Show simple item record

dc.contributor.authorGokul, Jarishma K.
dc.contributor.authorMur, Luis A. J.
dc.contributor.authorHodson, Andrew
dc.contributor.authorIrvine-Fynn, Tristram D. L.
dc.contributor.authorDebbonaire, Aliyah R.
dc.contributor.authorTakeuchi, Nozomu
dc.contributor.authorEdwards, Arwyn
dc.date.accessioned2023-11-13T10:19:51Z
dc.date.available2023-11-13T10:19:51Z
dc.date.created2023-08-11T16:28:25Z
dc.date.issued2023
dc.identifier.citationEnvironmental Microbiology. 2023, 1-15.en_US
dc.identifier.issn1462-2912
dc.identifier.urihttps://hdl.handle.net/11250/3102129
dc.description.abstractGlaciers host ecosystems comprised of biodiverse and active microbiota. Among glacial ecosystems, less is known about the ecology of ice caps since most studies focus on valley glaciers or ice sheet margins. Previously we detailed the microbiota of one such high Arctic ice cap, focusing on cryoconite as a microbe-mineral aggregate formed by cyanobacteria. Here, we employ metabolomics at the scale of an entire ice cap to reveal the major metabolic pathways prevailing in the cryoconite of Foxfonna, central Svalbard. We reveal how geophysical and biotic processes influence the metabolomes of its resident cryoconite microbiota. We observed differences in amino acid, fatty acid, and nucleotide synthesis across the cap reflecting the influence of ice topography and the cyanobacteria within cryoconite. Ice topography influences central carbohydrate metabolism and nitrogen assimilation, whereas bacterial community structure governs lipid, nucleotide, and carotenoid biosynthesis processes. The prominence of polyamine metabolism and nitrogen assimilation highlights the importance of recycling nitrogenous nutrients. To our knowledge, this study represents the first application of metabolomics across an entire ice mass, demonstrating its utility as a tool for revealing the fundamental metabolic processes essential for sustaining life in supraglacial ecosystems experiencing profound change due to Arctic climate change-driven mass loss.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleIcescape-scale metabolomics reveals cyanobacterial and topographic control of the core metabolism of the cryoconite ecosystem of an Arctic ice capen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authorsen_US
dc.source.pagenumber1-15en_US
dc.source.journalEnvironmental Microbiologyen_US
dc.identifier.doi10.1111/1462-2920.16485
dc.identifier.cristin2166447
dc.relation.projectNorges forskningsråd: 288402en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal