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Advancements in
super-resolution methods for
smart meter data

Malin Iversen, Mehak Khan*, Amir Miraki and Reza Arghandeh

Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western
Norway University of Applied Sciences, Bergen, Norway

This paper presents a comprehensive review of super-resolution methods for
smart meter data analysis. Smart meters provide valuable insights into household
electricity consumption, but their low-frequency data limits the ability to capture
detailed patterns. Super-resolution techniques address this challenge through
the reconstruction of high-resolution data from low-resolution measurements.
The review covers both non-machine learning-based methods (interpolation,
signal processing, and statistics) and machine learning-based methods (CNNs,
GANs). Four selected methods are discussed in detail, highlighting their
principles, advantages, and limitations. These methods demonstrate superior
accuracy in enhancing data completeness, capturing complex relationships, and
improving resolution. The review contributes to the advancement of super-
resolution techniques for smart meter data analysis, providing researchers
and practitioners with valuable insights for efficient energy management and
forecasting.
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1 Introduction

Smart meters have revolutionized the monitoring of household electricity consumption,
paving the way for more efficient and reliable electricity grids (Chen et al., 2023; Rind et al.,
2023). These devices collect data at regular intervals, typically every 15 min or an
hour, providing valuable insights into household consumption patterns. As of 2020, the
International Energy Agency (IEA) reported that around 880 million smart meters were
installed worldwide, representing approximately 43% of all electricitymeters (Agency, 2021).
While countries like Italy, Sweden, and the Netherlands have embraced smart meters, others
have been slower in their adoption due to various factors. Nevertheless, the demand for
improved energy consumption practices that are both efficient and sustainable is driving
the continued deployment of smart meters (Tham and Luo, 2013; Ahmad et al., 2022).

The introduction of smart meters has transformed electric utilities into information
management businesses within a relatively short period (Albert and Rajagopal, 2013a). This
evolution has been made possible by the significant increase in data generated by meters
and their supporting network devices. For instance, a utility with one million meters that
collects hourly readings can generate over 2 terabytes of new production environment data
annually (MichaelSteven Rogers, 2021). Consequently, smart meter data has been integrated
with various systems, including outage systems, geospatial systems, asset management
systems, weather data, and operational systems. This integration enables near-real-time
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insights into the status of the distribution grid’s system health,
providing utilities with valuable information for proactive
management. Some utilities have leveraged high-level analytics
based on retrieved data from meters to predict failures in field
equipment, such as transformers, while others have utilized the data
to detect instances of electricity theft by identifying customers who
tamper with the meter (McHenry, 2013; Martins et al., 2019).

High-resolution data collected from smart meters at sub-minute
or few-second intervals offers significant advantages for electric
utilities compared to traditional smart meter data collected at
hourly or 15-min intervals. One key benefit is the ability to obtain
a more rigorous understanding of energy consumption patterns,
which enables precise predictions of energy demand.This empowers
utilities to enhance energy efficiency, reduce costs for consumers,
and make informed decisions regarding energy generation and
distribution (Liu et al., 2020). Additionally, high-resolution data
allows utilities to respond swiftly and accurately to changes in energy
demand through automated adjustments during peak periods. This
proactive approach helps prevent grid overload, mitigates the risk
of blackouts, and reduces the reliance on expensive backup power
sources (Reinhardt and Pereira, 2021; Suriyan et al., 2023).

Moreover, high-resolution data enables accurate load modeling,
especially for integrating new loads such as electric vehicles
and renewable energy sources. The real-time load characteristics
obtained from high-resolution data enhance the accuracy
and reliability of load forecasting, particularly for short-term
predictions. It also enhances consumer engagement for electric
vehicle adaptation and management in the grid (Mohanty et al.,
2022).

Another significant application of high-resolution smart meter
data lies in appliance identification and demand response programs.
By utilizing per-second or higher-frequency data, utilities can
identify individual appliances and observe their power consumption
patterns (Devlin and Hayes, 2019). This information is invaluable
for effective load management, non-intrusive load monitoring, and
optimizing energy consumption in both commercial and residential
buildings. Building owners can implement load-shedding strategies,
minimize electricity costs, and make informed decisions regarding
energy-efficient practices, tariff optimization, and load scheduling
(Chen et al., 2019).

However, collecting high-frequency smart meter data at sub-
minute or second-based intervals presents practical challenges. The
sheer volume of data generated at such high frequencies can strain
data storage, cloud space, and processing resources, resulting in
increased costs for utilities and building owners. Additionally, the
existing deployment of low-frequency meters in power grids makes
complete meter replacement costly and inefficient.

To overcome these challenges, super-resolution methods
have emerged as a crucial solution. These methods enable the
reconstruction of high-resolution smart meter data from the
available low-resolution data. By employing advanced algorithms
and statistical modeling, super-resolution techniques enhance
the degree of specificity and accuracy in the reconstructed data,
effectively simulating high-frequency measurements.This approach
significantly reduces data transmission and storage costs since only
the low-frequency data needs to be transmitted, saving valuable
bandwidth and storage resources.The reconstructed high-resolution
data is capable of being generated in the data center by leveraging

the low-frequency data and applying super-resolution algorithms
(Kaselimi et al., 2022) as illustrated in Figure 1.

Furthermore, investing in robust communication infrastructure
is essential to fully leverage the benefits of high-resolution smart
meter data. Existing communication networks in the power industry
may be inadequate for efficiently handling the vast amounts
of data generated by high-frequency smart meters. Upgrading
to high-speed broadband networks or implementing dedicated
communication channels specifically designed for high-frequency
data transmission is necessary to ensure seamless and reliable data
flow (Ye et al., 2023a).

By overcoming the challenges associated with collecting high-
frequency data and harnessing the capabilities of super-resolution
methods, electric utilities, and building owners can fully embrace
the advantages offered by high-resolution smart meter data. These
advantages include improved energy management, optimized load
distribution, accurate forecasting, and enhanced grid reliability
(Ye et al., 2023b).

Despite the significant progress within the domain of super-
resolution for smart meter data, there remains a noticeable research
gap in terms of comprehensive review papers. Therefore, in this
paper, we present a comprehensive overview of various super-
resolution methods for smart meter data. Such methods can
be categorized into two main groups: non-machine learning-
based methods and machine learning-based methods. Non-
machine learningmethods involve techniques such as interpolation,
signal processing, and statistical modeling. These methods utilize
established mathematical and statistical principles to estimate high-
frequency data points from available low-frequency measurements.
On the other hand, machine learning methods have gained
significant attention in smart meter data super-resolution because
of their potential to learn complex patterns and correlations within
the data. These methods offer powerful tools for producing high-
resolution data from low-resolution measurements. By exploring
the advancements in both non-machine learning and machine
learning techniques, the primary aim of this paper is to provide a
comprehensive understanding of the different approaches and their
applications in smart meter data super-resolution.

The organization of this paper is as follows. Section II provides
an overview of state-of-the-art approaches for smart meter data
super-resolution. Section III delves into a detailed explanation of
four selected methods that have demonstrated high performance
based on their reported results. Section IV discusses the insights of
selected methods as well as provides an overview of the advantages
and disadvantages of each method. Finally, Section V concludes the
paper, summarizing the key findings in the field of smart meter data
super-resolution.

2 State-of-the-art methods

This section provides a summary of the different methods
for smart meter data super-resolution, categorized into non-
machine learning methods and machine learning methods. Both
non-machine learning and machine learning methods have their
strengths and weaknesses. Non-machine learningmethods are often
computationally efficient and straightforward to implement,making
them suitable for simple super-resolution tasks. However, they may
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FIGURE 1
Super resolution problem.

TABLE 1 Important key terms and their definitions in smart meter data
analysis.

Key term Definition

Smart Meter Data Data generated by smart meters and their
supporting devices

Super-Resolution A technique to enhance the quality or
resolution of the data, particularly for
smart meter data analysis by producing
high-frequency data from low-frequency
data

Low-Frequency data The data collected at a low sampling rate
typically every 15 or 30 min

High-Frequency data The data collected at a very high sampling
rate typically every 10 or 20 s

struggle to capture complex dependencies and variations in the
data. Conversely, Machine learning methods can handle complex
data relationships and generate highly accurate high-resolution
data. However, they necessitate substantial quantities of data and
computational resources.

In the literature, the super resolution for increasing the resolution
or quality of the data can be referred to by other names or
terms. Some alternative terms include time series upsampling,
interpolation, imputation, enhancement, and reconstruction among
other terms.These terms capture various aspects of the same process
of increasing the frequency or detail of the time series, estimating
missing values, or improving the overall quality of the data.

In the following subsections, we will provide a more detailed
exploration of specific methods within each category, highlighting
their key principles, advantages, and limitations in the context of
smart meter data super-resolution. Major key terms used in the
paper are illustrated in Table 1.

Overall, the selection of method depends on factors such as
the nature of the data, desired accuracy, computational complexity,
and available resources. Researchers often explore a combination of
these methods or propose novel techniques to further advance the
accuracy and efficiency of super-resolution for smart meter data.

2.1 Non-machine learning-based methods

In the realm of non-machine learning-based methods for smart
meter data super-resolution, various interpolation, statistics, and

signal processing-based techniques are commonly employed. These
approaches utilize established mathematical principles to estimate
high-frequency data points based on the available low-frequency
measurements.

One commonly used category of non-machine learning-based
methods is interpolation-basedmethods, which fills the gaps between
the measurements to generate a higher-resolution dataset. Linear
and non-linear interpolation methods estimate the high-frequency
data points by assuming specific relationships (linear or non-
linear) between the known low-frequency data points. These
methods estimate themissing values by considering the neighboring
measurements and assuming a smooth transition between them
(Karger et al., 2020; Xiang et al., 2022). The Patidar et al. (2022);
Jia et al. (2023) presented examples of interpolation-based methods
for smart meter’s data super-resolution.

Interpolation methods are straightforward to implement and
computationally efficient. Shortcomings of interpolation-based
methods for time series super-resolution include smoothing effects,
limited ability to capture complex patterns, difficulty handling
missing data and irregular sampling, sensitivity to outliers, and
assumptions of uniformly spaced data.

Signal processing-based methods, such as Fourier analysis,
wavelet transforms, Filter Banks, and Singular Spectrum Analysis
(SSA) are also utilized in smart meter data super-resolution. These
methods extract additional information from the low-frequency
data to enhance the resolution. Fourier analysis decomposes
the signal into different frequency components, enabling the
reconstruction of higher-frequency data by extrapolating from
the observed low-frequency data. Toktarova et al. (2019); Cui et al.
(2022); Al-Otaibi et al. (2016) are examples of electricity demand
data upsampling using Fourier analysis. Wavelet transforms, on the
other hand, allow for a localized analysis of the data that exist in the
time and frequency domains. Methods based onWavelet transforms
for super-resolution analyze the observed low-frequency data at
multiple scales and estimate the missing high-frequency details by
reconstructing the signal at a higher resolution (Zhu and Mather,
2018; Amato et al., 2021). Filter banks are used to decompose a
time series into multiple subbands based on different frequency
ranges. In time series super-resolution, filter bank-based methods
can be utilized to enhance the resolution by estimating the missing
high-frequency data in each subband (Harris et al., 2015; Jimenez-
Aparicio et al., 2022). Singular Spectrum Analysis-based methods
can be applied in time series super-resolution to reconstruct the
missing high-frequency data points based on the identified singular
components (Liu et al., 2018).
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These signal processing techniques leverage the inherent
characteristics of the data to estimate missing values and improve
the overall resolution. Shortcomings of signal processing approaches
for time series super-resolution include assumptions of stationarity,
limited modeling flexibility, difficulty in handling nonlinear
relationships, sensitivity to noise, and challenges with irregular
sampling (Sdraka et al., 2022).

Statistical-based methods, including state space models and
autoregressive models are another category of non-machine
learning-based methods for super-resolution.These models capture
the temporal dependencies and statistical properties of the data
to generate high-resolution estimates. State space approaches such
as Hidden Markov Models (HMM), and Kalman Filter separates
the observed data from the unobserved states, allowing for more
accurate estimation of the missing high-frequency data points
using observed measurements and model dynamics (Pham et al.,
2021; Albert and Rajagopal 2013b; Alzaatreh et al., 2018; Leyli-
Abadi et al., 2018; Nguyen et al., 2018). In state-space models,
parameters are estimated from the past data.

Autoregressivemodels utilize past observations to predict future
values, while hidden Markov models consider the underlying states
and transitions in the data. Autoregressivemethods typically involve
autoregressive integrated moving average (ARIMA) and Seasonal
AutoRegressive Integrated Moving Average (SARIMA) models.
Autoregressive approaches are built on the temporal correlation of
the data and utilize the autocorrelation and partial autocorrelation
functions to predict the upcoming data points based on the past
data (Blomgren et al., 2002). The method proposed by Hong et al.
(2014) is an example of ARIMA application for smart meter super-
resolution.

These statistical models give an understanding of the specific
statistical properties of the data and can be useful for forecasting and
estimation tasks. Despite their simplicity and efficiency, statistical-
based methods can be sensitive to noise, have limited ability to
capture nonlinear relationships, and may not capture complex
patterns in the data.

Under the non-machine learning methods umbrella, the
statistical methods may be preferred over machine learning-based
methods in situations where the dataset is relatively small, and the
underlying relationships can be adequately captured by established
statistical techniques. They may also require less computational
resources and have fewer dependencies on large training datasets.
Additionally, statistical methods may be favored when there is a
need for transparency, explainability, or regulatory compliance in
decision-making processes such as real-time load monitoring or
smart meter data quality assessment and visualization.

2.2 Machine learning-based methods

Machine learning-based methods have gained significant
attention in smart meter data super-resolution due to their capacity
to comprehend intricate patterns and connections within the data.
These methods involve training algorithms and models on a large
dataset of low-frequency and high-frequency data pairs. By learning
the underlying patterns, machine learning models can generate
high-resolution data from low-resolution measurements.

One popular approach involves employing deep learning
models, like convolutional neural networks (CNNs) or recurrent
neural networks (RNNs). CNNs are effective at capturing spatial
dependencies in the data, while RNNs are suitable for capturing
temporal dependencies. These deep learning models are highly
proficient at capturing intricate relationships and variations
in the data, leading to highly accurate high-resolution results
(Hayat, 2018; Sdraka et al., 2022). The Liu et al. (2020); De-Paz-
centeno et al. (2021) utilized CNN-based super-resolution methods
for smart meter data. The Massaferro et al. (2022) presented a deep
learning framework combined by wavelet decomposition for super-
resolution of time series data. The Shi et al. (2017) developed an
RNN approach for household high-resolution load forecasting. The
Wang et al. (2021) suggested a mixed deep learning approach that
incorporates long short-term memory (LSTM) and gated recurrent
unit (GRU) networks to improve super-resolution performance for
power distribution network measurements. In a similar study, Liang
et al. (2020) developed a hybrid approach using LSTM and extreme
learning machine (ELM) for high-resolution state estimation in
power systems.

Generative Adversarial Networks (GAN) are a recent family of
deep learning methods that perform highly in super-resolution and
time series forecasting tasks.The following research papers (Li et al.,
2020; De-Paz-centeno et al., 2021; Zhang et al., 2021) proposed
GAN-based methods for smart meter’s super-resolution problem.

Ensemble methods combine multiple models to generate high-
resolution estimates. For example, random forests utilize decision
trees to capture different aspects of the data (Salvador and
Perez-Pellitero, 2015; Schulter et al., 2015), while gradient-boosting
algorithms iteratively improve the predictions by combining weak
learners. Ensemble methods leverage the collective knowledge of
multiple models to enhance the resolution and improve accuracy.
Mocanu et al., (2016) proposed a super-resolution method for time
series data based on an ensemble of deep learning, compressive
sensing, and sparse representation that outperformed Artificial
Neural Networks (ANN) and Recurrent Neural Networks (RNN).

Machine learning-based methods offer the advantage of
capturing complex patterns and nonlinear relationships in data.
They are particularly useful for tasks that require highly accurate
predictions, such as dynamic load modeling or short-term load
forecasting. However, they typically require a larger amount of
training data and computational capabilities for training and
predictions in comparison to non-machine learning methods.

Understanding the distinctions between non-machine learning-
based methods and machine learning-based methods is crucial in
selecting the most appropriate approach for smart meter data super-
resolution. Factors such as data set size, computational resources,
interpretability requirements, and the specific objectives of the
analysis should be considered when determining which category of
methods is more suitable for a given application.

3 Unveiling the inner workings of four
selected super-resolution methods

This section provides a more detailed explanation of four
machine learning based methods for super-resolution in smart
meter data. These methods have been selected based on their
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FIGURE 2
SRP-CNN network architecture (Liu et al., 2020).

relevance and effectiveness in the domain of smartmeter data super-
resolution. Each method is described below, highlighting its key
principles, advantages, and limitations.

3.1 SRP-CNN

The study conducted by Liu et al. (2020) presents a time-series
super-resolution method specifically designed for smart meter
data called Super Resolution Perception Convolutional Neural
Network (SRPCNN). This method utilizes a perception-based
super-resolution framework that incorporates both low-level and
high-level features of the data. It utilizes a CNN architecture that
comprises of an encoder-decoder structure with skip connections
to effectively get and restore the high-frequency details from the
data. SRPCNN works as a feature extractor on low-frequency data.
The process involves extracting features, followed by an information
supplement network comprised of seven convolutional layers. This
network performs non-linear mapping to transition from low-
frequency to high-frequency feature spaces. The method leverages
perceptual loss functions to align the generated high-resolution data
with the actual data, enhancing the perceptual quality of the results.
The SRPCNN network architecture of is illustrated in Figure 2.

The key principles of themethod involve leveraging a perceptual
loss function and training for super-resolution. The advantages of
the method include its ability to capture complex relationships in
the data and generate high-resolution load profiles. However, the
method does not work well when there is a substantial disparity in
the sampling rates between the low-frequency data and the high-
frequency data.

In the experimental part, the authors utilized the proposed SRP
method for generating high-frequency data from low-frequency
data.They then compared the results with two classical interpolation
methods: Cubic and Linear interpolation. Subsequently, the SRP
dataset was evaluated using several baseline methods, including
SVM and CNN.The results show that SRP-CNN outperforms these
baseline methods, achieving higher accuracy in generating high-
resolution load profiles.

FIGURE 3
SRP-NSE framework network structure (Liang et al., 2020).

FIGURE 4
Network structure of the SRP-NSE blocks (Liang et al., 2020).
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3.2 SRP-NSE

In Liang et al. (2020), the authors propose a time-series super-
resolution method for enhancing the completeness of data in smart
grid state estimation. The method combines the strengths of CNN
and statistical estimation techniques to generate high-resolution
data. The CNN is trained using a combination of perceptual loss
functions and adversarial learning to enhance the resolution of the
input data.

The method offers several advantages, including its ability
to generate high-resolution data with improved accuracy and
completeness. However, the method requires a large dataset
and substantial computational resources. Figure 3 illustrates
the architecture of the method and the data transformation
process.

During the stage of feature extraction, the method employs
three one-dimensional (1D) convolutional layers for extracting
features from the low-frequency data. The information completion
stage supplies higher resolutions of features from the relationship
knowledge between low- and high-frequency data. The stage has
multiple SRPNSE blocks executed using a residual structure. This
residual structure is made up of one global residual connection and

multiple local residual blocks. Figure 4 illustrates the structure of the
residual blocks.

Regarding accuracy and performance, the paper compares
SRP-NSE with other super-resolution methods, particularly linear
interpolation, and cubic interpolation methods, demonstrating its
superior performance in enhancing the completeness of data for
smart grid state estimation tasks.

3.3 ProfileSR-GAN

Song et al. (2022) proposed a method that utilizes a generative
adversarial network (GAN) framework for generating high-
resolution load profiles from low-resolution data. The method
applies to smart meter data by taking low-resolution load profiles
obtained from smart meters as input and generating high-resolution
load profiles with enhanced details.

The key principles of ProfileSR-GAN involve training a
generator and a discriminator within the GAN framework.
The generator takes low-resolution load profiles as input
and generates corresponding high-resolution profiles, while
the discriminator evaluates these generated profiles. Through

FIGURE 5
The 2-stage ProfileSR-GAN architecture (Song et al., 2022).
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adversarial learning, the generator learns to produce high-resolution
profiles that are virtually identical to authentic ones, while the
discriminator is trained to differentiate between real and generated
profiles.

The method offers advantages such as capturing complex
patterns and relationships in the data, handling irregular sampling
intervals and missing values, and allowing flexibility in adjusting
the desired resolution level. However, it may depend on the
availability of a large and diverse training dataset and requires high
computational resources. The architecture of the ProfileSR-GAN is
presented in Figure 5.

The accuracy and performance of ProfileSR-GAN are
evaluated in comparison to other super-resolution methods,
such as CNN. The paper demonstrates superior results in
terms of quantitative metrics, such as peak signal-to-noise ratio
and the visual quality of the generated high-resolution load
profiles.

3.4 Tailored-GAN

The study conducted by Li et al. (2020) introduces a
time-series super-resolution method employing a Generative
Adversarial Network (GAN). The proposed method utilizes a
GAN architecture, consisting of a generator and a discriminator, to
learn the relationship between low-frequency and high-frequency
measurements. The generator learns to generate high-resolution
data from the low-resolution input, and the discriminator aims
to determine the generated high-resolution data from the ground
truth high-resolution data. The trained model can then generate
high-resolution data from the low-resolution measurements
captured by the smart meters, thus improving the overall data
quality.

Figure 6 depicting the overview of the method, including the
GAN architecture and the data transformation process, would
provide a visual representation of ProfileSR-GAN.

The advantages of the proposed approach include the
ability to generate high-quality, high-resolution data from low-
frequency measurements, thereby enhancing super-resolution
accuracy. In addition, the validation by the authors shows
that the method generalizes to datasets from the same area.
However, generalization to other different geographical areas is
limited.

Regarding accuracy and performance, the paper lacks a
fair comparison with other state-of-the-art methods for super-
resolution methods. However, it shows high performance in the
upsampling of electric grid measurement data.

4 Discussion

Super-resolution algorithms for smart meter data provide
solutions to the challenges associatedwith collecting high-frequency
data. The selected algorithms, specifically designed for time-
series super-resolution in smart grids and smart meters, use
deep learning techniques such as GANs or CNNs. These deep
learning methods are chosen for their ability to learn complex
patterns in data and generate high-quality high-resolution outputs

FIGURE 6
Network structure for Improved GAN. Li et al. (2020).

from lower-resolution inputs. All the reviewed methods focus
on applications within smart grids, such as enhancing load
forecasting, appliance identification, and improving the overall
efficiency of electricity services. This shared focus underscores the
growing importance of advanced data analysis techniques in energy
management.

We want to emphasize the variety of approaches utilized in
these methods. A strength of deep learning algorithms is their
adaptability to various sources of data, tailoring the learning process
to each specific application (Iglesias et al., 2022). For instance, the
Tailored-GAN method (Li et al., 2020) processes data as images,
demonstrating the flexibility of deep learning algorithms. While the
overall goal of all methods is to improve data quality, the approaches
to handle and enhance data vary. Some focus on the inclusion of
weather data in the model, others on the generalization of models
across different datasets and geographical locations, and some on
the practical aspects of training deep learning models for super-
resolution.

In this section, we will analyze the main advantages and
disadvantages of the four selected methods. An overview of these
four methods is illustrated in Table 2.

4.1 Advantages

Broadly speaking, it can be stated that the four chosen
techniques are all capable of producing high-resolution data from
low-resolution sources.

The SRP-CNN approach (Liu et al., 2020) demonstrated
the ability to effectively reconstruct high-frequency data and
increase the quality of low-frequency measurements, leading
to significantly improved accuracy. The method also proved
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TABLE 2 Overview of the selectedmethods.

Method Advantages Disadvantages Metrics

SRP-CNN Liu et al. (2020)

Reconstructs high frequency data Does not work well with large sampling rate Root Square Mean Error
(RMSE)

Improves appliance identification

Data quality can be improved
Dynamic Time Warping
(DTW)

Captures temporal relationship

Computational effective

Captures complex relationships in data

Compared to other state-of-the-art methods

SRP-NSE Liang et al. (2020)

Able to enhance data completeness Not compared to state-of-the-art methods Mean Absolute Percentage
Error (MAPE)

Approximate specific nonlinear functions Requires large dataset

Signal-to-noise Ratio (SNR)

Investigates parameter optimization Substantial computational resources

Improves data quality

Lacks trials with higher frequencies
Applied to other modules in smart grids

Combines CNN and statistical estimations

Captures complex relationships in data

ProfileSR-GAN
Song et al. (2022)

Restores high-frequency components Requires large dataset Mean Square Error (MSE)

Added weather data

Substantial computational time

Peak Load Error (PLE)

Added polishing network Frequency Component Error
(FCE)

Resolves oversmoothing of generated data

Critical Point Error (CPE)

Introduces shape-wise evaluation metrics

Captures complex relationships in data

Handles irregular sampling

Handles missing data

Flexibility in adjusting resolution

Compared to other state-of-the-art methods

Improves appliance identification

Tailored-GAN Li et al. (2020)

Restores high-frequency details Not compared to state-of-the-art methods Structural Similarity (SSIM)

Avoids disappearance of the gradient Not generalized to data in other locations

Peak Signal-to-noise Ratio
(PSNR)

Prevents oversmooth generated samples

No other processes of data flow discussedGeneralized to data in same location

Captures complex relationships in data
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its effectiveness in enhancing the precision of appliance
identification. Moreover, the design of SRP-CNN is designed
to capture the temporal dynamics in one-dimensional time
series data, aligning with the specific attributes of the SRP
problem, in contrast to CNNs used for image processing.
Additionally, the SRP-CNN solves the issue of computational
inefficiency by using a fully convolutional network and parallel
processing, enabling it to capture complex relationships within the
data.

SRP-NSE (Liang et al., 2020) demonstrated its effectiveness
and value in enhancing data completeness in smart grid state
estimation tasks, compared to traditional super-resolution
methods. The method employs a deep neural network with
various residual blocks, providing the ability to approximate
specific nonlinear functions effectively. To address the challenges
associated with parameter optimization, the paper explores the
effectiveness of the RMSProp and ADAM algorithms in enhancing
the training process. Notably, the SRP-NSE method combines
the capabilities of CNN with statistical estimation methods.
Additionally, the SRP-NSE method improves data quality and
can be applied to various other modules within smart grid
systems.

The ProfileSR-GAN technique (Song et al., 2022) showed
superior performance in the restoration of high-frequency
components in sampling intervals. The notable advancements
in its performance are primarily due to the addition of weather
data as well as the fine-tuning of the added polishing network.
Furthermore, the study employs a combination of adversarial and
feature loss terms for the loss function of the generator, to resolve
the issue of too smooth generated data.The research also introduces
three innovative shape-wise evaluation metrics. Key advantages
of the ProfileSR-GAN method include its proficiency in capturing
complex patterns and relationships in the data and handlingmissing
data and irregular sampling intervals in the preprocessing of the
data. Additionally, the method provides flexibility in adjusting
the desired resolution by adding a scale-up factor. Comparisons
against both traditional interpolation and state-of-the-art CNN-
based methodologies demonstrate the superiority of ProfileSR-
GAN. Improved results in Non-Intrusive Load Monitoring
(NILM) experiments further demonstrate the value of the
method.

Tailored-GAN (Li et al., 2020) showed the ability to replace
high-frequency features with better accuracy, compared to
traditional super-resolution methods. These improvements are
mainly due to the introduction of the Wasserstein distance, which
helps prevent gradient vanishing and thereby boosts training
stability. Another reason for the improvement is the introduction
of perceptual loss to help prevent overly-smoothed generated
samples and cautious restoration outcomes. Further, the model
is capable of generalization to data from similar geographical
areas.

4.2 Disadvantages

The four selected methods include various disadvantages
highlighted in the form of limitations and future
work.

SRP-CNN (Liu et al., 2020) struggles to function effectively
because of significant information loss, should the sampling
rate disparity between the low-frequency data and the high-
frequency data be excessively wide. Put simply, executing super-
resolution becomes more challenging as the SRP factor increases.
Additionally, the authors of the paper mention that focusing on
improving data quality, i.e., inferring missing data and detecting
bad data, has a significant real-world value in future SRP
experiments.

The SRP-NSE (Liang et al., 2020) method is compared to
linear interpolation, cubic interpolation, and real downsampled
data, but lacks comparison with other state-of-the-art super-
resolution methods. Furthermore, the data used in the experiment
is substantially large. Adding a more comprehensive dataset to
the experiment would require substantial computational resources,
requiring further hardware investments. Additionally, the authors of
the paper suggest further work should include trials with relatively
higher frequencies.

The ProfileSR-GAN (Song et al., 2022) method requires
a substantial amount of data. Because of the amount of
data and the nature of the GAN network, this method
also requires extensive computational time. Furthermore,
the authors suggest future work should include an
evaluation of the method on various other time-series
datasets.

The tailored-GAN method (Li et al., 2020) is only compared
to bicubic interpolation, missing comparison to other state-of-the-
art super-resolution methods. Furthermore, the method does not
generalize well on data in different geographic areas. Lastly, the
authors mention that the paper only examines the reconstruction
of low-frequency measurement data and no other processes of data
flow.

5 Conclusion

In this paper, we provided a comprehensive overview
of super-resolution methods for smart meter data analysis.
The increasing deployment of smart meters has produced
an immense volume of data, but the low-frequency nature
of this data restricts its ability to capture fine-grained
patterns and detailed information. Super-resolution techniques
have emerged as a valuable solution to overcome this
limitation.

We categorized super-resolution methods into non-machine
learning-based and machine learning-based approaches. Non-
machine learning methods, such as interpolation, signal
processing, and statistics, offer simplicity and computational
efficiency but may struggle with capturing complex relationships.
Machine learning methods, including CNNs and GANs, excel
at capturing intricate patterns and generating high-resolution
data but require substantial training data and computational
resources.

We presented a detailed examination of four selected super-
resolution methods: SRP-CNN, SRP-NSE, ProfileSR-GAN, and
Tailored-GAN. These methods showcased the advancements in
both non-machine learning and machine learning techniques,
demonstrating their effectiveness in enhancing data completeness,
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capturing complex relationships, and improving resolution
accuracy.

The research in smart meter data super-resolution is
continually evolving, and there are opportunities for further
exploration and improvement. Future research can focus on
addressing the limitations of existing methods, developing hybrid
approaches, and considering the scalability and generalizability
of the techniques to different geographical areas and diverse
datasets.

Overall, the advancements in super-resolution methods for
smart meter data analysis hold great promise for improving
energy management, load forecasting, and grid reliability. By
leveraging these techniques, researchers and practitioners can
gain deeper insights into household energy consumption patterns
and make informed decisions for efficient and sustainable energy
practices.
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