
MBT/CPN: A Tool for Model-Based Software
Testing of Distributed Systems Protocols

using Coloured Petri Nets

Rui Wang1, Lars Michael Kristensen1, Volker Stolz1

Department of Computing, Mathematics, and Physics
Western Norway University of Applied Sciences

Email: {rwa@hvl.no,lmkr@hvl.no,vsto@hvl.no}

Abstract. Model-based testing is an approach to software testing based
on generating test cases from models. The test cases are then executed
against a system under test. Coloured Petri Nets (CPNs) have been
widely used for modeling, validation, and verification of concurrent soft-
ware systems, but their application for model-based testing has only been
explored to a limited extent. The contribution of this paper is to present
the MBT/CPN tool, implemented through CPN Tools, to support test
case generation from CPN models. We illustrate the application of our
approach by showing how it can be used for model-based testing of a
Go implementation of the coordinator in a two-phase commit protocol.
In addition, we report on experimental results for Go-based implemen-
tations of a distributed storage protocol and the Paxos distributed con-
sensus protocol. The experiments demonstrate that the generated test
cases yield a high statement coverage.

1 Introduction

Society is heavily dependent on software and software systems, and design- and
implementation errors in software systems may render them unavailable and
return erroneous results to their users. It is therefore important to develop tech-
niques that can be used to ensure correct and stable operation of the software.

Model-based testing (MBT) [13] is a promising technique for using models of
a system under test (SUT) and its environment to generate test cases for the
system. MBT approaches and tools have been developed based on a variety of
modeling formalisms, including flowcharts, decision tables, finite-state machines,
Petri nets, state-charts, object-oriented models, and BPMN [6]. A test case usu-
ally consists of test input and expected output and can be executed against
the SUT. The goal of MBT is validation and error-detection by finding observ-
able differences between the behavior of an implementation and the intended
behavior. Generally, MBT involves: (a) constructing a model of the SUT and its
environment; (b) define test selection criteria for guiding the generation of test
cases and the corresponding test oracle representing the ground-truth; (c) gen-
eration and execution of test cases; (d) comparison of the output from the test

case execution with the expected result from the test oracle. The component
that performs (c) and (d) is known as a test adapter and uses the test oracles to
determine whether a test has passed or failed.

Coloured Petri Nets (CPNs) [5] is a modeling language for distributed and
concurrent systems combining Petri nets and the Standard ML programming
language. Petri nets provide the primitives for modeling concurrency, synchro-
nization and communication while Standard ML is used for modeling data. Con-
struction and analysis of CPN models is supported by CPN Tools [2] which have
been widely used for modeling and verifying models of complex systems for do-
mains such as concurrent systems, communication protocols, and distributed
algorithms [9]. Recently, work on automated code generation has also been
done [8]. Comprehensive testing is an important task in the engineering of soft-
ware, including the case of automated code generation, as it is seldom the case
that the correctness of the model-to-text transformations and their implementa-
tion can be formally established. We have chosen CPNs as the foundation of our
MBT approach due to its strong track record in modeling distributed systems,
and the support for parametric models and compact modeling of data. More-
over, CPNs enables model validation prior to test case generation, and CPN
Tools supports both simulation and state space exploration which is paramount
for the development of our approach and for conducting practical experiments.

The main contribution of this paper is to present our approach to model-
based testing using CPNs and the supporting MBT/CPN tool. MBT/CPN
has been implemented on top of CPN Tools to support test case generation
from CPN models. It has been developed as part of our ongoing research into
MBT for quorum-based distributed systems [15]. The main idea underlying our
approach is for the modeler to capture the observable input and output events
(transitions) in a test case specification. A main facility of the tool is the uniform
support for both state space and simulation-based test case generation. A second
contribution of this paper is to experimentally evaluate the tool on a two-phase
commit protocol implemented using the Go programming language, and to sum-
marize experimental results from the application of MBT/CPN to a distributed
storage protocol [15] and the Paxos distributed consensus protocol [14]. The dis-
tributed storage protocol and the Paxos protocol have both been implemented
in the Go programming language [3] using a quorum-based distributed systems
middleware [10]. These experiments show a high statement coverage and demon-
strate in addition that the approach is able to detect programming errors via
the generation and execution of unit and system tests.

The rest of this paper is organized as follows. Section 2 gives an overview of
MBT/CPN and its software architecture. In Section 3 we introduce the two-
phase commit transaction protocol that we use as a running example to present
the features of MBT/CPN. Sections 4 and 5 explain how test case generation
and test case execution are supported. Section 6 presents our experimental eval-
uation of MBT/CPN. In Section 7, we sum up conclusions and discuss related
work. We assume that the reader is familiar with the basic concepts of Petri
nets. The MBT/CPN tool is available via [11].

2

2 Tool Overview and Software Architecture

The MBT/CPN tool is implemented in the Standard ML programming lan-
guage on top of the simulator of CPN Tools. In CPN models, Standard ML is
used to define the data types of the model, to declare the colour set of places and
the variables of transitions, for defining guards of transitions, and for the arc ex-
pressions appearing on the arcs connecting places and transitions. MBT/CPN
provides the user with a set of Standard ML functions which can be invoked in
order to perform test case generation.

Figure 1 gives an overview of the modules that constitute MBT/CPN and
puts the tool into the context of model-based test case generation. The main
outputs of the MBT/CPN tool are files containing Test Cases which can be
read by a Reader of a test Adapter and executed by a Tester against the System
Under Test (SUT). The Tester will provide the input events as stimuli to the SUT
and compare the observed outputs from the SUT with the expected outputs.

CNF
SSTCG SimTCG

State Space Monitoring

MBT/CPN base

CPN Tools simulator

Test Case Generation

Export

Test Cases

Adapter

Reader

T
ester

System

Under

Test

Fig. 1. Overview of MBT/CPN modules.

The application of MBT/CPN
requires the user to identify
the observable events originating
from occurrences of binding ele-
ments in the CPN model. A bind-
ing element is a pair consisting
of a transition and an assign-
ment of values to the variables of
the transition. A binding element
hence represents a mode in which
a transition may be enabled and
may occur. A test case is com-
prised of observable events where
input events represent stimuli to
the SUT and output events rep-
resent expected outputs. It is the
expected outputs that are used as
test oracles during test case exe-
cution to determine the overall test outcome.

The MBT/CPN base module defines a generic colour set (data type) used to
represent the observable events in test cases:

colset TCEvent = union InEvent:TCInEvent + OutEvent:TCOutEvent;

The definition of the colour sets TCInEvent and TCOutEvent depends on the
SUT in terms of the events to be made observable. These must be defined by the
user of the tool and can use the standard colour set constructors in CPN Tools.
The tool supports two approaches for extracting test cases from the model:

State-space based test case generation. This approach is based on gener-
ating the state space of the CPN model and extracting test cases by consid-
ering paths in the state space. This approach is implemented in the SSTCG
module on top of the state space tool of CPN Tools.

3

signature TCSPEC = sig
val detection : Bind.Elem -> bool;
val observation : Bind.Elem -> TCEvent list;
val format : TCEvent -> string

end;

Fig. 2. Standard ML interface for test case specification.

Simulation-based test case generation. This approach is based on conduct-
ing a simulation of the CPN model and extracting the test case corresponding
to the execution. This approach is implemented in the SIMTCG module on
top of the simulation monitoring facilities of CPN Tools.

The state-space based approach works for finite-state models and is based
on computing all reachable states and state changes of the CPN model. The
simulation-based approach is based on running a set of simulations and extract-
ing test cases from the corresponding set of executions. The advantage of the
state-space based approach is that it covers all the possible executions of the
CPN model which gives a high test coverage. However, if the CPN model is com-
plex, the state-space based approach may be infeasible due to the state explosion
problem. The advantage of the simulation-based approach over the state-space
based approach is scalability when the complexity of the CPN model is high,
while the disadvantage is potentially reduced test coverage.

The CNF (configuration) module is shared between the state space- and
simulation-based test case generation. It supports configuring the output di-
rectories and naming of test cases, and configuration of a test case generation
specification. The test case specification is used to specify the observable input
and output events during test case generation and is comprised of a:

Detection function constituting a predicate on binding elements that evalu-
ates to true for binding elements representing observable events.

Observation function which maps an observable binding element into an ob-
servable input or output event belonging to the TCEvent colour set.

Formatting function mapping observable events into a string representation
which is used in order to export the test cases into files.

The test case specification is provided by the user implementing a Standard
ML structure satisfying the TCSPEC signature (interface) shown in Fig. 2. The
type Bind.Elem is an existing data type in CPN Tools representing binding
elements. The observation function is specified to return a list of observable
events to cater for the case where one might want to split a binding element into
several observable events in the test case. We will give examples of detection and
observation functions for the two-phase commit protocol example in Sect. 4.

The detection and observation functions are specified independently of whether
simulation-based or state space-based test case generation is employed. This al-
lows the input from the user to be specified in a uniform way, independently

4

signature TCGEN = sig
val ss : unit -> (TCEvent list) list;
val sim : int -> (TCEvent list) list;
val export : (TCEvent list) list -> unit

end;

Fig. 3. Standard ML interface for test case generation.

of which approach will be used for the test case generation. This makes it easy
to switch between the two approaches. The tool invokes the detection function
on each arc of the state space (occurring binding element in a simulation) to
determine whether the corresponding event is observable, and if so, then the
observation function will be invoked to map the corresponding binding element
into an observable event. The Export module implements the export of the test
cases into files and relies on the CNF module for persistence and naming.

When an implementation of the test case specification has been provided by
the user, the MBT/CPN tool can be used to generate test cases. The primitives
available for the user to control the test case generation are provided by the
Test Case Generation module which implements the TCGEN interface (signature)
partly shown in Fig. 3. The ss function is used for state-space based test case
generation. The sim function is used for simulation-based test case generation
and takes an integer as a parameter specifying the number of simulation runs
that should be conducted to generate test cases. Both functions return a list of
test cases, where each test case is comprised of a list of test case events (TCEvent).
The export function is used for exporting the test cases into files according to
the settings which the user provided via the CNF configuration module (Fig. 1).

3 Example: Two-phase Commit Transaction Protocol

We use the two-phase commit transaction (TPC) protocol from [5] to explain
the use of MBT/CPN. The CPN model is comprised of four hierarchically
organized modules. Fig. 4 shows the CPN module for the coordinator process
and Fig. 5 shows the CPN module for the worker processes. Fig. 6 shows model-
based test case generation and exporting. Due to space limitations, we do not
show the top-level CPN module and have also omitted the submodule of the
CollectVotes substitution transition in Fig. 4. Each port place (place drawn with
a double border) in the coordinator module is linked via so-called port-socket
assignments to the accordingly named place in the workers module. The colour
sets and variable used are shown in Fig. 7.

The coordinator starts by sending a message to each worker (transition Send-
CanCommit), asking whether the transaction can be committed or not. Each
worker votes Yes or No (transition ReceiveCanCommit). The coordinator then
collects each vote as modeled by the CollectVotes submodule of the CollectVotes

5

substitution transition. Based on the collected votes, the coordinator sends back
an abort or commit decision.

The coordinator will decide on commit if and only if all workers voted yes. The
workers that voted yes then receive the decision (transition ReceiveDecision) and
send back an acknowledgement. The coordinator then receives all acknowledge-
ments (transition ReceiveAcknowledgement). After having executed the protocol,
the place Completed will contain a token with colour abort or commit depending
on whether the transaction was to be committed or not.

When presenting MBT/CPN in the remainder of this paper, we show how
it can be used to generate test cases from the TPC CPN model. These can then
be executed by a test adapter against an implementation of the coordinator
process in the Go programming language. The workers module is used to obtain
input events (stimuli) for the coordinator implementation, and the coordinator
CPN module is used to obtain expected outputs (test oracles) which in turn
determine whether a test is successful or not. In that respect, the CPN module

Fig. 4. MBT/CPN example in CPN Tools: Coordinator module.

6

of the coordinator serves as an abstract specification of the coordinator process
against which the behavior of the implementation can be compared.

4 Test Case Generation

The first step in using the MBT/CPN tool for test case generation is to ex-
tend the TCEvent base colour set by defining the colour sets TCInEvent and
TCOutEvent according to the input and output events of the system that are to
be observed. For the TPC protocol, we can define the input events to be the
votes of the individual workers. The output events can be defined as the deci-
sions sent to the individual workers and the overall decision as to whether the
transaction is to be committed or aborted. Relying on the colour set definitions
already in the CPN model (Fig. 7), this can be implemented as shown in Fig. 8.
In the TCOutEvent colour set, WDecision is used for the decision sent to each
worker while SDecision is used for the overall system decision.

Fig. 5. MBT/CPN example in CPN Tools: Workers module.

7

Fig. 6. MBT/CPN example in CPN Tools: Model-based test case generation and ex-
porting.

val W = 2;
colset Worker = index wrk with 1..W; var w : Worker;
colset Workers = list Worker; var workers : Workers;

colset Vote = with Yes | No; var vote : Vote;
colset Decision = with abort | commit; var decision : Decision;

colset WorkerxVote = product Worker * Vote;
colset WorkerxDecision = product Worker * Decision;

Fig. 7. Colour set and variable declarations.

For the TPC protocol, the input events corresponding to the votes sent by
the workers can be obtained by considering occurrences of the ReceiveCanCommit
transition (Fig. 5), while the output events can be obtained by considering the
ReceiveDecision and ReceiveAcknowledgement transitions. This means that the
detection function for the TPC protocol must return true if and only if the
occurrence of the binding element corresponds to one of the above-mentioned
transitions. The implementation of the detection function is shown in Fig. 9.

The observation function maps binding elements into observable input and
output events. For the TPC protocol this function can be implemented as in
Fig. 10. The function accesses the values bound to the variables (w,vote, and
decision) of the transitions and uses the constructors of the TCEvent and
TCOutEvent data types to construct the observable events.

8

colset TCInEvent = WorkerxVote;
colset TCOutEvent = union WDecision : WorkerxDecision +

SDecision : Decision;

colset TCEvent = union InEvent : TCInEvent +
OutEvent : TCOutEvent;

Fig. 8. Definitions of the colour sets TCInEvent, TCOutEvent and TCEvent.

fun detection (Bind.Workers'Receive_CanCommit _) = true
| detection (Bind.Workers'Receive_Decision _) = true
| detection (Bind.Coordinator'Receive_Acknowledgements _) = true
| detection _ = false;

Fig. 9. The implementation of the detection function for the TPC protocol.

The MBT/CPN tool has built-in for exporting the test cases into an XML
format. The use of XML makes it easy to reuse the test generator for systems
under test implemented in different programming languages. The concrete XML
format will depend on the observable events and hence the user needs to provide
a format function as part of the test case generation specification that maps
each observable event into a string representing an XML element. This function
is typically implemented as a pattern match on the TCEvent data type. For the
TPC protocol it would for instance map the InEvent corresponding to worker
one (wrk(1)) voting No into the following XML element:

<Vote><WorkerID>1</WorkerID><VoteValue>0</VoteValue></Vote>

The complete formatting function for the TPC protocol is similar in com-
plexity to the detection and the observation functions.

5 Test Case Execution

To perform model-based testing using the test cases generated by MBT/CPN,
the developer (user) must implement a test Adapter as was shown in Fig. 1. The
implementation of the test adapter depends on the concrete SUT, but consists
of the same overall components independently of the SUT. To illustrate how
MBT/CPN test cases can be used, we outline how to implement a test adapter
for a Go implementation of the coordinator process. The adapter consists of
a Reader and a Tester. The implementation of the Reader (around 30 lines of
code) is based on the encoding/xml package from the Go standard library, while
the implementation of the Tester (around 80 lines of code) is based on testing
packages of the Go standard library. Go’s testing infrastructure allows us to
run the go test command to execute the test cases and it provides pass/fail

9

exception obsExn;
fun observation (Bind.Workers'Receive_CanCommit (_,{w,vote})) =

[InEvent (w,vote)]
| observation (Bind.Coordinator'Receive_Acknowledgements

(_,{_,decision})) = [OutEvent (SDecision decision)]
| observation (Bind.Workers'Receive_Decision (_,{w,decision})) =

[OutEvent (WDecision (w,decision))]
| observation _ = raise obsExn;

Fig. 10. The implementation of the observation function for the TPC protocol.

information for each test case. In addition, it provides information about code
coverage. The full Go implementation of the adapter and also the coordinator
SUT is available together with the MBT/CPN distribution [11].

The purpose of the reader is to read the XML files containing test cases and
convert them into a representation which can be used by the tester. In this case,
the encoding/xml package of the Go standard library supports the implementa-
tion of the Reader. The purpose of the tester is to provide input and read the
output from the SUT according to the test case being executed. Hence, the tester
serves as an intermediate between the test cases and the SUT. In this case, our
coordinator SUT is implemented in Go, and the communication between the
coordinator SUT and the tester is implemented using Go channels. The tester
provides input to the coordinator SUT via the channels and implements the test
oracles by comparing the values received with the expected output as specified
in the test case. An important property of the tester implementation is that it
is transparent to the coordinator SUT that it is interacting with the tester and
not a real set of worker implementations.

The messages exchanged between the tester and the coordinator SUT are
defined according to the mapping between the colour sets defined for messages
in the CPN model (Fig. 7) and corresponding types in Go. Fig. 11 shows the
declarations of messages in Go for such communication which include CanCommit,
Vote, Decision and Ack (Go code organized in two columns to save space).

The Go implementation of the coordinator SUT itself follows closely the CPN
module of the coordinator (Fig. 4). Figure 12 shows the coordinator interface im-
plemented in Go, which consists of methods for sending and delivering messages
through channels. The method Start is the entry point of the coordinator which
starts the coordinator’s main control flow as a goroutine (thread). Within this
loop, the coordinator receives incoming Vote and Ack messages through chan-
nels, delivered by the invocations of DeliverVote and DeliverACK methods,
respectively. The coordinator invokes CollectVotes method to collect received
Vote messages, and invoke SendDecision and SendFinalDecision methods to
send Decision messages and a final Decision message.

10

type VoteEnum int type DecisionEnum int
const (type Vote struct {

Yes VoteEnum = iota WorkerID WorkerID
No VoteValue VoteEnum

) }
const (type CanCommit struct {

Commit DecisionEnum = iota WorkerID WorkerID
Abort }

)
type Decision struct { type Ack struct {

WorkerID WorkerID WorkerID WorkerID
DecisionValue DecisionEnum }

}

Fig. 11. Message declarations in Go.

type Coordinator interface {
Start(numOfWorker int, fdChannel chan DecisionEnum)
SendCanCommit(cc CanCommit)
DeliverVote(v Vote)
CollectVotes(v Vote, votes []Vote) []Vote
SendDecision(d Decision)
DeliverACK(a Ack)
SendFinalDecision(fdChannel chan DecisionEnum, fd DecisionEnum)

}

Fig. 12. Interface of the coordinator SUT in Go.

6 Experimental Evaluation

We report on experimental results on applying the MBT/CPN tool on the
two-phase commit protocol with the coordinator as the system under test. In
addition, we summarize experimental results obtained using our approach on
two larger case studies: a distributed storage protocol and the Paxos consen-
sus protocol. All three systems under test have been implemented in Go and
the distributed storage and consensus protocol furthermore rely on the Gorums
middleware [10]. The case studies illustrate the use of both simulation- and state
space based test case generation. We use statement coverage of the system un-
der test as the quantitative evaluation criteria of the test cases generated by our
approach. Other criteria exist such as branch-, condition-, and path coverage,
but these are currently not supported by the Go tool chain.

6.1 Two-phase Commit Protocol

Table 1 gives experimental results from application of our approach to the two-
phase commit protocol for different number of workers W. The Gen column

11

specifies the approach used for test case generation (state spaces (SS) or simu-
lation (SIM)). The Size-Steps column specifies the size of the state space (nodes
/ arcs) and the number of simulation runs. The Test Cases column specifies the
number of test case generated and the Time gives the total time (in second) used
for test case generation (including state space generation and model simulation).
Finally, the Coverage gives the statement coverage obtained for the coordinator
implementation. The lines of code for the coordinator is around 120 lines.

Table 1. Experimental results for the two-phase commit protocol.

W Gen Size - Steps Test Cases Time Coverage
2 SS 59 / 86 4 <1 94.7 %
2 SIM 5 3 <1 84.2 %
2 SIM 10 4 <1 94.7 %
3 SS 357 / 614 8 <1 94.7 %
3 SIM 10 4 <1 94.7 %
3 SIM 20 8 <1 94.7 %
4 SS 2,811 / 5,957 16 5 94.7 %
4 SIM 50 13 <1 94.7 %
4 SIM 100 16 <1 94.7 %
5 SIM 100 31 <1 94.7 %
5 SIM 200 32 <1 94.7 %
10 SIM 5000 1,015 13 94.7 %
10 SIM 10000 1,024 25 94.7 %
15 SIM 10000 8,627 91 84.2 %
15 SIM 20000 14,946 265 94.7 %

For simulation-based test case generation, we stopped increasing the num-
ber of simulations when reaching the same number of test cases as obtained
with state space based generation which represents the maximum number of
test cases that can be obtained. It can be seen that as W increases more sim-
ulations are needed in order to reach the maximum number of test cases. In
general, we recommend using state-space based test case generation whenever
possible as it ensures coverage of all executions of the CPN model, and resort to
simulation-based test case generation if the state space is too big to be gener-
ated with the available computing power. For the two-phase commit protocol we
have not pursued state space based test case generation beyond four workers as
it becomes quite time consuming. It can, however, be seen that simulation-based
test case generation can easily handle configurations with 5, 10, and 15 workers
demonstrating the scalability of simulation-based test case generation. The cov-
erage results show that test cases generated based on state space and simulation
based approaches can both reach 94.7 %. The reason why the results do not
reach 100 % is that the coordinator contains error handling code, which is not
covered by the generated test cases, as any failures are not part of the model.
The other coming two examples also have failures modeled explicitly. Further,
the results also show that the statement coverage for both SIM-5 and SIM-10000
is 84.2 %. This is a consequence of the simulation-based approach not covering
all the possible executions of the CPN model in the absence of guided search.
The longest time used for test case execution was approximately four hours (case
SIM-20000) with more than 14,000 test cases.

12

Table 2. Experimental results for distributed storage protocol.

Test Driver Test case execution
(coverage in percentage)

System Unit

ID Name Gorums
Library

QCs
RD WR

QFs
RD WR

S1 RD 24.6 84.4 0 100 0
S2 WR 24.6 0 84.4 0 100
S3 RD;WR 39.1 84.4 84.4 100 100
S4 WR;RD 40.8 84.4 84.4 100 100
S5 WR||RD 40.8 84.4 84.4 100 100
S6 (WR||RD);RD 40.8 84.4 84.4 100 100

6.2 Distributed Storage Protocol

The distributed storage protocol has been implemented by the Go language and
Gorums framework. It is a single-writer, multi-reader distributed storage using
read and write quorum calls and functions. The quorum calls and functions
are abstractions provided by the Gorums framework/library. Clients can then
invoke a write call with read calls concurrently and/or sequentially to access
the distributed storage. By using our MBT/CPN tool, we have generated test
cases based on the state-space based exploration to perform both system tests by
invoking the read and write quorum calls concurrently and sequentially, and unit
tests for quorum functions. The CPN model of the distributed storage makes it
possible to generate system test cases for both successful scenarios and scenarios
involving server failures and programming errors. We use a state-space based
approach since the state space of the CPN testing model of the distributed
storage protocol is relatively small. This is due to the fact that the CPN model
describes the distributed storage system at a high level of abstraction which in
turn means that we obtain all test cases without encountering state explosion.

Table 2 gives the experimental results obtained using different test drivers
to invoke the read and/or write quorum calls concurrently and/or sequentially,
without server failures included. The test drivers we have considered include:
one read call (RD), one write call (WR), a read call followed by a write call
(RD;WR), a write call followed by a read call (WR;RD), a read and a write call
executed concurrently (WR||RD), a read and a write call executed concurrently
and followed by a read call ((WR||RD);RD).

The results show that, for successful execution scenarios, the statement cov-
erage for read (RD-QF) and write (WR-QF) quorum functions is 100 % for
both system and unit tests, as long as both read and write calls are involved.
The statement coverage for read (RD-QC) and write (WR-QC) quorum calls is
up to 84.4 %. For the Gorums library as a whole, the statement coverage reaches
40.8 %. The total number of lines of code for the system under test is approxi-
mately 2100 lines. The highest number of generated test cases for systems tests
involving quorum calls is 6; the highest number of test cases for unit tests is 17.
These test cases are generated within 2 seconds.

In addition to the successful scenarios, we has also considered to test the
system under programming errors and server failures. We injected programming
errors in the read and write quorum functions for the distributed storage such

13

that the clients receive incorrectly replies from the storage system. The results
show that our test adapter can capture injected errors by using generated test
cases from our MBT/CPN tool. For server failures scenario, we mainly test
the fault tolerance of the distributed storage system. For example, a distributed
storage system with three servers can tolerate one server failure. The test adapter
we implemented can terminate one or more servers during the test case execution.
We considered the S6 driver from Table 2 and created a scenario where S6 is
executed first, then there is one or more server failures, and then S6 is repeated.
The results for the scenario involving server failures show that the statement
coverage for read (RD-QF) and write (WR-QF) quorum functions stay the same
(100 %) for both system and unit tests. The coverage for read (RD-QC) and
write (WR-QC) quorum calls is increased from 84.4 % to 96.7 %. For the Gorums
library as a whole, the statement coverage is increased from 40.8 % to 52.3 %.

6.3 Paxos Consensus Protocol

Paxos is a consensus protocol that can handle a group of server replicas to con-
struct a replicated service, and ensure fault-tolerance. It is far more complex than
the distributed storage system and the two-phase commit protocol. We have ap-
plied our MBT/CPN tool to validate a Go implementation of the single-decree
Paxos. For such an implementation, each Paxos server replica implements a pro-
poser, an acceptor, and a learner subsystem. In addition to these subsystems,
the implementation also includes software components for failure and leader de-
tection. Further, the communication and message handling between Paxos sub-
systems are implemented with quorum calls and functions (prepare, accept, and
commit), which are abstractions from the Gorums framework. The total number
of lines of code for the single-decree Paxos protocol is approximately 3890 lines.

The Paxos protocol is too complex for state space exploration, and we have
therefore used simulation-based test case generation with up to 10 simulation
runs. A summary of our experimental results is shown in Table 3. It shows
the statement coverage obtained for the different Paxos subsystems, quorum
calls and functions. Note that the unit tests are only for the quorum functions.
The total number of generated test cases for 3 and 5 replicas configurations,
respectively are given below System tests and Unit tests in the table. The time
used to generate test cases for each configuration is less than 10 seconds, and
the time used to execute each test case is less than one minute.

The results show that, for unit tests, the statement coverage of Prepare and
Accept quorum functions reach 90% and 85.7%, respectively. For system tests,
the statement coverage of Prepare, Accept and Commit quorum calls are up to
83.9%, respectively; the statement coverage for the Failure Detector and Leader
Detector modules are 75.0% and 91.4%, respectively; the statement coverage of
the Paxos replica module is up to 91.4%; for the Gorums library as a whole, the
highest statement coverage is 51.8%.

14

Table 3. Experimental results for test case generation and execution.

Subsystem Component System tests Unit tests
15 / 38 74 / 424

Gorums library 51.8 % -
Paxos core Proposer 97.4 % -

Acceptor 100.0 % -
Failure Detector 75.0 % -
Leader Detector 91.4 % -
Replica 91.4 % -

Quorum calls Prepare 83.9 % -
Accept 83.9 % -
Commit 83.9 % -

Quorum functions Prepare 100.0 % 90.0 %
Accept 100.0 % 85.7 %

7 Conclusions

The MBT/CPN tool augments the CPN Tools with facilities for model-based
test case generation, and is based on the user identifying observable events for-
malized in a test case specification. As illustrated on the TPC protocol, this
entails implementing a detection, observation, and formatting function which is
applied by the tool during test case generation. An important feature of our
approach is the uniform support for test case generation based on state spaces
and simulation. We have shown by practical experiments on the TPC protocol,
the distributed storage protocol, and the Paxos consensus protocol that we can
obtain a high SUT code coverage and that our approach can be used to detect
implementation errors.

The application of MBT in the context of CPNs have until now been limited.
Xu [16] presents the Integration and System Test Automation (ITSA) tool which
supports test code generation for languages such as Java, C/C++, and C♯ based
on state spaces. To obtain concrete test cases with input data, the ITSA tool
relies on a separate model implementation mapping. In contrast, we obtain the
input data for the system under test and call directly from the data contained in
the testing model. Tretmans et al. have presented the TorX [12] tool which is used
to randomly generate test cases based on a walk through the state space. The test
cases can be generated either offline or on-the-fly during the test execution. There
is also an adapter component in TorX to translate the inputs to be readable by
the system under test, and check the actual outputs from the system under test
against expected outputs. Conformiq Qtroniq [4] can be used to derive functional
test cases from a system model, and can generate test cases online or offline by
using a symbolic execution algorithm. Such test cases then are mapped into the
TTCN-3 format. The expected outputs can also be generated from the model.
The Automatic Efficient Test Generation (AETG) [1] tool is aimed at efficient
generation of test cases by decreasing the number of test data required for the
input test space. However, the test oracles have to be furnished manually.

There are several interesting directions to further develop the MBT/CPN
tool. Related to [17], one area is to provide a higher degree of automation when
implementing the test adapter such that for instance the data types required in
the adapter implementation can be automatically obtained. For simulation-based

15

test case generation investigating how a search heuristic can be specified and
synthesized is an important. Such heuristics will most likely require knowledge
about the SUT implementation and its CPN model specification. For the latter,
we are currently investigating how to measure so-called Modified Condition/De-
cision Coverage, which is prescribed e.g. in safety critical system development
[7]. Another direction for future work is to investigate if the use of partial state
spaces combined with a search heuristics can provide a fruitful middle ground
between simulation-based and state space-based test case generation.

References

1. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG System:
An Approach to Testing based on Combinatorial Design. IEEE Transactions on
Software Engineering, 23(7):437–444, 1997.

2. CPN Tools. CPN Tools homepage. http://www.cpntools.org.
3. Google Inc. The Go Programming Language. https://golang.org.
4. A. Huima. Implementing Conformiq Qtronic. TestCom/FATES, 4581:1–12, 2007.
5. K. Jensen and L. Kristensen. Coloured Petri Nets: A Graphical Language for

Modelling and Validation of Concurrent Systems. Comm. ACM, 58(6):61–70, 2015.
6. P. Jorgensen. The Craft of Model-based Testing. CRC Press, 2017.
7. H. Kelly J., V. Dan S., C. John J., and R. Leanna K. A Practical Tutorial on

Modified Condition/Decision Coverage. Technical report, 2001.
8. L. Kristensen and V. Veiset. Transforming CPN Models into Code for TinyOS: A

Case Study of the RPL Protocol. In Proc. of ICATPN’16, volume 9698 of LNCS,
pages 135–154, 2016.

9. L. M. Kristensen and K. I. F. Simonsen. Applications of Coloured Petri Nets for
Functional Validation of Protocol Designs. In K. Jensen, W. M. P. van der Aalst,
G. Balbo, M. Koutny, and K. Wolf, editors, Transactions on Petri Nets and Other
Models of Concurrency VII, volume 7480, pages 56–115. Springer, 2013.

10. T. E. Lea, L. Jehl, and H. Meling. Towards New Abstractions for Implementing
Quorum-based Systems. In Proc. of 37th IEEE Intl. Conf. on Distributed Com-
puting Systems (ICDCS), pages 2380–2385, 2017.

11. MBT/CPN. Repository. https://github.com/selabhvl/mbtcpn.git, Jan 2018.
12. G. Tretmans and H. Brinksma. TorX: Automated Model-Based Testing. In

A. Hartman and K. Dussa-Ziegler, editors, 1st Europ. Conf. on Model-Driven Soft-
ware Engineering, pages 31–43, 12 2003.

13. M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-based Testing
Approaches. Software Testing, Verification and Reliability, 22:297–312, 2012.

14. R. Wang, L. Kristensen, H. Meling, and V. Stolz. Automated Test Case Generation
for the Paxos Single-decree Protocol using a Coloured Petri Net Model. In Journal
of Logical and Algebraic Methods in Programming (JLAMP). Submitted.

15. R. Wang, L. Kristensen, H. Meling, and V. Stolz. Application of Model-based
Testing on a Quorum-based Distributed Storage. In Proc. of PNSE’17, volume
1846 of CEUR Workshop Proceedings, pages 177–196, 2017.

16. D. Xu. A Tool for Automated Test Code Generation from High-level Petri Nets.
In Proc. of ICATPN’2011, volume 6709 of LNCS, pages 308–317. Springer, 2011.

17. D. Xu, W. Xu, and W. E. Wong. Automated Test Code Generation from
Class State Models. Intl. J. of Software Engineering and Knowledge Engineer-
ing, 19(04):599–623, 2009.

16

