

STUDENTWORK

Final report

Data acquisition system

with database using OPC

25.05.2010

 Group:
 Michał Bochenek
 Kamil Folkert

Final report HO2-300 05/2010

 http://prosjekt.hisf.no/~10opcdp/

 HO2-300 05/2010 Data acquisition system
 with database using OPC

2

TITLE:

Final report
DATE:

25.05.2010
REPORT NUMBER:

PROCECT TITLE:

Data acquisition system
with database using OPC

ACCESS:

NUMBER OF PAGES:

50

URL:

http://prosjekt.hisf.no/~10opcdp/

GROUP:

Michał Bochenek
Kamil Folkert

SUPERVISORS:

Marcin Fojcik
Joar Sande

EMPLOYER:

HSF

SUMMARY:

Our project has been developed as a Senior Design Project. The order for the project came
from HSF, and would be considered as a part of researches pursued by HSF in cooperation
with Silesian University of Technology. Realisation of the project took place on the premises
of Sogn og Fjordane University College in Forde. The subject was to write the OPC client for
the Linux platform, that would send the data to the server and to design the database,
holding the processed data. The communication should be reliable and the data
presentation should be clear and understated.
KEYWORDS:

HO2-300, Senior Design Project; Data acquisition system with database using OPC

 HO2-300 05/2010 Data acquisition system
 with database using OPC

3

Foreword

This report is the final document for the project which was made as the Senior Design

Project. Project’s title is Data acquisition system with database using OPC. The order

placement company was the Høgskulen i Sogn og Fjordane University College, represented

by Joar Sande and Marcin Fojcik. The whole project was developed on the premises of the

HSF. Main purpose of the work was to create the system, divided into two parts, according

to the runtime platform that would acquire, send and store required data.

Looking at the project from the perspective of the whole studying period it required the

largest amount of time spent on the development. The most difficult part was the Linux

node software, as the work connected with it included going through the NPE, OPC UA

documentation which took a lot of time and required writing some interfaces, procedures

and functions from the scratch.

We are really grateful to the Høgskulen i Sogn og Fjordane University College for their

support and giving us the opportunity to work on the project in Førde as exchange students.

Development of the project allowed us to acquire more pieces of information about using

OPC systems not only within the Windows environment and also gave us the chance to build

a system consisting of industrial controller, OPC server and MSSQL Server database.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

4

Table of contents

Foreword .. 3

Table of contents .. 4

1. Abbreviations and symbols .. 6

2. Summary .. 8

3. Introduction .. 10

3.1. Project background .. 10

3.2. Division of work ... 10

4. Theory background .. 11

4.1. Description of the current situation .. 11

4.2. Database .. 11

4.3. Database management system ... 13

4.4. OPC Historical Data Access .. 14

5. Objectives ... 16

6. Tools ... 18

6.1 Programming language .. 18

6.2 Development environment ... 19

6.3 Source code management ... 19

6.4 Additional tools – Software Development Kits (SDK) .. 19

7. Windows part implementation .. 21

7.1. Database operations .. 21

7.2. XML operations .. 22

7.3. OPC read .. 23

7.4. Stored procedures and functions .. 24

7.5. User interface .. 25

7.5.1. Server name form .. 25

7.5.2. Main form ... 25

7.5.3. Database server settings form ... 27

7.5.4. Database variables’ write form .. 28

7.5.5. OPC Variables form .. 29

7.5.6. About form ... 30

7.6. Additional libraries .. 30

7.7. Additional software ... 31

7.8. Further development... 32

7.9. Configuring the operating system ... 33

7.10. Principle of operation .. 33

8. Linux part implementation ... 35

8.1. NPE scripts ... 35

8.2. Mediation node application .. 37

8.3. OPC UA Server application .. 38

9. Organization ... 40

9.1. Developers ... 41

9.2. Project supervisors .. 41

9.3. Order placement company .. 41

 HO2-300 05/2010 Data acquisition system
 with database using OPC

5

10. Project administration ... 42

10.1. Carrying out project according to plan. ... 42

10.2. Gantt diagram .. 42

10.3. Week schedule ... 43

10.4. Meetings schedule ... 44

11. Budget of the project .. 45

12. General project evaluation .. 47

13. List of figures ... 49

14. List of tables .. 49

15. List of appendixes .. 49

16. Reading list .. 50

 HO2-300 05/2010 Data acquisition system
 with database using OPC

6

1. Abbreviations and symbols[4]

OLE Object-Linking and Embedding - a technology developed by Microsoft
that allows embedding and linking to documents and other objects

DCOM Distributed Component Object Model - a proprietary Microsoft technology for
communication among software components distributed across networked
computers

OPC OLE for Process Control – communication standard developed and maintained
by OPC Foundation

OPC UA OPC Unified Architecture – the most recent OPC specification

OPC HDA OPC Historical Data Access – protocol used for retrieving the historical data
from the appropriate HDA server, based on the DCOM model

COM Component Object Model – a standard, developed by Microsoft Corporation,
of creating programming interfaces

DLL Dynamic link library – Library of software components, which can
be shared by different applications

SDK Software Development Kit, set of development tools that helps create
applications for a certain software package

IDE Integrated Development Environment - also known as integrated design
environment or integrated debugging environment is a software application
that provides comprehensive facilities to computer programmers for software
development.

GNU Project Free software, mass collaboration project, announced on September 27, 1983,
by Richard Stallman at MIT

GCC The GNU Compiler Collection - a compiler system produced by the GNU
Project supporting various programming languages

ANSI C is the standard published by the American National Standards Institute (ANSI)
for the C programming language. Software developers writing in C are
encouraged to conform to the requirements in the document, as it
encourages easily portable code.

.NET Microsoft .NET Framework – software developing platform developed by
Microsoft Corporation

C# One of the most popular high-level programming languages used to write
programs for .NET platform

SQL Structured Query Language - database computer language designed for
managing data in relational database management systems

 HO2-300 05/2010 Data acquisition system
 with database using OPC

7

T-SQL Transact – SQL - proprietary extension to SQL, developed and used by
Microsoft and Sybase, including additional features, like: Control-of-flow
language, local variables or string, date, mathematics support functions.

RDMS Relational Database Management Service – a set of applications used to
manage data, describe data structures inside the database and retrieve data
queried by a client application or the end-user.

MSSQLSERVER Microsoft SQL Server is a relational model database server produced by
Microsoft. Its primary query languages are T-SQL and ANSI SQL.

MSDN The Microsoft Developer Network - the portion of Microsoft responsible for
managing the firm's relationship with developers

GPRS General Packet Radio Service - packet oriented mobile data service available
to users of the GSM systems

GSM Global System for Mobile Communications (originally from Groupe Spécial
Mobile) is the most popular standard for mobile telephone systems. The
standard contains packet data capabilities (GPRS)

NPE Dedicated microcontroller with embedded GSM modem, running on Linux,
meant to act as a mediate node in our system

NTP Network Time Protocol, protocol for synchronising the clocks of computer
systems over packet-switched, variable-latency data networks.

HSF Sogn og Fjordane University College

JNI Java Native Interface – enables adaptation of low level functions, to be
accessed from the Java code as the class members

XML Extensible Mark-up Language - set of rules for encoding documents
electronically. It is defined in the XML 1.0 Specification produced by the W3C,
and several other related specifications, all gratis open standards. There are
many programming interfaces that software developers may use to access
XML data, and several schema systems designed to aid in the definition of
XML-based languages.

JVM Java Virtual Machine - enables a set of computer software programs and data
structures to use a virtual machine model for the execution of other computer
programs and scripts.

HO2-300 Code of the Senior Design Project subject at the HSF

 HO2-300 05/2010 Data acquisition system
 with database using OPC

8

2. Summary

Many fields of research connected with different kinds of studies require automated systems

gathering and processing information. Specialists can think of some vital solutions for the

problems they come across every day. However to perform their researches they need

specific data. The reason for commissioning this project is in tight connection with those

needs.

Manufacturers give opportunity to use equipment that could fulfil many tasks with the

dedicated software. But for the moment, there is not any solution including the data

acquisition and storage.

Devices that are able to work in the field, sometimes in extreme weather conditions have to

be as portable as possible, which applies to their dimensions as well as the power supply.

Techbase company from Poland created the NPE microcontroller, using Linux operating

system, being able to stand the low temperature, acquire data from sensors with digital and

analogue interface and send it further using the GSM modem. This type of device is the

appropriate microcontroller to become the node of our system. The software for the node,

however, must be written from the scratch.

The best way to store the data and possess flexible access to it is undoubtedly the database

and the database management service. The Microsoft SQL Server is a well-known solution

for this kind of application. The extended management software provides graphic user

interface for the database administration but also gives easy-to-use interface to the software

developer.

In order to easily access and browse the stored data and manage the frequency of database

write, there must be particular software created. One of its features has to be the possibility

of its further development. Due to the usage of .NET platform any changes that would be of

vital importance in future, shouldn’t give any problems to the developer. The same goes to

the database changes.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

9

We mentioned two separate parts of the system. The question, how they should be

connected with each other can be answered with the OPC server.

OPC UA is one of the most modern communication standard used to participate in data

exchange. One of the most important advantages of using the OPC server is the

independence from the hardware working as the data acquisition nodes.

This is why the OPC server is a part of the project - it combines two operating system

platforms as well as increases system scalability. To make both, Linux and Windows

applications work properly as the data sender and receiver they were equipped with some

basic functions of the OPC clients.

Although setting up the whole system took a lot of time, there is a set of results at the end of

the project. It contains the Linux OPC client application, reports made after each meeting,

preliminary project and this very report.

Crucial to our work was the work division, so that every person could spend the same

amount of time at the project development. As this was a very big project, it required wise

administration. Management abilities should not be overlooked, as they can turn out to be

of the same importance as the knowledge about the OPC client-server application and

database application development.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

10

3. Introduction

3.1. Project background

This project was made within the framework of Senior Design Project subject, with code

HO2-300, in the spring semester 2010. The company that ordered the project is the

Høgskulen i Sogn og Fjordane University College, represented by Marcin Fojcik. The project

name is Data acquisition system with database using OPC. Our main task was to create a set

of applications that would be used to acquire, pack, send, and store the data. There is the

application to view the stored data provided as well.

3.2. Division of work

Group working on the project consists of two persons. It was a big and important project, so

it required a lot of effort. To properly fulfil tasks that the project was divided into, there had

to be an appropriate work division. Since two different hardware platforms were chosen,

two parts of the project seemed obvious. That sort of work distribution was a good choice,

because the development could be run concurrently and there was not any problem with

interfering with each person’s task. Additionally, each person was able to document the part

of the project that was completed, during the growth of the whole system.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

11

4. Theory background

4.1. Description of the current situation

Due to the natural terrain shape in Norway, there are a lot of areas where the possibility of

an avalanche/mudslide is high. Geology specialists run some research about predicting the

place and time of a disaster. They consider usage of particular sensors, measuring the rain

amount, temperature and the pressure in the soil. At the very moment the way of gathering

data is very uncomfortable. Data from each sensor must be downloaded at the point where

the sensor is placed. The amount of data gathered this way is undoubtedly too little.

In order to that, the development of the appropriate algorithm of predicting avalanches it is

needed to possess some more data to analyse.

Projects connected with geology, HSF is conducting with cooperation with Silesian University

of Technology and so that our project is to be the universal way of data acquisition, sending

and storing. In future it could be used with the geological data system or any other, with the

need for data processing provided by our system.

Our system is going to provide solution for both the part of acquiring the data from the

sensors and data storage for further analysis.

4.2. Database

A database consists of an organized collection of data for one or more multiple uses. One

way of classifying databases involves the type of content, for example: bibliographic, full-

text, numeric, and image. Other classification methods start from examining database

models or database architectures. Software organizes the data in a database according to a

database model. Nowadays, we can notice that the relational model is the most common.

Other models such as the hierarchical model and the network model use a more explicit

representation of relationships.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

12

Figure 1 - Simple relational database

A relational database matches data by using common characteristics found within the data

set. The resulting groups of data are organized and are much easier for many people to

understand. The software used to do this grouping is called a relational database

management system (RDBMS). The term "relational database" often refers to this type of

software. Relational databases are currently the predominant choice in storing financial

records, manufacturing and logistical information, personnel data and much more.

The term relational database was originally defined and coined by Edgar Codd at IBM

Almaden Research Center in 1970. Relational database theory uses a set of mathematical

terms, which are roughly equivalent to SQL database terminology.

Table 1 – Relational database terms and their SQL equivalents

Relational term SQL equivalent

relation table

derived relvar query result, result set

tuple Row

attribute column

Figure 2 - Relational database terms

Queries made against the relational database, and the derived relvars in the database are

expressed in a relational calculus or a relational algebra. In his original relational algebra,

Codd introduced eight relational operators in two groups of four operators each. The first

four operators were based on the traditional mathematical set operations:

 HO2-300 05/2010 Data acquisition system
 with database using OPC

13

- union operator combines the tuples of two relations and removes all duplicate tuples

from the result.

- intersection operator produces the set of tuples that two relations share in common.

- difference operator acts on two relations and produces the set of tuples from the

first relation that do not exist in the second relation.

- cartesian product of two relations is a join that is not restricted by any criteria,

resulting in every tuple of the first relation being matched with every tuple of the

second relation.

The remaining operators proposed by Codd involve special operations specific to relational

databases:

- selection, or restriction, operation retrieves tuples from a relation, limiting the results

to only those that meet specific criteria, i.e. a subset in terms of set theory.

- projection operation retrieves tuples containing only the specified attributes.

- join operation defined for relational databases is often referred to as a natural join. In

this type of join, two relations are connected by their common attributes.

- relational division operation is a more complex operation, which involves essentially

using the tuples of one relation (the dividend) to partition a second relation (the

divisor).

Other operators have been introduced or proposed since Codd's introduction of the original

eight including relational comparison operators and extensions that offer support for nesting

and hierarchical data, among others.

4.3. Database management system

Data base management system (DBMS) is the system in which related data is stored in an

efficient and compact manner. Efficient means that the data which is stored in the DBMS is

accessed in very quick time and compact means that the data which is stored in DBMS

covers very less space in computer's memory.

Thus, the DBMSs of today roll together frequently needed services or features of attribute

management. By externalizing such functionality to the DBMS, applications effectively share

code with each other and are relieved of much internal complexity. Features commonly

offered by database management systems include:

 HO2-300 05/2010 Data acquisition system
 with database using OPC

14

- Query ability

- Backup and replication

- Rule enforcement

- Security

- Computation

- Change and access logging

- Automated optimization

A relational database management system (RDBMS) is a database management system that

is based on the relational model as introduced by E. F. Codd. A short definition of an RDBMS

may be a DBMS in which data is stored in the form of tables and the relationship among the

data is also stored in the form of tables.

Components of a DBMS are:

- DBMS Engine

- Data Definition Subsystem

- Data Manipulation Subsystem

- Application Generation Subsystem

- Data Administration Subsystem

Most popular database management systems are: Microsoft SQL Server, IBM DB2, Oracle,

MySQL, and PostgreSQL.

4.4. OPC Historical Data Access

The OPC Historical Data Server provides a way to access or communicate to a set of

Historical data sources. The types of sources available are a function of the server

implementation. The server may be implemented as a standalone OPC Historical Data Server

that collects data from an OPC Data Access server or another data source. It may also be a

set of interfaces that are layered on top of an existing Proprietary Historical Data Server. The

clients that reference the OPC Historical Data server may be simple trending packages that

just want values over a given time frame or they may be complex reports that require data

in multiple formats.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

15

The OPC Specification specifies COM interfaces, but not the implementation of those

interfaces. It specifies the behavior that the interfaces are expected to provide to the client

applications that use them.

The OPC Historical Data server objects provide the ability to read data from a historical

server and write data to a historical server. The types of historical data are server

dependent. All COM objects are accessed through Interfaces. The client sees only the

interfaces. An OPC Historian Client application must implement a callback interface to

support a shutdown request. The client may also implement interfaces for the various

asynchronous connections that a server may provide. If the client expects to use (and the

server provides) a particular asynchronous interface, the client must implement the

matching callback. [1][6]

 HO2-300 05/2010 Data acquisition system
 with database using OPC

16

5. Objectives

Before the beginning of our work, there was no solution like the one we prepared, available

on the market. The cost analysis that we had made led us to choose the particular hardware

solution and to use the selected development software.

The final product possesses the following features:

• Linux part:

o Java code

o GSM/GPRS over the TCP/IP data transfer protocol

o implementation of algorithms needed for synchronising time in mediation

nodes and central node to ensure good quality of data and possibility of data

transfer errors detection.

o set of algorithms (packing and optimising data structures) used to prepare the

data before sending

• Windows part

o .NET C# code

o Relational database (MSSQL Server)

o OPC UA server – making the current data accessible

o Graphic user interface for data presentation and setting up the database write

o OPC HDA server – making the historical data accessible

o Bridge between OPC UA Server and the database application

Although there have been some changes made to the list of elements of our project, the

amount of time dedicated for the project development turned out to be enough to

implement all necessary features we decided to be included in the system. All of the features

listed above have been tested towards most often errors and the group is proud to present

the fully operational system.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

17

Figure 3 - System overview

 HO2-300 05/2010 Data acquisition system
 with database using OPC

18

6. Tools

Before starting the work, the developers group had to pick the tools to use. Firstly, a

programming language had to be chosen, appropriate for the platform used in a particular

project part. After the programming language had been selected, a development

environment was a tool to choose. According to the language and platform, the variety of

tools was not so wide. However, the improvement of quality and efficiency dictated the

terms that chosen software had to possess.

6.1 Programming language

The first thing we had to think about was the programming language, appropriate for the

used platform. As for the Windows part, the choice was relatively easy, as the .NET platform

with its C# language is popular, and we have some knowledge and experience with

applications written in C#. Of course we took into consideration other .NET languages like

Visual Basic, however, our knowledge about C# is definitely bigger. Also, comparing to the

C++ quite complicated memory management, type casts and sophisticated pointer usage,

the advantages of C# seemed not to leave any doubts. Besides, it would not be wise to risk

the inappropriate memory management, as C# possesses a built-in garbage collection

program. The availability of libraries and cooperation with MSSQL Server database tools

have their meaning as well.

The Linux part, as NPE controller is going to be used, should be implemented in Java

language, because of its object-oriented nature, availability of free external libraries, support

of TCP/IP communication and possibility of rapid application development. As NPE has only

tiny core Linux system inside, we cannot compile source code on it and external compiler

must be used for that purpose. For accessing NPE’s hardware resources there is a C library

delivered by producer, and for MODBUS communication open-source libraries are going to

be used. To encapsulate C functions from mentioned library, we may use JNI to make them

accessible as an object’s methods.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

19

6.2 Development environment

C# is one of the programming languages co-operating with the Microsoft .NET platform. In

order to that, the most suitable environment for programming in the mentioned language

would be the Microsoft Visual Studio. It is a commercial tool, however, as students of

Silesian University of Technology we have the right to use it for non-commercial purposes

free of charge. Microsoft gives the opportunity to test the latest version of Visual Studio –

the Visual Studio 2010 RC, but the developers’ group decided to use the previous Visual

Studio 2008 version as the more reliable software.

NetBeans is one of the most popular IDEs. For that reason it is also the most reconfigurable

and has very well provided system of updates. It supports various programming languages

like Java, C++, C#, PHP. NetBeans IDE comes with multiple useful features, like code

completion, snippets, javadoc analysis tool, and many more. It supports multiple Java

platforms and has JAR-generating scripts built-in. NetBeans IDE is free, so we can use it

without limitations.

6.3 Source code management

During the work on a project including code writing it is recommended to use a version

control system. It improves work efficiency and makes it available to perform changes to the

project almost on every computer. However, dividing the project according to the operating

system platform and the fact that the group consists of two persons, the version control

system was not necessary. Different programming language and structure of the project

inside the development environment prevented the group from interfering each member’s

part of work. The whole process of creating the system did not bring up any problems with

keeping all parts of the project up-to-date.

6.4 Additional tools – Software Development Kits (SDK)

Historical data that is stored in the database must be accessible for users that want to

analyse or process the data for their purposes. The local viewing of the data is provided by

the OPC2DB application written in C#. Apart from this solution, as it may be not so

 HO2-300 05/2010 Data acquisition system
 with database using OPC

20

convenient for all users, we added the OPC HDA server, written in C++. To avoid writing the

server software from the very beginning we used the OPC HDA Software Development Kit,

which was modified to suit all the functionality that our project must have possessed.

Looking at the HDA Server from the point of view of an administrator of the main server, it

requires some attention at the beginning, to prepare operating system for cooperation, but

later on, it is running as the background service, requiring no attention at all.

OPC Unified Architecture applications are not very common in Linux environment. However,

we decided to use Prosys' Java SDK for UA server process development. It is platform-

portable, so in the future it may be integrated with NPE data providing part and embedded

into NPE as a complete stand-alone OPC UA server. For the research purposes the Prosys'

Java SDK is free of charge. It is the only SDK which is supported by complete documentation

and on-line help. We can recommend it to anyone who is interested in rapid OPC UA

portable applications development.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

21

7. Windows part implementation

The part of the project running under Microsoft Windows environment consists of many

different elements, which are independent in some ways and simultaneously related to each

other. In order to make the set of our applications work with system’s other elements

following sub-parts had to be implemented. Each point describes details of implemented

functionality.

7.1. Database operations

The OPC2DB application that has been developed performs basic database operations which

are the read of data already stored in the database and the opposite – writing acquired data.

All operations that can be performed over the database are gathered within DBOper class.

Class structure is as follows:

public class DBOper
{
 protected String SqlConnectionStr;

 public DBOper()
 public DBOper(String SrvName, String DbName, String UserName, String

Pass, Boolean PersistSecInfo)
 public void changeConStr(String SrvName, String DbName, String UserName,

String Pass, Boolean PersistSecInfo)
 public void getValuesBetweenTime(DateTime startTime, DateTime endTime,

String tblName, DataGridView dgv)
 public void writeToDB(String tblName, String value, DateTime timeStmp,

int quality)
 public void createNewTable(String tblName)
 public void createNewTrigger(String tblName)

}

Fields:
String SqlConnectionStr – contains the connection string that makes it possible to connect to
the database server

Constructors:
DBOper() – basic constructor without any argument – prepares the default connection string
and assigns the value to the class field

public DBOper(String SrvName, String DbName, String UserName, String Pass, Boolean

PersistSecInfo) – constructor that creates the object instance, with the connection string
built using constructor’s arguments

 HO2-300 05/2010 Data acquisition system
 with database using OPC

22

Methods:
public void changeConStr(String SrvName, String DbName, String UserName, String Pass,

Boolean PersistSecInfo) – used to change the elements of the connection string

public void getValuesBetweenTime(DateTime startTime, DateTime endTime, String

tblName, DataGridView dgv) – retrieves the data from the database – data is collected from
the tblName table for the period beginning on startTime and ending on endTime. Then the
data is connected as the data source to the dgv DataGridView on the user interface

public void writeToDB(String tblName, String value, DateTime timeStmp, int quality) –
writes the data to the database – data are inserted into the tblName table, particularly the
data consists of value, timeStmp and quality

public void createNewTable(String tblName) – executes the database stored procedure
responsible for creating the table for another OPC Variable, the table name to be created is
the tblName

public void createNewTrigger(String tblName) – executes the database stored procedure
responsible for creating the trigger that fills the database write timestamp in the table for
the table tblName

7.2. XML operations

The application that performs operations on the database and communicates over the

network always possesses some set of settings that is necessary for maintaining user-

defined configuration as well as other information that should not be lost after closing the

application. The same situation can be observed in our project. We need to read/write the

settings of OPC server, OPC variables, database server and instead of using the INI files, we

decided to do that by means of XML technology. Following functions and procedures

perform the operations on the XML settings files.

XML methods connected with the main application form:
public void readWriteStatusXML(List<CDbWrite> list) – reads which monitored variables
from the list are being written to the database

public String readServerNameXml() – returns the OPC server name

public DbSet readDbSettingsXml() – returns the object of DbSet type, which is a structure
containing database settings, with information about the current database settings

 HO2-300 05/2010 Data acquisition system
 with database using OPC

23

public void writeDbSettingsXml(DbSet currentDbSet) – writes the database settings stored
in the currentDbSet structure to the XML settings file

XML methods connected with the server name form:
public void readFromXml() – reads the server name from the XML file and puts it in the
appropriate text field

public void writeToXml() – writes the entered server name to the XML file

XML methods connected with the OPC variables form:
public void readFromXml() – reads information about monitored OPC Variables from XML
file and puts them into a ListView

public void writeToXml() – writes information about monitored OPC Variables to XML File

XML methods connected with the database write form:
private void getVariableNames(ListView lv) - reads information about variables from the
XML file, and puts them into the lv ListView

private void getWritableVariableNames(ListView lv) - Reads information whether the value
of monitored variable should be put into database or not and enters appropriate variables
into the lv ListView

public void writeChangesToXml() - writes all the changes made on the ListView control to
the XML file

7.3. OPC read

One of the main parts of our project is cooperation with various OPC Servers. Particularly the

OPC2DB application stays in stick connection with the TopServer, which is used as the bridge

between our application and the Java OPC UA server. Library provided by the TopServer

manufacturer gives the opportunity to call OPC read functions and modify some of their

parts for custom purposes.

Every item, for which the read is performed provides information, assembled in the
following structure:

public struct OpcItemValue <TValue>
{
 public TValue Value { get ; set ;}
 public DateTime TimeStamp { get ; set ;}
 public OPCQuality Quality { get ; set ;}
 public int ClientHandle { get ; set ; }
 public int intQuality { get ; set ; }

 HO2-300 05/2010 Data acquisition system
 with database using OPC

24

 public String ItemID { get ; set ; }
}

The OpcServer class contains following methods performing OPC read, and making read
values accessible:
public OpcItemValue<TValue> SynchronousRead<TValue>(OPCItem item) - performs the
Synchronous read for the item and returns the OpcItemValue structure for the mentioned
item

void opcGroup_DataChange(int TransactionID, int NumItems, ref Array ClientHandles, ref

Array ItemValues, ref Array Qualities, ref Array TimeStamps) – procedure invoking data
changed event handler, if any, for each provided tag with the transaction identifier, number
of items and arrays for every OPC factor: Value, Quality and Timestamp

7.4. Stored procedures and functions

The assumption of the structure of our project is that OPC servers, OPC2DB application and

the database with its management service are working on the same machine. However it is

not the only option for these elements’ placement. For instance, the database could be put

somewhere else. Thus, operations performed directly on the database are designed to be

done by means of stored procedures and functions. Client application that requests data

from the database needs only to invoke the stored procedure with appropriate parameters.

insertValue (@value NVARCHAR(10), @opctime DATETIME, @quality NVARCHAR(20),

@tblname NVARCHAR(25)) – inserts OPC data: value, timestamp and quality into tblname
table

getValuesBetweenTime(@startTime datetime,@endTime datetime,@tblname

NVARCHAR(25)) – gets data from tblname table from the period of time starting at startTime
and ending at endTime

getAllValues(@tblname NVARCHAR(25)) – gets the whole contents of tblname table

dropTable(@tblname NVARCHAR(25)) – deletes the tblname table

createTrigger(@tblName NVARCHAR(25)) – creates the trigger for tblName table,
responsible for entering the timestamp of database write

createNewTable(@tblname NVARCHAR(25)) – creates new table with the name tblname for
new OPC variable

 HO2-300 05/2010 Data acquisition system
 with database using OPC

25

 insertTime<table_name> - every trigger has the name created according to this pattern, for
example the table ”NEWVALUE” will have the trigger insertTimeNEWVALUE created for it

All above procedures have been written using the Transact-SQL language and their code is
enclosed in the Appendix A.

7.5. User interface

The graphic user interface (GUI) made for the OPC2DB application consists of seven forms.

Each form has, of course, its own purpose and the functionality of every form has been

thoroughly described below. Shape of forms may differ depending on the Windows version,

the application has been built, run and tested under Microsoft Windows 7 Professional and

figures used in the description are specific for this particular version.

7.5.1. Server name form

Just after starting the application the form for entering the OPC Server (TopServer) instance

name. There is the name of instance read from OPCServer.xml supplied by default.

Figure 4 - Server choice form

7.5.2. Main form

When the user selects the instance to connect to, application’s main form is loaded.

Depending on the state of the OPC read operation its view is a bit different. Moreover,

when the user decides to acquire data stored in the database, the content of some elements

changes as well.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

26

Figure 5 - Main form of OPC2DB application (OPC read disabled, no data fetched from database)

Detailed description of the form’s elements:

1. Main menu
2. Database group box
3. Name of the OPC variable monitored by the application
4. Date/Time pickers for specifying the time period for data read from the database
5. Button for executing the database read
6. OPC group box
7. Current value of the variable selected in 3. (When OPC read is enabled)
8. Name of the server
9. Name of the group
10. Name of the variable
11. Update rate in milliseconds
12. Enable/Disable OPC read
13. Apply the entered update rate
14. Status of the OPC read
15. Grid view for the data acquired from the database

On the figure below the same main form is enclosed, but with other options active. The OPC

read status is marked as enabled and data from the database is read for the given period of

time.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

27

Figure 6 - Main form of OPC2DB application (OPC read enabled, data fetched from database)

7.5.3. Database server settings form

Having selected Options->Database the user is able to change database server settings. This

simple form consists of text fields for entering the information required to successfully

connect to the database server. User is requested to enter Host name or IP address, name of

the database, name of the user that has enough privileges for the operation that could be

performed using the OPC2DB application, user’s password. Last thing is to select or unselect

the checkbox Persist Security Info.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

28

Figure 7 - Database server settings form

7.5.4. Database variables’ write form

The form that allows users to select which of the monitored tags’ values are written to the

database is shown after selecting Options->Write. Form is constructed mainly from two list

views. Left one shows the whole list of monitored variables, while the right one is filled only

with those, which are currently selected for the database write. The basis for filling this form

is the information collected from the OPCVariables.xml file, when the application is started.

Figure 8 - Database variables' write form

 HO2-300 05/2010 Data acquisition system
 with database using OPC

29

7.5.5. OPC Variables form

As mentioned earlier, information on monitored variables are stored in the

OPCVariables.xml file, however all changes are supposed to be made on this very form of

OPC2DB application. As soon as the form is loaded, user is shown variable names, status of

the database write, descriptions and measuring units of every monitored OPC tag.

Figure 9 - OPC Variables form

The importance of this form can be observed, when the Add variable… button is clicked.

Apart from filling the information about new variable, its description etc. adding new

variable calls appropriate stored procedure in the database, creating new table and proper

triggers in the tablespace. Similarly, when the user decides to delete the variable (delete

option is available in the right-click context menu) its database table is dropped.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

30

Figure 10 - Add variable form

7.5.6. About form

Information about the project which includes this application can be found in the about
form, accessible through Help->About option.

Figure 11 - About form

7.6. Additional libraries

Apart from using the OPC2DB application for local data monitoring and applying the changes

to the configuration our project is providing the OPC HDA server for clients who want to use

this protocol for acquiring the historical data. As we mentioned earlier in the report the OPC

HDA Server SDK has been used as the base for fulfilling this task. However, the provided SDK

does not contain any mechanism for reading the data from data storage other than the CSV

file. To prevent the changes that would cause any unpredicted errors the best solution we

 HO2-300 05/2010 Data acquisition system
 with database using OPC

31

decided to supply the HDA server with the DLL containing all necessary database connection

interfaces. The other reason for such solution was the low level code used in its

development that would not be able to cooperate with the C++ SQL library efficiently

enough. Functions and procedures included in the DLL are as follows:

int GetNumberOfData(char* tblname) – returns the number of records (rows) in the
tblname table

void ReadValues(char * tblname, double * resTable) – reads OPC values from the tblname
table and stores them in the resTable array

char ** ReadTimestamps(char * tblname, int dataNum) – returns array of dataNum read
OPC timestamps from tblname table

void ReadQualities(char * tblname, int * resTable) – reads OPC qualities from the tblname
and stores them in the resTable array

7.7. Additional software

OPC HDA server that we included in our project to provide remote access to the historical

data already stored in the database using OPC HDA client uses its own XML file with the

information about every OPC variable that is offered to the client. In order to keep the HDA

server variable list up-to-date an additional console application updateXML was required. It

has one task – check the variables configured by the OPC2DB application to be monitored

and create the XML settings file for the HDA server.

We developed following classes in the application:

class varData
{

String description;
String unit;
String varName;
String dbName;

}

Objects of this class store information about every variable – description, unit, name and the

related table name in the database.

class xmlList
{

private String DataBaseName;
private List <String > variables;
private List <String > attrNames;

 HO2-300 05/2010 Data acquisition system
 with database using OPC

32

private List <String > attrTypes;
private List <String > attrValues;
private List <varData > varsAttrValues;

public List <String > readVarsFromXml()
private String readDbNameXml()
private List <varData > getVarAttrValues()
private void fillAttrNames()
private void fillAttrTypes()
private void fillAttrValues(varData currentVarData)
public void updateHDAXml()

public xmlList()

}

Object of this class is crucial for this application, as its methods perform all the necessary

operations for the XML file to be updated.

Its fields contain information about: database name, list of variable names, list of variable

attributes’ names, list of variable attributes’ types, list of variable attributes’ values and list

of all attributes values’ for every variable.

Methods perform following operations:

- Reading the database name
- Reading variable names
- Fetching the attribute values for the variables
- Filling all of the lists with appropriate data
- Creating the new HDA server configuration file

7.8. Further development

We proudly present the fully operational system, however we are aware of undeniable facts

that in the future some changes would be made and should be made. The OPC HDA client

development is left to the user that would use this kind of software. We enclose, however

the sample client in our project, but any custom actions or features needed should be

implemented in the future.

Other element of the project that could be changed in the future is the usage of the

TopServer. The OPC UA server that is running on the same machine at the moment requires

the bridge to the database application and that is the role of the TopServer. However,

developers may think of changing the structure of the OPC connection in the project and

replace the library provided by TopServer manufacturer with their own set of methods that

would make it possible to read the variable values straight from the UA server. Of course,

 HO2-300 05/2010 Data acquisition system
 with database using OPC

33

the changes to the class OpcServer containing functions responsible for the communication

with the current OPC server will be indispensable.

7.9. Configuring the operating system

Writing the code of the OPC2DB application and additional libraries or applications were the

biggest parts of developing the Windows part as for the time spent on creating those

elements. However it turned out that it had not been enough for programmes to start

working effectively. The problem was lying in the security settings of the Windows system.

OPC HDA server was made on the basis of the DCOM model so it required a lot of effort to

set the DCOM settings properly for all services enabling data to be accessible through the

OPC HDA protocol.

Services that are of utmost importance here is the OPC HDA server itself but also the

OPCEnum service that browses the machine, searching for all instances of OPC servers

running on it, and showing them to the clients, waiting for the connection.

All necessary steps that need to be undertaken to configure the Windows DCOM settings are

enclosed in the Appendix C.

7.10. Principle of operation

This point describes how the Windows part of our project really works. It does not include

the OPC UA server, as it is the part that should be implemented on the Linux based NPE

controller, but at the moment is impossible due to unavailability of the Java Virtual Machine

for the ARM processor, compatible to the version for which the OPC stack was built.

When the OPC2DB application is started, the user is asked to specify the name of the OPC

server, from which the data will be acquired, name of server from the previous session is

entered as default (server information is stored in theOPCServer.xml file). Then the list of

variables, specified in the OPCVariables.xml file is being checked. If the OPC server does not

possess any of the variables specified in the file on its list, the user is informed about that

fact. The main form is displayed, and after turning the OPC read to the ON state the program

starts to fulfil its main task, which is writing to the database values read from the OPC server.

All variables (tags) specified on the OPC Variables form are entered into the new group

subscribed in the TopServer. When the value of any tag in that group changes there is an

 HO2-300 05/2010 Data acquisition system
 with database using OPC

34

event triggered and the OPC2DB application receives the list of new variables’ values. Then

application checks, which of the tags have been specified to be written in the database

(which can be done using Write form). All values that are supposed to be written into the

database are passed to proper tables and the situation repeats.

When user is entering the new tag to be monitored, a new table in the database is created

for that tag, whether the database write option is enabled or not. It is a sort of preparation,

as the mentioned option might be selected in future. Information about the status of

database write for each tag is also kept in the OPCVariables.xml file.

Beside the main functionality, OPC2DB application is also the local viewer of data already

stored in the database and their current values. So that, after enabling the OPC read, current

value of selected tag is displayed on the main form, and after specifying the time period that

is relevant for the user, values, timestamps and qualities are fetched from the database and

shown to the user.

Note that settings concerning monitored tags, including all options connected with them are

loaded to the memory at the application start, so every change made to the configuration

requires application to be restarted.

As for the OPC HDA server, it does not require any attention after configuring the operating

system to cooperate with it properly (see Appendix C).

Figure 12 - Windows part's principle of operation

OPC2DB

SQL – Read/Write

OPC UA
Server

Custom
DB

Interface

Database

TopServer
OPC UA -
DA Brigde

OPC HDA
Server

OPC HDA
Client

Current

Buffered

opc.hda://

opc.da://

 HO2-300 05/2010 Data acquisition system
 with database using OPC

35

8. Linux part implementation

Linux-based part of the project consists of several sub-parts. First are bash scripts providing

access to the Internet, mounting shared folders and setting configuration of NPE controller.

Second is Java data gathering application, which is able to use one of existing protocols of

operating system and connect to main node of our system. Third part is OPC UA server,

which is sharing data gathered from each mediation node. Despite of this part is going to be

run on Windows machine, it is considered as one of Linux parts because it was strictly

connected with development of software for NPE, is written in portable Java language and

can be run on Linux desktop system also.

8.1. NPE scripts

NPE is Linux-based industrial computer, which can be configured almost like desktop

computers with Linux system. We prepared some bash scripts[7] that provide access to

internet and are loaded into memory with every system start[5]. Below we enclose short

reference of most important of them.

- connect.sh

#!/bin/sh
touch /tmp/connect_log
echo "Connecting to Telenor EDGE..."
usleep 50000
echo "Logging to /tmp/connect_log started."
cp -f -r /mnt/mtd/ppp /etc >> /tmp/connect_log
usleep 10000
echo "Starting GSM modem..."
gsmon >> /tmp.connect_log
usleep 10000
echo "Applying EDGE connection modem settings..."
modem /dev/ttyS1 230400 "at+ipr=115200" >> /tmp/con nect_log
usleep 20000
modem /dev/ttyS1 115200 "at+ifc=0,2" >> /tmp/connec t_log
usleep 20000
modem /dev/ttyS1 115200 "at&d0&c1e1v1s0=0" >> /tmp/ connect_log
usleep 20000
echo "Starting PPP daemon..."
pppd call telenor-edge-ttyS1 >> /tmp/connect_log
usleep 20000
route del default
echo "Setting ppp0 as default gateway..."
usleep 10000
route add default gw 10.0.0.1
usleep 20000

 HO2-300 05/2010 Data acquisition system
 with database using OPC

36

route >> /tmp/connect_log
echo "Done."

- rcs.sh

#!/bin/sh

Custom System Startup script
Run once at boot time

Start selected services
/etc/init.d/rcS0
Put custom actions here
usleep 20000
cp /mnt/mtd/connect /bin
chmod 777 /bin/connect
connect

- edge-gprs-connect-chat-telenor.sh

#/etc/ppp/edge-gprs-connect-chat

TIMEOUT 5
ECHO ON
ABORT '\nBUSY\r'
ABORT '\nERROR\r'
ABORT '\nNO ANSWER\r'
ABORT '\nNO CARRIER\r'
ABORT '\nNO DIALTONE\r'
ABORT '\nRINGING\r\n\r\nRINGING\r'
SAY "Press CTRL-C to close the connection at a ny stage!"
TIMEOUT 30
'' '\rAT'
OK 'AT+CFUN=1,1'
#OK 'AT+CPIN=""'
OK 'ATE1\d'
SAY "\nWaiting for logged to GSM network..."
SAY "\ndefining PDP context...\n"
OK '\dAT+CGDCONT=1,"IP","telenor","",0,0'
#OK 'AT+CBST=81,0,1;+CHSN=6,0,0,0'
OK 'ATD*99***1#'
TIMEOUT 10
SAY "\nwaiting for connect...\n"
CONNECT ""
SAY "\nConnected."
SAY "\nIf the following ppp negotiations fail, \n"
SAY "try again. Sometimes the waiting time to logged to gsm

network is to short.\n"

- telenor-edge-ttyS1.sh

#/etc/ppp/peers/edge-gprs

Debug info from pppd:
You can comment this off, if you don't need more info
debug

Path to modem, you should change this line if you r modem is

connected to /dev/ttySX
and it isn't linked to /dev/modem. See dmesg afte r put your modem to

 HO2-300 05/2010 Data acquisition system
 with database using OPC

37

socket.
/dev/ttyS1

Max speed
230400

Use hardware flow control
nocrtscts

Don't keep pppd attached to the terminal:
updetach

Connection options
noauth
user dj

Path to chat script connect/disconnect
connect "/usr/sbin/chat -v -f /etc/ppp/edge-gprs-co nnect-chat-telenor"
disconnect "/usr/sbin/chat -v -f /etc/ppp/edge-gprs -disconnect-chat"

IP address configuration
noipdefault
usepeerdns

defaultroute

8.2. Mediation node application

On NPE computer data gathering program is going to be run. It main task is to communicate

with sensor network, to store and pack the gathered data, to buffer it in case of lack of

connection with central node and to send the data when connection is established. For this

purpose we designed multi-threaded Java application, which possesses those features. In

future this application can be equipped with some artificial intelligence algorithms, which

would be responsible for local data analysis.

Below we enclose reference of main functions implemented in this part of our system.

 /**
 * Reads and returns new values of OPC variable s
 * @param currentVariables List of variables
 * @return List of new values of variables
 */
 public static List getNewData(List currentVariables)

 /**
 * Bufferes given variable in the file
 * @param variable Variable to be archived
 */
 private static void archiveVariable(Variable variable)

 /**
 * Gets current configuration of variables
 * @param filename Configuration file name
 * @return List of variables

 HO2-300 05/2010 Data acquisition system
 with database using OPC

38

 */
 public static List getVariables(String filename)

 /**
 * Gets all nodes with given name from given XM L file
 * @param filename Name of file to search in
 * @param nodename Name of node to search for
 * @return Enum with all found nodes
 */
 public static Enumeration getNode(String filename, String nodename)

 /**
 * Sends give message to server and receives th e answer
 * @param message Message to be sent
 * @return Answer returned from server
 */
 public String sendReceive(String message)

 /**
 * Creates new socket and connects to the serve r
 * Also creates IO streams using created socket
 * @param host Address of the server
 * @param port Port used for communication on t he host system
 * @return True if connected, otherwise false
 */
 public boolean connectServer(String host, int port)

 /**
 * Performs gzip compression of given string
 * @param str String to be compressed
 * @return Compressed string
 * @throws IOException
 */
 public static String compress(String str) throws IOException

 /**
 * Performs gzip uncomprossion of given string
 * @param data String to be uncompressed
 * @return Uncompressed string
 * @throws IOException
 */
 public static String uncompress(String data) throws IOException

8.3. OPC UA Server application

The OPC UA server application is built using Prosys' Java SDK. It provides all necessary

functions creating OPC nodes and address space, allowing to manage OPC nodes and

updating OPC variables value, timestamp and quality. We used our own idea of distributed

data providing, which minimises traffic via GPRS network by packing sent data. Our OPC UA

server is multi-threaded, concurrent application. For every new data provider new thread is

invoked. Another threads are responsible for data providing, another for user interface and

 HO2-300 05/2010 Data acquisition system
 with database using OPC

39

another for OPC data sharing. That's why our OPC UA server needs to be run on quite

powerful computer.

Reference of most important functions used in this part of our project can be found in the

Prosys' OPC UA SDK Javadoc.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

40

9. Organization

Organization of the project is divided into three groups. We can name the ordering

institution, supervising group and the developers group.

Order placed by
Høgskulen i Sogn og

Fjordane

Project supervisor

Marcin Fojcik
PROJECT

SUPERVISORS

Project supervisor

Joar Sande

Kamil Folkert

Michał Bochenek

DEVELOPERS

Linux
- Java Code
- acquisition of data

Windows
- C# Code
- MSSQLS database

Figure 13 - Project organisation

 HO2-300 05/2010 Data acquisition system
 with database using OPC

41

9.1. Developers

By developers we understand two persons: Kamil Folkert and Michał Bochenek. They are the

students of Polish Silesian University of Technology (pl. Politechnika Śląska) who came to

Høgskulen i Sogn og Fjordane on the STF exchange programme. Their work is conducted

within the confines of Senior Design Project on the premises of HSF. As the project is divided

into two parts, according to the runtime platform it does not need to have the leader whose

task would be the subtask distribution. Kamil Folkert is responsible for the Linux part, and

the Windows part is dependent on the work of Michał Bochenek. Additionally each person

has to take part in the documentation creation and the website building.

Name: E-mail:

Kamil Folkert kamilf@stud.hisf.no
Michał Bochenek michalb@stud.hisf.no

9.2. Project supervisors

Project possesses two supervising persons, who are: Marcin Fojcik and Joar Sande. They

both are employees of Sogn og Fjordane University College. Also, the HSF is the company

that placed the order for our project.

Name: E-mail: Tel.:

Joar Sande Joar.Sande@hisf.no 57 72 26 29
Marcin Fojcik Marcin.Fojcik@hisf.no 57 72 26 70

9.3. Order placement company

Project is being made for the Høgskulen i Sogn og Fjordane that is represented by Marcin

Fojcik and Joar Sande. The final result is going to be prepared to be a part of the research

programmes made in cooperation with Silesian University of Technology.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

42

10. Project administration

The project has been realized within the confines of school classes in Senior Design Project.

The subject code is HO2-300. The subject has a value of 20 ECTS points and took time from

08.03.2010 to 07.06.2010. Each member of the project group spent about 500 hours

working on the project.

10.1. Carrying out project according to plan.

Our project can be considered as very innovative, OPC UA still is not very popular and there

are not many examples of automation based on this protocol. For that reason our project

was developed in sequential order - before every part of work, we had to find

documentation of used Software Development Kits, standards and protocols, then we

developed the part as stand-alone and in the end we integrated it with previously compiled

software. This system seems to be very efficient in such cases when you have to go through

lots of documentation and solve various problems with compatibility. During the project

development we faced many difficulties, but we managed to carry on due to well-prepared

project development plan. In the area of planning Gantt Diagram was very helpful, because

thanks to it, we divided time of our work into reasonable periods. As we were supposed, we

spent on the project about 500 hours per person.

10.2. Gantt diagram

During the last few decades, when computer science evaluated as an independent science,

to improve the quality of intellectual goods developed in its domain, some good manners

were invented and introduced into common practice. One of them is defining a project

schedule and developing the project according to it. There are many notations used for

defining such schedule. The one providing great clearness is the Gantt diagram.

In our schedule we took all the project development phases into consideration and we

assigned the time period to every one of them, according to extracted subtasks. We defined

time dependencies between project development phases as well. It allowed us to broaden

our perspective on the project and to get aware of possible problematic issues. Despite

 HO2-300 05/2010 Data acquisition system
 with database using OPC

43

thorough planning and deep consideration there were, of course, some displacements of

time periods assigned to the most complex implementation parts. The Gantt diagram

prepared for preliminary project report is an appendix to this document.

10.3. Week schedule

Before we started the work on the project, we created the week schedule. It represented

hours which our group should spend on project development. Work on the project

proceeded according to the plan prepared at the beginning. That week schedule we enclose

in the table below.

Table 2 – Week schedule

Time Monday Tuesday Wednesday Thursday Friday

8:30 - 9:30

9:30 - 10:30

10:30 - 11:30 Meeting

Project Project Project Project

11:30 - 12:30

Project

12:30 - 13:30

13:30 - 14:30

14:30 - 15:30

15:30 - 16:30

16:30 – 17:30

 HO2-300 05/2010 Data acquisition system
 with database using OPC

44

10.4. Meetings schedule

There were some differences between meetings schedule prepared at the beginning and the

actual meetings times. Most of the meetings took place in the right time with two

exceptions. The meeting planned for the 26th April and 3rd May were postponed for a week

ahead as we did not want to present intended parts of the project not fully operational.

Meetings were always called via e-mail to both supervisors. Below we enclose a table

showing actual meetings schedule.

Table 3: Meeting schedule

Date Place Time Attending groups

26.02.2010 Linus 12:00 – 13:00 Project group

08.03.2010 Linus 10:30 – 11:30 Project group

15.03.2010 Linus 10:30 – 11:30 Project group

19.04.2010 Linus 10:30 – 11:30 Project group

03.05.2010 Linus 10:30 – 11:30 Project group

10.05.2010 Linus 10:30 – 11:30 Project group

 HO2-300 05/2010 Data acquisition system
 with database using OPC

45

11. Budget of the project

Project was intended for a group of two students which makes about 1000 hours of work.

The time we spent on the project was divided into four parts: analysis of problem,

implementation, test and document.

To fulfil the given tasks we needed necessary development environment. The Java

programme was written using the free of charge NetBeans IDE. The C# programme and the

T-SQL procedures required Microsoft tools such as Microsoft Visual Studio and the SQL

Management Studio which are the commercial solutions. However, as we are students at

the Silesian University of Technology, we are taking part of the MSDN Academic Alliance

programme which gave us the opportunity to use mentioned software free of charge for

non-commercial purposes. The same rule was applied when using Microsoft Project

Professional.

The main cost part focused on the NPE controller. To properly test the system we needed at

least three of those controllers. According to the fact that one piece was lent by the Silesian

University of Technology we needed to buy another two controllers and the necessary

equipment for them, which included: SD memory cards and pre-paid cards, making the

transmission over GPRS possible. Overall cost of the system came as the sum of 8400 NOK.

Detailed costs of the project are listed in the table on the next page.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

46

Table 4 - Budget approximation

No. Requirement Cost

1. Two computers - provided by the University College 0 NOK

Linux part

2. Programming environment – Eclipse 0 NOK

3. Power supply – provided by the University College 0 NOK

4. NPE-9x00-EDGE – Linux Embedded Controller x2

(we have one controller borrowed from Silesian University of
Technology, but we need at last two more to test communication,
time synchronisation and MSSQL multiple-source data transfer)

2x4000 NOK

5. GSM/GPRS antenna – provided by the University College 0 NOK

6. Pre-paid card x2 2x100 NOK

7. SD memory card x2 2x100 NOK

8. 12V battery x2 – provided by the University College 0 NOK

Windows part

9. OPC Server – TopServer Demo Version 0 NOK

10. Microsoft Visual Studio 2008 Professional 0 NOK

11. Microsoft SQL Server 2005 0 NOK

12. Microsoft Project Professional 0 NOK

TOTAL 8 400 NOK

 HO2-300 05/2010 Data acquisition system
 with database using OPC

47

12. General project evaluation

As final result of our project development process we managed to implement complete

system providing multiple input and output interfaces, modern data gathering and sharing

algorithms. Our system can be used in many various areas of data processing applications. It

allows establishing communication channel using local network, Internet cable connection or

GPRS/EDGE connection.

The most difficult part of our project was to design and prepare solutions for

implementation various input and output interfaces working together. We planned to use

OPC UA as data sharing protocol and we managed to do this, but during project

development we decided to change the general idea and instead of using multiple OPC UA

servers embedded in NPE industrial controller we designed data sharing part of our system

as one central OPC UA server with distributed data providing part. We used Java OPC UA SDK

which is based on Java 1.6 UA Stack. As soon as JVM for NPE will be deployed by Sun

Microsystems or other vendor the OPC server can be embedded in NPE.

We had many problems with OPC HDA server configuration because of complex DCOM

security settings in Windows OS. Finally, we managed to find correct sequence and OPC HDA

server is fully operational and can be accessed locally or remotely.

OPC Unified Architecture seems to become the most popular protocol for process data

sharing. However, many areas of its specification must be improved and updated. There is

lack of information about details of implementation process. Most of the books and other

materials we found was too general and did not explain more complex situations, like

deploying OPC UA server on Unix-based operating systems. We hope that our work would

be useful for the next adepts of OPC UA application programming. That's why we provide full

documentation of the project, including code documentation for code completion

mechanisms for C# and Java IDEs.

Despite the fact that we divided our project development process into two parts, it was very

valuable lesson of team work. We had to consult many issues to provide consistent solutions

 HO2-300 05/2010 Data acquisition system
 with database using OPC

48

and many times we tested our project's parts each other out for more efficient errors

elimination.

Due to the project development we got great knowledge about various types of OPC

protocols, Java programming language and its runtime environments, embedded systems

programming and GPRS data transfer providing. We are sure that experience we got with

this project is going to be for us a big handicap in the future. We are grateful for anyone who

was supporting us during project development, especially our supervisors - Joar Sande and

Marcin Fojcik, the exchange programme coordinator - Eli Nummedal, our master thesis

promoter - Rafał Cupek, consultants and vendors of outer solutions.

 HO2-300 05/2010 Data acquisition system
 with database using OPC

49

13. List of figures

Figure 1 - Simple relational database

Figure 2 - Relational database terms

Figure 3 - System overview

Figure 4 - Server choice form

Figure 5 - Main form of OPC2DB application (OPC read disabled, no data fetched from

database)

Figure 6 - Main form of OPC2DB application (OPC read enabled, data fetched from database)

Figure 7 - Database server settings form

Figure 8 - Database variables' write form

Figure 9 - OPC Variables form

Figure 10 - Add variable form

Figure 11 - About form

Figure 12 - Windows part's principle of operation

Figure 13 - Project organisation

14. List of tables

Table 1: Relational database terms and their SQL equivalents

Table 2: Week schedule

Table 3: Meeting schedule

Table 4: Budget approximation

15. List of appendixes

Appendix A: Gantt diagram

Appendix B: Transact-SQL stored procedures and functions

Appendix C: Configuring DCOM settings for OPC HDA server

Appendix D: Reports from project meetings

 HO2-300 05/2010 Data acquisition system
 with database using OPC

50

16. Reading list

1. OPC Foundation

http://www.opcfoundation.org

2. TopServer specification

http://www.toolboxopc.com/html/specifications.html

3. Microsoft Developer Network

http://msdn.microsoft.com/pl-pl/library/kx37x362(en-us).aspx

4. Wikipedia (definition for the abbreviations)

http://en.wikipedia.org/wiki

5. NPE-9100-EDGE Documentation

6. OPC HDA Documentation

7. GNU manual pages

8. “Database systems” R. Coronel

9. “Professional C#” S. Robinson, O. Cornes, J. Glynn, B. Harvey, C. McQueen,

J. Moemeka, C. Negel, M. Skimer, K. Watson

10. “SQL Server 2000 – Developer’s Guide” M. Otey, P. Conte

11. “SQL Server 2000 Programming” R. Dewson

