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The production of electrons from beauty-hadron decays was measured at midrapidity in proton-proton (pp)
and central Pb-Pb collisions at center-of-mass energy per nucleon-nucleon pair

√
sNN = 5.02 TeV, using the

ALICE detector at the LHC. The cross section measured in pp collisions in the transverse momentum interval
2 < pT < 8 GeV/c was compared with models based on perturbative quantum chromodynamics calculations.
The yield in the 10% most central Pb-Pb collisions, measured in the interval 2 < pT < 26 GeV/c, was used
to compute the nuclear modification factor RAA, extrapolating the pp reference cross section to pT larger than
8 GeV/c. The measured RAA shows significant suppression of the yield of electrons from beauty-hadron decays
at high pT and does not show a significant dependence above 8 GeV/c within uncertainties. The results are de-
scribed by several theoretical models based on different implementations of the interaction of heavy quarks with
a quark-gluon plasma, which predict a smaller energy loss for beauty quarks compared to light and charm quarks.
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I. INTRODUCTION

The formation of a strongly coupled color-deconfined
medium, called quark-gluon plasma (QGP), is predicted by
quantum chromodynamics (QCD) calculations on the lattice
at high energy density and temperature [1–5]. These extreme
conditions can be created in ultrarelativistic heavy-ion col-
lisions, which were used to establish the formation of the
QGP and to study its properties [6,7] at the SPS [8,9], RHIC
[10–13], and LHC [14,15] accelerators.

Heavy quarks (charm and beauty) are predominantly pro-
duced in the initial hard-scattering processes [16], given that
their mass is large compared to the thermal energy scale
(mc,b � kBTQGP, where kB is the Boltzmann constant and
TQGP is the temperature of the QGP) and on a timescale
shorter than the QGP formation time [17] (τQGP ≈ 1 fm/c
[18]). Their mass is also large compared to the QCD scale
�QCD, allowing perturbative calculations of their production
cross section to be applicable down to zero transverse mo-
mentum (pT) [19–22]. Given the early production of heavy
quarks during the collision, they experience all the stages of
the system evolution [17,23]. They interact with the medium
constituents via both elastic (collisional) and inelastic (gluon
radiation) processes [24–29], where the relative contribution
of the latter increases with pT. As the heavy quarks from
the early collision rarely annihilate or get produced thermally
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[17,30,31], the effect of the interactions with the medium
is primarily a change in the momentum distribution of the
quarks. Quarks moving faster than the surrounding medium
are typically slowed down by the interactions (resulting in in-
medium energy loss), while slow quarks may get accelerated
and pushed along with the surrounding medium. Measuring
the effect of these interactions yields insights into the transport
properties of the QGP [17]. The interaction of partons with
the medium is expected to depend on the color charge and the
mass of the parton [25–27,32], with a stronger interaction of
gluons compared to quarks and of lighter quarks compared to
heavier ones for both collisional and radiative processes. The
mass dependence of the radiative contribution is connected to
the dead-cone effect [25,33], which predicts gluon radiation
to be suppressed for angles θ � m/E , where m and E are the
mass and energy of the quark. The measurement of hadron
species with different quark contents over a large pT range is
therefore fundamental to shed light on the underlying mecha-
nisms of the in-medium quark energy loss. Measurements of
hadrons containing beauty quarks (beauty hadrons) are par-
ticularly useful for testing the mass dependence of the parton
energy loss up to high transverse momenta.

The effect of the medium is usually quantified using the nu-
clear modification factor RAA, defined as the ratio between the
pT-differential particle yields in nucleus-nucleus (A-A) col-
lisions (dNAA/d pT) and the corresponding production cross
section in pp collisions (dσpp/d pT) at the same energy scaled
by the average nuclear overlap function 〈TAA〉 for the centrality
range under study [34,35]

RAA = 1

〈TAA〉
dNAA/d pT

dσpp/d pT
. (1)

The production cross section of beauty hadrons and their
decay products in hadronic collisions has been measured at
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different energies at RHIC [36,37], Tevatron (pp) [38], and
at the LHC [15,39–54]. These measurements are described
by perturbative quantum chromodynamics (pQCD) calcula-
tions such as fixed order plus next-to-leading-log (FONLL)
[19–21] and general-mass variable flavor-number scheme
(GM-VFNS) [22] within uncertainties.

The interaction of heavy quarks with the medium can
be studied via the measurement of charm hadrons, which
can be reconstructed using their exclusive hadronic decays.
Measurements in Pb-Pb collisions show a significant change
in their momentum distribution with respect to pp collision
data [55–57]. Together with measurements of the flow co-
efficients [58–62], this can provide significant constraints
to models of the transport properties of the QGP medium
[15,23,55,63]. To investigate the quark-mass dependence of
the interaction, measurements in the beauty sector are needed
as well. Due to the small cross section of beauty-hadron
production and their large number of decay channels, the
full reconstruction of beauty hadrons is difficult in heavy-ion
collisions. While it is possible to reconstruct beauty hadrons,
as for example in the B± measurement through the decay
channel B± → J/ψ + K± → μ+μ− + K± [41,45,48,64,65]
with a BR of (6.12 ± 0.19) × 10−5 [66], the small branching
ratios make such measurements challenging. Complemen-
tary information can be gained using inclusive measurements
of beauty-hadron decay products such as nonprompt J/ψ
[47,67,68], nonprompt D mesons [52,69–71], or through lep-
tons originating from semileptonic decays of heavy-flavor
hadrons [72–76]. The nuclear modification factor of leptons
from beauty-hadron decays has been measured by the ALICE
collaboration for semielectronic decays in Pb-Pb collisions
at

√
sNN = 2.76 TeV [72] and for semimuonic decays at√

sNN = 5.02 TeV with pT > 4 GeV/c [77], while the elliptic
flow coefficient has been measured at

√
sNN = 5.02 TeV by

the ALICE [78] and ATLAS [79] collaborations. The mea-
surement of leptons from heavy-flavor decays can provide
information about a large range of hadron and heavy-quark
momenta, which can help to gain an understanding about the
interplay of the collisional and radiative processes.

In this article, the ALICE measurements of the pT-
differential cross section of electrons from beauty-hadron
decays in pp collisions at

√
s = 5.02 TeV, the pT-differential

yield in the 10% most central Pb-Pb collisions at
√

sNN =
5.02 TeV, and the corresponding nuclear modification factor at
midrapidity are presented. The results are discussed together
with a comparison to theoretical models.

II. EXPERIMENTAL APPARATUS AND DATA SAMPLES

The ALICE apparatus consists of a central barrel covering
the pseudorapidity region |η| < 0.9 and a muon spectrometer
with −4 < η < −2.5 coverage. It also contains forward- and
backward-pseudorapidity detectors employed for triggering,
background rejection, and event characterization. The nomi-
nal magnetic field, parallel to the beam axis and provided by
the solenoid magnet in which the central barrel detectors are
placed, is 0.5 T. A complete description of the detector and an
overview of its performance are presented in Refs. [80,81].

The central-barrel detectors used in the analyses presented
in this article for charged-particle reconstruction and electron
identification at midrapidity are the inner tracking system
(ITS) [82], the time projection chamber (TPC) [83], the
time-of-flight (TOF) [84] detector, and the electromagnetic
calorimeter (EMCal) [85]. The ITS consists of six layers of
silicon detectors, with the innermost two composed of silicon
pixel detectors (SPD), two intermediate layers of silicon drift
detectors, and the two outermost layers made of double-sided
silicon strip detectors. The ITS is used to reconstruct the
primary vertex and for tracking charged particles, the latter in
combination with the TPC. The SPD crucially also provides
very good spatial resolution down to low transverse momen-
tum, important requirement for the analyses presented in this
paper. The TPC is the main tracking detector of the central
barrel. In addition, it allows for particle identification via the
measurement of the particle specific energy loss (dE/dx) in
the detector gas. Additional information for particle identi-
fication is provided by the TOF [84], via the measurement
of the charged-particle flight time from the interaction point
to the detector. The event collision time is determined using
the TOF itself or the two T0 arrays [86], made of quartz
Cherenkov counters and covering the acceptance 4.6 < η <

4.9 and −3.3 < η < −3.0. The EMCal detector [85,87] is a
shashlik-type lead and scintillator sampling electromagnetic
calorimeter [88] that covers an acceptance of |η| < 0.7 in
pseudorapidity and �ϕ = 107◦ in azimuth. The smallest seg-
mentation of the EMCal is a tower, which has a dimension
of 6 × 6 cm2 (0.0143 × 0.0143 rad2) in the η × φ direction.
The EMCal is used for electron identification as well as for
triggering on rare events with high momentum particles in its
acceptance.

Two scintillator arrays (V0) [89], placed on each side of
the interaction point (with pseudorapidity coverage 2.8 < η <

5.1 and −3.7 < η < −1.7), are used to define a minimum-
bias trigger, to reject offline beam-induced background events,
and for event characterization. The V0 detectors along with
the two T0 arrays are employed to measure the cross sec-
tion corresponding to the minimum-bias trigger condition
[90]. The zero degree calorimeters [91] located at 112.5 m
on both sides of the interaction point are used to reject electro-
magnetic interactions and beam-induced background in Pb-Pb
collisions.

The heavy-ion collisions were divided into different cen-
trality classes using the signal of the V0 detectors [92,93].
The centrality refers to the percentile of the hadronic cross
section covered, with lower values corresponding to more
central events.

The results presented in this paper were obtained using
data recorded by ALICE during the LHC Run 2 data-taking
period in 2017 for pp collisions at center-of-mass energy√

s = 5.02 TeV and in 2015 for Pb-Pb collisions at center-of-
mass energy per nucleon-nucleon collision

√
sNN = 5.02 TeV.

To obtain a uniform acceptance of the detectors, only events
with a reconstructed primary vertex position along the beam
line located within ±10 cm from the center of the detector
were considered for both pp and Pb-Pb collisions. Addition-
ally, events were selected after standard quality checks on
the performance of the detectors used in the analyses. The
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analysis in pp collisions was performed using the minimum
bias (MB) trigger, which requires coincident signals in both
scintillator arrays of the V0 detector. In Pb-Pb collisions, the
analysis using TPC and TOF detectors was based on a MB
triggered sample, while the TPC-EMCal analysis employed
the MB and a high-energy event trigger based on the energy
deposited in the EMCal. The EMCal trigger (EG) is based
on the sum of energy in a sliding window of 4 × 4 towers
above a given threshold, where the required energy threshold
for the Pb-Pb data sample was 10 GeV above the background
energy from the underlying event. The background from the
underlying event was obtained using the median of 16 × 16
tower patches in the opposite side calorimeter referred to as
DCAL. The analyzed number of MB events is 930 × 106

in pp collisions corresponding to an integrated luminosity
of Lint = 18.2 ± 0.4 nb−1 [94], and 6.7 × 106 and 4.8 × 106

events for the 10% most central Pb-Pb collisions for the TPC–
TOF and TPC–EMCal analysis, corresponding to integrated
luminosities of Lint = 8.9 ± 0.2 µb−1 and 6.2 ± 0.1 µb−1 [92],
respectively. The number of analyzed EMCal triggered events
is 57 × 104 in the 10% most central Pb-Pb collisions, corre-
sponding to an integrated luminosity of 45.6 ± 3.6 µb−1.

III. ANALYSIS OVERVIEW

Throughout this paper, the term “electron” is used for
indicating both electrons and positrons. In the momentum
range pT � 2 GeV/c considered in these analyses, most of the
electrons produced near the interaction vertex at midrapidity
come from the decays of heavy-flavor hadrons [95]. They
can be produced directly or as part of the decay chain. Other
processes producing electrons that constitute a background in
the measurement of electrons from heavy flavor decays are
Dalitz and dielectron decays of light mesons (π0, η, ρ, ω,
η′, φ), photon conversions in the detector material, decays of
hadrons containing strange quarks, decays of prompt quarko-
nia, and decays of vector bosons. For these, the decay chains
of heavier particles may also contain lighter electron sources
(e.g., K0

S → π0π0). Generally, such contributions are more
significant at low pT.

The measurements of electrons from beauty-hadron de-
cays can be broadly split into four steps: (i) track selection,
(ii) electron identification, (iii) signal extraction to estimate
the fraction of electrons originating from beauty-hadron de-
cays, and (iv) a correction for selection efficiencies and
geometrical acceptance.

Good quality tracks were selected using the criteria de-
tailed in Sec. III A. The electron identification (eID) was
performed in two different ways depending on the particle pT.
At low pT (2 < pT < 8 GeV/c) in pp and Pb-Pb collisions,
the eID was based on the combination of signals of the TPC
and TOF detectors. In Pb-Pb collisions, a second analysis was
performed in the interval 3 < pT < 26 GeV/c exploiting the
combined eID information from TPC and EMCal. The TPC-
EMCal analysis was performed using MB triggered events
for the pT interval 3 < pT < 12 GeV/c and using EMCal
triggered events for 12 < pT < 26 GeV/c to profit from the
substantially larger integrated luminosity sampled with this
trigger in a momentum interval in which the EG trigger selec-

tion is fully efficient. For the final results, the yields obtained
from TPC-EMCal analysis were used for pT > 8 GeV/c,
whereas the overlapping region of 3 < pT < 8 GeV/c was
used to check the consistency between the TPC–TOF and
TPC–EMCal measurements. This choice was motivated by
the precision of the measurement based on statistical and sys-
tematic uncertainties, as will be further discussed in Sec. IV.

The signal of electrons from beauty-hadron decays was
separated from the other background electron sources via an
analysis of the track impact parameter (d0) distribution, ex-
ploiting the comparatively longer lifetime of beauty hadrons
(cτ ≈ 500 µm [96]) with respect to other electron sources.
The d0 is defined as the distance of closest approach of the
electron track to the reconstructed interaction vertex in a plane
perpendicular to the beam direction. It has a positive or nega-
tive sign depending on whether the track passes on the left or
right of the primary vertex. This value was multiplied by the
sign of the charge of the track and by the sign (direction) of
the magnetic field along the z axis.

The signal was extracted through a Monte Carlo (MC)
template fit of the d0 distribution, using four templates in
the case of the TPC-TOF analysis and two templates in the
TPC-EMCal analysis as described in Secs. III C and III D,
respectively.

A. Track selection and electron identification

The track selection has two main goals: assuring high-
quality tracks and reducing the contribution of background
electrons. In particular, requiring hits in detectors close to the
interaction point removes part of the contribution of electrons
from photon conversions that occur in the detector material.
For the analyses based on TPC-TOF, all tracks were required
to have an associated hit in each of the two innermost layers
of the ITS. In the high-track-density environment of a central
Pb-Pb collision, it is however possible for a track produced
at a larger radius by a photon conversion to be associated
with the hits of another particle in the inner layers. These are
referred to as misassociated conversion electrons. To reduce
this contribution, tracks were required to have at most one
hit in the ITS which is shared with another track. For the
TPC-EMCal analysis, the tracks were required to have at least
one hit in one of the two innermost layers of the ITS. This
reduces the impact of the inactive channels in the first ITS
layer in the acceptance window of the EMCal.

The TPC track quality is ensured by several selections on
the clusters associated to the track, reported in Table I. In
particular, the tracks are required to have a minimum total
number of clusters and a minimum fraction of found clusters
relative to the expected maximum considering the track po-
sition in the detector geometry (found/findable). Additional
requirements on the number of crossed pad rows are applied
as in Ref. [97].

The resulting resolution of the impact parameter of the
selected tracks with pT > 2 GeV/c is better than 60 µm for
the pp measurement, 50 µm for the TPC-EMCal analysis in
Pb-Pb, and 40 µm for TPC-TOF in Pb-Pb. The complete list
of selection criteria can be found in Table I and is similar to
earlier analyses [95].
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TABLE I. Selection criteria for electron candidates.

pp Pb-Pb Pb-Pb
TPC-TOF TPC-TOF TPC-EMCal

Rapidity |y| < 0.8 |y| < 0.8 |y| < 0.6
DCAz <2 cm <2 cm <1 cm
TPC clusters for tracking – � 100 � 80
TPC crossed rows for tracking � 70 – � 70
TPC clusters for dE/dx � 80 � 80 –
found/findable clusters – >0.6 –
crossed rows/findable clusters >0.8 – >0.8
max. χ 2 per cluster in TPC 4 4 4
max. χ 2 per cluster in ITS 36 5 36
number of ITS clusters � 4 � 4 � 3
number of SPD hits 2 2 1 or 2
number of shared ITS clusters – at most 1 –
ITS and TPC refit yes yes yes
Reject kink daughters yes yes yes
TPC-EMCal matching – – |�η| < 0.05, |�ϕ| < 0.05
TPC eID signal −1 < nTPC

σ,e < 3 −0.16 < nTPC
σ,e < 3 −1 < nTPC

σ,e < 3
TOF eID signal |nTOF

σ,e | < 3 |nTOF
σ,e | < 3 –

EMCal Ecal/p – – 0.8 < Ecal/p < 1.2
EMCal shower shape – – 0.01 < σ 2

short < 0.35

For electron identification with the TPC (TOF), the
measured signal was compared to the expected signal for
electrons. The selection was performed on the variables
nTPC

σ,e (nTOF
σ,e ), defined as the deviation of the signal from the

expectation for an electron in units of the expected resolution.
For the EMCal, the main variable used for separating electrons
from hadrons was Ecal/p: the deposited energy (Ecal) in the
calorimeter divided by the reconstructed particle momentum
(p), together with information about the shape of the elec-
tromagnetic shower. The shower shape is characterized by
the eigenvalues of the dispersion matrix of the shower shape
ellipse defined by the energy distribution within the EMCal
cluster [87,98,99]. In this analysis, it was chosen to require
the short axis of the ellipse, σ 2

short [100], within the range
0.01 < σ 2

short < 0.35, to reduce the hadron contamination. The
lower threshold of σ 2

short was chosen to reduce the contam-
ination caused by neutrons hitting the readout electronics.
All the eID selection criteria can be found in Table I. The
low but finite remaining hadron contamination was explicitly
estimated and subtracted in the method employing TPC and
EMCal. It was considered as part of the impact parameter fit
in the measurements based on TPC and TOF as discussed in
Sec. III E 1.

B. Impact parameter distributions of the different
electron sources

The electron candidates originate from different sources,
as described in Sec. III. As part of the separation is based
on the track impact parameter, it is useful to consider the
different shapes of the impact parameter distributions. Elec-
trons from beauty-hadron decays have a particularly wide
impact parameter distribution due to the large decay length
of the hadrons (cτ ≈ 500 µm [96]). For the electrons from
charm-hadron decays this distribution is somewhat narrower

(40 < cτ < 300 µm [96]) though still wide compared to many
of the other background contributions. Light mesons like
neutral pions can decay to electrons directly via three-body
Dalitz decays, accounting for a significant portion of the
light meson background. As these decays, similar to those
of quarkonia and vector bosons, essentially occur at the in-
teraction vertex, their impact parameter distribution is narrow
and is determined by the reconstructed track resolution. Light
mesons can also produce electrons via decays to photons that
convert in the detector material. Electrons originating from
photon conversions have a very small angle with respect to
the photon direction. However, due to the magnetic field, the
track acquires a sizable average impact parameter when it
is propagated back to the primary vertex with opposite sign
for positrons and electrons. Multiplying the impact parameter
with the sign of the track charge and magnetic field orientation
makes the distribution asymmetric, making it easier to distin-
guish it from the other sources. Most of the electrons from
photon conversions at large radii are removed by the require-
ment of signals in the inner ITS layers. The few remaining
misassociated conversion electrons have a very wide impact
parameter distribution. Most of the hadrons left in the sample
after electron identification are produced near the interaction
vertex. Thus, their impact parameter distribution is similar to
that of the Dalitz decay electrons.

The electrons from Dalitz decays and the photons convert-
ing in the detector material mostly come from the decays of
light-flavor particles, and are produced in electron–positron
pairs with low invariant mass. Together, the electrons from
these two sources are referred to as “photonic electrons.”

The analyses presented here extract the beauty and charm
contributions with a fit of the inclusive track impact param-
eter distribution using templates based on event and detector
simulations. The approaches using TPC and TOF detectors
also include the conversion electrons and remaining sources as
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templates and will be referred to as the four-template method.
The photonic electron contribution, which decreases with pT,
can be subtracted before fitting the d0 distributions utilizing a
technique based on electron–positron pairs with low invariant
mass. This approach, referred to as the two-template method,
was used in the analysis with the particle identification based
on the TPC and EMCal detectors. These methods will be
discussed in more detail in the following sections. One effect
of the subtraction of the photonic electrons is that it also
subtracts a contribution from light mesons produced in the
decays of beauty hadrons. The four-template method, instead,
includes all electrons produced in the decay chains of beauty
hadrons. This was estimated to induce a difference between
the results of the two analysis techniques, which is of the order
of 2% in the measured pT range and decreases with pT.

The fit templates, as well as the estimation of the tracking
and part of the eID efficiencies, are based on MC simulations.
The PYTHIA v6.425 event generator with Perugia 2011 tune
[101] was used to simulate pp events, HIJING v1.36 [102] for
Pb-Pb events, while GEANT3 [103] was used to propagate
the generated particles through the ALICE apparatus. The
conditions of all the ALICE detectors during the data taking,
were taken into account in the simulations. Simulated events
were enriched with additional electrons from beauty- and
charm-hadron decays as well as decays of π0 and η mesons to
improve the statistical precision for the signal and the main
background sources. Any deviation between the MC tem-
plates and the data was corrected whenever possible and any
uncertainty in the correction was propagated to the systematic
uncertainties of the measurement. Corrections were applied
for the transverse impact parameter resolution, the momentum
distribution of the charm and beauty hadrons, and the relative
fractions of the different charm-hadron species (which im-
pacts on the d0 templates because of the significantly different
decay lengths of D0, D+, D+

s , �+
c ). Due to the free amplitudes

of the contributions in the fit, only effects on the shape of
the impact parameter distributions are relevant, not the to-
tal number of entries in the templates. Effects of including
electrons from strange-hadron decays, the dependence of the
conversion electron distribution on the detector occupancy,
and the relative contribution of the hadron contamination were
considered as systematic uncertainties. These are discussed in
more detail in Sec. III E.

C. Extraction of electrons from beauty-hadron decays
using the four-template method

In this approach, four impact parameter templates for the
corresponding electron sources discussed in the previous sec-
tion are constructed based on MC simulations and are fitted
to the measured inclusive electron distribution using a maxi-
mum likelihood fit approach. The template corresponding to
contributions that are from neither beauty, charm, nor photon
conversions will be referred to as the Dalitz template. This
procedure was applied in the pT interval 2 < pT < 8 GeV/c
with an electron identification based on the signals of the TOF
and TPC detectors.

The signal extraction is based on the method of fitting
finite-statistics templates proposed in Ref. [104] and was al-

ready used in previous ALICE analyses [72]. The basic idea is
to include the fluctuations in the templates by introducing the
expectation values Aji of the templates of source j in bin i as
free parameters in addition to the overall amplitudes. The con-
tributions from the sources are then estimated from the overall
maximum likelihood assuming Poissonian fluctuations.

Corrections for the fractions of the different charm-hadron
species and for the momentum distributions of the charm and
beauty hadrons were included via weights of the different
entries in the impact parameter histograms. Profiting from
the free amplitude parameters, all scaling functions can be
changed by an overall multiplicative factor. This was used to
keep the weights to values close to unity to not disrupt the
Poisson statistics assumed in the maximum likelihood fit. For
electrons from beauty- and charm-hadron decays, the uncer-
tainties from statistical fluctuations in the templates are much
lower than those on the measured distribution (by around a
factor of 3).

Examples for the resulting fit together with the scaled
template distributions in pp and Pb-Pb collisions are shown
in Fig. 1. The ratio of the data to the fit, is also shown to
demonstrate the quality of the fit, which is around 1 in the full
d0 range considered for the fit. Due to the large decay length,
the contribution from beauty-hadron decays is most prominent
at large absolute impact parameter values and this region thus
constrains the magnitude of the beauty contribution the most.
The statistical uncertainty of the fit was determined by vir-
tually repeating the measurement using independent samples
created from the templates based on measured contributions
as input as in Ref. [72]. In addition to the distinct electron
sources, there is also a contribution from the remaining hadron
contamination. As these hadrons mostly originate near the
interaction vertex, the contribution is absorbed into the fit of
the Dalitz decay electron contribution.

The slight difference in the average impact parameter and
its resolution between data and the simulations used to create
the templates was estimated via the measurement of charged
hadron tracks and corrected for. The remaining resolution dif-
ference is <4% and was considered as a part of the systematic
uncertainties.

Electrons from the decay of heavy-flavor hadrons within
a particular pT interval can originate from different hadron
species (e.g., D0, D+, D+

s , �+
c for charm hadrons and B0,

B+, B0
s , �0

B for beauty hadrons, as well as their antiparticles)
with different lifetimes and also with a wide range of possible
momenta. Thus, the impact parameter distributions depend
on the momentum distributions and relative abundances of
charm and beauty hadrons. In particular, the charm hadrons
have significantly different lifetimes. To correct for this effect,
electrons from charm-hadron decays were weighted by the
species and momenta of their mothers according to the mea-
sured D0 momentum distributions and the measured �+

c /D0

[105,106], D+/D0 [55,107], and D+
s /D0 [57,107] yield ratios,

to obtain the MC templates. For beauty, the weights for the
pT-distributions of the beauty hadrons were estimated ac-
cording to FONLL calculations for the pT distributions using
an additional correction for the nuclear modification factor
based on the TAMU model [108] in the Pb-Pb analysis. As
all beauty hadrons have a similar decay length and thus the
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FIG. 1. Examples of the impact parameter fits with the four-template fit approach used in the TPC–TOF analyses. The left panel shows a
fit with templates for the four classes of electron sources in pp collisions at

√
s = 5.02 TeV in the lowest pT interval and the right panel shows

a fit example in Pb-Pb collisions at
√

sNN = 5.02 TeV in the highest pT range.

corresponding decay electrons are expected to have similar
impact parameter distributions, no specific correction was
made for the relative contributions of the different beauty
hadrons.

The number of measured particles was then taken from
the integral of the scaled fit templates after performing the
fitting procedure. It was then corrected for the acceptance of
the ALICE detector (εgeo) and the efficiency of the electron
reconstruction (εreco) and identification (εeID) and normalized
to the number of events according to Eq. (2). A factor of 1

2 is
included to give the average of electrons and positrons,

d2N

d pTdy
= 1

2

1

�y�pT

1

Nevents

Nraw

εgeo × εreco × εeID
. (2)

The efficiency for the track-quality and TOF eID selec-
tions was estimated from MC simulations. For the TPC eID
efficiency, a data-driven technique which is based on a fit of
the nTPC

σ,e distribution after TOF eID, was used for all momen-
tum intervals. The electron peak was fitted using a Gaussian
distribution. The resulting mean was around −0.16 for all
momentum intervals in Pb-Pb collisions. A selection of nTPC

σ,e
from −0.16 to 3 was applied, resulting in a constant TPC eID
efficiency of about 50%. The small correction for the finite
transverse momentum resolution was done via a bin-by-bin
correction comparing generated and measured momenta in the
simulations.

D. Extraction of electrons from beauty-hadron decays
using the two-template method

In the second procedure, the contributions from hadrons
and photonic electrons are subtracted from the d0 distribu-
tion through data-driven methods similar to the ones used in
Ref. [109]. The contributions of electrons from charm- and

beauty-hadron decays are then determined by fitting the d0

distribution with two templates, one for charm and one for
beauty sources, obtained from MC simulations. This method
was used in the Pb-Pb analysis using eID based on the TPC
and EMCal detectors in the pT range from 3 to 26 GeV/c. The
inclusive electron sample was obtained by selecting tracks and
by applying electron identification criteria in the TPC and the
EMCal using nTPC

σ,e , Ecal/p, and σ 2
short, as listed in Table I.

1. Data-driven background subtraction

The hadron contamination was estimated by selecting
hadron tracks with nTPC

σ,e < −4. The Ecal/p distribution of
these particles was then scaled to match the electron-candidate
Ecal/p distribution in an interval that varies with pT inside the
range 0.2 < Ecal/p < 0.6. This hadron Ecal/p normalization
range shifts with increasing pT to account for the shift of
the hadron signal towards Ecal/p = 1 with increasing mo-
mentum. The electron- and hadron-contamination yields were
obtained by integrating the Ecal/p distributions of electron
candidates and the scaled hadron one in 0.8 < Ecal/p < 1.2.
The hadron contamination is negligible at low pT, and in-
creases to around 20% at pT = 26 GeV/c. The hadron d0

distribution, obtained by selecting particles with nTPC
σ,e < −4,

was also scaled to match this estimated hadron contamination.
It was then subtracted from the inclusive electron d0 distribu-
tion (dN InclE/dd0).

After the subtraction of the hadron contamination, the
contribution of photonic electrons was estimated. Photonic
electrons are produced in electron-positron pairs with low
invariant mass, peaking close to zero. Thus, they can be
identified using an invariant mass analysis of electron pairs.
In the invariant mass analysis technique [110,111], electron-
positron pairs are defined by pairing the selected electrons
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FIG. 2. Example of the impact parameter distributions used in the TPC–EMCal analysis in 0–10% Pb-Pb collisions at
√

sNN = 5.02 TeV.
The hadron contamination (red), photonic electron (purple), and inclusive electron (black) d0 distributions are shown in the left panel. The
right panel shows an example of a fit with the two template approach.

with opposite-charge electron partners to form unlike-sign
(ULS) pairs and calculating their invariant mass (me+e−).
The partner electrons were selected by applying similar but
looser track quality and particle identification criteria than
those used for selecting signal electrons to increase the effi-
ciency of finding the partner [111,112]. Heavy-flavor decay
electrons can form ULS pairs mainly through random combi-
nations with other electrons. The combinatorial contribution
was estimated from the invariant mass distribution of like-sign
electron (LS) pairs. The d0 distributions of electrons forming
ULS (dNULS/dd0) and LS (dNLS/dd0) pairs were obtained.
The photonic background contribution was then evaluated
by subtracting the LS distribution from the ULS distribu-
tion in the invariant mass interval me+e− < 0.1 GeV/c2. The
efficiency of finding the partner electron, referred to as the
tagging efficiency (εtag) from here on, was estimated using
the HIJING [102] MC simulations with added light flavor sig-
nals at high momenta. The generated particles are propagated
through the ALICE apparatus using GEANT3 [103]. The sim-
ulated pT distributions of π0 and η mesons were reweighted
to match the unbiased pT distribution from PYTHIA. The
tagging efficiency is ≈50% at 3 GeV/c, increasing to ≈70%
at pT > 20 GeV/c. The d0 distribution of photonic electrons
was corrected for with the tagging efficiency and subtracted
from the inclusive electron distribution to obtain the impact
parameter distribution of electrons from heavy flavor hadron
decays (dNHFe/dd0) according to

dNHFe

dd0
= dN InclE

dd0
− 1

εtag

(
dNULS

dd0
− dNLS

dd0

)
. (3)

An example of the d0 distribution of inclusive electrons,
estimated hadron contamination, and photonic electrons is

shown in the left panel of Fig. 2 for the interval 3 < pT <

4 GeV/c.
Electrons from strange-hadron decays are negligible in the

pT range considered [95]. The contribution of electrons from
J/ψ decays was estimated to be less than 5% with a maxi-
mum at 2 < pT < 3 GeV/c [111,112], hence not considered
in the analysis. The W ± (Z0) boson decays have a negligible
contribution for pT < 15 GeV/c, increasing to 20% (10%)
of the heavy-flavor decay electron yield at pT = 26 GeV/c
[109]. These contributions were not subtracted but their small
effect on the yield is considered in the systematic uncertainty
estimation, as described below.

2. Two-template fit procedure

The electrons from beauty-hadron decays were separated
by fitting two MC d0 templates to the heavy-flavor electron
d0 distribution, using a procedure similar to that detailed in
Sec. III C. The two templates correspond to electrons from
charm-hadron decays and beauty-hadron decays.

Several corrections were applied to the MC d0 templates
of charm- and beauty-hadron decays to obtain a realistic de-
scription of the data, before using them to fit the measured
distributions. These corrections include (i) the pT shape of the
mother charm and beauty hadrons, (ii) the relative fraction of
the different charm-hadron mother species, and (iii) the mean
and the resolution of the d0 distribution. The corrections were
applied using the same procedure described in Sec. III C.

The corrected MC templates of charm and beauty decays
were used to fit the heavy-flavor electron d0 distribution from
data using a weighted log-likelihood fit [113]. The statistical
uncertainties from the templates were not considered in the fit,
as the statistical uncertainties of the data dominate over those
of the templates (approximately six times larger). An example
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TABLE II. Systematic uncertainties in the pp and Pb-Pb analyses. Individual sources of systematic uncertainties are pT dependent. The
values are presented as a range corresponding to the lowest and highest pT intervals.

pp Pb-Pb Pb-Pb
TPC-TOF TPC-TOF TPC-EMCal

Source 2 < pT < 8 GeV/c 2 < pT < 8 GeV/c 3 < pT < 26 GeV/c

Track selection 1% 3% 2%
ITS-TPC matching 2% 3% 3%
TPC-TOF matching 2% 5% –
TPC-EMCal matching – – 1%
TPC eID 1% 7% –
TOF eID 4%–0% 7%–2% –
TPC-EMCal eID – – 7%–10%
IP resolution 6% 5%–0% 2%
Charm-hadron pT spectra 2%–0% 5%–2% 1%–5%
Charm-hadron species 4%–0% 1%–0% 5%
Beauty-hadron pT spectra 10%–5% 10%–5% 10%–3%
Hadron contamination 0%–10% 8%–4% 1%–3%
Fit stability 10%–0% 5%–0% 0%
Strangeness decay contribution – 3%–1% –
Partner electron selection – – 2%–0%
Multiplicity effect for conversions – 4%–1% –
Fit method 20% 15% 15%
Closure test – – 20%–4%
W/Z contribution – – 0%–6%
EMCal trigger rejection factor – – 0%–5%
Total 26%–23% 26–18% 28–22%
Normalization uncertainty 2.1% – –

of a fit is shown in the right panel of Fig. 2 for the interval
14 < pT < 16 GeV/c. The ratio of the data to the fit is also
shown to demonstrate the quality of the fit. It is around 1 in
the full d0 range considered for the fit.

The raw beauty-decay electron yield obtained from the
template fit was then corrected for the acceptance of the
ALICE detector and the efficiency of the electron reconstruc-
tion and identification as described by Eq. (2). This includes
the efficiency corrections for the track quality selections, the
procedure to match tracks with EMCal energy-deposition
clusters, and the selections used to identify electrons (the
Ecal/p, σ 2

short, and nTPC
σ,e requirements). The efficiencies were

estimated using MC simulations, with the exception of the
nTPC

σ,e and σ 2
short electron selection efficiencies, which was es-

timated using data-driven procedures.
The nTPC

σ,e efficiency was estimated by parametrizing the
nTPC

σ,e distributions by fitting with three Gaussians, for the
electron, the pion, and the combined proton and kaon signals.
The obtained efficiency varies from about 72% to 76% with
increasing momentum. The relative efficiency of σ 2

short was
obtained using Ecal/p distribution with and without applying
the shower shape selection. The resulting efficiency varies
from about 80% to 95% with increasing momentum.

The per-event yield obtained with EMCal-triggered events
for pT > 12 GeV/c was normalized using the EMCal trigger
rejection factor. The rejection factor expresses the equivalent
number of MB events corresponding to a triggered event. It
was estimated with a data-driven method, using the ratio of
the EMCal cluster energy distribution in EG-triggered data to
the one in minimum-bias data (EG/MB), similar to what is

described in Refs. [109,111]. This ratio forms a stable plateau
above Ecluster > 12 GeV/c. A Fermi function [114,115] was
used to fit the ratio and to determine the EMCal trigger re-
jection factor above the trigger threshold. A rejection factor
of 61.7 ± 0.8(stat.) ± 3.0(sys.) was obtained. The statistical
uncertainty was obtained by varying the fit function within its
parameter uncertainties, and the systematic uncertainty was
obtained by changing the fit function using a constant above
the trigger threshold, and also varying the fit range. The uncer-
tainty on the EMCal trigger rejection factor was propagated to
the final measurement.

E. Systematic uncertainties

1. Systematic uncertainty estimation for the four-template method

The systematic uncertainties in pp and Pb-Pb collisions
with TPC–TOF eID are summarized in Table II. They can
broadly be separated into uncertainties on the estimate of the
efficiency of the track selection and eID and uncertainties
related to the shape of the fit templates. The different sources
of uncertainties were assumed to be uncorrelated and thus
added in quadrature. For the calculation of the RAA, they were
considered as uncorrelated between pp and Pb-Pb. A detailed
description of the contributions is given in the following.

The systematic uncertainty for the track quality selection
efficiency in pp and Pb-Pb collisions is 1% and 3%, respec-
tively, for electrons from beauty- and charm-hadron decays
as estimated in Ref. [109] from variations of the selection
criteria. The uncertainty estimated for heavy-flavor decay
electrons in Ref. [109] can be applied in the analysis presented
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here because, at a given pT, tracks of electrons from beauty-
hadron decays have similar properties as tracks of those from
charm-hadron decays and therefore the systematic uncertainty
due to track reconstruction and selection is the same. The sys-
tematic uncertainty due to the imperfect description in the MC
of the efficiency of matching tracks reconstructed in the ITS
and TPC, is about 2% in pp and about 3% in Pb-Pb collisions
[109].

Charged particle tracks reconstructed in the TPC have to
be matched with TOF hits, to compute the time of flight
for particle identification. The detector acceptance does not
depend on particle species, thus charged particles can be used
to calculate the matching efficiency between TPC and TOF.
The systematic uncertainty on the TPC-TOF matching effi-
ciency was obtained by comparing the matching efficiency of
charged particles in data and MC and was estimated to be 2%
and 5% in pp and Pb-Pb collisions, respectively [109].

The TPC and TOF eID uncertainties were estimated using
a pure sample of electrons produced in photon conversions in
the detector material, selected according to the corresponding
decay topology (V0 electrons). Since both electrons from
beauty-hadron decays and V0 electrons produced in the ITS
give the same detector signals in the outer layers, the latter
can be used as a proxy to investigate the differences of the eID
efficiency between data and simulation. For Pb-Pb collisions,
the systematic uncertainty on the TPC eID was estimated to be
of 7% in all pT intervals from the difference between data and
MC. For the analysis in pp collisions, where the TPC signal
shape is easier to model than in central Pb-Pb collisions [72],
the model for the extraction of the efficiency was varied, lead-
ing to a change of around 1% in efficiency which was added as
a systematic uncertainty. The TOF eID systematic uncertain-
ties reach a maximum of 7% in the lowest pT-interval and a
minimum of 2% in the highest pT-interval for Pb-Pb collisions
while the range is 4% to 0% in pp collisions.

The correction for differences in the d0 resolutions and
in the average of the d0 distribution between data and sim-
ulations extracted for charged-particle tracks was applied to
improve the description of the data on average for all particles,
independent of the species. Thus, depending on the specific
track selection criteria, some deviations can still be present.
The relative residual deviation was smaller than 4% for the
impact parameter resolution. A systematic uncertainty of 6%
over the entire pT range was estimated for pp collisions by
varying the resolution correction accordingly, while for Pb-Pb
collisions the effect was 5% for pT < 5 GeV/c and negligible
at larger pT.

The uncertainties from the correction of the parent hadron
pT distribution for electrons from charm-hadron decays orig-
inate from the uncertainty of the measurements used as input
for the corrections. As the fit has a free amplitude parameter,
the correction does not depend on the integrated yield of the
measurement, but mostly on its pT shape. To account for
this, the correction was modified by tilting the measured D0

[107] spectrum based on its total uncertainty. The uncertainty
was then estimated by comparing the fit results for beauty-
hadron decay electrons using the different corrections. An
uncertainty of 2% was assigned in pp collisions for electron
pT below 6 GeV/c. In Pb-Pb collisions, a systematic uncer-

tainty of 5% was assigned below 5 GeV/c and 2% above.
The uncertainty due to the unknown relative abundances of
the different charm-hadron species was estimated by varying
the �+

c /D0 [105,106], D+/D0 [55,107], and D+
s /D0 [57,107]

ratios within the statistical and systematic uncertainties of
the measurements, and assessing the effect of these varia-
tions on the yield of electron from beauty-hadron decays.
The uncertainty for pp is 4% for pT < 2.5 GeV/c, 2% for
2.5 < pT < 5 GeV/c, and negligible above. For Pb-Pb it is
1% for pT < 3 GeV/c and negligible above.

For the beauty case, the input pT shapes from the consid-
ered models were varied. In the Pb-Pb case, the most effective
variation on the model is the change of the RAA slope. Two
large variations were tested, adding and subtracting half the
distance of the RAA to unity to the central values. The result-
ing beauty-hadron decay electron yields were compared to
the central correction to estimate the systematic uncertainty
due to the beauty-hadron pT spectrum. In Pb-Pb collisions, a
systematic uncertainty of 10% was assigned below 3 GeV/c
and 5% above. For the pp measurement, the estimation was
based on the uncertainties of the FONLL pQCD calculation.
To estimate the corresponding uncertainties, the upper and
lower limits of the FONLL calculations were used as alterna-
tive weights. In this way, the systematic uncertainties on the
beauty-hadron decay electron yield reach a maximum of 10%
in the lowest pT interval and a minimum of 5% in the highest
pT interval in pp collisions.

Despite the stringent eID selections, some hadron contam-
ination remains in the selected electron sample. Since pions
are abundant and the TPC signals for electrons and pions
overlap at high pT, the hadron contamination is mostly due to
charged pions. In Pb-Pb collisions the hadron contamination
contributes over the entire pT range, while in pp collisions it is
only significant at high pT, similarly as reported in Ref. [109].
To investigate the effect of the hadron contamination, the
template fit was repeated, replacing the Dalitz template by
the hadron template obtained from data by requiring −5 <

nTPC
σ,e < −3. The impact parameter distributions of these two

templates are similar because Dalitz electron sources and the
charged pions originate mostly from the primary vertex. The
differences are mainly due to the resolution of the impact
parameter for electrons and pions. From the fit with the hadron
templates, the measured yield of the beauty-hadron decay
electrons varies by about 8% (4%) below (above) 2.5 GeV/c.
These values were assigned as the systematic uncertainty in
the Pb-Pb analysis. In the pp case, where the TPC signal
shape is easier to model, the hadron contamination was es-
timated using fits of the TPC signal as described in Ref. [95].
The hadron impact parameter distribution template was scaled
accordingly and subtracted from the total. The difference in
the yield of beauty-hadron decay electrons was assigned as a
systematic uncertainty yielding no significant change at low
pT and 10% in the range 5 < pT < 8 GeV/c.

The results of the fits to the impact parameter distributions
should be mostly independent of the fit range used as well
as of the bin width of the templates used for the different
sources. For the Pb-Pb case, such variations showed no clear
effect on the result, with a possible effect of <5% found only
in the first pT interval below 2.5 GeV/c. In pp, an effect is
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visible below 2 GeV/c, which decreases with pT. Varying
the fit range between |d0| < 0.1 and |d0| < 0.2 and the bin
width in the range 5 µm to 20 µm gives an effect on the beauty
decay electron yield of the order of ≈10% in 2–2.5 GeV/c and
≈5% up to 5 GeV/c. These values were added as systematic
uncertainties.

The electron candidates include contributions from sec-
ondary π0 decays and three body decays of strange hadrons
which have a wide impact parameter distribution. The effect of
these secondary tracks on the Dalitz and conversion electron
templates was investigated by varying the fraction of this
contribution. Based on the results of charged pions and kaons
[116], the secondary contribution in the Dalitz and conversion
electron templates was scaled by factors 3 and 0 to estimate
the effect on the fitted yield. Considering both variations,
the extracted yield of beauty-hadron decay electrons varies
from 3% at 2 GeV/c down to 1% at 8 GeV/c in Pb-Pb col-
lisions. The effect of the secondary tracks in pp collisions is
negligible.

The shape of the impact parameter distribution of elec-
trons from photon conversions depends on the influence of
the misassociated conversion electrons. The misassociation
probability is approximately proportional to the multiplicity
of the event. As a result, the misassociated conversion electron
contribution is particularly important to consider in central
Pb-Pb collisions. Using conversion electron templates from
the centrality range 10–30% instead of the nominal 0–10%
corresponds to a change in multiplicity by a factor of about
1.6. The corresponding extracted beauty contribution changes
only by 4% for 2 < pT < 2.5 GeV/c, decreasing down to 1%
in the highest pT range (6 < pT < 8 GeV/c).

The two approaches, TPC-EMCal eID with the two-
template fit method and the TPC-TOF eID with the four-
template fit method were compared in the overlap region
of the analyses and also with a separate test in pp colli-
sions. Comparisons with different eID, centrality, and track
selection criteria show a consistent deviation of the order of
15% in Pb-Pb (20% in pp). Typically, the approach using
the four-template fit gives a higher yield for electrons from
beauty-hadron decays than that of two-template fit. Closer
inspection of the systematic effects showed that variations
in the assumed d0 resolution typically lowered the result of
the four-template TPC–TOF approach. On the other hand, the
effect of additional background electrons from the primary
vertex (e.g., from J/ψ decays) would increase the result for
the two-template approach. However, both effects together
still do not cover the full difference. To account for this, an
additional systematic uncertainty of 15% in Pb-Pb and 20%
in pp collisions was added.

2. Systematic uncertainty estimation for the two-template method

The systematic uncertainties for the approach using the
two-template fits originate in the efficiency correction, the
background subtraction, and the signal extraction. A summary
of all the sources of systematic uncertainty and the assigned
values can be found in Table II.

The uncertainty due to track selection was estimated by
varying the track selection criteria [109] and was found to

be about 2%. The uncertainty from the imperfect description
in the MC of the efficiency of matching tracks reconstructed
in the ITS and TPC is about 2%. An uncertainty of 1% was
estimated for matching electron tracks in the TPC to EMCal
clusters by varying the matching criteria. The uncertainty on
electron identification using the TPC and the EMCal was
estimated by varying the selection criteria on nTPC

σ,e , Ecal/p,
and σ 2

short. These variations test the procedure of removing
the hadron contamination and estimating the efficiency. The
chosen variations change the efficiency by a maximum of
≈20% while still allowing reasonable signal extraction. A
total uncertainty from these sources of 7% for pT < 12 GeV/c
and 10% for higher pT was estimated. The Ecal/p interval used
to normalize the hadron Ecal/p distribution to match the elec-
tron one in the background region was varied, and the effect on
the hadron subtraction method was checked. The scale factor
was also varied within its statistical uncertainty. The effect
of these variations is more pronounced at high pT where the
hadron contamination is larger. The uncertainty due to hadron
contamination was estimated to be 1% for pT < 12 GeV/c
and 3% for higher pT.

The contribution from photonic electrons was estimated
using the invariant mass method. The systematic uncertainty
on the procedure, mainly affecting the average correction
efficiency, was obtained by varying the selection criteria of
the partner electron tracks, including the minimum pT and the
invariant-mass window of the electron–positron pairs. While
the average tagging efficiency from γ , π0, and η was used
in the analysis, any differences in the efficiency between the
different photonic electron sources, estimated using MC simu-
lations, were also considered as a systematic uncertainty. The
resulting systematic uncertainty on the yield of beauty-hadron
decay electrons is 2% for 3 < pT < 4 GeV/c and negligible
for pT > 4 GeV/c.

While the uncertainty on the yield of the photonic electrons
was obtained using the procedure described above, there can
also be an effect from the shape of their d0 distribution. This
can be present if there is a difference between the impact
parameter distribution of the photonic electron candidates se-
lected via the invariant mass and that of all photonic electrons
in the sample of selected tracks. The corresponding effect on
the estimated yield of electrons from beauty-hadron decays
was evaluated using a MC closure test. Electrons from photon
conversions in the detector material have a d0 shape that
depends on the production vertex, with wider distributions for
electrons produced at larger radii. The d0 distribution from the
invariant mass method gives a combination of contributions
from Dalitz decays, produced at the primary vertex, and γ

conversion processes, which occur at different radii in the
detector material. In the MC closure test, the beauty yield
was obtained using the data-analysis procedure on simulated
data, with realistic fractions of electrons from charm, beauty,
and photonic background obtained from previous measure-
ments [109]. The photonic electrons were subtracted using
the invariant mass method and the resulting d0 distribution
of candidate heavy-flavor decay electrons was fitted with
charm and beauty templates. The beauty yield from the fit
was compared to the true input beauty yield in MC simu-
lations, and their difference which was ≈20% at 3 GeV/c
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decreasing to 4% at 23 GeV/c, was taken as a systematic
uncertainty.

As described in the previous section, the contribution of
electrons from W ± and Z0 boson decays is nonnegligible for
pT > 15 GeV/c and estimated to be ≈30% of the yield of
heavy-flavor decay electrons at pT = 26 GeV/c [109]. The
effect of this contribution was also studied using a MC clo-
sure test, where the d0 distribution of Dalitz electrons was
used as a proxy for W ± and Z0 decays, as they both decay
close to the primary vertex and the difference is less than the
detector resolution of the d0 distribution. The d0 distribution
of electrons from W ± decays was added to that of heavy-flavor
decay electrons in the simulated sample, which was then fitted
using only the charm and beauty templates. The beauty yield
obtained from the fit was compared to the true beauty yield to
estimate any difference. The maximum difference was 2% for
16 < pT < 20 GeV/c rising to 6% for the highest pT interval,
and was added as a systematic uncertainty.

The stability of the weighted log-likelihood fit was studied
by changing the histogram bin sizes and the fit ranges. The
effect on the beauty yield from the fitting routine was found
to be negligible.

The uncertainty on the impact parameter resolution was
estimated as described in Sec. III E 1, and a value of 2% was
assigned.

As discussed in Sec. III C, the d0 templates of charm- and
beauty-hadron decays were obtained using MC simulations
after several corrections. The systematic effect of these cor-
rections on the yield of electrons from beauty-hadron decays
was assessed by varying the weights applied on the D and B
hadron pT spectra, and varying the ratio of different charm-
hadron species, in the same way as for the four-template
approach. The uncertainty from the assumed beauty hadron
pT-distribution results in a systematic uncertainty of 10% for
pT < 6 GeV/c and 3% for higher pT. The uncertainty from
the charm-hadron pT distributions was obtained by varying
the slope of the D-meson pT spectra within the statistical and
systematic uncertainty of the D-meson measurement [107]
and ranges from 1% for pT up to 20 GeV/c to 5% for the high-
est pT interval. The uncertainty due to the relative abundances
of the different charm-hadron species in the MC, obtained by
varying the �+

c /D0 [105,106], D+/D0 [55,107], and Ds
+/D0

[57,107] fractions within the statistical and systematic uncer-
tainty of the measurements, was estimated to be 5% over the
entire pT range.

As described for the four-template method, an additional
uncertainty of 15% was assigned to account for differences
in the results of the two methods, estimated in their overlap
region (3 < pT < 8 GeV/c).

IV. RESULTS

The pT-differential production cross section of electrons
from beauty-hadron decays in pp collisions at

√
s = 5.02 TeV,

measured at midrapidity in the transverse momentum inter-
val 2 < pT < 8 GeV/c, is shown in Fig. 3. Vertical error
bars depict the statistical uncertainties while the systematic
uncertainties are shown by rectangular boxes. The cross sec-
tion is compared with pQCD calculations such as FONLL
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FIG. 3. pT-differential cross section of electrons from beauty-
hadron decays in pp collisions at

√
s = 5.02 TeV using TPC-TOF

for electron identification. In the upper panel, the cross section is
compared with FONLL [19–21] and GM-VFNS [22] predictions.
The ratios of data to these calculations are reported in the bottom
panels.

[19–21] and GM-VFNS [22]. For the prediction of the pT

distribution of leptons from beauty-hadron decays, FONLL
calculations use a numerical convolution of a perturbative
cross section with a nonperturbative fragmentation function
and a decay function for the hadron weak decay into a
lepton [21]. The parameters of the fragmentation function are
determined from e+e− collision data using B+, B−, and B0

mesons. The weak decay function and the branching ratios
are also extracted from experimental data. As the fragmenta-
tion functions are determined using only B mesons, possible
differences in the fragmentation and the decay kinematics of
the substantial contribution from beauty baryons [117] are not
considered in FONLL calculations. The uncertainty bands of
the FONLL calculations are the result of different choices for
the mass of beauty quarks, and for the factorization and renor-
malization scales as well as the uncertainty on the set of parton
distribution functions (PDF) used in the pQCD calculations.
In the GM-VFNS approach, the contribution of electrons from
beauty-hadron decays is calculated from the convolution of
the hard-scattering cross section at the partonic level, a non-
perturbative fragmentation function, the total beauty-hadron
decay width, and the decay spectrum to leptons. The non-
perturbative fragmentation functions were obtained based on
e+e− data using all B mesons (B+, B−, and B0) and �B [22].
The decay width and the spectrum were obtained using the
electron energy spectrum in inclusive beauty-meson decays
measured by the BABAR experiment [118]. The theoretical
uncertainty of the GM-VFNS calculations was obtained by
varying the scale parameters related to renormalization and
to the factorization of initial- and final-state singularities. The
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uncertainties due to scale variation are the dominating source
and hence PDF-related uncertainties and variations of the
bottom mass were not considered. It should be noted that
the results using the four-template method in pp and Pb-Pb
collisions include a small contribution (≈2%) of beauty-
hadron decays via light mesons, which is not included in
the signal definition of the pQCD calculations. The data lies
on the upper edge of the FONLL uncertainty band, around
a factor 1.5 above the central prediction, similarly to ear-
lier measurements in pp collisions at

√
s = 7 TeV [39]. The

measurement using semimuonic decays from the ATLAS col-
laboration [77] shows a similar behavior in the pT interval
common between ALICE and ATLAS, though it is close to
the FONLL central value for pT > 10 GeV/c. The compari-
son of FONLL with the previous measurement of nonprompt
D mesons [52], however, shows the center of the theory
prediction closer to the data. This difference in the FONLL de-
scription of beauty decay electrons and nonprompt D mesons
could be due to the contribution from beauty baryons. The
beauty baryons produce electrons with a similar branching
ratio, and decay kinematics as beauty mesons. However, the
branching ratio of beauty baryons into D mesons is smaller
than that for beauty mesons. Since all beauty quarks are as-
sumed to fragment into mesons in the FONLL calculations,
the nonprompt D meson contribution would be increased rel-
ative to the electrons. Comparison of the results to GM-VFNS
predictions shows some tension for pT < 4 GeV/c. In the
second pT interval the central point of the measurement is
about 1.9σ above the upper edge of the GM-VFNS uncer-
tainty band when considering the combined statistical and
systematic uncertainties of the measurement. At higher pT,
the predictions are in closer agreement between each other
and the data. A qualitatively similar result was found pre-
viously for nonprompt D mesons [52]. The models differ in
their assumptions concerning the fragmentation functions and
the transition to a fixed-flavor number scheme, which should
make differences more apparent at low momenta [119].

The measured cross section in pp collisions at
√

s =
5.02 TeV in Fig. 3 was used as a reference to calculate the RAA

up to pT = 8 GeV/c. For pT > 8 GeV/c, the FONLL predic-
tion for electrons from beauty-hadron decays in pp collisions
at

√
s = 5.02 TeV was used. Since the FONLL central pre-

diction is lower than the data at low momentum, the FONLL
reference was scaled to match the data. The scaling factor was
determined by taking the ratio between the measured cross
section and the FONLL prediction for pT < 8 GeV/c. This
ratio reaches a plateau for pT > 4 GeV/c, and was assumed
to be constant at higher momenta where the data points are
unavailable. The scale factor of 1.40 ± 0.08 was determined
by fitting the ratio with a constant for pT > 4 GeV/c. The
statistical and systematic uncertainties of the measurement
were propagated to obtain the systematic uncertainty associ-
ated with the scaling factor, assuming no correlation between
pT intervals for the statistical uncertainties and full correlation
for the systematic ones. The total uncertainty assigned to the
scaled FONLL reference is calculated by taking the sum in
quadrature of the uncertainty from the original FONLL pre-
diction and the systematic uncertainty of the scaling, and is
approximately 30% for pT > 8 GeV/c. The result of the ex-

FIG. 4. Yield of beauty-hadron decay electrons in 0–10% central
Pb-Pb collisions at

√
sNN = 5.02 TeV for the TPC–TOF and TPC-

EMCal analyses compared with the pp reference scaled by 〈TAA〉,
obtained from the measured cross section for pT < 8 GeV/c, which
is extrapolated up to pT = 26 GeV/c using FONLL. The ratio of the
yields using TPC–TOF and TPC–EMCal analyses in the overlapping
interval of 3 < pT < 8 GeV/c in Pb-Pb collisions is shown in the
bottom panel.

trapolation, scaled with the nuclear overlap function, is shown
in Fig. 4.

The pT differential yields for electrons from beauty-hadron
decays in the 10% most central Pb-Pb collisions are shown in
Fig. 4. The yields are obtained using the four-template method
with TPC-TOF detectors in the interval 2 < pT < 8 GeV/c,
and using the two-template method with TPC-EMCal de-
tectors in the interval 3 < pT < 26 GeV/c. The ratio of the
yields from the two methods in the overlapping interval of
3 < pT < 8 GeV/c is shown in the bottom panel of Fig. 4.
The systematic uncertainties are propagated as uncorrelated
from all sources, except for the 15% uncertainty assigned for
the differences in the results of the two methods, which is
not considered in the ratio. Some of the remaining systematic
uncertainties have common sources and are thus correlated
to some degree, which is difficult to estimate. The ratio is
consistent with unity within statistical and systematic uncer-
tainties. For the final yield, TPC–TOF results were used in
the overlapping pT range because of their smaller statistical
and systematic uncertainties. The Pb-Pb results are shown
together with the pp results, scaled by the estimated nuclear
overlap function [92], which is proportional to the number of
binary collisions.

The nuclear modification factor for electrons from beauty-
hadron decays in Pb-Pb collisions as a function of pT

in the 0–10% centrality interval is shown in Fig. 5. The
nuclear modification factor in the measured pT range of
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FIG. 5. Nuclear modification factor of electrons from beauty-hadron decays in the 10% most central Pb-Pb collisions at
√

sNN = 5.02 TeV.
Left: Comparison with RAA of muons from beauty-hadron decays measured by the ATLAS collaboration [77]. Right: comparison with the
measurements of RAA of electrons from heavy-flavor hadron (beauty plus charm) decays [109], and with the RAA of muons from charm-hadron
decays measured by the ATLAS collaboration [77].

2 < pT < 26 GeV/c is lower than unity, consistent with the
expectation of suppression of the yield in this pT interval due
to in-medium parton energy loss. Considering that the system-
atic uncertainties are mostly correlated across pT intervals, the
measured RAA suggests a broadly increasing suppression with
increasing pT up to pT ≈ 5 GeV/c. For pT above 8 GeV/c, the
RAA does not change significantly with values between 0.2 and
0.4, and a maximum suppression observed for pT around 8–10
GeV/c. The measured RAA of electrons from beauty-hadron
decays is compared with the RAA of muons from beauty-
hadron decays, measured by the ATLAS collaboration [77],
in the 10% most central Pb-Pb collisions at

√
sNN = 5.02

TeV in the interval 4 < pT < 30 GeV/c and |y| < 2. As men-
tioned above, the pp reference for the ATLAS measurement
decreases faster with pT than the central FONLL extrapolation
used here. However, the two measurements are consistent with
each other within statistical and systematic uncertainties. The
nonprompt D0 meson [69] and the nonprompt D+

s meson [71]
RAA measured by the ALICE collaboration in the 10% most
central Pb-Pb collisions also show a similar pT dependence,
with the minimum value at around 0.35 for pT ≈10 GeV/c.
Possible differences may arise between the RAA of leptons and
nonprompt D mesons due to different decay kinematics of B
mesons in the two decay channels. For pT > 4 GeV/c, the
RAA of electrons from beauty-hadron decays shows a similar
suppression as observed in similar measurements at lower
collision energies, namely at

√
sNN = 2.76 TeV by the AL-

ICE collaboration [72] at the LHC, and at
√

sNN = 0.2 TeV
by the PHENIX [76] and the STAR [75] collaborations at
RHIC. Within large uncertainties, the results at lower colli-
sion energies show somewhat higher RAA values at lower pT.
The similar RAA values at high pT could be caused by the
the interplay between the medium temperature and density,
and the pT distribution of beauty quarks at the two collision
energies [120]. A similar trend was observed for prompt D
mesons when comparing results at the two collisions energies
[55].

To understand the mass ordering effects on the energy loss,
the RAA of electrons from beauty-hadron decays is compared
with the RAA of electrons from heavy-flavor hadron (beauty
and charm) decays [109], and with the RAA of muons from
charm-hadron decays measured by the ATLAS collaboration
[77], as a function of pT in the 10% most central Pb-Pb
collisions, in the right panel of Fig. 5. The electrons from
heavy-flavor hadron decays originate mostly from charm-
hadron decays at low pT, more than 70% for pT <4 GeV/c,
with the contribution from beauty-hadron decays that in-
creases with increasing pT [121], and becomes the dominant
source (>70%) for pT >8 GeV/c. Within uncertainties, the
RAA of b(→c) → e in the 10% most central Pb-Pb collisions
shows similar values to that of c → μ and c, b → e. While the
central points of the RAA values might be slightly higher for
b(→c) → e compared to c → μ at low pT (<5 GeV/c), the
values are very similar and consistent within the uncertainties,
and thus precise measurements of leptons from beauty-hadron
decays would be required to see a potential difference.

The nuclear modification factor of electrons from beauty-
hadron decays is compared with DREENA-B [122] and
DAB-MOD M&T [123] model predictions in the left panel
of Fig. 6, and with MC@sHQ [124], PHSD [125], and LIDO
[126] models in the right panel of Fig. 6. All models in-
clude the assumption of a dynamically expanding QGP. Each
model makes different hypotheses about the mass depen-
dence of the energy loss within the QGP, transport dynamics,
and hadronization of the beauty quarks. All the models in-
clude collisional and radiative energy-loss processes with
the exception of PHSD, which only includes collisional en-
ergy loss. The models MC@sHQ, PHSD, and LIDO include
hadronization via coalescence [127] at low and intermediate
momentum, and via fragmentation at high momentum, while
the DREENA-B and DAB-MOD M&T models use fragmen-
tation in the full momentum range considered. Initial-state
effects are included by using nuclear PDFs in the calculation
of the initial pT distributions of heavy quarks in all models,
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FIG. 6. Nuclear modification factor of electrons from beauty-hadron decays in the 10% most central Pb-Pb collisions at
√

sNN = 5.02 TeV
compared with predictions from several theoretical calculations. Left: Comparison with predictions from DREENA-B [122] and DAB-MOD
M&T [123] models for electrons from beauty and charm decays. Right: Comparison with predictions from MC@sHQ [124], PHSD [125], and
LIDO [126] calculations for electrons from beauty decays.

except for DAB-MOD. All the models give a fair description
of the data within the uncertainties of the measurement. For
pT > 5 GeV/c, all models except for PHSD predict similar
RAA, with values lying on the upper edge of the data uncertain-
ties. The PHSD model gives lower RAA values possibly due to
the higher probability of large momentum transfers in the in-
medium interactions as compared to the other models [125].
Predictions for all models, but DREENA-B, are available
down to very low pT, where they show significant differences
among each other. However, measurements with improved
precision will be needed to discriminate among these models.
The left panel of Fig. 6 also shows the predictions for c → e
RAA from DREENA-B [122] and DAB-MOD M&T [123]
models. The difference in the RAA of electrons from charm-
and beauty-hadron decays is larger at low pT and reduces at
high pT where the mass effects become negligible. However,
the current measurements (see right panel of Fig. 5) do not
have enough precision to confirm this prediction.

As previously observed with charm measurements [55,58],
it is challenging for models to simultaneously describe RAA

and v2 of heavy-flavor particles, allowing data to provide
constraints to the model ingredients and parameters to de-
scribe the interaction of heavy quarks with the QGP medium.
Among the models presented in this article, the MC@sHQ
[124] and LIDO [126] models best describe the RAA, v2, and
v3 measurements of D mesons [55]. In the beauty sector, the
v2 of leptons from beauty-hadron decays was measured by
the ALICE [78] and ATLAS [77] collaborations. The AL-
ICE measurement of electrons from beauty-hadron decays
was performed in the interval 1.3 < pT < 6 GeV/c, and com-
pared with predictions from MC@sHQ [124], PHSD [125],
and LIDO [126] models. These models predict similar pT-
dependent v2 values in the full pT interval, and all models
describe the data within uncertainties above 2 GeV/c. Some
parameters of the LIDO model were calibrated to reproduce
previous D meson and B meson measurements by the ALICE

and CMS collaborations [126]. Extension of v2 measurements
to higher pT would be beneficial for comparing the models at
high pT. The v2 of muons from beauty-hadron decays from
the ATLAS collaboration [77], measured in the interval 4 <

pT < 20 GeV/c, was compared with DREENA-B [122] and
DAB-MOD M&T [123] models. While the two models pro-
vide similar b → e RAA predictions in the available pT range,
they significantly vary in v2 predictions below 10 GeV/c,
where DREENA-B model is qualitatively in better agreement
with the data. In this context, measurements of beauty decay
electrons can provide additional and important constraints
for modeling the heavy quark in-medium interactions and
hadronization.

V. SUMMARY

The pT-differential production of beauty-hadron decay
electrons was measured in pp collisions and in the 10% most
central Pb-Pb collisions at

√
sNN = 5.02 TeV. The measure-

ments are based on electron identification together with a
fit to the track impact parameter distributions to extract the
beauty contribution. The measured pT-differential cross sec-
tion in pp collisions lies at the upper edge of the FONLL
uncertainty band, and shows some tension with GM-VFNS
calculations at low pT. The measured nuclear modification
factor in central Pb-Pb collisions shows an increasing sup-
pression with increasing pT up to ≈5 GeV/c, and is almost
constant at higher pT. The maximum suppression of about
a factor 3 is observed around 8–10 GeV/c. The measured
RAA of b(→ c) → e is consistent with the measurement of
b(→ c) → μ by the ATLAS collaboration. The RAA of leptons
from beauty-hadron decays shows a similar suppression and
shape compared to charm-hadron decays within uncertainties.
The results are consistent with several transport models im-
plementing interactions of heavy quarks with a QGP formed
in Pb-Pb collisions. While models implementing radiative and

034906-14



MEASUREMENT OF ELECTRONS FROM BEAUTY-HADRON … PHYSICAL REVIEW C 108, 034906 (2023)

collisional energy loss processes predict similar RAA values at
high pT, significant differences among models exist at low pT,
but more precise measurements are needed to constrain the
model parameters further.
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