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ABSTRACT 
Unstable rock slopes pose a hazard to inhabitants and infrastructure 
in their vicinity, necessitating advanced monitoring methodologies for 
timely risk assessment and mitigation. Recent geotechnical monitoring 
techniques often rely on sensor data fusion to enhance forecasting 
for imminent failures. Our investigation extends beyond a single sen-
sor type to data fusion for heterogeneous sensor networks using a 
Multimodal Asynchronous Kalman Filter. We illustrate the application 
of the proposed method on a case study data set consisting of data 
from an on-site sensor network enriched by remote sensing data. 
Employing a Multimodal Asynchronous Kalman Filter, we capitalise 
on the distinct resolutions inherent in each sensor input. The out-
come was a combined dataset with a high spatiotemporal resolution. 
Our approach facilitates the estimation of essential physical attributes 
for monitored objects, encompassing translation, rotation, velocities 
and accelerations. The case study site was an unstable rock section of 
ca. 50.000m3 in Aurland, Norway, which collapsed as a multi-stage 
failure in July 2023. Our method can be transposed to various sites 
with distinct sensor networks, enhancing state estimations for objects 
on unstable rock slopes. These estimations can significantly improve 
applications such as risk assessment and robust early-warning sys-
tems, enhancing predictions of critical failure points.
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1. Introduction

Sensor data fusion has a long history and many applications in different fields, including 
agriculture monitoring (Comba et al. 2019), medical applications (Liggins et al. 2017), 
robotics (Luo et al. 2002; Sasiadek and Hartana 2000), as well as target recognition in mili-
tary applications (Hall and McMullen 2004; Smith and Singh 2006). The main objective of 

CONTACT Lukas Schild Lukas.Schild@hvl.no. 
� 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by 
the author(s) or with their consent.

GEOMATICS, NATURAL HAZARDS AND RISK 
2023, VOL. 14, NO. 1, 2272575 
https://doi.org/10.1080/19475705.2023.2272575

http://crossmark.crossref.org/dialog/?doi=10.1080/19475705.2023.2272575&domain=pdf&date_stamp=2023-11-02
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com
https://doi.org/10.1080/19475705.2023.2272575


a data fusion application is to combine data from multiple sources to achieve inferences 
that a single source cannot provide (Hall and Llinas 1997). One key concept in data fusion 
is exploiting statistical advantages gained by combining independent observations of the 
same phenomenon. Assuming the observations follow a certain distribution around the 
true value of the physical phenomenon and are combined optimally, an estimation of the 
true value will ideally be improved proportionally by a factor of N 1

2 , where N is the num-
ber of independent observations (Liggins et al. 2017). The same improvement can be 
achieved by combining N observations from several independent sources, providing inde-
pendent observations of the same physical property. Furthermore, data fusion enables the 
combination of complementary information from different sensors. For instance, Inertial 
Measurement Unit (IMU) and Global Positioning System (GPS) measurements can be 
fused to combine the reactivity of inertia measurements with the long-term accuracy of 
GPS measurements, which compensate for the decreasing accuracy of IMU position esti-
mates when estimating position and orientation of an object.

In the last decade, with the advance of processing techniques, computational capacity, 
and cheap and accurate sensor technology availability, near real-time and real-time data 
fusion has significantly improved (Noordam et al. 2020). However, sensor data fusion is 
not yet exploited to its fullest in the context of geotechnical monitoring applications. While 
attempts to generalise data fusion approaches to monitoring applications exist (Li 2015), 
they often focus on combining information from networks with a single sensor type (Li 
et al. 2016; Ling et al. 2020; Mishra 2022), only few sensors with similar information char-
acteristics (Liu et al. 2019; Noordam et al. 2020) or high-level information fusion based on 
expert knowledge rather than low-level sensor data fusion (Carl�a et al. 2019; Leinauer et al. 
2021; Tofani et al. 2014; Zhu et al. 2018). At the same time, many monitoring efforts on 
unstable rock slopes or landslides use a variety of sensors capturing different physical 
parameters of the monitored object but fail to combine and exploit data from the sensor 
networks to their full potential (Kristensen et al. 2021; Leinauer et al. 2021). Hence, further 
research is needed for best-practice sensor data fusion schemes in applications focusing on 
monitoring rock slopes or slow-moving landslides with spatiotemporal and geo-tagged 
data.

In particular, this concerns the practical problems encountered in the field, such as 
missing data due to instrument or communication link malfunctioning and interference 
with the environment, since many sites are situated in remote areas with harsh 
environments.

In this study, we propose an integrated sensor data fusion framework based on a 
modified Asynchronous Kalman Filter. The proposed method is designed for multi- 
modal sensor data in a heterogeneous sensor network, enabling estimations with 
non-uniform sample rates, i.e. missing values. Furthermore, the proposed method can 
be retrospectively used for data analysis and in a near real-time monitoring setup.

2. Methodology

Our sensor data fusion approach is based on a high-level process model derived from the 
Data Fusion Process Model developed by the Joint Directors of Laboratories (JDL) (Figure 

2 L. SCHILD ET AL.



1) (Hall and Llinas 1997). An adapted version of the JDL Data Fusion Process Model for 
geotechnical applications, especially regarding geohazards, has been presented by Li (2015).

The JDL model aims at simplifying technology transfer using a unified terminology 
for data fusion processes. Input to the Data Fusion domain is data acquired from dif-
ferent sources, which are usually nodes in a sensor network. The domain output is 
some form of Human-Computer Interaction that allows communication with the 
Data Fusion system through reports and commands. Four data processing steps are 
defined as follows in the Data Fusion Domain.

2.1. Pre-processing

As a first step, the input data from the individual sensors is pre-analysed and prepared for 
the subsequent fusion process. First, raw sensor data is converted to measurement values 
in units from the International System of Units (SI). Subsequently, outliers are filtered with 
a non-sensitive function. This function identifies outliers if the data points lie outside a 
range of feasibility, which is defined by the physical boundaries of the property measured, 
such as the extension of a crack, which must be non-negative. Furthermore, this filtering 
identifies values outside the detectable range defined by the individual sensor data sheets, 
which can occur due to instrument malfunctions when recording the data or data corrup-
tion in the communication chain between the sensor and the analysis system. However, 
coarse filtering reduces noise and thus already optimises the data input to the processing 
step while preserving data whose removal could result in a type II error (false negative), 
which is critical for rock slope failure applications (Li 2015).

Moreover, the pre-processing step involves transforming the relative reference sys-
tems into the same global reference system to have comparable data. Accordingly, 
pre-processing has to be adapted to the sensor network, providing data for analysis, 
accounting for noise and interference from the environment and malfunctioning 
equipment anywhere in the sensor network. The case study in section III provides 
additional insight into sensors and sensor-specific pre-processing.

2.2. Object refinement

The second step combines the pre-screened data into an object representation. This 
object representation mainly comprises estimated position, orientation, and 

Figure 1. The JDL Data fusion process model, after Hall and Llinas (1997).
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kinematics. This step involves an estimation method such as a Kalman Filter (Kalman 
1960), which corresponds to a sensor data fusion method that can be used to estimate 
the object state. The general description of the Kalman Filter in matrix form is given 
as follows:

Xk ¼ AXk−1 þ xk (1) 

Zk ¼ h Xkð Þ þ �k (2) 

A is the state transition matrix describing the state dynamics, and xk is the process 
noise at time step k. The latter is being used to model uncertainty in the model. 
Furthermore, h(xk) describes the relationship between the measurements Zk and the 
observed system states Xk, with �k being the measurement noise.

We derive the prediction and update step of the Kalman Filter as:
Prediction

X^k ¼ AX^k−1 (3) 

Pk ¼ Pk−1 þ Q (4) 

Update

Gk¼ PkHkTðHkPkHkTþRÞ−1 (5) 

X^k  X^kGkðZk − hðX^kÞÞ (6) 

Pk  I − GkHkð ÞPk (7) 

Where Pk is the covariance matrix of the estimation process at time step k, R the 
covariance matrix of the signal noise for all time steps k and Gk the Kalman Gain at 
time step k. The matrix Q represents the covariance of the process noise xk, for all 
time steps k. The measurement matrix H links the obtained measurements to the sys-
tem states of the model.

Using the Kalman Filter to fuse the pre-processed data from the first processing 
step provides a more accurate and holistic estimation of the object properties.

However, as presented above, a single Kalman Filter does not provide a favourable 
result for any sensor network. Sensors may operate at different sampling rates, requir-
ing up-sampling of a lower-resolution time series to match the highest temporal reso-
lution or down-sampling of a high-resolution series to a common lower sampling 
rate. Both approaches are suboptimal, with the first adding false information about 
the short-term evolution of the system, potentially influencing the state estimation. 
The latter omits valuable information about the system evolution between the down- 
sampled points. Moreover, the filter has to be adapted to deal with missing values, 
which may occur in the time series due to malfunctioning equipment or issues arising 
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on the communication path between the instrument and the database. Hence, we 
propose the usage of a Multimodal Asynchronous Kalman Filter.

To achieve asynchronous fusion for data from N sensors with missing values that 
do not follow a specific pattern, we propose a filter structure (Figure 2) which is 
based on Kordestani et al. (2020).

The Multimodal Asynchronous filter relies on N local Kalman Filters, one filter 
per sensor. These filters constitute the first stage and compute an estimate based on 
the measurements of a specific sensor, calibrated to the sensor specifications. The 
local estimations are then fused in a second-stage global Kalman Filter.

To compute the local estimate based on measurements of sensor i, the prediction 
step of the Kalman Filter is performed whenever a new measurement of the sensor 
becomes available. According to the timestamp of the new measurement and the last 
received measurement, the time difference Dt is computed. The prediction uses Dt to 
compute the system state based on the system model defined by equation (1) after 
Dt. The new measurement value is then used to compute the filter udpate.

The local estimates are aggregated and fed into a secondary Kalman Filter in the 
second stage. The Kalman Filter in this stage uses the same system model as the first 
stage but combines the local estimates based on a matrix that links all local estimates 
to the system states. The second stage effectively synchronizes the filter output by 
keeping an estimate as filter output for a predetermined time if no updated local esti-
mate reaches the global filter. The next time window then starts by using only the 
system dynamics to predict the next state. Incoming local estimates are used subse-
quently to update the filters’ global estimate in the current window.

The resulting time series of system state estimates is used as object representation 
in the following subsequent processing steps. For each object of interest, an inde-
pendent Multimodal Asynchronous Kalman Filter is applied for state estimation in 
order to account for different system dynamics.

2.3. Situation refinement

Based on the object representation computed in the Object Refinement step, this step 
establishes the relationship between multiple objects, such as distinct rock column on 
a rock slope. Essentially, the object information is aggregated, and relational informa-
tion is extracted. This process accounts for the spatial relation between the objects 

Figure 2. The proposed Multimodal Asynchronous Kalman Filter architecture.
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and their environment, considering topography, geological, and geodesic domain 
knowledge. In geotechnical applications, this comprises, for example, the movement 
of different objects on an unstable rock slope, both relative to each other but also 
absolutely with regard to the slope or a global reference system.

2.4. Threat refinement

The threat refinement, as the third processing step, aims at predicting the evolution 
of the current situation based on the identified objects and their relations. Moreover, 
this step includes an analysis of the prediction regarding the consequences of the situ-
ation evolution. In geotechnical applications, this would, for example, aim to forecast 
the state of a monitored object to estimate a failure date or build an early-warning 
system around the forecast.

2.5. Database management system
Lastly, the Database Management System provides functionality for storing and man-
aging the data used in the fusion process (Hall and Llinas 1997). The database aggre-
gates all available sensor time series and stores the computed estimates and filter 
parameters to evaluate the filter. All data is accessible via the Human-Computer 
Interface, which allows users to explore the raw data, pre-processed data from the 
first processing step, the local estimates (Object Refinement result), and the global 
state estimates (Situation Refinement result) of the monitored objects. The interface 
also allows for the inspection of the filter gain and covariance matrix evolution.

In our case study, we focus on illustrating the processing steps from Pre-Processing 
to Situation Refinement since no forecasting has been performed yet. The outcomes 
of the fusion process up to the Situation Refinement step are then used to interpret 
the evolution of the given system. Section IV describes the processing steps using 
data from multiple sensors from the case study site.

3. Application: a case study from the unstable rock slope Stampa

3.1. Study site and instrumentation

The unstable rock slope Stampa is located near the tourist town Flåm in Western 
Norway. Directly below the rock slope lies the European Road E16 (Figure 3), a 
highly frequented connection to Bergen and Oslo. Stampa has been subject to various 
mapping and monitoring efforts in the past (Oppikofer et al. 2012). These led to the 
identification of two high-risk objects continuously monitored by the Norwegian 
Energy and Water Directorate (Hermanns et al. 2013). An unstable part of the slope, 
named Scenario 4a, consisted of a rock column with a volume of approximately 
5,000 m3, identified as Block 4a, that was not classified as a high-risk object 
(Hermanns et al. 2016). However, Block 4a was resting on a highly fractured base of 
approximately 40,000 m3, and parts of this base as well as Block 4a, have displayed 
increased movement rates in recent years until their eventual failure in summer 2023.

The sensor network monitoring Block 4a consisted of a series of on-site and 
remote sensing instruments (Table 1).

6 L. SCHILD ET AL.



A wire extensometer and a tiltmeter formed the on-site sensor network. Both were 
installed on Block 4a (Figure 4). Additionally, a corner reflector had been installed on 
Block 4a, which aided in measuring the block’s movement through satellite interferometry 
(Figure 4). A robotic total station installed at the bottom of the slope and a ground-based 
radar provided data on the movements of Block 4a and the base directly below Block 4a 
(Figure 3a). Lastly, a nearby weather station situated at a similar elevation as the top of 
Block 4a provided temperature, humidity, wind and precipitation data.

3.2. Results

An application of the presented methodology was carried out following the JDL data 
fusion process model steps.

3.3. Pre-processing: sensor network and data sources

The instruments used in this case study have been selected to provide duplicate as 
well as complementary information about the monitored object. The difference in 
sensor type and nature of data acquisition results in different noise patterns without 
significant correlation. Additionally, the duplicate acquisition makes the network 
more reliable in case one or more sensors do not provide data as expected.

Figure 3. (a) Hillshaded elevation model of the unstable rock slope Stampa showing the locations 
of sensors. Coodinates given in UTM zone 32V. (b) Block 4a and its highly fractured base outlined. 
Prism locations are shown.

Table 1. Instruments in the sensor network.
Sensor Sample frequency

Extensometer 1 hour
Tiltmeter 1 hour
Robotic Total Station 2 hours
Ground-based INSAR 24 hours
Satellite-based INSAR 6 days

GEOMATICS, NATURAL HAZARDS AND RISK 7



The following section elucidates the specific sensors employed in this study, shed-
ding light on their characteristics and the data they yield.

3.3.1. Total station
The sensor network features a robotic total station with various reflection targets 
(Leica GPR111 and GPR112 circular prisms) on the Stampa instability (Figure 3).

For each measurement, the total station first targets a set of reference prisms with 
known positions to calibrate the readings. This calibration is necessary to account for 
changes in atmospheric conditions, such as temperature and pressure. Following the 
calibration, all prisms on the unstable slope are targeted, and the vertical and hori-
zontal angles, as well as the slope distances, are recorded. The absolute positions of 
the total station and the reference prisms have been established and are controlled by 
differential Global Navigation Satellite System (GNSS) measurements. Similarly, the 
position of the total station in the absolute reference system (EUREF89 coordinate 
system) has been recorded after its installation and is confirmed periodically.

Pre-Processing focuses on transforming the raw measurement data into absolute 
positions along East, North and Height. The recorded angles are combined with the 
distance measurement to derive the absolute positions of the prisms. The time series 
of the three targets on Block 4a can be combined to estimate the translation and rota-
tion of the entire block.

The combined data of the three targets on Block 4a (Figure 3b) are referred to as 
the total station data below. The three selected targets form a triangle. The centroid 
of the resulting triangle is used as the block position lying approximately in the gravi-
tational centre of the block. The time series have been acquired since the start of the 
observation period, i.e. 01.12.2020, and have recorded relative displacement along the 
East, North and Height axis of the EUREF89 coordinate system.

Given two edges of the triangle between two pairs of vertices (targets), the surface 
normal vector can be computed. The system’s rotation between two sample times can 
be derived from the difference between the two normal vectors. Hence, the total sta-
tion measurements contribute to estimating the absolute position, 3D translation and 

Figure 4. Instruments on Block 4a.
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rotation of the block. The displacement of Block 4a since the start of the observation 
roughly followed the slope orientation, with mostly westward and downward move-
ment and little movement towards the north (Figure 5). The extracted data are a 
direct result of the described Pre-Processing step, where the data are an aggregate 
of three total station target measurement series. Whenever all three targets have 
available measurements, the relative placement of the targets to each other is 
exploited to infer the rotation angle changes of the block. We assume the block was 
a rigid body over the observation time frame, i.e. the relative positioning of the 
total station targets did not change over time. This assumption constitutes a simpli-
fication, as the resulting model does not allow for complex displacement patterns 
where parts of the object evolve independently, for example, following the opening 
of a new crack. In future works, an improved model will be developed to be used 
in the data processing, which can account for object evolution throughout the mon-
itoring process.

Figure 5. Aggregated total station data revealing displacement along east, north and Height after 
pre-processing.

GEOMATICS, NATURAL HAZARDS AND RISK 9



After removing systematic and gross errors, we are left with random noise mainly 
caused by atmospheric effects on the measurements. Random noise cannot be fully 
accounted for during the calibration process. The raw data displays significant gaps 
over multiple days where no accurate translation estimation is possible only with the 
total station data.

3.3.2. Satellite-based InSAR
The corner reflector from Block 4a (Figure 4) has been used in combination with the 
Sentinel 1 A and 1B satellites for satellite-based InSAR measurements. Pre-Processing 
starts by extracting displacement information from the two orbits ascending and 
descending using the corner reflector as Persistent Scatterer in the recorded radar 
data. After unwrapping the data, the resulting Line of Sight (LOS) displacement time 
series are decomposed into east and vertical movements. A decomposition based on 
Cigna et al. (2021) has been used, knowing both orbits’ incidence and track angles 
from the Sentinel dataset annotation. As shown in equations (8)-(11), combining the 
information from both ascending and descending orbits (LOSA and LOSD respect-
ively) leads to an estimation of displacement perpendicular to the flight direction DE 
as well as in vertical or up direction DU (Figure 6a).

DU ¼
EDLOSA − EALOSD

EDUA − EAUD
(8) 

DE ¼
UALOSD − UDLOSA

EDUA − EAUD
(9) 

Where

E ¼ � cosðaÞ sin ðhÞ (10) 

Figure 6. (a) Satellite orbit direction and heading angle a in 2D. (b) LOS to E-W and up decompos-
ition, incidence angle h. Figures after Cigna et al. (2021).
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U ¼ cosðhÞ (11) 

Two sets of Interferometric Wide Swath Single Look Complexes are available for 
the corner reflector, IW2 and IW3. We combine both time series data using an aver-
age of each pair of measurements.

While movement along the flight direction is underestimated, the pre-processed 
total station data indicate that the east-west and vertical movements of Block 4a are 
the largest components of the translation. Thus, underestimating the north-south 
movement of Block 4a does not omit critical information. At the same time, includ-
ing the satellite InSAR time series adds complementary information, for example, in 
time periods where the robotic total station was not operative.

Pre-Processing of the InSAR data leads to separate time series describing the east 
and vertical components of the displacement (Figure 7). Note that the time series 
ends in April 2022 since the movement in spring and autumn 2022 exceeded the 
maximum displacement detectable with satellite-based InSAR on the C-Band, result-
ing in phase ambiguities, which led to the data not being processed after April.

3.3.3. Ground-based InSAR
A ground-based radar is positioned approximately 2 km north of Block 4a 
(Figure 3a). The raw measurements of the phase and amplitude of the reflection can 
be converted to distances between the radar and the surface of Block 4a. Even though 
a fixed point can be followed on the Block during the measurement processing over 
time, the actual displacement value is the mean of all pixels on a surface with the 
approximate dimensions of 2 m by 2 m. Additionally, the detected displacement repre-
sents distance changes in the LOS of the instrument, which almost aligns with the 

Figure 7. East and height displacement derived from satellite InSAR after Pre-Processing.
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global north, making the sensor insusceptible to east-west movement. The decompos-
ition of the LOS measurements into north and height displacement, which is part of 
the Pre-Processing step, is based on the radars’ view angle. The latter can be com-
puted given the initial height and north position differences.

Assuming that the LOS measurements align with the north, the decomposition can 
be reduced to a trigonometric problem. Hence, the pre-processing results in north 
and vertical decomposition of the input data (Figure 8). The daily measurements 
have been conducted very consistently during the observation time frame. In selected 
periods, the sampling frequency has been tripled to record one measurement every 
eight hours. The actual displacement is expected to be underestimated since the 
measurements cannot account for the east displacement, and phase jumps are likely 
to occur on days with large displacements, such as during autumn 2022 (Figure 8). A 
direct comparison with the robotic total station data in the same period enables the 
identification of phase jumps.

3.3.4. Extensometer
As part of the sensor network, a wire extensometer monitored the extension across a 
large fracture separating Block 4a and the above mountainside. Initially spanning a 
length of approximately 5 meters, the wire was extended later to facilitate extension 
measurements during significant displacements, particularly as Block 4a approached 
failure. Installed at an angle of approximately 37�, it measured the movement of 
Block 4a north-westwards and in the vertical direction.

Since the extensometer data exhibits significant outliers and systematic offsets due 
to instrument failures, Pre-Processing first filters values outside the instrument range 

Figure 8. North and height displacement derived from ground-based InSAR after Pre-Processing.
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as well as negative distances and measurements that correspond to extreme accelera-
tions followed by extreme deceleration. The latter is due to environmental factors, 
such as ice on the wire during winter, which are unrelated to block movements. The 
measurements are treated as LOS measurements and decomposed into an east and 
vertical translation component based on the vertical angle of the wire. The Pre- 
Processing result thus acts mainly as an outlier filter for the extensometer (Figure 9).

The prefiltering performed in this step cannot remove all the outliers as it is 
designed to filter conservatively, according to the general Pre-Processing guidelines. 
Similar to other sensor measurements, the time series of the extensometer has several 
holes with missing data. The extensometer offers a very high temporal resolution 
with a sample time of 1h (Table 1).

3.3.5. Tiltmeter
The tiltmeter contributes to estimating the tilt around the East axis (roll) and North 
axis (pitch). Due to the sensor being a Micro-Electro-Mechanical System (MEMS) 
based sensor and the relatively high sensitivity to vibrations and electromagnetic 
fields, the measurement data is considerably noisy in large parts, including outliers 
outside the theoretical measurement range of the instrument. Since the data is being 
preprocessed and merged, we mitigate the problems arising from the noise present in 
the raw data when estimating the system states. To align the tiltmeter data to a com-
mon reference frame with the total station data, the data needs to be adjusted accord-
ing to the orientation of the instrument such that the rotation axis aligns with the 
East and North axis. The rotation matrix transforming the tiltmeter reference frame 
into the global reference frame can be computed based on the installation report of 
the instrument.

Figure 9. East and height displacement derived from extensometer after Pre-Processing.
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With a temporal resolution identical to the extensometer data, the tiltmeter can 
provide essential insights into the short-term evolution of the block rotation despite 
the relatively large noise component. Pre-processing denoises both rotation compo-
nents while preserving the sensitivity of the sensor to short-term events (Figure 10).

3.4. Object refinement

We assume that Block 4a can be described as a linear system whose movements are 
roto-translational. This simplification yields the following system model at discrete 
time intervals:

Xk ¼ AXk − 1þ xk − 1 

Note that the system is assumed to have no control input, and we thus omit a 
term representing system input. The assumption of a linear system holds since the 
monitored system evolves slowly with respect to the shortest sample time in the sen-
sor network and can thus be approximated linearly. The system’s minimum coordi-
nated sample time is around 1h, corresponding to the extensometer’s sampling rate. 
Furthermore, the process noise dominates over the linearization error, which makes a 
Kalman Filter an appropriate approach. Given that we aim to estimate the system’s 
position and rotation changes over time and the respective velocities, the system state 
is described as follows.

X ¼ ½x, y, z, _x, _y, _z, w, h, /, _w, _h, _/� (12) 

Figure 10. Rotation around east and north axes derived from tiltmeter after Pre-Processing.
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Where [x,y,z] represent the systems position and [w,h,/] the systems orientation 
as Euler angles.

Furthermore, we define the state transition matrix as follows:

A ¼ AT 0
0 AT

� �

(13) 

With

AT ¼

1 0 0 Dt 0 0
0 1 0 0 Dt 0
0 0 1 0 0 Dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(14) 

A Multimodal Asynchronous Kalman Filter filter has been used to estimate the 
states of Block 4a and, separately, the base the block rests on.

For Block 4a, four separate local Kalman Filters have been used. The measurement 
matrices relate the measurements after pre-processing to the system state. In this 
case, the measurement matrix elements equal 1 for a pre-processed measurement that 
corresponds with the system state of the element column and 0 otherwise. Table 2
lists the relations between the pre-processed measurements and the system states.

The measurement covariance matrices, which can be seen as hyperparameters to 
tune the filter, are based on the expected variances as described by the sensor data-
sheet or on the variance of the actual measurements over the first weeks of the meas-
urement campaign since no significant movement has been detected in this period.

The resulting displacement time series generally follows the trend of the instru-
ments while allowing instruments with lower variance to dominate the estimation. 
Additionally, the displacement velocity and rotation are estimated (Figure 11).

Two local Kalman Filters have been employed for the base Block 4a is resting on. 
Accordingly, only two instruments provide measurements for the base displacement: 
the total station with one target as well as the ground-based radar. The processing 
uses the same hyperparameters as the fusion of the Block 4a data since the same 
instruments provide the data used as estimation input. The resulting estimates have 
the same resolution as the Block 4a fusion output (Figures 12 and 13).

Our data fusion approach provides insights into both the short-term movement 
over multiple days and the long-term evolution of Block 4a and the base over several 

Table 2. Relation pre-processed measurements to system states.
Instrument time series System states

Extensometer East and Height Displacement
Tiltmeter Roll and Pitch Rotation
Robotic Total Station East, North, Height Displacement Roll, Pitch, Yaw Rotation
Ground-based INSAR North, Height Displacement
Satellite-based INSAR East, Height Displacement
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months. Since the measurement noise covariances are in the same order as the pro-
cess noise covariance, the model and measurements are equally important in the 
resulting estimation.

Figure 11. Fusion result constraining estimated Block 4a (a) displacement (b) velocity, and (c) roto- 
translation in 3D using the Multimodal Asynchronous Kalman Filter. Red wireframes in (c) indicate 
the dates on the ticks of the colorbar.
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3.5. Situation refinement

Situation refinement allows for an analysis of the object movements relative to each 
other. Globally, we estimate that a translation down-slope towards the west dominates 
the movement of Block 4a. The dominating westward translation component over the 
observation period is with approximately 618 mm in the same order as the vertical 

Figure 12. (a) Multimodal Asynchronous Kalman Filter fusion result showing estimated (a) displace-
ment and (b) velocity of the base of Block 4a.

Figure 13. Comparison of estimated 3D displacement for Block 4a and its base.
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component with approximately 530 mm. Although significantly less movement has 
been detected in the north direction (approx. 230 mm), this orientation component 
provides insights into the failure mechanism and the fault orientation. More specific-
ally, the 3D displacement vector aligns with the slope Block 4a was resting on, indi-
cating a sliding failure component.

At the same time, the movement of Block 4a had a rotational component. This 
rotation was dominated by an approximately 0.42� northward rotation around the 
east-west axis. Combined with an approximately 0.2� westward rotation around the 
north-south axis, the resulting rotation indicates that the top of the block moved 
quicker northwest than the base, translating to a toppling of the block in addition to 
the translation deformation. Lastly, the rotation of the block around the vertical axis 
is estimated to be about 0.28� in a clockwise direction. While the estimated rotation 
is much less compared to the translational component of the movement, the estima-
tion indicates a toppling mechanism coupled with a rotation away from the back 
scarp (Figure 4). The displacement and rotation follow the same global trend, exhibit-
ing a proportional relation.

Similarly, the 3-dimensional displacement of the base of Block 4a is in the same 
order as the Block 4a displacement (Figure 12). However, the base movement is 
dominated by a northward translation of approximately 600 mm, while the westward 
and down-slope translation components are in the same order of approximately 
360 mm. While the base displacement impacts the Block 4a displacement, the two 
objects followed slightly different paths down-slope. This difference indicates that the 
two objects did not evolve separately but rather coupled. Most likely, Block 4a was 
partly resting on the unstable base, which caused movements whenever a base dis-
placement occured, while being separated from the base by several fractures.

3.6. Threat refinement

Based on the observed displacements of both Block 4a and its base, a short-term fore-
cast can be implemented using the proposed Multimodal Asynchronous Kalman Filter 
setup. By using the system model and computing the next predicted state of the 
objects based on the last available estimate. However, using the proposed filter for 
analysis, such as discussed here, does not require inspecting the Threat Refinement 
output.

3.7. Discussion

The proposed workflow and Multimodal Asynchronous Kalman Filter have been used 
to analyze historical data. The distributed architecture ensures that missing values 
from different sensors do not impact the global estimation and, more importantly, 
that the filter is rate-agnostic, which enables the filter to be implemented in any sen-
sor network configuration without having to synchronize data acquisition.

While our case study of Block 4a in the Stampa rock slope instability illustrates 
the use of the filter for post-monitoring analyses, the proposed design is equally well 
adapted for near real-time monitoring.
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The proposed filter outperforms a single-stage Kalman Filter with respect to the 
estimation accuracy for heterogeneous multi-rate sensor systems. This performance 
gain is mainly due to the fact that we do not apply interpolation to data gaps. 
Instead, the filter uses the respective local Kalman Filter predictions without update 
based on measurement value as fusion input into the second stage. The two-stage 
design allows finetuning both stages to the use case. Furthermore, the proposed 
design combines established asynchronicity mechanisms with global centralized fusion 
principles while conserving the optimal fusion properties of a Kalman Filter with 
regard to signals with normally distributed noise components (Sun et al. 2017). The 
latter is an assumption that must be verified for the system in which the filter is 
used.

The filter’s main advantage is that it can combine data from various sensors as 
opposed to approaches limited to a single sensor type (Ling et al. 2020). However, if 
only a few instruments provide data over a longer time period, the simple model 
used to predict the system state will degrade the global estimation. Hence, the model 
works best when missing data occurs but not over prolonged periods. In the pre-
sented case study example, missing data for multiple weeks from multiple instruments 
degrades the global state estimate because the model cannot account for movements. 
This could be mitigated by employing a more complex model for the system evolu-
tion. However, the filter quickly corrects the estimation when new measurements are 
available.

While centralized fusion generally requires a higher computational capacity than 
decentralized fusion, for slowly evolving systems such as the one presented in the 
case study above, the latency introduced by the filter computations is, in practice, 
negligible concerning the rate at which new measurements are acquired.

Finally, the proposed filter structure allows for a low-level data fusion which offers 
a novel approach to geotechnical sensor data fusion and enhances the analysis of 
movements of observed objects and their relation to each other. The presented ana-
lysis approach can further be combined with high-level data fusion in a hybrid 
approach, for instance, in cases of imminent failures for a holistic interpretation 
approach.

4. Conclusions

By aggregating the data from a variety of sensors, pre-processing, and combining 
them using the proposed Multimodal Asynchronous Kalman Filter, we were able to 
gain important insights into the complex displacement pattern and failure mechanism 
of Block 4a. While the proposed data fusion process works well to gain insights into 
the movement of single objects, further investigation is needed to couple the move-
ment of multiple objects or to monitor more complex instabilities with greater spatial 
variations. Furthermore, basic quality assurance of the sensor data fed into the filter 
must not be omitted, as there is no inherent correction mechanism present in the fil-
ter. The latter stems from the attempt to avoid type II errors in the pre-processing. A 
possible extension of the proposed method is using variable measurement covariance 
matrices to adapt to varying sensor performances. This adaption can improve the 
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filter’s accuracy, for example, when the sensor accuracy is affected by temperature 
changes in different seasons. Similarly, basing the implementation on Iterative 
Adaptive Kalman Filters, as presented by Assa and Janabi-Sharifi (2015), could fur-
ther improve estimation performance.

In future work, the results of the movement estimation can be used in further ana-
lysis, for example, to infer the main drivers of the movement by integrating weather 
data such as precipitation and soil moisture.

Once a causal inference has been established, a forecasting procedure can be built 
upon it. The forecasting can be used for pattern recognition to detect anomalies and 
eventually to issue warnings in case of an imminent failure. Existing prediction mod-
els based on Kalman Filter implementations, such as Ling et al. (2020), may profit 
from integrating multimodal data through the presented approach as well as methods 
performing forecasting based on Inverse Velocity methdologies such as Leinauer et al. 
(2023).
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