote chose to use the Arduino Mega 2560 card (7.2) because of it’s many
connectivity’s.

Figure 7.2: Arduino Mega 2560

http://www.robotshop.com/blog/en/files/arduino-mega2560.jpg

Arduino Board Connectors

– USB; 2.0 Port; 5V Power supply
– DC Input; Direct Current Input (7 to 12V)
– GPIO; 54 Digital Input/Output Pins

15 PWM Outputs
16 Analog Inputs
4 UARTs (Hardware Serial Ports)
1 16 MHz Crystal Oscillator

– ICSP; Method for directly programming AVR’s
– Reset; Soft-Resets the Arduino Card
– LED’s; Light Emitted Diodes.
– Memory; 256KB Flash Memory

8KB Boot loader
8KB Static Random-Access Memory (SRAM)
4KB Electrically Erasable Programmable Read-Only Memory (EEPROM)

– Clock Speed; 16MHz

http://www.robotshop.com/blog/en/files/arduino-mega2560.jpg

40 7. ARDUINO

7.2 How we use Arduino

We wanted to build an IR/Radio Frequency (RF) recorder (7.3) and transmit recorded
signals via Html-commands coming from JavaCV software.

Constructing the Universal IR Remote:

– We mounted the Arduino Mega 2560 card on a breadboard with an Ethernet
shield w/SD-card connected on top.

– For optimal performance we put our components; IR LED (transmitter) and
IR receiver, in strategic places.

– Wiring and status LED’s was added to complete the build.
– A sketch with information on the build is attached in appendix (7).

Figure 7.3: GestuRemote IRremote

Arduino community provided us with premade sketches/softwares that gave us basic
codes that we tweaked to perform as we wanted. We merged three different software
codes into one, which ultimatly became an universal remote that can record most known
IR-codes and retransmit them whenever we wished.

7.2. HOW WE USE ARDUINO 41

7.2.1 About the Merge

GestuRemote IR Remote code build:

– IR Remote; IRremote code was made by Steve Spence [15]
– WebServer; WebServer code was made by David A. Mellis [16]
– SD Card; SD Card code was gathered from ladyada.net [17]
– GestuRemote IR Remote; Source Code is attached in appendix (B).

The IR Remote is the core within the arduino software. An IRremote library
registers every IR signal within its reach and catagorizes and classifies it accordingly. If
the IR code matches any found within the IRremote library it will classify it as coheirent
to that class, if not it will be classified as raw code. The registered IR code then gets
stored in an active buffer on the card until webserver gets the command to send.

The registered IR code also gets stored on an onboard Arduino SD-card, in an array
which we want to able to obtain again upon restart of the device. Sadly we were not
able completely finish this function.

Around the core functions (IR and SD-card) there is the WebServer "shell" code
that builds up a webinterface with html-commands that will be initiated and sent when
a hand gesture is registered in the JavaCV software.

The RF Remote code was supposed to be integrated alongside the other codes,
but for practical reasons we decided to control RF commands from the Raspberry Pi
module[18].

42 7. ARDUINO

7.2.2 GestuRemote IR Remote

Our code flow (7.4) starts by initializing our webserver shell and SD card module, it then
waits for any signal to be registered via IR or Hypertext Markup Language (HTML).

If any codes are registered the program matches it to its coheirent library and acts
accordingly; If an unknown IR code is found the program will send its RAW data, but
if an unknown HTML code is found the program will not conduct any actions. Any
registered IR codes gets stored on SD card.

Figure 7.4: GestuRemote IR Remote Flowchart

7.2. HOW WE USE ARDUINO 43

7.2.3 Fritzing, an Arduino Sketcher

Fritzing is free-to-use software where you can construct a sketch of your Arduino projects,
included with all the most common components used with the Arduino. Fritzing Software
Example illustrated on Fig.(7.5)

http://fritzing.org/

Figure 7.5: Fritzing Programming Sketch

7.2.4 Why we use Fritzing

By using Fritzing we could accurately document how we constructed our GestuRemote
IR Remote model, where every component is identical to the actual components used on
our model.

Frizting offers a powerful library and premade sketches linked to Arduinos own
sketch-libraries.

http://fritzing.org/

Chapter8Website

As project documentation and presentation evolves, a website is a good way to present
results to the public.

8.1 GestuRemote website

Giving updates as we work is a solid method of documentation and by using a website
we can easily provide this information for easy access.

Website Features

– Virtual work log for the public
– Short introduction to our project and what we do
– Publish our plans and work documents for everyone to see
– Gallery for things we want to share
– "Kontakt Oss" if there is something someone wants to ask us/want to use
– Website is shown in Fig.(8.1)

8.1.1 Domain

We were given storage space for our website by Høgskulen i Sogn og Fjordane (HiSF),
but this address where embedded inside the HiSF folder structure. We didn’t want to
buy a dedicated domain for our project, so we instead used dot.tk to redirect our “hard
to remember” address to an easier www.gesturemote.tk[19]. This address redirection
service is free and works with all domains.

45

46 8. WEBSITE

8.1.2 Wordpress

Wordpress is a compilation of Hypertext Preprocessor (PHP) files into what is called a
Content Management System (CMS), which means that Wordpress is a layer that takes
care of design, functionality and a control panel for managing the site.

We chose Wordpress because of the simplicity for multiple users to edit and update
the site without the need of extensive PHP/HTML knowledge. It is easy to mold a nice
working site, without having to focus on all the coding.

We try to update whenever we do something worth mentioning in our project. We
have also published our Gantt chart and quality/risk assessment scheme. This so that
anyone can see our progress according to our plans. A short introduction to our project
is also present, with some info about us as a group and why we are doing what we are
doing.

As every real “project site” we have a gallery for pictures; some work related, others
are “bloopers”. All in all, we are not that strict about the content only that it has to be
project related. Why only show the hardcore focused work, when a project is so much
more?

8.2 Website Design

In the design of our site, one thing was to be our focus: Simplicity. We wanted to
present the content without much "extra fuzz", plain graphics, but still with some style.
Wordpress gave us that possibility and with small tweaks we ended up with something
we were comfortable with.

Figure 8.1: GestuRemote.tk

Chapter9GestuRemote Administration

Administration

Project Administration Hierarchy (9.1):

– Pål Rambjørg is the leader of GDT and has main focus on Project Report,
Kinect and Arduino.

– Tormod Eikelid has main focus on the Java part of the project
– John A. Grimseth has main focus on Raspberry Pi, Webpage and Kinect
– Fredrik Myrvang has main focus on documentation (Gantt Chart, etc) and
Java

Pål Rambjørg

Tormod Eikelid John A. Grimseth Fredrik Myrvang

Project Leader

Programmer Programmer Documents

Java,Webcam

C#,Kinect

Figure 9.1: Administration for GestuRemote

GestuRemote is contracted by Høgskulen i Sogn og Fjordane (HiSF)

47

Chapter10Discussion

Through this project we have had several unknown challenges we had to overcome.

The hand detection was far more difficult than what we previously thought. Since
the entire open source examples and projects were far too basic. It is understandable
that any complex, working hand detection is commercial and protected.

In Java, the web camera gave us some difficulties with its poor coloring and frequent
light adjustment. This problem was the hardest to overcome since we had to filter out
the hand to continue the hand recognition part. We could have used a glove in a specific
color that is not common in a household, but if we had to have a glove we might as well
have a remote. One of the core ideas was that we should be able to control the devices
without anything but a hand. Since the color filter we ended up with was not optimal
we had to be even fuzzier in our gesture recognition. This gave us yet another problem.
If we are not precise enough, the number of gestures we are able to recognize shrinks.
This is because the properties of the gestures start to merge and then one object can
be within the properties of more than one gesture. This is why we used vectors. With
them, the shape of the object doesn’t matter and we get enough functions for the hand
to control some basic functions on our chosen devices. We do need to wear a sweater
that is not red for this to work though, since we have not found a way to successfully
split the hand from the arm.

The Kinect part of our project was not trouble free either, as we used many different
programs, both official and unofficial. The results where that most of the time some
parts of the programs would work, and then other parts made it crash. After a while
we decided to split up the installers, and we ended up reinstalling a new computer just
to start fresh. We the figured the correct installation procedure to make our current
samples and programs work like they should.

Kinect software is mostly written in C# or C++. This also forced us to research
more of the layouts and the language, rather than just the code that we might need. This
made modifying and molding the samples to something that we could use that much
harder. We lost many hours researching everything from installation procedures to trial
and error with samples that would not compile or that where flat out broken cause of
updated tools or depreciated libraries.

49

50 10. DISCUSSION

When we finally conquered most of the errors and made samples behave like we
wanted to, time was against us and we looked more towards Java and JavaCV. This
was sad, as the Kinect is made for what we were to use it as; to capture gestures and
recognize shapes/movements. At least we got an introduction on what the Kinect is,
how it works and last but not least; how powerful it can be given enough time to write
software for it.

Compatibility issues has slowed us down allot. With all the different libraries and
programs that had to work together with the right bit version and the right software
version. And even if all the new software is compatible with each other, it still needs to
fit the computer and its pre-installed software. We actually ended up with the installing
JavaCV with all the underlying programs in 64 bit on one computer and 32 bit on
another, even though they both were 64 bit machines.

We got another compatibility issue when we tried to document our program for the
first time. One of our computers crashed because of a graphic driver that did not work
well with capturing the screen while processing an image. This driver somehow became
corrupt and we could not update it, even after we tried to reinstall the computer. We
then installed Linux which managed to force an open source graphic driver to run the
graphics. This worked fine, but working within Linux gave us grater compatibility issues
when it came to everything else. So we installed windows again and decided to document
in another way. When we reinstalled windows everything worked.

We can’t explain what was different this time, but we could now document the
running program. That a computer may crash is something we accounted for in our risk
assessment, so the whole project was always stored online so we only lost the last lines
that were written that day when the crash occurred.

To execute our commands where Raspberry Pi and Arduino boards chosen cause
they fit right in with our needs. Raspberry Pi made it easy to implement a media center
so we could control it with gestures. We can now move around inside the menus, turn
up and down the volume and change file with gestures. The media center commands
where extracted from already existing implemented methods of communication. We feel
that this is a good way of taking advantage of already implemented solutions.

Adding light socket control to the Raspberry Pi did not make any problems other
than the need for an antenna out of the Raspberry Pi box, but that was an easy fix.
Again, implementing an known working solution to our project, with minor tweaks.

51

Arduino with its programing language similar to Java, which we already knew how to
program, and its large collection of software samples made it easier to use. Our infrared
remote signal duplicator circuit was made with some trial and error from smaller pieces
of code, and then weaved together to create one code that did what we wanted it to do.
This was indeed a lot of trial and error, but we also feel that we learned a lot from this
kind of work.

The one thing with Arduino that gave us the most hassle was storing the codes
decoded from the remotes to our SD card. This took some time, but in the end we made
it work as we wanted it to. What we didn’t got to work however, was to put the codes
from the SD card back in the buffer to be sent.

One of the criteria’s was that we were to design a website. When we got our designated
area on the HiSF servers for our website, we got a link that where deep inside the server
folder structure, and we thought that this was going to be hard for people to remember.
We could have spent money on a dedicated domain, but then again that would have to
be a subscription. We would rather have it on HISF servers, so we used a free redirection
service and ended up with the domain www.gesturemote.tk.

Towards the end of our project (6), we made some changes in our gantt chart so that
we were able to complete the project. We feel that this is justified because of different
obstacles we could not have foreseen. In the beginning we did not know what we were to
expect out of this project, and everything was uncharted territory.

Chapter11Results

The resulting software does recognize a gesture, under the right circumstances.

We have five gestures we can recognize: Left hand, right hand, one, two and three.
By using these gestures we can enter the desired device. While in the desired device,
we can exit, change device or interact with the device. Interaction is done by vector
movement based algorithms.

When we have found the right device and given the right command, the software
sends commands to the selected device. If media center is selected, the software sends
JSON-RPC commands over TCP network, if it is to turn the TV on or off, we send
HTML commands and if it’s light control, we send SSH commands. All this is connected
to the device gestures.

53

54 11. RESULTS

11.1 Graphical Project Description

This is a graphical description of the process through GestuRemote Software (11.1)

– HandGesture
◦ A persons hand presented in right angle and posture.

– JavaCV
◦ Recognizes a hand if present and registers any movement.
◦ Send commands to Arduino or Raspberry Pi.

– Arduino/R-Pi
◦ Arduino: Registers/Stores and Sends IR signals to coheirent component.
◦ Raspberry Pi: Receives Html commands, Controls XBMC.

– Storage
◦ Stores every registered IR signal on a SD card (erasable)

– Visual Component
◦ Tv, Stereo and Lights: Controlled by Arduino or R-Pi.

HandGesture JavaCV

Ethernet

SD Storage Arduino/R-Pi Visual Component/Media

raw events
level 0

event data
level 1

event data
level 1

events
level 2

events
level 2

events
level 3

Figure 11.1: Process grid

Chapter12Further Work

Our open source code will be published on our webpage [19] so anyone who want to
develop it, borrow a method or just get some inspiration are welcome to try it out.

To make this a better functioning program, there is a need for;

– A better color filter that changes its values depending on the light.
– Fitting it to a camera with better coloring.
– Adjusting the parameters of the gestures.
– Including Kinect to get a depth perception.

55

Chapter13Conclusion

This project was meant to teach us more about “gesture based” software, and what it
actually takes to control objects with gesture tracking/recognition.

Even though the recognition needs the right illumination to work, we feel we made our
main goal. After researching, testing and failing, we did wave on the TV. The knowledge
we acquired through our research has shown us that our idea for controlling everything
within a household with the wave of a hand, is possible. The communication methods
have given us a greater diversity within computer communication. Switching between
programming languages has taught us that most programming languages are the same,
with the same logic, just with different ways of writing the commands. We now feel
qualified to jump in to any language and "learn on the go".

Having this bachelor project has given us training in running a technological project
ourselves. Where we have had to document all the hours used and what we used them
for, so we can keep improving the approach to the next project. Finding information,
self-learning and discipline was crucial for this project, and we feel we succeeded in all
three points. We had to take the information we found and interpret it ourselves, and
even think of new methods without any information. Setting work hours, pushing each
other, and distributing jobs so everyone had something to work on at all times helped in
completing this project.

57

References

[1] LaTeX3, “Latex a document preparation system.” http://www.latex-project.org/.

[2] S. Crawford, “HowMicrosoft Kinect works.” http://www.howstuffworks.com/microsoft-
kinect2.htm.

[3] Kinecthacks, “Kinect hacks.” http://www.kinecthacks.net/.

[4] S. Stegmueller, “Candescent nui.” http://candescentnui.codeplex.com/.

[5] S. Stegmueller, “Candescent license.” http://candescentnui.codeplex.com/license.

[6] Kinecthacks, “Sigmanil is the most powerful vision framework..”
http://www.kinecthacks.com/sigmanil-is-the-most-powerful-vision-framework-
for-natural-user-interfaces/.

[7] Nash, “Skin detection.” http://bsd-noobz.com/opencv-guide/60-4-skin-detection.

[8] T. O. Development, “About open cv.” http://opencv.org/about.html.

[9] J.-R. W. Group, “Json-rpc api.” http://www.jsonrpc.org/specification.

[10] Techterms.com, “Secure shell.” http://www.techterms.com/definition/ssh.

[11] S. Hunold, “Welcome to sshtools.” http://sshtools.sourceforge.net/.

[12] J. P. Skagmo, “Pihat.” http://www.skagmo.com/page.php?p=projects/22_pihat.

[13] B. Johnson, “How the raspberry pi works.” http://computer.howstuffworks.com/raspberry-
pi2.htm.

[14] Arduino, “Arduino.” http://arduino.cc/en/Guide/Introduction.

[15] S. Spence, “Arduino ir receiver.” http://arduinotronics.blogspot.it/2012/11/arduino-
ir-receiver-part-2.html, November 2012.

[16] Arduino, “Webserver.” http://arduino.cc/en/Tutorial/WebServer.

[17] Ladyada, “Micro sd card tutorial.” http://www.ladyada.net/products/microsd/.

[18] S. Nilsson, “433 mhz rf nexa.” http://sebastiannilsson.com/projekt/arduino/433-mhz-
rf-nexa-saendare-och-mottagare-med-arduino/, Februar 2012.

[19] GestuRemoteTeam, “Gesturemote.” www.GestuRemote.tk, 2013.

59

AppendixASystem documentation

Appendices
1. Logbook
2. HiSF Contract
3. Meeting Minutes
4. GestuRemote Budget
5. Quality and Risk Assessment Scheme
6. Gantt-Chart
7. GestuRemote IR Remote Sketch

– Appendices is provided on an external Compact Disc (CD).

61

AppendixBSource Code

GestuRemote Codes

GestuRemote Java; Code generated with Java software.
GestuRemote IR Remote; Code generated with Arduino software.

Source Codes is provided on an external CD.

63

	Introduction GestuRemote
	Motivation
	Literature
	Previous work
	Outline of the bachelor report

	Challenges
	GestuRemote

	Kinect
	Kinect for Xbox 360
	How the Kinect works?

	How we use Kinect
	Implementations in Source Code
	Candescent NUI
	Sigmanil NUI Quote from Kinecthacks.com
	Sigmanil versus Candescent

	Java
	Java
	OpenCV Quote from OpenCV.org
	Our hierarchy

	Communication
	What we needed
	How we solved it

	Raspberry Pi
	How Raspberry Pi works Quote from HowStuffWorks.com
	Raspberry Pi Model B Card

	How we use Raspberry Pi
	Raspberry Pi Tools

	Arduino
	How Arduino works Quote from Arduino.cc
	Arduino GUI
	Arduino Mega Card

	How we use Arduino
	About the Merge
	GestuRemote IR Remote
	Fritzing, an Arduino Sketcher
	Why we use Fritzing

	Website
	GestuRemote website
	Domain
	Wordpress

	Website Design

	GestuRemote Administration
	Discussion
	Results
	Graphical Project Description

	Further Work
	Conclusion
	References
	System documentation
	Source Code

