
STUDENTWORK
Final report

Efficient data access
in OPC UA

based systems
25.05.2011

Group:

Paweł Czembor
Przemysław Zieja

Senior Design Project HO2-300 05/2011

HO2-300 5/2011 Efficient data access
in OPC UA based systems

TITLE: REPORT NUMBER: DATE:
Final report 6/2011 25.05.2011

PROJECT TITLE: AVALIABLE: NUMBER OF PAGES:
Efficient data access in

OPC UA based systems

http://prosjekt.hisf.no/~11opcua/ 53

AUTHORS: SUPERVISORS:
Paweł Czembor

Przemysław Zieja

Marcin Fojcik

Joar Sande

EMPLOYER:
Sogn of Fjordane University College

SUMMARY:

Our project has been developed as a Senior Design Project. The order for the

project came from HSF. Realisation of the project took place on the Sogn og

Fjordane University College in Førde. The main goal was to create efficient ways

of accessing historical data stored in database.

SUBJECTS:

HO2-300, Senior Design Project – Final report.

Efficient data access in OPC UA based systems.

05/25/2011 2

http://prosjekt.hisf.no/~11opcua/

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 1. Foreword

This rapport is final document collecting all information about project we made as

the Senior Design Project. Projects title is Efficient data access in OPC UA based

systems. Company that placed the order is Høgskulen i Sogn og Fjordane

University College , represented by Joar Sande and Marcin Fojcik . Our main goal

was to create efficient ways of accessing historical data stored in database.

After three and a half month of intensive work we can say, that project was

finished with success. Despite a lot of problems, mainly in Java part, we managed

to achieve very satisfactory results. Java part required especially lot of work,

because application needed to be designed and created from the scratch.

In order to easily understand some aspects of our work, reader should have

some basic knowledge about databases and object oriented programming.

We are really glad that we had an opportunity to work on the project in Førde , as

members of international students exchange program. We would like to thank

the Sogn og Fjordane University College for giving us this possibility and for

supporting us. Time spent on project gave us new experience and new

knowledge about OPC UA architecture.

05/25/2011 3

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 2. Table of contents
 1.Foreword.. 3

 2.Table of contents..4

 3.Abbreviations and symbols..7

 4.Summary.. 10

 5.Introduction..11

 6.Main project objectives..12

 6.1.Java and Linux part...12

 6.2.Windows and C#/C++ part ...12

 6.3.Possible solutions..13

 7.Windows and C#/C++ part implementation...14

 7.1.System architecture...14

 7.2.Environment preparation...16
 7.2.1. Operating system configuration...16

 7.2.2.SQL database configuration..16

 7.2.3.MS VS2010 Solution configuration..17

 7.3.Basic SQL database project and preparation...17
 7.3.1.Database schema...17

 7.3.2.Stored procedures...19

 7.4.Old-sample library analysis...20
 7.4.1.Data processing based on string parsing...21

 7.4.2.Main modules to rebuild...21

 7.5.Rebuilding data access and data processing layers..21
 7.5.1.New project and methods...22

 7.5.2.Changes in configuration..23

 7.5.3.Changes in existing code..23

 7.6.Library after rebuilding...24

 7.7.Building SQL Client and taking measurements...25
 7.7.1.SQL Client application...26

 7.7.2.Measurements and comparison ..26

 7.8.Summary and conclusions...30

05/25/2011 4

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 7.8.1.Efficiency of created system...31

 7.8.2.What else can be done ...31

 8.Java and Linux part..31

 8.1.System structure..32
 8.1.1.Distributed storage..35

 8.1.2.Nodes independence...41

 8.2.Used tools..41

 8.3.Structure of databases..42
 8.3.1.Main database structure..43

 8.3.2.Historical data database structure...46

 8.4.Program structure..47
 8.4.1.Hibernate mapping..47

 8.4.2.OPC UA server...48

 8.4.3.OPC UA client..49

 8.5.Testing and results...49
 8.5.1.Testing methodology...50

 8.6.Summary and conclusions of Java part...51

 9.Development plan..53

 9.1.Gantt diagram..53

 9.2.Week schedule...53

 9.3.Milestones and meetings...54

 10.Budget..55

 11.Organization...56

 11.1.Ordering company...56

 11.2.Supervisors..57

 11.3.Developers...57

 12.Reading list.. 58

 13.List of tables...59

 14.List of figures...60

 15.List of appendixes..61

 15.1.Additional Java libraries..61

05/25/2011 5

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 3. Abbreviations and symbols

OLE Object-Linking and Embedding - a technology developed by Microsoft

that allows embedding and linking to documents and other objects.

OPC OLE for Process Control – communication standard developed by

OPC Foundation.

OPC HDA Standards for communicating stored data developed by OPC

Foundation.

OPC UA OPC Unified Architecture – the most recent OPC specification.

HA Historical Access – part of OPC UA standard specification.

COM Component Object Model – a standard, developed by Microsoft

Corporation, of creating programming interfaces.

DCOM Distributed COM - Extension of COM standard.

XML Extensible Markup Language set of rules for encoding documents in

machine-readable form. It is defined in the XML 1.0 Specification

produced by the W3C organization.

C++ statically typed, free-form, multi paradigm, compiled, general

purpose programming language developed by Bjarne Stroustrup.

C# One of the programming languages, designed for the Common

Language Infrastructure, developed by Microsoft.

.Net Software framework for Microsoft Windows operating systems

developed by Microsoft. It includes a large library, and it supports

several programming languages.

05/25/2011 6

HO2-300 5/2011 Efficient data access
in OPC UA based systems

SQL Structured Query Language - database computer language designed

for managing data in relational database management systems.

MSSQL Microsoft SQL Server – relational database engine.

MySQL Free, cross-platform relational database engine created by Sun,

currently developed by Oracle

PostgreSQLAlso called Postgres Is another free and cross-platform database

system.

Java Technology developed by Sun Microsystems for creating machine

independent software.

DBMS Database Management System – set of applications used to manage

data stored in specific database.

SCADA Supervisory Control and Data Acquisition - refers to industrial control

systems: computer systems that monitor and control industrial,

infrastructure, or facility-based processes.

ORM Object Relational Mapping - programming technique for converting

data between incompatible type systems in object-oriented

programming languages.

SDK Software Development Kit - a set of development tools that allows

for the creation of applications for a certain software package.

HSF Sogn og Fjordane University College

HO2-300 Code of the Senior Design Project subject at the HSF

MSDN Microsoft Developer Network - Portion of Microsoft responsible for

managing the firm's relationship with developers and testers.

05/25/2011 7

HO2-300 5/2011 Efficient data access
in OPC UA based systems

T-SQL Transact-SQL - Microsoft's and Sybase's proprietary extension to

SQL. T-SQL expands on the SQL standard to include procedural

programming, local variables, date processing, mathematics, etc.

JRE Java Runtime Environment required to run applications written in

Java

Hibernate ORM library attached to Java application in order to support

communication with databases.

05/25/2011 8

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 4. Summary

These days computers are present in almost every aspect of our lives. They

control bank transactions, telephone conversations, even street lights. In many

cases computer systems are responsible for processing huge amounts of

information. One of areas, there efficiency and reliability are critical is industry.

Because production process very often involves cooperation of machine and

human, industrial computer systems need to be very efficient. Fact that

production processes become more and more complex they produce a lot of

information. Controlling whole production line is extremely demanding task for

computer system because all produced data need to be processed and if

something goes wrong decision about action that need to be taken, have to be

made in mater of seconds or even milliseconds. This time constraints are required

in order to provide safety.

Economy and providing products of high quality are also very important aspect of

companies functioning. Only way to improve technological process is analysis of

data in order to find places, where improvements can be made. This creates

another important work, that need to be done by computer systems. Collecting

very large amounts of data for future analysis.

During our work we concentrated our efforts on creating solutions, that would be

able to access big amount of information stored inside database in the most

efficient way. As a final result we have two different solutions for accessing

historical data in OPC UA[4] based systems.

05/25/2011 9

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 5. Introduction
During the semester we worked on our Senior Design Project. It was supervised

by Marcin Fojcik and Joar Sande who are representing the Sogn og Fjordane

University College in Førde. Our project was continuation of work made by our

colleagues (Michał Bochenek and Kamil Folkert) last year [11]. We divided our

project, titled “Efficient data access in OPC UA based systems”, into two parts.

As a result of his work Michał came to conclusion, that OPC Historical Data Access

protocol based on existing code, provided by OPC Foundation is not efficient

enough to cope with supplying large amounts of data in reasonable period of

time [11]. Paweł was working in cooperation with Michał as consultant in order to

improve performance of existing OPC HDA C code. His main task was creation of

more efficient HDA solution.

On the other hand historical data are carrying a lot of information about industrial

processes and its costs. Because of that it would be great to have a possibility to

make fast and easy integration of OPC UA[4] platform with corporate

infrastructure, in order to get more control over economy of production process.

It was the starting point for work on Java based component. This part was

performed by Przemysław in cooperation with Kamil Folkert who already gained

some experience in developing data acquisition systems using Java platform and

OPC standard[1].

Before main project phase, which consisted mainly of development and testing,

we have planed our work and divided whole work into two parallel phases: C/C++

development and Java development.

First part was based on Microsoft Windows platform with .net framework[2]

installed.

05/25/2011 10

HO2-300 5/2011 Efficient data access
in OPC UA based systems

Java code was created under Linux platform and it is be able to use many

different database engines, what was one of goals that we wanted to achieve.

 6. Main project objectives

 6.1. Java and Linux part
Main goal of Java part was creating application, that would be able to work

properly with many different DBMSs. To achieve this hibernate library[8] was

used. Because such solution have not been tested yet, final tests had to answer, if

this approach is efficient enough to use it in industrial systems.

 6.2. Windows and C#/C++ part
Main objective of my work was to enable efficient data access through OLE for

Process Control HDA protocol to data collected on OPC HDA servers. Such

solution could be used in most of nowadays industrial systems based on OPC

standards and various operating systems.

The tools and language was chosen because of already existing OPC HDA Sample

code written in C/C++ and C# language and destined for Microsoft Visual Studio

environment.

There already exists efficient way to access those data by setting up the OPC

server and MSSQL server to cooperate and then use standard SQL client

application to retrieve data from Historical server. One main advantage of that

solution is speed of dedicated SQL client solution. But casual SQL client using

simple stored procedures to retrieve data from MSSQL server do not follow OPC

HDA protocol at all.

For OPC dedicated clients the difference in amount of time needed to access and

process required information is significantly larger than solution discussed in

05/25/2011 11

HO2-300 5/2011 Efficient data access
in OPC UA based systems

previous paragraph. Especially when the client application asks server for above

thousand of values - where one thousand of values in Process Control Systems is

rather small amount of data. In practical environment amount of data is

significantly larger than ones described above. In some solutions, for example in

geological measurements, number of historical data stored on HA servers can be

reduced with no significant influence on whole system, but in some other cases

when measurements are need to be done more frequently – like gas / oil refinery,

the majority of data stored during one process can appear critical in later analysis

or for following processes.

 6.3. Possible solutions
Currently presented solution used in OPC Foundation SDK as is described in “Data

acquisition system with database using OPC” project [11] appeared to be very

ineffective approach to solving the problem of fast data access through OPC HDA

protocol.

Even with some improvements that has been made before, the efficiency of

presented solution leaves customers in insufficiency of effective OPC HDA

solution[11]. There was few ways of dealing with that problem. One was to

create completely new library that provides brand new solution of implementing

HDA protocol. Second was to modify library in order to improve its performance.

The third solution was to work out partially new library modeled with use of

existing one.

05/25/2011 12

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 7. Windows and C#/C++ part implementation
To achieve goal of this part of project I used Microsoft's Visual Studio 2010,

Microsoft's SQL Server 2008 and Sample OPC HDA Solution from OPC

Foundation. I have designed system with database dedicated to work under

Microsoft's Windows – family operating system.

 7.1. System architecture
The whole system is based on Microsoft environment and mostly on Microsoft's

technologies. Essential parts of systems are:

– SQL Database which should contains historical data, more information

about database architecture is placed further, in paragraph 8.3.

– OPC HDA Server, that can provide historical data for clients.

– OPC HDA Clients, it could be any client application that follows the OPC

HDA standard.

– Data Acquisition System that should provide historical data to databases,

but it is not a part of this year project. This system was in fact last year

project build by Michał Bochenek and Kamil Folkert[11].

– The network connection between every system part mentioned above.

During my work I usually take tests and measurements on local-host only because

the main goal was to measure speed and efficiency of data processing and

retrieving data from database, which takes place on OPC HDA Server side. For

that measurements I needed to try sustain similar physical conditions of

hardware and software layer. The simplest way to achieve this was working on

local-host.

05/25/2011 13

HO2-300 5/2011 Efficient data access
in OPC UA based systems

In the picture below the sample system architecture is presented.

 Figure 1 : Windows and C/C++/C# part - System structure

The pale-blue color frame contains the elements of system that I worked on.

05/25/2011 14

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 7.2. Environment preparation
In order to run the OPC samples run successfully on Windows Vista and

Windows7 some special preparations of systems were needed described below.

Except installing Historical Data Access sample code there was need to install

OPC Core Components as well. Also to enable cooperate with SQL Server some

configuration work was required described below.

 7.2.1. Operating system configuration
In order to run successfully Sample OPC HDA Server and Client and allow them to

communicate with each other usually some changes in system COM/DCOM

configuration are needed. Positive surprise was that under Windows 7 after

installing whole SDK, the server and client were ready to cooperate for local work

and simulations without applying any changes into default COM/DCOM

configuration. However network and remote connections required some minor

fixes. In second case - Windows Vista needed to apply more changes in

COM/DCOM configuration.

The detail instructions can be found in internet or on last-year project website

titled “Data acquisition system with database using OPC”[11] made by Michał

Bochenek and Kamil Folkert. Since Windows XP the interface and settings have

not change significantly so I think there is no need to write down whole new

tutorial.

 7.2.2. SQL database configuration
To allow remotely connect with database engine all databases which are part of

the system need to have enabled SQL Authentication mode, and created special

login and SQL User account which possess db-owner role and rights to read and

write into specific database (the one which stores historical data from industrial

05/25/2011 15

HO2-300 5/2011 Efficient data access
in OPC UA based systems

object). Also to fully cooperate with created solution there are some additional

requirements about database structure which are described in chapter 8.3.

 7.2.3. MS VS2010 Solution configuration
While sample solution code was originally designed to work under Visual Studio

2005 there was no problems exporting the solution to VS 2008 format. However

while converting to the most recent format – for VS 2010 some errors occurred.

Those errors can not be solved automatically by conversion tool, because some

reference paths in “OPC Sample Utility Classes”, “OPC HDA Sample Server

Classes” and “OPC HDA Sample Server” projects properties required manual

correction. The developer environment pointed quite accurate where problems

occurred so I think there is also no need to write down detailed tutorial for

solving this problems.

 7.3. Basic SQL database project and preparation
For proper work each SQL database that stores historical data need to have

enabled SQL Authentication mode and created created special login and SQL

User account which possess db-owner role and rights to read and write into

database.

While creating the database project I tried to follow schema presented in OPC

sample solution, to keep full compatibility with OPC standard[1] and protocol.

 7.3.1. Database schema
The database consist on simple schema. There is required one “Configuration”

table and one table for each variable that is archived in database. In that case

names of variable cannot repeat.

Below are placed the design and short description of Configuration table and

table that stores historical data of specific variable.05/25/2011 16

HO2-300 5/2011 Efficient data access
in OPC UA based systems

• Configuration table – need to be named “Configuration”

 Figure 2 : Windows and C/C++/C# part - Configuration table design

id – identity primary key for table

varName – should contain the name of variable which will be also a table name in

database for archiving data.

description – is a short description that can be placed to identify variable.

path – describes the location, and path in explorer tree visible in client

 applications, also determines item ID inside the OPC HDA Server

address space.

• Other tables – tables used to archiving historical data for variables

 Figure 3 : Windows and C/C++/C# part - Data table design

id – identity primary key for table

05/25/2011 17

HO2-300 5/2011 Efficient data access
in OPC UA based systems

type – contains identifier that specifies type of entry

value/attribute/modified value/annotation

opctimestamp – value time stamp of OPC server

quality – quality of stored value

opctimestamp – time stamp of value modification

opcedittype – enumeration that identifies one OPC edit type for modified value

insert/replace/insertreplace/delete

opcuser – user name that created entry in table

attributeid – OPC HDA Server attribute id

attributevalue – OPC HDA Server attribute value

annotation – unrestricted length text of annotation

 7.3.2. Stored procedures
To maintain system consistency I have created also two essential stored

procedures that allows to create and drop tables from database. While adding

new tables into database there is need to add single entry into Configuration

table and while dropping table from database there is need to delete this entry

from Configuration table.

• createNewTable procedure

Table 1 : Windows and C/C++/C# part – createNewTable stored procedure

ALTER PROCEDURE [dbo].[createNewTable]

@tblname NVARCHAR(30) = NULL,
@vardesc NVARCHAR(50) = NULL,
@varpath NVARCHAR(80) = NULL

AS
BEGIN

SET NOCOUNT ON;
IF (OBJECT_ID (@tblname, N'U') IS NULL)

05/25/2011 18

HO2-300 5/2011 Efficient data access
in OPC UA based systems

BEGIN
EXECUTE ('create table '+ @tblname +

'(id int PRIMARY KEY NOT NULL IDENTITY,
type NVARCHAR(3) NOT NULL,
value NVARCHAR(10) NULL,
opctimestmp DATETIME NOT NULL,
quality INT NULL,
modtimestamp DATETIME NULL,
opcedittype TINYINT NULL,
opcuser NCHAR(20) NULL,
attributeid NCHAR(10) NULL,
attributevalue NCHAR(10) NULL,
annotation TEXT NULL
)'

);
INSERT INTO Configuration
 (varName, description, patch)

VALUES
 (@tblname, @vardesc, @varpath)

END;
END

• dropTable procedure

Table 2 : Windows and C/C++/C# part – dropTable stored procedure

ALTER PROCEDURE [dbo].[dropTable]

@varname NVARCHAR(30) = NULL
AS
BEGIN

SET NOCOUNT ON;
EXECUTE ('DROP TABLE '+ @varname);
DELETE FROM Configuration
 WHERE varName = @varname;

END

 7.4. Old-sample library analysis
The code that was destined to rewrite were stored in few different modules of

server application. Some tests with use of datasets contains 1k, 2k, 4k, 8k, 16k

were taken. After measuring time needed to process 8k and 16k values I came to

conclusion that tests for 32k values is useless.

Unexpected result of those tests was that the time is not even approximately

05/25/2011 19

HO2-300 5/2011 Efficient data access
in OPC UA based systems

linear-dependent on values count.

In addition doing some simple calculations and supposing that HDA server is

running on single machine where multiple clients can connect, processing and

sending large amount of data can be overloading even for multiprocessor system.

 7.4.1. Data processing based on string parsing
Right then the data processing was based on copying all retrieved values into

string in memory. The length of this string is one of main factors that determine

time needed to process data. After that the string was parsed and divided again

into smaller parts to retrieve values that required still conversion to the exact

types like integer or double. Main cause of this kind of processing is fact the

originally sample data were stored in csv files which did not contain any

information about variable/values types.

 7.4.2. Main modules to rebuild
Except adding necessary functions to retrieve data from database, some major

changes in existing code were required. The most important part of data

processing were placed in COpcHdaItem and COpcHdaItemValue classes. My

modifications were not based only on rewriting and adding new code but also

were based on removing pretty large amount of unnecessary and inefficient code

blocks.

 7.5. Rebuilding data access and data processing layers
The changes can be divided into three categories: adding completely new code –

like creating new projects and methods, changing existing code blocks –

including writing new lines in existing classes or removing code block that

became unnecessary, and specific changes in server configuration part (this

changes do not have any significant influence on efficiency) which changes the 05/25/2011 20

HO2-300 5/2011 Efficient data access
in OPC UA based systems

way of use and structure of existing xml configuration files.

Except separate project containing database connection and configuration

functions I have created test project to create sample data for database and

sample SQL Client project to make measurements at the end of development.

 7.5.1. New project and methods
The main new project which I added to solution is named DataBaseCon. It

contains three essential functions for whole project. I decided to use standard

pointer-arrays to minimize overhead of structures and additional classes.

• void dbCon::UpdateConfig(char* filePath)

It contains code responsible for read new configuration xml file and update the

xml responsible for reading and creating address space of OPC HDA Server.

• int dbCon::GetNumberOfData(char* tblname, char* confPath)

Function used to retrieve information about amount of data requested. First

parameter contains unique item Id passed by OPC HDA Server instance and the

second parameter contains path to configuation file which is needed to create

connection to the specific database.

• void dbCon::ReadItemValues(char* tblname, char* confPath,

char** itemTypes, double* itemValues, long long *itemTimestamps, int

*itemQualities, long long *itemModTimestamps,

short *itemOpcEditTypes, char **itemOpcUsers,

unsigned long *itemAttributeIds, char **itemAttributeValues,

char **itemAnnotations, int itemCount)

Function used to retrieve all data about item requested. First parameter contains

unique item Id passed by OPC HDA Server instance and the second parameter

contains path to configuration file which is needed to create connection to the

specific database. Another parameters are lists of values to read. The last

parameter is item number required to read.05/25/2011 21

HO2-300 5/2011 Efficient data access
in OPC UA based systems

I also created project named “SQL Data Creator” used for testing and creating

sample data for database, and windows form project “SQL Client” used to take

measurements at the end to compare efficiency.

 7.5.2. Changes in configuration
I have decided also to change configuration of OPC HDA Server to create more

complex solution that can connect to multiple databases. Now the configuration

file is named “SQLConfig.xml”. It contains only information about databases that

OPC HDA Server should connect to, instead containing all parameters of each

variable accessible by OPC HDA Server. The structure of configuration file is

simple so adding another server to browse boils down to add few new lines to

xml file. Sample content of configuration file is presented in the frame below.

Table 3 : Windows and C/C++/C# part – Sample configuration xml file

<?xml version="1.0" encoding="utf-8" ?>
<Servers>
 <BrowseElement ElementName="Test on PCZEMBOR">
 <host>PCZEMBOR</host>
 <dbname>HDDB</dbname>
 <persist>True</persist>
 <user>appdev</user>
 <pass>appdev</pass>
 </BrowseElement>
</Servers>

 7.5.3. Changes in existing code
In order to build working solution also some major changes in existing code were

needed. The following functions in following modules were modified or added.

In “OPC HDA Sample Server Classes” project, in “CopcHdaItem.cpp” file

following functions were modified:

• void COpcHdaItem::Init()

• bool COpcHdaItem::LoadDataFromFile(const COpcString& cFileName)

• void COpcHdaItem::LoadData()05/25/2011 22

HO2-300 5/2011 Efficient data access
in OPC UA based systems

In “OPC HDA Sample Server Classes” project, in “CopcHdaItemValue.cpp” file

following functions were modified:

• bool COpcHdaItemValue::Parse(COpcHdaItemValue& cValue,

double dblVal_c, int qual_c, long long timestamp_c)

• bool COpcHdaModifiedValue::Parse(COpcHdaModifiedValue& cValue,

double dblValue_c, long long llTimestamp_c, int dwQuality_c,

long long llModificationTime_c, short eEditType_c, char * cUser_c)

• bool CopcHdaAttributeValue::Parse(COpcHdaAttributeValue&

cAttribute, long long llTimestamp_c, unsigned long dwAttributeID_c,

char * cValue_c)

• bool COpcHdaAnnotation::Parse(COpcHdaAnnotation& cValue,

long long llTimestamp_c, char * cAnnotation_c,

long long llCreationTime_c, char * cUser_c)

In “OPC HDA Sample Server Classes” project, in “COpcHdaHistorian.cpp” file

following functions were modified:

• bool COpcHdaHistorian::Start()

• bool COpcHdaHistorian::Load(const COpcString& cFileName)

In “OPC HDA Sample Server” project, following files were modified:

• SQLConfig.xml

• OpcHdaServer.config.xml

Also some minor changes in different modules and places were applied – like

change of predefined variable values or enumerates, but this changes do not

have impact on functionality or efficiency.

 7.6. Library after rebuilding
Originally I planned to try different approaches to optimize efficiency of this

solution. At first I have tried to optimize existing methods and follow existing

solution but after first stage of improvements efficiency was still terrible when

05/25/2011 23

HO2-300 5/2011 Efficient data access
in OPC UA based systems

dealing with large amounts of data. Because of that I jumped this stage and

decided to write new solution, that was already presented above.

New implementation of data processing is based on SQL queries and specific-type

lists that allow to determine what kind of data/variable is currently read.

Knowing what data is processed and heaving values in separate structures allows

to improve greatly efficiency of processing data right before the data is send to

the client.

First measurements were taken. Those results indicates that now time needed for

client to receive large amount of data has been shortened by about 100 times.

Reaching that level of efficiency points that the further optimizations will

improve efficiency insignificantly comparing to results that have been already

achieved.

 7.7. Building SQL Client and taking measurements
As I mentioned before I have created simple Windows Form application to

retrieve data from database with use of stored procedures. Unfortunately I do

not have access to any free or trial version of OPC standard[1] based products.

Existing solutions that can be compared with created system are expensive and

they are inaccessible in any trial or demo versions.

Because of this fact the only reasonable comparison seems to be simple SQL

Client that do not follows OPC HDA Protocol but is probably most efficient

existing solution on the market.

However still the SQL queries are the heart of my solution so beating SQL Client

in this competition should be physically impossible. SQL Client in this case can be

rational factor of efficiency.

05/25/2011 24

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 7.7.1. SQL Client application

The SQL Client application was placed in separate project. It contains simple

interface that allow to automatic save of measurements in text files. Of course

the times measured do not contain time needed to display data on screen

because input and output operations are the most time-consuming operations in

nowadays computing and they do not have any influence on speed of data

receiving in physical way.

 7.7.2. Measurements and comparison
My measurements were taken in three points. One was before rebuilding library,

second was at the end of project when the library and system was improved, the

third was after creating SQL Client and taking measurements of “clear” SQL

based application.

Fast SQL client can allow to measure overhead created by OPC HDA protocol.

There is no chance that my solution will be faster than regular SQL client because

it’s core is still based on simple SQL queries, but I expect that data processing

overhead after acquiring data from database wont be very significant.

As a factor I accepted time needed to retrieve and process specific amount of

data. The amounts of data for measurements were 1, 2, 4, 8, 16 and 32 thousands.

I placed the end calculations on charts below.

05/25/2011 25

HO2-300 5/2011 Efficient data access
in OPC UA based systems

Results before rebuilding library:

 Figure 4 : Windows and C/C++/C# part - Chart 1

The measurements were not taken for 32 thousands of values because of too

large amount of time needed to do that. As it is presented the conclusion was

that: for above 4 thousands of values old system can be useless especially when

more that few clients need to receive data from server. Moreover charts proves

that the amount of time needed to retrieve data from server is not linear

dependent on amount of data.

05/25/2011 26

1k values 2k values 4k values 8k values 16k values
 ms

2 000 ms
4 000 ms
6 000 ms
8 000 ms

10 000 ms
12 000 ms
14 000 ms
16 000 ms
18 000 ms
20 000 ms
22 000 ms
24 000 ms
26 000 ms
28 000 ms
30 000 ms
32 000 ms
34 000 ms
36 000 ms
38 000 ms
40 000 ms
42 000 ms
44 000 ms
46 000 ms
48 000 ms

53
0

ms

1
10

6
ms

3
13

2
ms 10

 2
02

 m
s

38
 6

52
 m

s

80
6

ms

1
22

2
ms

3
36

2
ms

10
 6

57
 m

s

39
 6

76
 m

s

46
0

ms

1
05

7
ms

3
04

8
ms

10
 0

03
 m

s

38
 2

83
 m

s

Avg
Max
Min

HO2-300 5/2011 Efficient data access
in OPC UA based systems

Results after rebuilding library:

 Figure 5 : Windows and C/C++/C# part - Chart 2

As it is presented the efficiency have raise significantly. The speed up allowed to

take measurements also for 32 thousands of values. On this chart can be noticed

that amount of time needed to retrieve data is in different relation with amount

of data requested. To investigate further this dependance I have taken some

calculations which rule out constant amount of time needed to establish

connection with database and send SQL command.

05/25/2011 27

1k values 2k values 4k values 8k values 16k values 32k values
 ms

20 ms
40 ms
60 ms
80 ms

100 ms
120 ms
140 ms
160 ms
180 ms
200 ms
220 ms
240 ms
260 ms
280 ms
300 ms
320 ms
340 ms
360 ms
380 ms
400 ms
420 ms
440 ms
460 ms
480 ms

11
6

ms

12
5

ms

14
4

ms 18
2

ms

24
6

ms

43
4

ms

17
0

ms

19
5

ms

16
5

ms

24
6

ms 27
8

ms

57
9

ms

98
 m

s

11
1

ms

12
1

ms 15
4

ms

21
4

ms

36
3

ms

Avg
Max
Min

HO2-300 5/2011 Efficient data access
in OPC UA based systems

Chart below is presented in logarithmic scale to present that after library

rebuilding the dependency between amount of time and amount of data is

linear.

 Figure 6 : Windows and C/C++/C# part - Chart 3

05/25/2011 28

1k values 2k values 4k values 8k values 16k values 32k values
5

8,89

15,81

28,12

50

88,91

158,11

281,17

500

9,
66

18
,2

4 37
,9

5 75
,8

5 13
9,

24

32
7,

4

HO2-300 5/2011 Efficient data access
in OPC UA based systems

Results of SQL Client measurements:

 Figure 7 : Windows and C/C++/C# part - Chart 4

As it is presented the efficiency is even better. As I predicted it was not physically

possible to beat SQL Client. Comparing to previous results the efficiency of

modified system seems to be satisfactory.

 7.8. Summary and conclusions
Windows and C++/C# part can be considered as finished successfully. The taken

measurements points that the rebuilding existing library while having impact on

efficient data access and data processing, can enable efficient and fast data

access to historical data stored in SQL servers while still preserving OPC HDA

Protocol.

05/25/2011 29

1k values 2k values 4k values 8k values 16k values 32k values
 ms

20 ms
40 ms
60 ms
80 ms

100 ms
120 ms
140 ms
160 ms
180 ms
200 ms
220 ms
240 ms
260 ms
280 ms
300 ms
320 ms
340 ms
360 ms
380 ms
400 ms
420 ms
440 ms
460 ms
480 ms

46
 m

s

48
 m

s

75
 m

s 12
0

ms

21
3

ms

43
4

ms

98
 m

s

99
 m

s

18
4

ms 22
3

ms

35
0

ms

63
3

ms

18
 m

s

31
 m

s

53
 m

s 92
 m

s

16
5

ms

33
5

ms

Avg
Max
Min

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 7.8.1. Efficiency of created system

Analyzing the data collected during development of project, we can say that main

goal was achieved. Efficiency reached can be compared with standard SQL

database based systems what means there should not be any problem while

using similar system in real environment. Also it proves that overhead introduced

by OPC HDA Protocol is not so significant if it is implemented in proper way.

Calculating speed up factor after library rebuild indicates that even when

cooperating with small amounts of data new library is almost 5 times faster and

when there is need to request larger amount of data like 16 thousands of values

the speed up factor jumps to above 150 what is in my opinion more then enough

to prove that created system can meet requirements of modern systems which

need this kind of data storage.

 7.8.2. What else can be done

Still this system can be developed further. Maybe not with efficiency impact, but

there is still some features left to implement. Of course the minimal functionality

specified by OPC HDA standard was implemented however still some of system

aspects like for example authorization of single system users can be resolved.

 8. Java and Linux part
While C# part was oriented mainly on finding and eliminating bottlenecks in

already existing solutions, in Java part I took completely other way to find

solution. My main goal was to create OPC UA[4] historical data server that would

be able to store data in database using hibernate library[8] and then check, if this

solution is efficient enough to be used in industrial systems. Hibernate was

created as a ORM tool for Java language. Because it was natively designed and

created for cooperation with Java, I also used this language. Huge advantage of 05/25/2011 30

HO2-300 5/2011 Efficient data access
in OPC UA based systems

Java is fact that it is supported on most of operating systems. Because of

conception of language, application written in proper way, can be run on every

operating system with JRE available. Prototype of OPC UA[4] historical data

server I created can cooperate with most of databases on the market. In order to

make easier to understand how application works, first I have to say a little bit

about the environment, it is created to operate in.

 8.1. System structure
Nowadays industry and production is very important to the economy. Industrial

processes are getting more complex and control over them is far more difficult

than few years ago. That is why computers are involved in this process. They can

collect data extremely fast, process them and take appropriate actions. But still

we can not say with 100% certainty that there will not be any problems with

technological process. In case of any problem with final product, manufacturer

need to have possibility of looking on history of process. This is one of the

reasons why the critical information about process are collected.

One of the biggest problems in every system that requires data exchange is

diversity of products, communication protocols and software tools. It is very

common that producers are using their own standards, so their hardware can

cooperate only with other devices produced by them. As result the designer

need to choose one of wide range of possible solutions and decide which devices

or protocol is the best choice. Of course “the best choice” means the best

solution in moment of designing the system and if there will be any better

components in future it is very likely, that replacing devices in already existing

design will be very difficult, inefficient or even impossible. Also in case of

expanding functionality of system there can be no such possibility at all or they

can be very limited. The same situation is in case of databases which also are 05/25/2011 31

HO2-300 5/2011 Efficient data access
in OPC UA based systems

present in considered systems. Although there is SQL standards that regulate

most aspects of storing data in relational databases there are some differences in

implementation of SQL between DBMSs. This leads to situation in which choosing

one particular DBMS in application design stage narrows future possibilities of

changing database engine.

OPC standard[1] solves the problem of cooperation between devices from

different producers and both exchanging data on hardware level and between

hardware and software layers, as well. It defines set of interfaces, services and

communicates that need to be implemented in order to make use of simplicity

and freedom in connecting any possible device or software that supports OPC.

Nowadays there is tendency to write program basing on object-oriented

paradigm. It means that everything is treated as object witch properties and

operations that can be executed on it. Because idea of storing data in databases it

may be necessary to split very complex object on program side into many tables

on database side, what very likely will create problems in implementation. It also

requires programmers to build in database queries into source code. In context of

slightly different SQL dialect used in miscellaneous DBMSs, embedding SQL code

permanently into application practically leaves no opportunity for changing

database used, without complex and error-prone process of rewriting application

code. In order to cope with all this problems connected with storing data, in 2001

Gavin King started Hibernate project. In general its job is to deal with mapping

application data stored in objects into database structure with use of ORM

(Object-Relational Mapping). After embedding hibernate[5] classes into Java

application, developer can easily configure it through XML files so potential

changes of database structure or DBMS will not cause any problems.

If we look at mentioned problems from perspective of company or any project 05/25/2011 32

HO2-300 5/2011 Efficient data access
in OPC UA based systems

that requires exchanging and storing data we will conclude, that we can not

afford for limitations that comes with specific devices, data exchange protocol or

storage engine. Since we have OPC standard[1] that solves our problem on

hardware level and hibernate that reduces complications on software level,

natural thing is trying to connect them and create solution that will be deprived

of mentioned drawbacks.

During last months I have been working on implementation of OPC UA[4]

historical data server. At the very beginning I have made some assumptions:

• user should be able to store data in many places (distributed storage)

• particular nodes of network should be independent

• application should be able to collect data from many different sources at

the same time

Figure 8 shows the simplest structure of the system. And so, we have two

instances of created application (rounded boxes), OPC UA[4] client and

database. “Cloud” symbolizes network connection (connection between

program instances is also made via network, but I decided to connect them

directly to make the idea easier to understand). Numbers near the arrows

symbolize next steps of reading data by the client application.

05/25/2011 33

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 8.1.1. Distributed storage
In real world systems should be as flexible as it is possible. During design and

exploitation process we do not want to deal with many limitations. Because of

that I have decided to write application in a way that allow user to decide where

he want to store data. It is also helpful in case of failure of main storage node. If

for example connection with database would be lost operator can easily switch

to another database.

Figure 8 : Java part - Simple system structure

 8.1.2. Nodes independence
Program is design in a way that makes it possible to divide functionalities

between many units. We can create fully functional system with nodes dedicated

to deal with particular tasks, what makes the maintenance cheaper and simpler.

Such approach also creates possibility to utilize hardware resources in a more

efficient way. For example, we can have one server station with database running 05/25/2011 34

HO2-300 5/2011 Efficient data access
in OPC UA based systems

on it. Its only task would be storing data. On another station we can run our

application, which will take care of managing incoming connections and

providing clients with data they requested.

 8.2. Used tools
During development I used Java language with some additional tools and

libraries. Basic and the most important of all was Prosys OPC UA Java SDK in

version 1.1.2-1941. This software development kit warps OPC UA Java stack and

takes care of may aspects of OPC standard[1]. It makes development process a

lot simpler and faster. Because of that I did not have to think about

communication, session management or other aspects of the functioning of the

application and I could concentrate on implementation of historical data

management. All configuration information are stored in XML files so in order to

read them I used JDom[9] and dom4j libraries. One of crucial functionalities that

had to be implemented was ability to cooperate with many database engines. I

managed to achieve this goal by using hibernate library to separate functional

part of code from implementation of interaction with specific database. As a

result for application it is irrelevant what kind of DBMS is used to store data.

Development platform I used was Ubuntu Linux 10.04 with Eclipse Helios IDE. At

the beginning of project I decided to use two different free database platforms,

MySQL 5.1.41 and PostgreSQL 8.4[10]. References to all used tools can be found

in reading list .

In OPC UA[4] all information are modeled as an objects of some structure.

Description of this structure are stored on the server side in XML file.

Unfortunately I do not have access to specification of this XML file and because

of that I could only store basic types of data. In application I have implemented

support for four data types: integer values, floating point values, double precision 05/25/2011 35

HO2-300 5/2011 Efficient data access
in OPC UA based systems

and boolean values.

 8.3. Structure of databases
I used two different databases to separate collected data from information

required by application. If user want to store all these information in one

database he need to create database with tables from both structures described

below.

 8.3.1. Main database structure

Figure 9 : Java part – Main database structure

Figure 9 shows tables of main database. Connection with this database is

required for application. If it is not reachable application will not work. In

opc_clients table application stores data about configured clients. When user

creates new connection with remote server, he has to put information that are

used to initialize client responsible for handling these connection.

clientId – is locally assigned identification number

applicationuri – is application URI address (more details about URI can be found

in OPC UA Specification[1], part 3)

producturi – is product URI

timeout – defines the default communication timeout that is used for each

synchronous service call

applicationname – name of client

05/25/2011 36

HO2-300 5/2011 Efficient data access
in OPC UA based systems

serveruri – is an address of destination server in URI format

Also more information can be found in documentation of used SDK and

application documentation.

In order to inform clients about values which history is stored on the server,

application stores those data in second table.

id – id of stored element

browsename – string used to identify stored node

clientid – id of client which gathered history of element

type – type of data

OPC standard[1] defines term “address space”. If we have two servers, each of

them has its own address space with complicated structure of nodes. It is very

likely, that on both servers we would have node with the same browse name as

node on the other server. In the figure 4 we can see exemplary system with one

history data server and two serves from which data are collected.

Figure 10 : Java part – Address space issue

05/25/2011 37

HO2-300 5/2011 Efficient data access
in OPC UA based systems

Each of servers has different address (address_1 and address_2). Because our

network can be quite big, we cannot have two servers with identical network

address, this address points directly to only one point in network. OPC

standard[1] tells us that browse name is unique among address space, so it

corresponds to only one node. I used those two rules to create unique identifier

of the node.

Pair <servers URI> and <nodes browse name> gives precise information about

source of data.

05/25/2011 38

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 8.3.2. Historical data database structure
Because of reasons described earlier structure of this database presented on

figure below is rather simple. It has only four tables, one for each supported data

type.

In general structure of tables is the same. Only difference is type of stored data.

value – is actual value of variable

timestamp – information about time, when value was read

staruscode – statuctode of value gives information about quality of stored value

browsename – browse name of variable

modified – tels us whether value was modified

clientid – id of client that stored this value

Figure 11 : Java part – Data database structure

05/25/2011 39

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 8.4. Program structure
Figure 12 placed below show more details about program structure. As we can

see application consists basically of OPC UA server and main database. In the

picture “Data DB”,in which collected data are stored, is separated from “Main

DB” but there they can be easily connected in to one database.

Figure 12 : Java part – Program structure

 8.4.1. Hibernate mapping
In OPC UA[4] standard information are modeled as an objects. Because

specification was created for industrial systems where every value is associated

with measurement or device this approach is natural. On the other hand most

popular databases on the market are using relational model to store information.

Because of different way of describing reality we need additional tool to map

objects to database structure. Hibernate library is exactly this kind of tool. Using

XML files to store detailed information about correlation between object and 05/25/2011 40

HO2-300 5/2011 Efficient data access
in OPC UA based systems

database structure, hibernate[5] generates SQL queries to manipulate the data.

Another extremely important and useful functionality of hibernate is ability to

work with 23 different DBMSs. It gives great flexibility during design and

exploitation of system. Administrator can simply change database engine, edit

configuration files of application and that's it. Because database is separated

from functional part of application with hibernate, there is no need to modify

source code when different DBMS is used.

Application is able to work with many storage nodes at the same time. To make it

possible I wrote DbMapper class that is responsible for mapping process. It

extends Thread class in order to run independently from the rest of program.

During startup there is created instance of that class for each configured

database, so every connection is supported by its own thread.

 8.4.2. OPC UA server
Created program is responsible for collecting data from many sources, saving

them into database and then, when any client want to read them, application

should provide it with requested data.

OPC UA server build in application is responsible for all functionalities that OPC

UA server should have. More detailed information about functionalities of server

are contained in OPC Specification.

Developer of SDK made it very easy to implement methods that are responsible

for certain actions. In order to react properly to clients data request I had to

implement method:
public void onReadHistory(ServiceContext serviceContext, NodeId nodeId,

UaNode node, NumericRange indexRange, byte[] continuationPoint,
HistoryReadDetails details, HistoryData historyData,
DiagnosticInfo diagnosticInfo) throws StatusException

05/25/2011 41

HO2-300 5/2011 Efficient data access
in OPC UA based systems

in HistoryManagerListener interface. When server receives request from client it

creates appropriate query in HQL (Hibernate Query Language is slightly modified

SQL). As a result of possibility of storing data in many places it's possible, that

history of one value can be stored in many databases. To assure that client will

get all the requested data no mater where they are, HQL query is executed by all

mapping threads. When execution of query is finished by all threads results are

combined and send back to client.

 8.4.3. OPC UA client
In order to test the solution we need some data. In normal environment we

would have a lot of possible data sources, like PLC’s for example. In laboratory

case data were generated by simulation build in program. The data can also be

collected from other instances of application or independent OPC UA servers. Off

course data streams are continuous and we want to store data from many

sources at the same time. To accomplish this for each remote data source,

application creates an instance of OPC client that takes care about gathering data

and storing them through hibernate layer into database.

 8.5. Testing and results
The most important part of project was testing process. At this point I have to

emphasize that program I wrote is merely a prototype. It was created in order to

test solution and find out if it is possible to use it in industrial systems where

efficiency in processing huge amounts of data is required. Fact that used SDK has

a lot of shortcomings in documentation led to situation, where only basic

functionalities are implemented. In order to make it fully functional historical data

server a lot of work is required.

05/25/2011 42

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 8.5.1. Testing methodology
Tests were performed on one machine with remote database server emulated by

virtual machine with Debian 6.0 guest operating system and PostgreSQL 8.4

running on it. MySQL database was running on host system. Software used for

virtualization was Oracle VirtualBox 4.0.8. Application was running locally using

JRE in version 1.6.

After starting server I connected to it from local client and made a request for

history of one value. Data were requested 60 times: first read required retrieving

data from databases. Response to next five request was made using data set

created earlier. After six request database read was forced and cycle was

repeated. After ten cycles of six requests application was closed and cache of

databases cleared. Next, another query could be made. I tested 12 different

queries, with result sets of size between 5367 and 72000 elements. Average time

of reading 1000 elements from databases by the server varies between 42 ms

and 114 ms. It is good result if we take into account fact, that hibernate creates

one object for each row retrieved from database, what creates overhead.

Figure 13 : Java part – Chart 1

05/25/2011 43

1 2 3 4 5 6 7 8 9 10
0

500
1000

1500
2000

2500
3000
3500
4000

4500
5000

Request

R
ea

d
tim

e
in

 m
n

HO2-300 5/2011 Efficient data access
in OPC UA based systems

Further analysis of results showed, that each time we read from database

information, that was earlier read, time we have to wait for response from

database is shorter. This effect is result of caching mechanisms implemented in

DBMSs and it means, that running database on dedicated server with a lot of

RAM memory may result in achieving even better performance. Exemplary

dependency is shown on figure 13.

 8.6. Summary and conclusions of Java part
After four months of work my main goals were achieved. Realization and

successful ending of this project shows, that it is possible to create efficient and

flexible solution of accessing historical data using hibernate library. Additional

layer in the form of hibernate creates very small overhead but makes final

product extremely flexible and adjustable. If this project will be continued

additional performance could be gained by tuning database engine, running

DBMS on dedicated machine in order to make use of caching mechanisms and

using hibernates caching mechanisms. During test I have noticed, that hanging

packet size in history read window has influence on efficiency. Probably it has

connection with process of copying in getPart method inside Server class. In

future this dependency could be analyzed. Also code can be improved in many

places.

05/25/2011 44

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 9. Development plan

 9.1. Gantt diagram
Gantt diagram is added as appendix to this preliminary report. It contains plan of

our work and task we planned to execute.

 9.2. Week schedule
Below is presented week schedule. It includes daily project work time and every

week meetings which will be taking place in Linus.

Table 4 : Week schedule

Hours Monday Tuesday Wednesday Thursday Friday

 8:30 – 9:30

 9:30 – 10:30

PROJECT PROJECT
PROJECT

PROJECT

10:30 – 11:30 M E E T I N G

PROJECT

11:30 – 12:30

12:30 – 13:30

13:30 – 14:30

14:30 – 15:30

15:30 – 16:30

16:30 – 17:30

Summarizing – the Java part has consume about 500 hours of work and Windows

and C/C++/C# part consume about 460 hours of work.

Because the essence of our work was software development we were able to

continue our work remotely - even when we were away from university.

05/25/2011 45

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 9.3. Milestones and meetings
Below it is presented summary of milestones, that our project contains.

Table 5 : Milestones

M i l e s t o n e D a t e
Preliminary report 1.03.2011

Completion of environment for Windows part 14.03.2011

Completion of Data Provider in Java part 1.04.2011

Completion of 1st stage of modifications in
Windows and C#/C++ part

6.04.2011

Completion of 2nd stage of modifications in
Windows and C#/C++ part

21.04.2011

Completion of Server Side in Java Part 27.04.2011

Completion of OPC client application in Windows
and C#/C++ part

3.05.2011

Completion of Analysis and measurement in
Windows and C#/C++ part

13.05.2011

Final report due 25.05.2011

Oral presentation 27.05.2011

Web page done 6.06.2011

Table 6 : Meetings

M e e t i n g n o. : D a t e P l a c e T i m e
Meeting 1 Fri 25.02.2011 Linus 10:30 – 11:15

Meeting 2 Mon 14.03.2011 Linus 10:30 – 11:15

Meeting 3 Mon 4.04.2011 Linus 10:30 – 11:15

Meeting 4 Mon 2.05.2011 Linus 10:30 – 11:15

Meeting 5 Mon 19.05.2011 Linus 10:30 – 11:15

05/25/2011 46

HO2-300 5/2011 Efficient data access
in OPC UA based systems

To be perfectly honest we came across difficulties that we did not expected

before beginning of the project. We managed to meet two times during the

semester. It was caused by very slow progress of work and because of character

of our work, that was writing source code, except this code there was nothing

spectacular to show. Nevertheless we managed to finish work on time with very

satisfactory results.

 10. Budget
Our work will be focused mostly on software solutions, so the most important

will be tools, applications and development environment that will allow us to

complete our goals. Some of used and pointed below software is not freeware or

open source products, however as students of Silesian University of Technology,

we are taking part in MSDN Academic Alliance program which give us access to

free Microsoft software for academic use. Because of that we should be able to

use only free of charge software for our work.

Table 7 : Budget of project

Number Requirement Cost

C O M M O N R E S O U R C E S S

1 Additional screen provided by HSF 0 NOK

2 Desktop computer provided by HSF 0 NOK

3 Additional network cables and router provided by HSF 0 NOK

4 Microsoft Project Professional 2010 0 NOK

W I N D O W S A N D C# / C++ P A R T

6 Microsoft Visual Studio 2008/2010 Professional 0 NOK

7 Microsoft SQL Server 2008 Express Edition 0 NOK

8 OPC HDA Sample code 0 NOK

05/25/2011 47

HO2-300 5/2011 Efficient data access
in OPC UA based systems

J A V A A N D L I N U X P A R T

9 Eclipce 0 NOK

10 Prosys OPC SDK (60 days evaluation) 0 NOK

11 MySQL / PostgeSQL 0 NOK

Total cost : 0 NOK

 11. Organization
Presentation of project structure is placed below.

Figure 13 : Project organization structure

 11.1. Ordering company
Project has been ordered by Sogn og Fjordane Univeristy College that is

represented by Marcin Fojcik and Joar Sande. The finalized Senior Design Project

will be presented as part of partnership program between HSF and Silesian

University of Technology in Gliwice.

05/25/2011 48

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 11.2. Supervisors
Project supervisors are: Marcin Fojcik and Joar Sande. They both are employees

of Sogn og Fjordane University College. Also, the HSF is the company that placed

the order for our project. Technical support supervisor is Marcin Fojcik and

management and organisation supervisor is Joar Sande.

Name: E-mail address: Telephone number:

Joar Sande Joar.Sande@hisf.no 57 72 26 29

Marcin Fojcik Marcin.Fojcik@hisf.no 57 72 26 70

 11.3. Developers
The project developers are: Paweł Czembor and Przemysław Zieja. They are

authors of this document as well . Both Paweł and Przemysław are students from

Poland who has came to HSF as participants of STF international student

exchange program.

Because of way that project has been divided there was no need to specify who

was the project leader. Clearly shared tasks made Paweł responsible for whole

Windows and C#/C++ development part while Przemysław's responsibility was

Java and Linux development part.

Name: E-mail address:

Paweł Czembor pawelc@stud.hisf.no

Przemysław Zieja przemysz@stud.hisf.no

05/25/2011 49

mailto:przemysz@stud.hisf.no
mailto:pawelc@stud.hisf.no
mailto:Marcin.Fojcik@hisf.no
mailto:Joar.Sande@hisf.no

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 12. Reading list
1. OPC Foundation

 http://www.opcfoundation.org

2. Microsoft Developer Network

 http://msdn.microsoft.com/pl-pl/library/kx37x362(en-us).aspx

3. Wikipedia (definition for the abbreviations)

 http://en.wikipedia.org/wiki

4. “OPC Unified Architecture”;

 W. Mahnke, S.H. Leitner, M. Damm

5. “Beginning Hibernate”;

 Dave Minter and Jeff Linwood

6. Java 6 platform documentation

 http://download.oracle.com/javase/6/docs/

7. “Thinking in C++”;

 Bruce Eckel

8. Hibernate community documentation

 http://docs.jboss.org/hibernate/core/3.6/quickstart/en-US/html/

9. JDOM v1.1.1 API Specification

 http://www.jdom.org/docs/apidocs/index.html

10. PostgreSQL 8.4 documentation

 http://www.postgresql.org/docs/

11. Senior Design Project -titled :

 “Data acquisition system with database using OPC”

 http://prosjekt.hisf.no/~10opcdp/

 Also available in HSF library

05/25/2011 50

http://prosjekt.hisf.no/~10opcdp/
http://www.postgresql.org/docs/
http://www.postgresql.org/docs/
http://www.jdom.org/docs/apidocs/index.html
http://docs.jboss.org/hibernate/core/3.6/quickstart/en-US/html/
http://download.oracle.com/javase/6/docs/
http://en.wikipedia.org/wiki
http://msdn.microsoft.com/pl-pl/library/kx37x362(en-us).aspx
http://www.opcfoundation.org/

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 13. List of tables

1. Table 1 : Windows and C/C++/C# part

– createNewTable stored procedure Page 18

2. Table 2 : Windows and C/C++/C# part

– dropTable stored procedure ... Page 19

3. Table 3 : Windows and C/C++/C# part

– Sample configuration xml file ... Page 22

4. Table 4 : Week schedule …... Page 45

5. Table 5 : Milestones ... Page 46

6. Table 6 : Meetings .. Page 46

7. Table 7 : Budget of project …...Page 47

05/25/2011 51

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 14. List of figures
1. Figure 1 : Windows and C/C++/C# part

– System structure ….. Page 14

2. Figure 2 : Windows and C/C++/C# part

– Configuration table design …..................................... Page 17

3. Figure 3 : Windows and C/C++/C# part

– Data table design ….. Page 17

4. Figure 4 : Windows and C/C++/C# part – Chart 1 ….................... Page 26

5. Figure 5 : Windows and C/C++/C# part – Chart 2 ….................... Page 27

6. Figure 6 : Windows and C/C++/C# part – Chart 3 …....................Page 28

7. Figure 7 : Windows and C/C++/C# part – Chart 4 …....................Page 29

8. Figure 8 : Java part - Simple system structure …........................ Page 34

9. Figure 9 : Java part - Main database structure …....................... Page 36

9. Figure 9 : Java part - Address space issue …............................... Page 37

10. Figure 10 : Java part - Data database structure …........................ Page 39

11. Figure 11 : Java part - Program structure …..................................Page 40

12. Figure 12 : Java part - Chart 1 …... Page 43

13. Figure 13 : Project organization structure …................................ Page 48

05/25/2011 52

HO2-300 5/2011 Efficient data access
in OPC UA based systems

 15. List of appendixes
1. Gantt diagram for Senior Design Project titled :

“Efficient data access in OPC UA based systems”

2. Preliminary Report for Senior Design Project titled :

“Efficient data access in OPC UA based systems”

 15.1. Additional Java libraries
Hibernate 3.6.1
http://sourceforge.net/projects/hibernate/files/hibernate3/3.6.1.Final/

Jcalendar 1.3.3

http://www.toedter.com/en/jcalendar/index.html

JDOM 1.1.1

http://www.jdom.org/

Prosys OPC UA Java SDK Client-Server Evaluation 1.1.2-1941

http://www.prosysopc.com/opc-downloads.php

Important!

Because of license restrictions I am not allowed to attach Prosys SDK to
project. In order to obtain this libraries ant run application please contact
with developer of this SDK.

05/25/2011 53

http://www.prosysopc.com/opc-downloads.php
http://www.jdom.org/
http://www.toedter.com/en/jcalendar/index.html
http://sourceforge.net/projects/hibernate/files/hibernate3/3.6.1.Final/

	 1. Foreword
	 2. Table of contents
	 3. Abbreviations and symbols
	 4. Summary
	 5. Introduction
	 6. Main project objectives
	 6.1. Java and Linux part
	 6.2. Windows and C#/C++ part
	 6.3. Possible solutions

	 7. Windows and C#/C++ part implementation
	 7.1. System architecture
	 7.2. Environment preparation
	 7.2.1. Operating system configuration
	 7.2.2. SQL database configuration
	 7.2.3. MS VS2010 Solution configuration

	 7.3. Basic SQL database project and preparation
	 7.3.1. Database schema
	 7.3.2. Stored procedures

	 7.4. Old-sample library analysis
	 7.4.1. Data processing based on string parsing
	 7.4.2. Main modules to rebuild

	 7.5. Rebuilding data access and data processing layers
	 7.5.1. New project and methods
	 7.5.2. Changes in configuration
	 7.5.3. Changes in existing code

	 7.6. Library after rebuilding
	 7.7. Building SQL Client and taking measurements
	 7.7.1. SQL Client application
	 7.7.2. Measurements and comparison

	 7.8. Summary and conclusions
	 7.8.1. Efficiency of created system
	 7.8.2. What else can be done

	 8. Java and Linux part
	 8.1. System structure
	 8.1.1. Distributed storage
	 8.1.2. Nodes independence

	 8.2. Used tools
	 8.3. Structure of databases
	 8.3.1. Main database structure
	 8.3.2. Historical data database structure

	 8.4. Program structure
	 8.4.1. Hibernate mapping
	 8.4.2. OPC UA server
	 8.4.3. OPC UA client

	 8.5. Testing and results
	 8.5.1. Testing methodology

	 8.6. Summary and conclusions of Java part

	 9. Development plan
	 9.1. Gantt diagram
	 9.2. Week schedule
	 9.3. Milestones and meetings

	 10. Budget
	 11. Organization
	 11.1. Ordering company
	 11.2. Supervisors
	 11.3. Developers

	 12. Reading list
	 13. List of tables
	 14. List of figures
	 15. List of appendixes
	 15.1. Additional Java libraries

