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Abstract 
 

The need for travel demand models is growing worldwide. Obtaining reasonably accurate level of service 
(LOS) attributes of different travel modes such as travel time and cost representing the performance of 
transportation system is not a trivial task, especially in growing cities of developing countries. This study 
investigates the sensitivity of results of a travel mode choice model to different specifications of net-
work-based LOS attributes using a mixed logit model. The study also looks at the possibilities of correcting 
some of the inaccuracies in network-based LOS attributes. Further, the study also explores the effects of dif-
ferent specifications of LOS data on implied values of time and aggregation forecasting. The findings indi-
cate that the implied values of time are very sensitive to specification of data and model implying that utmost 
care must be taken if the purpose of the model is to estimate values of time. Models estimated on all specifi-
cations of LOS-data perform well in prediction, likely suggesting that the extra expense on developing a 
more detailed and accurate network models so as to derive more precise LOS attributes is unnecessary for 
impact analyses of some policies.  
 
Keywords: Data specification; Level of service attributes; Travel mode choice; Network models; Mixed lo-
git; Error components logit  

1. Introduction  

The need for travel demand models is growing due to 
rising travel activities in response to increasing incomes 
and urban population in large cities in many developing 
countries in Asia and Africa. Detailed and accurate data 
relating to land use, transportation systems and their 
performance, and people’s travel behavior including their 
socioeconomic characteristics are needed to estimate the 
travel demand models. Such detailed data are not often 
collected routinely in most developing countries. Even if 
the data are available, they may not be accurate enough. 
Data on travel behavior and socioeconomic characteris-
tics are obtained from travel surveys while the data re-
lating to transportation level of service (LOS) attributes 
are mostly obtained from the zonal-based network mod-
els. Developing detailed and correct network models that 
can produce reasonably accurate estimates of LOS 
attributes is not trivial [1]. All cities may not have ade-
quate resources including human resources, money, 
technology and so on to develop such a network. Some-
times the LOS attributes have to be derived in a short 
time. Many rapidly growing cities in Asia and Africa 
usually lack appropriate network models and hence LOS 
attributes which indeed seriously constrain modeling 

travel demand. However, the data limitations are not 
confined to developing countries only. Even highly de-
veloped country like Norway may sometime lack accu-
rate data to model travel behavior. The modeler therefore 
has to use available data and consequently modeling ac-
tivities should account for such data limitations [2]. A 
LOS variable used in a model may contain a mixture of 
systematic and random errors or errors may not have any 
particular pattern in general. Some of the errors can be 
known, for example, missing toll, which can be corrected 
easily later, while others are unknown and cannot be 
corrected. 
   In light of the situations discussed above, this paper 
explores the sensitivity of model results to different spe-
cifications of network-based LOS attributes using mixed 
logit (ML) model with mode choice for work trips in 
Oslo as an example. Specifically, we used two different 
data sets of network-based LOS attributes. The first data 
set of LOS attributes (“striplos”) was obtained from 
network models developed in 2002 for the whole coun-
try. The LOS attributes were derived from scratch for the 
whole country with limited resources within a short time. 
Travel times by car were taken from an uncongested road 
network, although most car drivers in the Oslo-region 
experience congestion.  Coding of road tolls on the toll 
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cordon in Oslo was missing. Public transit fares were 
estimated as a function of distance despite the fact that 
Oslo has a flat fare system and the remaining region has 
a fare system based on the number of fare-zones trans-
versed. Some public transit routes were also missing. 
Those LOS attributes were used to estimate national 
transport models for the whole country [3] based on a 
national travel survey conducted in 2001.  
   Striplos had some obvious deficiencies with respect 
to cost of travel by public transport and car. These   are 
relatively easy to detect and make corrections for. Errors 
that stem from the coding of road network and public 
transport routes are more difficult to detect and make 
corrections for. In preparing the data, we made the same 
corrections that were made in estimating the national 
models. We used the same values for both directions if 
LOS attributes were missing for one direction. We also 
checked for unreasonable directional asymmetry of 
attributes for car driving.  
   The second set of LOS attributes (“nylos”) on the 
other hand was obtained from the well established net-
work model. The network model has been existed in the 
Oslo-region since 1990 and has been continuously up-
dated and improved. Travel time by car for the morning 
peak was also available. It was assumed that a return trip 
in the afternoon peak would take approximately the same 
time, although it may not be necessarily true. Public 
transport assignment was also based on another network 
model that, it is believed, should give better estimates of 
different travel time components of public transport. The 
coding of the road network was also better and more 
detailed. The nylos overcomes most of the deficiencies 
that striplos had so it is in general a typical LOS data of 
transportation system performance. Presumably, LOS 
attributes of nylos should be more accurate than that of 
striplos. However, nylos is by no means a perfect data set 
either. The nylos was used to re-estimate the simultane-
ous mode/destination choice model for work trips in the 
Oslo-region estimated for the national travel demand 
model [4].  
   There could be many instances in many cities, espe-
cially in developing countries, where LOS attributes 
have to be obtained with limited resources both with re-
spect to time, money and technology. The purpose of this 
paper is therefore to investigate the implications of using 
LOS attributes measured at different levels of accuracy 
in model results, including forecasting. We also explore 
whether it is possible to correct for the aforesaid limita-
tions relating to network-based LOS attributes.  
   As type and severity of errors in different variables 
may vary from case to case, the results presented in this 
paper can only be an example of the consequences of 
estimating the same model on two different sets of 
LOS-data, of which one presumably is of better quality 
than the other. As long as we are unable to quantify the 
quality of a data set and relate this in a meaningful way 

to the results of model estimation, it is impossible to 
draw general conclusions. 
   The remainder of the paper is organized as follows. 
Section 2 discusses the current state of knowledge rele-
vant to the study. Section 3 describes the theoretical 
background and modeling approach. Section 4 describes 
the data. Section 5 presents the results and discussion 
followed by conclusions in Section 6.   

2. Review of Literature  

This section briefly reviews the literature related to data 
accuracy and model results, and disaggregate travel 
mode choice model estimation with different specifica-
tions of network-based LOS attributes. 

2.1. Data accuracy and model results 

Alonso [5] investigates the implications of imperfect data 
on modeling and prediction. His investigation is not re-
lated to transportation but his conclusions are generally 
applicable to all fields including transportation using 
statistical analysis and modeling. Based on simple nu-
merical exercises, he generalizes a few rules of thumb 
for model building as follows: (i) avoid inter-correlated 
variables, (ii) add if possible, (iii) multiply or divide if 
addition is not applicable, and (iv) avoid taking differ-
ences or raising variables to powers as far as possible.  
He concludes in general that it is the correlation of input 
variables that causes large errors in outcome variables so 
he suggests avoiding the correlated variables. Most of the 
LOS attributes used in travel demand modeling are 
highly correlated. Given Alonso’s prescription, we could 
somewhat reduce the output errors if we could exclude 
the correlated variables in the model. He also suggests 
using simpler models if the input data are not that accu-
rate. Given Alonso’s thesis, formulation of a model may 
also help minimize the output errors.  Unfortunately, we 
cannot exclude cost and time, which are highly corre-
lated variables, to estimate the travel demand models.  
   Later Daly and Ortuzar [6] and Ortuzar and Willum-
sen [1] apply Alonso’s original ideas in transportation.  
Daly and Ortuzar [6] theoretically and empirically ex-
plore data aggregation in travel demand modeling, dif-
ferent types of errors in modeling and forecasting, and 
the trade-off between model complexity and data accu-
racy with focus on the forecasting of mode and destina-
tion choice. They recommend that (i) the model building 
should take into account the efficient allocation of mod-
eling resources, (ii) errors, especially those which violate 
basic assumptions of the model, should be minimized, 
and (iii) since measurement error is an important com-
ponent of the overall error in modeling, it should be mi-
nimized given the budget. They thus emphasize the most 
efficient allocation of modeling resources. 
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2.2. Mode choice model with different 

specifications of network-based LOS 

attributes 

Interest on mode choice model estimation with different 
specifications of network-based LOS attributes is not 
new. We briefly review the studies in this section. 
   Reid and Small [7] investigate the effects of using 
temporal disaggregation of trip data on traveler behavior 
models. Their main finding are: (i) peak average va-
riables tend to underestimate headways for public trans-
port users and in-vehicle times for car trips; (ii) model 
coefficients become biased and the magnitude of the bias 
can be quite severe in relatively complex choice func-
tions. 
   Train [8] explores the sensitivity of parameter esti-
mates to data specification in a logit model for travel 
mode choice. He analyzes the effects of correcting some 
of the inaccuracies in the network LOS attributes on the 
estimated parameters. He compares the parameter esti-
mates of models estimated on the standard network data 
and on temporally and spatially adjusted data so as to 
correct the problems in the standard network data. He 
seemingly concludes the following: (i) Temporal ad-
justment of the standard network data is perhaps advisa-
ble for analyzing policies affecting transfer wait times, 
(ii) Spatial adjustment seems advisable for policies af-
fecting distances to bus stops; and (iii) It seems no ad-
justment is needed for analyzing policies that affect nei-
ther walk times nor transfer wait times. However, he 
evaluates the sensitivity of the parameter estimates just 
by ‘eye-balling’ without taking into consideration of the 
variances of the estimates, their relative magnitudes, and 
the impacts on aggregate forecasting. Further, he is not 
sure whether the adjustments in the standard network 
data yield better estimates of the values of walk and 
transfer wait times. It seems that his findings are not 
clearly irrefutable.  
   Similarly, Ortuzar and Ivelic [9] investigate the effect 
of using more precise measures of the variable ‘waiting 
time’ in public transport modes. They conclude that 
clearly better models are resulted in by more detailed 
values, entailed replacing crude measures based on the 
average frequency at different distances to the central 
business district by more accurate values obtained with 
the aid of state-of-the-art public transport assignment 
models (cited in [6]). 
   Further, Ortuzar and Ivelic [10] examine both in 
theory and in practice the problem of using less than ful-
ly disaggregate date in estimating logit model of travel 
mode choice for a trip to work. They replaced peak av-
erage values of travel times by more precise values for 
each traveler depending on the exact time of the trips. 
They estimated the models with and without temporally 
disaggregate data on travel times. Contrary to their own 
findings [9], they could not conclude that the models 

estimated on temporally disaggregate data resulted in 
significantly better models and stable parameter esti-
mates. They suggest assigning priority to cost over accu-
racy of model results in such cases.  
   Recently, Steimetz and Brownstone [11] use multiple 
imputation approach to overcome the problem of noisy 
data to estimate mode choice model in estimating com-
muters’ value of time. Similarly, to solve the problem of 
sparse data, Monzon and Rodriguez-Dapena [12] use 
double weighted estimator for long distance transport 
mode choice models to estimate the choice of mode of 
transport for long-distance trips. They successfully vali-
dated the method in the case study of the Madr-
id-Barcelona interurban corridor in Spain. They claim 
that their results allow achieving a cheaper survey pro-
cedure for interurban transportation planning activities. 
   Daly and Ortuzar [6] mention in their paper that the 
coefficients of the detailed models are significantly better 
than those of the models estimated on spatially aggre-
gated data of LOS attributes. From the review of the em-
pirical studies of disaggregate mode choice model esti-
mation using LOS attributes measured at different levels 
of accuracy, they apparently conclude that  the accuracy 
of LOS attributes to estimate the mode choice models 
depend on the relative importance of the various consid-
erations and the context. Finally, they recommend that (i) 
The modeling process should take into consideration of 
the most efficient allocation of modeling resources, and 
(ii) Although errors arising in modeling cannot be com-
pletely eliminated, errors, particularly that violate the 
basic assumptions of the model, should be minimized. 

2.3. Summary and discussion 

Measurement error is one of the major problems in sta-
tistical analysis and modeling. It is generally accepted 
that errors in input data create errors in models, and often 
those errors can become far more serious in the model 
than appears in the data. It is also mostly accepted that 
developing an accurate and detailed network model to 
derive accurate enough LOS attributes is not that trivial 
[1]. Daly and Ortuzar [6] therefore emphasize that errors 
especially those which violate basic assumptions of a 
model should be minimized.  
   Studies on the problem of disaggregate travel mode 
choice model estimation using LOS attributes measured 
at different levels of accuracy are conducted in different 
situations for specific problems with different assump-
tions. Additionally, those studies focus on different va-
riables and do not have consistent findings. Consequent-
ly, it is difficult to draw general conclusions. The study 
in this paper examines the effects of using network LOS 
attributes measured at different levels of accuracy on 
relative magnitudes of the coefficients, specifically a 
value of time implied by travel demand models, and ag-
gregate forecasting. The modelers will frequently en-
counter the situation dealt in this paper.   
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   We generally expect that requirement of accuracy of 
LOS attributes may depend on the purpose of developing 
a model to some extent [13, 6]. A systematic error in one 
or more variables may not necessarily result in severe 
consequences if model applications also use the input 
data having the same systematic error. The parameter 
estimates will in most cases be robust to the error. But 
systematic error may lead to severe consequences if the 
purpose is to estimate the implied value of travel time 
savings for different modes. Random measurement errors 
always bias parameters in an unpredictable way [14].  

3. Data  

We use data from the Norwegian national travel survey 
undertaken in 2001 in this study supplemented by a sim-
ilar travel survey undertaken in the Oslo-region in the 
same period and the LOS attributes of transportation 
system obtained from network models. The survey ran-
domly selected 20,751 people. The respondents were 
asked about the socioeconomic characteristics of the 
household, his/her travel activities including daily tra-
vels, long travels, employment, work travel, 
spouse/cohabitant, household, household access to 
transport resources, and detailed information about the 
interviewees. A detailed description of the design and 
conduct of the survey, characteristics of the sample, and 
questionnaire administered can be found in Denstadli et 
al. [15]. The travel survey therefore provides the infor-
mation on actual choice and socioeconomic characteris-
tics of travelers including their households. This study 
uses a sub-sample for commuting trips to work, hereafter 
referred to as work trips, in Oslo of the national travel 
survey. The work trip is defined as a two way movement 
from home to work and back. Some trips had secondary 
destinations such as taking/collecting kids to/from kin-
dergarten, shopping at grocery, etc on the way to/from 
work. There are 2,946 such trips in the sub-sample. As a 
part of data validation, several screening and consistency 
checks were performed. Some observations were deleted 
during the data validation process so the final data set 
had only 2,876 work tours.   
   The possible alternatives for the population for work 
trips in the study area consisted of five modes, viz., 
walking (WK), cycling (CK), car driving (CD), car pas-
senger (CP) and public transport (PT) with actual modal 
shares of 8%, 6%, 52%, 5% and 29% respectively. These 
five modes serve as the universal choice set. Each indi-
vidual traveler may have different choice sets given their 
own circumstances and constraints. The criteria used for 
alternative availability when estimating the models on 
the different specifications of the LOS attributes were of 
course the same. As mentioned earlier, the two data sets 
of the network-based LOS attributes, namely, striplos 
and nylos, were used to study the models in this study.  
   Interzonal trips are sometimes excluded from model 
estimation since they do not appear on a network in the 

centroid-to-centroid travel. The exclusion of these trips 
results in biased sample thereby causing biased parame-
ter estimates of model and biased aggregate forecasting 
[16]. In this analysis, instead of outright deleting the 
intrazonal trips, they were included in the estimation. It 
was assumed that the length of the trip was equal to the 
length of the centroid connector and low speed for intra-
zonal trips by cars since the trips are short and usually 
stay on local roads. However, public transport was set 
unavailable for the intrazonal trips. 

4. Theoretical Framework and Model 

Formulation 

In this section, we present theoretical framework under-
lying choice modeling and model formulation.  

4.1. Theoretical framework 

Choice models based on random utility maximization 
(RUM) hypothesis are the most widely used tools to 
examine individual travel behavior [17, 18, 19, 20, 1]. In 
a RUM framework of choice modeling, a decision maker 
facing a mutually exclusive and collective exhaustive set 
of finite number of alternatives obtains utility from each 
alternative and chooses the one with the highest utility. 
But the analyst is not able to observe the utility of alter-
natives, therefore, decomposes the utility into two parts 
for analytical purposes: (i) an observable part and (ii) an 
unobservable part. The utility of the alternative i∈J for 
the decision maker n, Uin, can therefore be written as:  

    Uin = Vin + εin                           (1) 

                                                        
where Vin and εin represent the observed and unobserved 
parts of the utility of the alternative i for the decision 
maker n respectively from the point of view of the ana-
lyst. Vin is the systematic or representative utility. The 
systematic utility is deterministic in the sense that it is 
broadly a function of a vector of attributes of the alterna-
tive, Zin, and a vector of characteristics of the decision 
maker, Sn, so:   

Vin = V(Zin , Sn)                (2)     
                                                                

   RUM models of travel demand is a highly researched 
field where advanced models such as generalized ex-
treme value models allowing for advanced nesting struc-
tures (cross-nesting and multi-levels and recursive) and 
models with mixed distributions (e.g. mixed logit) [21, 
22, 20] are developed.  In recent years, advanced dis-
crete choice models, such as models with advanced 
nesting structures and models based on mixed distribu-
tions, are increasingly used to allow for flexible substitu-
tion patterns, correlation across alternatives and/or ran-
dom taste heterogeneity [22]. The mixed logit (ML) 
model is the most advanced model among choice mod-
els. Initially, Boyd and Mellman [23], and Cardell and 
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Dunbar [24] used the ML model in modeling automobile 
demand. Their models were not truly disaggregate be-
cause their dependent variable was market shares rather 
than individual customers’ choice and the explanatory 
variables did not vary over the decision makers. The ex-
tremely high cost of estimation (and hence implementing 
the results) prevented the use of ML model for many 
years after the initial development. The disaggregate ML 
model has been in the extensive use since the advent of 
high speed computers, mass storage devices, and simula-
tion. The flexibility of the model and decreased cost of 
computation have led to the widespread use of ML mod-
els in diverse fields, including political science [25], re-
source economics [26], transportation [27], peace and 
conflict [28], and business [29], to name only a few.  
   The ML is an intuitive, powerful and practical model 
that prevents the three limitations of the multinomial 
logit model by allowing for random taste variation, unre-
stricted substitution patterns, and correlation in unob-
served factors over time and space. McFadden and Train 
[30] prove that the ML model is a highly flexible model 
that can represent any RUM model. In order to realisti-
cally represent the individual choice behavior, the ML 
model has become one of the most widely used models 
in the field of demand modeling over the years. Since 
ML is the most advanced and flexible model among dis-
crete choice models, we used the ML model of travel 
mode choice in this paper.  

4.2. Formulating a mixed logit model 

An ML model includes a flexible random term ηin 
representing additional unobservable factors, indepen-
dent of εin, in its utility function [30, 19, 22, 21]. The ML 
model is thus given by:  

 Uin = Vin+ ηin + εin                     (3)
    

As evident by the notation, the random terms ηin vary 
across both alternatives and decision makers. The re-
searcher can assume any convenient and/or appropriate 
distribution for ηin. Consequently, the ML model is very 
flexible and free from restrictive assumption such as in-
dependent of irrelevant attributes. Unfortunately, the ML 
choice probabilities have no longer closed form due to 
the presence of ηin in utility function of the model. As a 
result, we have to estimate the model with the help of 
some numerical solutions such as numerical integration, 
numerical approximation, or simulation [19]. The choice 
probability of alternative i for decision maker n with the 
ML model is the integral of logit choice probability over 
the assumed distribution of random terms as given by:  

 ηηη
η

dfiLP
n

nnnin )()|(∫=     (4) 

where Ln(i|ηn) is the logit choice probability of alterna-
tive i for decision maker n conditional on ηn:  
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The ML models are normally derived either to allow 
flexible substitution patterns across alternatives or to 
accommodate random taste heterogeneity across decision 
makers [30, 19]. The former approach gives rise to the 
error components logit (ECL) model and the latter to the 
random coefficients logit (RCL1) model. One can also 
develop more advanced model to allow for random taste 
heterogeneity, inter-alternative correlation, and heteros-
cedasticity by combining the ECL-RCL approaches [22]. 
The ECL model allows some elements of η to be shared 
across some alternatives which in turn introduces corre-
lation between the random terms of these alternatives. 
The ECL model thus closely resembles the models using 
a nesting structure such as nested logit that accommo-
dates correlation across some of the alternative while it 
simultaneously accommodates random taste heterogene-
ity and heteroscedasticity, which the nested logit model  
does not [21].   
   The utility function of the ECL model is specified in 
such a way that error components (EC) create correla-
tions among utilities of different alternatives [19]:  

 Uin = Vin+ γn’zin + εin        (6)                          

where γn is a vector of random terms with zero mean and 
a covariance matrix Σ and zin is a vector of observed va-
riables relating to alternative i. Put succinctly, zin is a 
vector of binary variables that indicate the EC entering 
the utility function of alternative i. The ECL model re-
duces to the logit model if zin is 0 for all the alternatives 
meaning that the unobserved parts of the utility are un-
correlated across alternatives. Naturally, the choice 
probability with the ECL model does not have a closed 
form and thus requires the numerical processes to solve 
the integrals. The ECL model enables to estimate the 
error components that measure the relative sensitivity of 
changes in choice of different alternatives and to ac-
commodate heteroscedasticity in the unobserved influ-
ences on the choice. The choice probability of alternative 
i for decision maker n with the ECL formulation of the 
ML is then obtained by integration over the distribution 
of γn [22]:  
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  (7)          

where ф(γn|0,Σ) is the joint normal density function of 
the elements in γn.   
   In recent years, there has been a considerable interest 
in using ECL models in order to accommodate in-

                                                           
1 “Random coefficients logit” and “random parameters logit” are used 
interchangeably in literature.  
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ter-alternative correlation and heteroscedasticity despite 
high cost of estimation (and hence application) and iden-
tification issues [31] for identification issues in ECL 
models). [21, 32] are the two recent and the most notable 
applications of the ECL model structures to investigate 
the factors influencing the time of day and mode choice. 
The ECL model is also recently applied to analyze the 
corporate bankruptcy and insolvency risk in Australia 
[29]. 

4.3. Formulating the ECL model of mode choice 

The ECL model was used to estimate the error compo-
nents that measure the relative sensitivity of changes in 
mode choice and to accommodate heteroscedasticity in 
the unobserved influences on the mode choice. We ex-
plored various possible specifications of the ECL mod-
els. Mainly, we focused on two specifications: (i) com-
mon unobserved factors between walking (WK) and 
cycling (CK) (non-motorized modes), and (ii) common 
unobserved factors between car driving (CD) and car 
passenger (CP) (car modes), or common unobserved 
factors among CD, CP and public transport (PT) (moto-
rized modes). As WK and CK are both non-motorized 
modes, the hypothesis is that they share unobserved fac-
tors that introduce correlation between the utilities of 
those alternatives. Similarly, since CD, CP and PT are 
motorized modes, they presumably share unobserved 
factors that introduce correlation among the utilities of 
those alternatives. Among those specifications, we chose 
the one sharing the error components between alterna-
tives belonging to motorized and non-motorized modes.  
   Based on the discussions above, we formulated the 
ECL model by adding the error components to the utility 
function as follows (by suppressing n):  

Ui = Vi+ σnmt . ζnmt . NMT(i) + σmt . ζmt . MT(i)+ εi   (8)  

where ζnmt and ζmt are random variables drawn indepen-
dently from the standard normal distribution, and σnmt 
and σmt  are the standard deviations of the error compo-
nents. σnmt and σmt  are actually the elements of the va-
riance-covariance matrix capturing the correlation be-
tween WK and CK, and CD, CP and PT respectively. In 
this specification, NMT(i) is a dummy variable with 1 
for the alternatives belonging to non-motorized modes 
and 0 otherwise. This dummy variable thus determines 
whether the error component relating to the 
non-motorized modes is included in the utility function 
of alternative i. Similarly, MT(i) is also a dummy varia-
ble with 1 for the alternatives belonging to the motorized 
modes and 0 otherwise and thus determines whether the 
error component relating to the motorized modes enter 
the utility function of alternative i. The utility of an al-
ternative i contains at most one of those two error com-
ponents. 

   Estimation of this ECL model yields estimates of the 
parameters of the standard deviations of the error com-
ponents (setting their mean to zero) in addition to the 
coefficients of the variables included in systematic utility 
functions. The variance of the error components related 
to nonmotorized modes is estimated by normalizing the 
variance of the error components of motorized modes to 
one because we can only identify the sum of the va-
riances in this particular formulation. The relative mag-
nitude of the variances of the error components asso-
ciated with the non-motorized and motorized modes pro-
vide a measure of the relative sensitivity of these two 
modes to changes in the major attributes of travel modes 
such as travel time and cost components. 
   Three types of variables such as characteristics of the 
journey, characteristics of a traveler and his/her house-
holds, and performance of the transportation system as 
measured by the LOS attributes of different modes are 
included in systematic utility functions of travel modes 
[1, 13]. Table 1 illustrates names and the definitions of 
the variables including alternative specific constants 
(ASC) where the first two letters refer to the mode (i.e. 
utility function) where the variable enters. The models 
were coded and estimated in BIOGEME [33] using 1,000 
random draws. A set of “reasonable models” were for-
mulated (and reformulated) and estimated (and 
re-estimated) based on a priori-consideration. The sys-
tematic process of model building led to the final speci-
fication (Table 3) based on goodness-of-fit measures, 
statistical tests and informal tests.  
   In addition to the ECL model of mode choice esti-
mated on nylos, four ECL models on different specifica-
tions of striplos with identical specification of systematic 
utility function were estimated as follows:  

• Model 1 (base case):  The first model was esti-
mated on the LOS attributes at “face value” except 
the correction for missing direction and unreasona-
ble asymmetry in LOS attributes.  

• Model 2: In the second model, public transport fares 
in Oslo were corrected, but the fares in the rest of 
the region and between Oslo and the rest of the re-
gion were not adjusted.  

• Model 3: In the third model, missing toll in Oslo 
was corrected for in addition to the correction made 
in the Model 2.  

• Model 4: In the fourth model, an attempt was made 
to account for congestion in Oslo in addition to the 
correction made in the Model 3 since striplos did not 
have separate LOS values for peak and off-peak 
hours. Respondents had reported when the trip was 
taken and this enabled us to adjust for congestion by 
using a variable where driving time interacts with a 
dummy for peak travel, i.e., instead of higher driving 
times during peak hours, the model had additional 
coefficient for driving time. This variable was added 
to the utility of car driving in the model.   
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Table 1. Variable (including ASCs) definitions.  

Variable Definition 

CK_00 ASC for CK alternative 

CD_00 ASC for CD alternative 

CP_00 ASC for CP alternative 

PT_00 ASC for PT alternative 

WK_dist Walking distance to get to work 

CK_dist Cycling distance to get to work 

CD_time Generic travel time by different travel modes 

GA_cost Generic travel cost by different travel modes 

PT_wktm Access/egress time to get to PT  

PT_invht Onboard time with PT (in minutes) 

PT_wait Waiting time for PT 

PT_xfers Number of transfers to get to the work place with 
PT  

CP_female 1 if the traveler is female, 0 otherwise  

CD_parkgod 1 if guaranteed free parking at work , 0 otherwise  

CD_parkfair 1 if fair parking possibility at work, 0 otherwise 

CK_winter 1 if the trip was made during winter, 0 otherwise 

CD_soj 1 if the trip involves a secondary destination, 0 
otherwise  

CD-dbfem 1 if good car access in the household, 0 otherwise 

CP_time Car time by CP 

PT_female 1 if the traveler is female, 0 otherwise 

CD_tmrush Car time for the trip made during peak to Oslo 

First the differences in LOS attributes between striplos 
and nylos are discussed. Then estimation results of the 
models based on statistical significance of coefficients, 
goodness-of-fit measures such as final log-likelihood, 

log-likelihood ratio index (
2ρ ) and adjusted log-like- 

lihood ratio index (
2ρ ), expected signs of the coeffi-

cients and relative magnitudes of the coefficients within 
each model are compared. The implied value of time 
(VOT), the trade-off between travel time and travel cost, 
was chosen as a measure of relative magnitude of coeffi-
cients within a model. Additionally, market shares of 
different travel modes and aggregate direct and cross 
elasticities under different policy scenarios are com-
pared.  

5. Results and Discussion  

This section presents and discusses the results regarding 
differences in LOS attributes, estimation results of mod-
els, aggregate elasticity and aggregate forecasting. 

5.1 Differences in LOS attributes 

First, the actual differences and degree of correlation 
between the corresponding LOS attributes of the two 
data sets were examined. Table 2 summarizes statistics 
on difference between striplos and nylos. As expected for 

the base case, nylos gave, on average, higher values for 
car time and car cost. After correction for road tolls, the 
mean and standard deviation of the difference became 
much smaller for car cost (CD_cost_c). The remaining 
difference can mainly be attributed to differences in 
driving distance caused by differences in coding of the 
road network.  But correction for public transport fare 
(PT_fare_c) did not help much to reduce the difference. 
   
Table 2. Differences in LOS attributes. 
Attribute Mean 

diff. 
Var. Minm. Maxm. Mean 

diff. 
/Mean 
nylos 

R2 of  
linear  
regn2  

CD_time -5.35 41.79 -51.24 20.36 
-0.151 

0.937 

CD_cost -5.83 47.64 -44.30 16.17 

-0.144 

0.979 

PT_wktm -2.83 629.18 -240.98 129.73 
-0.080 

0.205 

PT_invht -2.85 224.36 -121.42 87.16 
-0.064 

0.835 

PT_wait 6.65 256.21 -62.50 165.00 
0.392 

0.515 

PT_xfers 0.44 1.02 -3.03 4.00 
0.641 

0.432 

PT_fare 11.68 781.32 -55.20 163.20 
0.301 

0.605 

WK_dost -1.40 6.95 -31.64 13.85 
-0.051 

0.991 

PT_fare_c 8.81 706.42 -55.20 163.20 
0.227 

0.611 

CD_cost_c -1.84 12.86 -44.30 17.59 
-0.046 

0.993 

 

The mean differences were smaller both in absolute and 
relative terms with access/egress time (PT_wktm) and 
invehicle time of public transport (PT_invht), but the 
variance was much greater, especially for PT_wktm.  
The striplos had, on average, higher values and the dif-
ferences were relatively big for waiting time (PT_wait) 
and number of transfers (PT_xfers) of public transport. 
This probably reflects a mixture of coding and different 
assignment algorithms. The distance based function used 
to estimate public transport fares for striplos obviously 
overestimated the fares significantly and a relatively 
large difference persisted even after the correction for the 
fares pertaining to internal trips in Oslo.     
   The difference between the LOS attributes in the two 
data sets is a mixture of systematic differences in the 
mean values and a “random” component. The extent of 
the random component varies between the attributes and 
is reflected in the ratio between standard deviation and 
mean value of the differences and in R2 (given in the last 
column) if we run a linear regression between the re-
spective attributes in the two data sets.  The random 
component is the most important for PT_wktm, PT_wait 
and PT_xfers based on the R2.  

 

                                                           
2 Striplos = a + b Nylos + u, where a, b, u, striplos, and nylos are in-
tercept, coefficient, error term, the values of the respective attributes of 
striplos and nylos respectively. This may not be theoretically meaning-
ful relation. But the purpose was to have some indication of the extent 
of importance of systematic and random components between the re-
spective LOS attributes. 
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5.2. Estimation results 

 
Since the models were formulated and reformulated in a 
number of ways during the model building process, a 
substantial body of empirical results was generated. 
However, this section analyzes the results of the final 
models with the best specification based on iterative 
process of model building.  
   Table 3 summarizes the estimation results of the ECL 
models on both the data sets. The estimation results of 
the ECL model yielded the parameters for the standard 
deviations of the error components in addition to the 
coefficients of the variables included in the systematic 
utility functions of the models. The variance of the error 
components related to nonmotorized modes was esti-
mated by normalizing the variance of the error compo-
nents of motorized modes to one because we can only 
identify the sum of the variances in this particular for-
mulation. Contrary to the hypothesis, σnmt was not statis-
tically significant in all the models, likely indicating that 
there is no significant common unobserved factors and 
heteroscedasticity across the alternatives.  
  The estimation results of the “base case” on striplos 
looked reasonably good. All the coefficients were statis-
tically significant and had the expected signs according 
to theory and the previous results except the number of 
transfers of public transport (PT_xfers). PT_xfers was 
significant, but had the wrong sign. It was also the case 
in the estimation of the national model that used the 
whole sample (Madslien et al., 2005). As a result, the 
number of transfers was not included in the final model. 
But we included it in this study in order to compare the 
effects of different corrections to LOS attributes. The 
implied value of time (VOT) of car driver seemed low 
(Table 4). Without any further improvement of the 
LOS-data, this model might have been re-estimated 
without PT transfers in the model if the purpose of the  
study is not to estimate the VOTs and the transfer varia-
ble is not needed in the analysis. We tried this and the 
results were good enough based on signs, significance 

and relative values of the coefficients, and good-
ness-of-fit measures.  
   In the second model on striplos, we used the cor-
rected PT fare for the trips within Oslo instead of the fare 
estimated from travel distance. However, the distance 
based fare was still used for other combinations of ori-
gin-destination although the actual fare system was based 
on ‘fare zones’ and the number of fare zones tranversed. 
All the coefficients, except PT_xfers, were significant 
with expected signs and reasonable magnitudes.  
PT_xfers had still the wrong sign but significant at lower 
confidence level. The VOTs in this estimation came 
close to ‘official values’ used in cost benefit analyses in 
Norway. Surprisingly, the model gave a poorer fit as 
measured by the value of the log-likelihood function at 
maximum.  
   In Model 3, introducing both corrected public trans-
port fares and road tolls resulted in a further drop of 
model fit!  The VOTs slightly decreased compared to 
the previous estimation, PT_xfers had still the wrong 
sign, but the t-value dropped to 1.96.  Based on a prior 
expectation about the weights of different travel time 
components, it also seemed that the ratio of PT_walktm 
and PT_waittm to PT_invhtm were on the low side. Ra-
tio in the range <1.5 – 2> is usually considered to be 
acceptable for these coefficients.   
   In Model 4, an attempt was made to compensate for 
low travel times during peaks by interacting car travel 
time and a dummy variable (CD_tmrush) for traveling in 
peak hours, it added statistically nothing to the model. 
But the coefficient of the variable had the expected sign. 
All the coefficients except PT_xfers were statistically 
significant with expected signs and reasonable relative 
magnitudes as earlier. PT_xfers was still positive with 
further drop of the t-value to 1.94. VOTs also remained 
more or less same as in model 3. Informal goodness of fit 

measures such as 
2ρ and 

2ρ were almost the same 

with all the models estimated on striplos. 

 

 

 

 

 

 

 



 

9 
 

Table 3. Estimation results of ECL models with different specifications of network-based LOS attributes. 
 

 Striplos Nylos 

 Base 
case (1) 

 Corrected PT fares 
(2) 

Corr. PT fares+toll 
(3) 

Corrn 3 + add. 
variable (4) 

  

Variable Est. t-stat. Est. t-stat. Est. t-stat. Est. t-stat. Est. t-stat. 

CK_00      -1.92 -8.83 -1.93 -9.03 -1.93 -9.01 -1.94 -9.02 -1.81 -7.94 

CD_00      -2.61 -10.64 -2.56 -10.61 -2.55 -10.54 -2.54 -10.5 -2.54 -9.9 

CP_00      -4.41 -14.58 -4.38 -14.76 -4.43 -14.83 -4.44 -14.85 -4.42 -13.64 

PT_00      -0.756 -2.74 -0.931 -3.43 -1.03 -3.79 -1.05 -3.86 -0.872 -3.08 

WK_dist    -0.59 -13.45 -0.602 -14.34 -0.601 -14.25 -0.602 -14.27 -0.525 -12.02 

CK_dist    -0.186 -12.1 -0.194 -13.52 -0.194 -13.35 -0.194 -13.35 -0.178 -11.55 

CD_time     -0.031 -4.78 -0.044 -7.01 -0.0394 -6.25 -0.039 -6.09 -0.032 -5.65 

GA_cost     -0.045 -17.92 -0.044 -16.79 -0.0416 -16.82 -0.042 -16.82 -0.03 -10.02 

PT_wktm   -0.022 -4.99 -0.026 -5.71 -0.0261 -5.77 -0.026 -5.73 -0.027 -7.24 

PT_invht    -0.015 -3.33 -0.02 -4.42 -0.0208 -4.57 -0.021 -4.59 -0.015 -4.48 

PT_wait    -0.036 -7.32 -0.03 -6.35 -0.0264 -5.65 -0.026 -5.48 -0.032 -4.76 

PT_xfers    0.417 6.11 0.147 2.51 0.113 1.96 0.112 1.93 -0.269 -3.54 

CP_female    0.965 4.08 0.984 4.17 0.99 4.19 0.993 4.2 1.03 4.41 

CD_pakgod  1.95 12.11 1.96 12.33 1.94 12.14 1.93 12.11 2.00 12.82 

CD_pakfair  1.21 6.26 1.26 6.61 1.23 6.43 1.22 6.39 1.21 6.56 

CK_winter    -1.59 -7.06 -1.58 -7.1 -1.59 -7.1 -1.59 -7.1 -1.59 -7.05 

CD_soj     0.558 4.61 0.554 4.66 0.564 4.75 0.576 4.82 0.569 4.94 

CD_dbfem    -1.09 -7.73 -1.1 -7.98 -1.1 -7.98 -1.1 -7.99 -1.17 -8.56 

CP_time    -0.054 -7.27 -0.066 -8.78 -0.0618 -8.28 -0.062 -8.24 -0.046 -7.32 

CD_timf   0.0104 2.2 0.0107 2.26 0.011 2.33 0.0113 2.39 0.0131 3.44 

PT_female    0.416 2.44 0.438 2.63 0.446 2.68 0.449 2.69 0.482 2.88 

CD_tmrush - - - - - - -0.003 -0.9 - - 

σnmt   -0.388 -0.81 -0.221 -0.42 -0.236 -0.44 -0.235 -0.44 0.475 0.94 
 

Summary Statistics 
Number of observations  2,876 2,876 2,876 2,876 2,876 

LL with zeros only -3888.29 -3888.29 -3888.29 -3888.29 -3888.29 
LL at convergence -1904.15 -1936.06 -1939.65 -1939.24 -2050.82 

2ρ  51.0% 50.0% 50.0% 50.0% 46.6% 
2ρ  50.4% 49.6% 49.5% 49.5% 46.0% 

 

 

 

 

 

 



 

10 
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Corr. PT fares+toll 
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PT_wait    -0.036 -7.32 -0.03 -6.35 -0.0264 -5.65 -0.026 -5.48 -0.032 -4.76 

PT_xfers    0.417 6.11 0.147 2.51 0.113 1.96 0.112 1.93 -0.269 -3.54 

CP_female    0.965 4.08 0.984 4.17 0.99 4.19 0.993 4.2 1.03 4.41 

CD_pakgod  1.95 12.11 1.96 12.33 1.94 12.14 1.93 12.11 2.00 12.82 

CD_pakfair  1.21 6.26 1.26 6.61 1.23 6.43 1.22 6.39 1.21 6.56 

CK_winter    -1.59 -7.06 -1.58 -7.1 -1.59 -7.1 -1.59 -7.1 -1.59 -7.05 

CD_soj     0.558 4.61 0.554 4.66 0.564 4.75 0.576 4.82 0.569 4.94 

CD_dbfem    -1.09 -7.73 -1.1 -7.98 -1.1 -7.98 -1.1 -7.99 -1.17 -8.56 

CP_time    -0.054 -7.27 -0.066 -8.78 -0.0618 -8.28 -0.062 -8.24 -0.046 -7.32 

CD_timf   0.0104 2.2 0.0107 2.26 0.011 2.33 0.0113 2.39 0.0131 3.44 

PT_female    0.416 2.44 0.438 2.63 0.446 2.68 0.449 2.69 0.482 2.88 

CD_tmrush - - - - - - -0.003 -0.9 - - 

σnmt   -0.388 -0.81 -0.221 -0.42 -0.236 -0.44 -0.235 -0.44 0.475 0.94 
 

Summary Statistics 
Number of observations  2,876 2,876 2,876 2,876 2,876 

LL with zeros only -3888.29 -3888.29 -3888.29 -3888.29 -3888.29 
LL at convergence -1904.15 -1936.06 -1939.65 -1939.24 -2050.82 

2ρ  51.0% 50.0% 50.0% 50.0% 46.6% 
2ρ  50.4% 49.6% 49.5% 49.5% 46.0% 

 
   As we see (Table 4), the VOTs changed due to a 
small change in the specification of model and/or data. 
   We cannot use a log-likelihood ratio test (LRT) to 
compare the models estimated on different versions of 
striplos because the data are not identical. But we can use 
an LRT to select between Model 3 and Model 4.  Model 
3 was chosen based on the log-likelihood ratio test. If 
transfer variable is not needed for analysis, we can just 
exclude this variable from estimation and estimate the 
Model 3 without transfer. We can also estimate Model 4 
without transfer but with CD_tmrush. In this case, the 
LRT is applicable.  
   The wrong sign of PT_xfers might be attributed to 
serious coding errors of this variable with striplos. This 

Table 4. Implied values of time (NOK/hour(km)). 

Categories of time striplos nylos 

1 2 3 4  
Car driving male 41.33 60.82 56.83 56.10 63.16 
Car driving female 27.47 46.16 40.96 39.76 37.30 
Car passenger 72.00 90.82 89.13 89.06 90.00 
PT_access/egress time 29.33 35.48 37.64 37.59 53.49 
PT_invktm 20.00 27.67 30.00 30.22 30.00 
PT_waitm 48.00 41.37 38.08 37.30 62.57 
PT_xfers (NOK/xfers) -9.27 -3.36 -2.72 -2.70 8.85 
WK_dist 

13.11 13.74 14.45 14.51 17.27 
CK_dist 4.13 4.43 4.66 4.67 5.86 
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may imply that it is very difficult to correct for such 
types coding errors. We can simply estimate the model 
excluding PT_xfers if this variable is not a variable of 
particular interest in the analysis. It is possible to correct 
for “known errors” such as coding of road tolls on the 
toll cordon.   
   All the coefficients including PT_xfers were signifi-
cant with correct signs and reasonable relative magni-
tudes when the same model was estimated on nylos. The 
VOTs of different aspects of time were also reasonably 
accurate. The implicit weights on walking and waiting 
time of public transport also had the expected magnitude. 
The transit assignment algorithm of the network model 
used to produce LOS-data for public transport in nylos  
has a slight tendency to overestimate in-vehicle time and 
to underestimate waiting time. This is probably also re-
flected in the estimated parameters of PT_invht and 
PT_waitm, biasing the coefficients of PT_invht down-
ward and PT_waitm upward (in absolute values). On the 
other hand, the assignment algorithm used to derive the 
LOS attributes for public transport in striplos tends to 
underestimate PT_invhtm and overestimate PT_waitm 
when multiple paths are used. This might also have been 
reflected in the parameter estimates. In addition, it is 
suspected that more routes were un-coded with striplos. 
With nylos, some local routes in periphery of the Os-
lo-region were un-coded. Surprisingly, the model esti-
mated on nylos resulted in lower goodness of fit meas-

ures such as
2ρ and

2ρ compared to that of the models 

estimated on striplos despite nylos presumably being 
relatively more accurate than striplos. In terms of model 
fit and statistical significance, models estimated on 
striplos looked better than the model with nylos. 

   The results are generally plausible, but with a rather 
variable pattern of significance of variables across the 
different levels of accuracy of LOS attributes. The 
t-statistics of the estimated parameters do not show any 
general tendency. The t-statistics of some coefficients  
 
increase and some decrease when with different versions 
of striplos and change from striplos to nylos. Similarly, 
the relative magnitudes of the coefficients, as evident by 
the VOTs, do not remain the same. The most notable 
improvements with nylos were the correct sign of 
PT_xfers and consistency of the relative magnitudes of 
coefficients with prior expectations. 
   We had hypothesized that there were some common 
unobserved factors and heteroscedasticity across some 
alternatives in the choice set. However, it depends on the 
choice set, data used in the estimation of the models, and 
the specification of systematic utility functions. If the 
systematic utility function is adequately specified that 
include major factors influencing the choice, there might 
not be room for the error components. This might be case 
with our models. The goodness of fit measures such as 
likelihood ratio index and adjusted likelihood ratio index 
are reasonably high with our models. This might be one 
of the reasons of the error components being insignifi-
cant. Additionally, this is actually a matter of empirical 
question whether the error components are significant or 
not. Moreover, it is reasonable that the error component 
of each model was not significant because the choice set 
and the specification of systematic utility function was 
identical and the data used in estimation were marginally 
different across the different models. Further, we also 
explored the various possible specifications of the ECL 
models and we reported the results of the best identified 
specification.  

5.3. Aggregate forecasting 

Table 7 summarizes the predicted market shares on the 
same data set that was used in model estimation by 
modes under different scenarios, viz., increasing car 
driving cost by 10% (scenario 1), increasing PT fare by 
10% (scenario 2) and reducing PT wait time by 10% 
(scenario 3).  
   As we see in Table 5, the predicted market shares 
were almost identical in each scenario in each model 
irrespective of the specification of network LOS 
attributes in the model. Each model predicted as intended 
according to theory. Each model predicted that almost no 
impact on the market shares of CK and WK due to an 
increase in car driving cost and PT fare and a reduction 
of PT waiting time. The prediction of market shares is 
consistent with previous studies, theory, and expectation. 

Table 5. Predicted market shares by modes in different 
scenarios. 

Travel modes WK  CK   CD    CP     PT 

Actual market shares 8.2 6.3 51.6 4.9 29.0 

Predicted market shares      

 Model 1_S 8.3 6.5 49.8 5.3 30.1 

 Model 2_S 8.2 6.5 49.9 5.3 30.1 

Scenario 1 Model 3_S 8.2 6.5 49.7 5.3 30.2 

 Model 4_S 8.2 6.5 49.7 5.3 30.2 

 Nylos 8.2 6.4 49.9 5.1 30.3 

 Model 1_S 8.3 6.6 52.9 5.2 27.0 

 Model 2_S 8.3 6.5 52.8 5.2 27.3 

Scenario 2 Model 3_S 8.3 6.5 52.7 5.1 27.3 

 Model 4_S 8.3 6.5 52.7 5.1 27.3 

 Nylos 8.3 6.5 52.6 5.1 27.5 

 Model 1_S 8.2 6.3 51.1 4.8 29.7 

 Model 2_S 8.2 6.3 51.1 4.8 29.6 

Scenario 3 Model 3_S 8.2 6.3 51.2 4.8 29.6 

 Model 4_S 8.2 6.3 51.2 4.8 29.5 

 Nylos 8.2 6.3 51.1 4.8 29.6 
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Model 3 estimated on striplos gave a better fit than the 
model estimated on nylos. We re-estimated the model 
without transfers as would be natural in estimation if a 
model that gives a wrong sign for a coefficient. Table 6 
presents implied direct and cross- elasticities respectively 
with the models estimated on both nylos and striplos. 
Both the models yielded direct and cross elasticities as 
expected according to theory, i.e., negative direct elastic-
ity and positive cross elasticity for the attributes consi-
dered. Both the direct and cross elasticities are inelastic 
and just the opposite in scenario 2. The cross elasticities 
of CD cost were significantly higher than the own elas-
ticities with scenario 1. The implied demand elasticities 
were almost similar in each scenario. The main differ-
ence was a moderately lower both direct and cross elas-
ticities of PT waiting time of the model estimated on 
striplos. The models should thus give the similar conclu-
sions for policy purposes.    

6. Summary and conclusions 

The need for travel demand models is growing world-
wide. Obtaining reasonably accurate LOS attributes of 
transportation system for different travel modes, the ma-
jor factors shaping the travel demand, is not a trivial task. 
The objective of the paper was therefore to investigate 
the effects of using LOS attributes measured at different 
levels of accuracy on the results of disaggregate travel 
mode choice models. The case study in this paper is an 
example of what might happen practically when we cor-
rect for ‘known errors’ in the data set or switch to the 
data set with better quality. The sensitivity of model re-
sults including goodness of fit measures, VOTs and ag-
gregate forecasting were compared by estimating ECL 
models for travel mode choice on the two data sets of 
LOS attributes. The difference between the LOS 
attributes in the two data sets was a mixture of systemat-
ic differences in the mean values and a random compo-
nent. The extent of the random component varied be-
tween the attributes.  
   Striplos yielded generally better fit and reasonably 
satisfactory models statistically. But number of transfers 
had wrong sign and VOTs were generally low without 

any correction. The correction helped to get VOTs of 
reasonable magnitudes. Model estimated on nylos on the 
other hand had all the significant coefficients with cor-
rect sings including number of transfers, the reasonable 
relative magnitude of coefficients of public transport 
travel components and reasonably plausible VOT esti-
mates except slightly less model fit compared to the 
model on striplos. Models estimated on both striplos and 
nylos gave almost similar aggregate forecasting and ag-
gregate elasticities on the same data set used in estima-
tion. During the model building process, it was also ob-
served that the VOTs changed significantly due to a 
small change in the specification of model and data im-
plying that utmost care must be taken for specification of 
data and model if the purpose of the study is to estimate 
VOTs.  
  The lack of peak hour driving time in striplos appeared 
less important for parameter estimates than it was in-
itially expected. This may not hold true in general since 
having a model that accounts for congestion correctly 
ought to give better results in an urban setting.   
  All the models predicted well implying that specifica-
tion of LOS attributes matters less for prediction as long 
as the predictions are done with the same data. The re-
quirement of data accuracy depends on the purpose of 
developing a model since the model with relatively in-
accurate data also predicts reasonably well. Measuring 
data as accurately as possible is presumably more im-
portant if the purpose of the study is to estimate VOTs. 
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