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Abstract
Due to strong learning ability, convolutional neural networks (CNNs) have been devel-
oped in image denoising. However, convolutional operations may change original dis-
tributions of noise in corrupted images, which may increase training difficulty in image
denoising. Using relations of surrounding pixels can effectively resolve this problem.
Inspired by that, we propose a robust deformed denoising CNN (RDDCNN) in this
paper. The proposed RDDCNN contains three blocks: a deformable block (DB), an
enhanced block (EB) and a residual block (RB). The DB can extract more representative
noise features via a deformable learnable kernel and stacked convolutional architecture,
according to relations of surrounding pixels. The EB can facilitate contextual interaction
through a dilated convolution and a novel combination of convolutional layers, batch
normalisation (BN) and ReLU, which can enhance the learning ability of the proposed
RDDCNN. To address long‐term dependency problem, the RB is used to enhance the
memory ability of shallow layer on deep layers and construct a clean image. Besides, we
implement a blind denoising model. Experimental results demonstrate that our denoising
model outperforms popular denoising methods in terms of qualitative and quantitative
analysis. Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN.
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1 | INTRODUCTION

Due to complex collection processing (i.e., capturing, trans-
mitting and compressing images) via digital devices, obtained
images may be corrupted by light conditions and sensors in
noise manner [1]. To deal with this problem, image denoising
techniques were presented. Specifically, image denoising

techniques aim to remove the noise to store the given clean
image, according to a degradation model of y¼ c þ n, where c
denotes a potential clean image, n is noise and y expresses a
noisy image [2]. Inspired by that, filter methods have been
widely used to suppress the noise of a noisy image [3]. Spatial
domain filters can average pixels of selected areas to improve
the quality of a predicted image [4]. Also, the simultaneous use
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of a compensation function and bilateral filtering can enhance
the edges to obtain more detail information so that improve
denoising efficiency [5]. Besides, transforming images into
transform domain was applied to eliminate noises according to
their characteristics [6, 7]. The block‐matching 3D (BM3D)
exploited the judgement of patch comparability to achieve
transform domain filtering in image denoising [8]. Specifically,
referred pipeline can be obtained via the following three steps:
grouping similar patches, shrinking of 3D transform domain
for collaborative filtering, and obtaining original positions
through aggregating these obtained patches. Due to excellent
performance of BM3D in image denoising, its varieties were
also developed for image denoising [9]. Alternatively, percep-
tion ideas were used to extract noise information from given
noisy images [10]. Total variation [11] is introduced into image
denoising and minimising total variation of an image is proved
to be effective for image denoising tasks. Besides, partial dif-
ferential equations (PDE) algorithm treated a denoising pro-
cess as a solving equation through multiple iterations, where
the referred solution is close to a latent clean image [12]. Due
to attributes of the PDE, its variations inherited merits of
maintaining both edge and texture information in image
denoising [13]. Besides, a weighted nuclear norm minimisation
(WNNM) used low rank clustering correlation idea to filter the
noise for restoring high‐quality images [14]. There are other
popular denoising methods, such as Markov random field [15]
and gradient methods [16].

Although the mentioned methods have obtained excellent
performance in image denoising, they were faced with the
following cons. (1) They need complex optimization methods
to obtain optimal solutions for image denoising, which need
more computational cost. (2) These method with one noise
level can deal with noisy images of certain situations, which
may be limited by applications in the real world.

To resolve the referred problems, deep learning techniques
are developed. Due to strong learning ability and fast execution
speed, deep learning techniques, especially convolutional neu-
ral networks are widely applied in image denoising [17]. For
instance, Zhang et al. [18] presented a denoiser by the com-
bination of some plug‐ins, that is, batch normalisation (BN)
[19] and residual learning (RL) [20]. The BN can accelerate
training efficiency of denoising network by normalising data.
Also, the RL can be used to construct a latent clean image. To
reduce the training cost, a fast and flexible denoising network
(FFDNet) used a varying tunable noise level map and noisy
image in a CNN to quickly train a denoising model [21]. To
address long‐term dependency problem of deep network,
residual learning and concatenation operations are widely
applied in image restoration [22]. Using a recursive and unit
and a gate unit can mine multi‐level features to enhance the
memory ability of a deep network for image restoration [23].
Although these methods can obtain excellent performance for
image denoising, they may suffer from risk of training difficulty
from changed distributions of training data via convolutional
operations.

In this paper, we propose a robust deformed denoising
CNN (RDDCNN) to deal with the mentioned problem,

according to relations of surrounding pixels. The proposed
RDDCNN contains three blocks: a deformable block (DB), an
enhanced block (EB) and a residual block (RB). The DB can
extract more representative noise features via a deformable
learnable kernel, according to relation of surrounding pixels.
The EB can efficiently facilitate contextual interaction through
some common components, that is, a dilated convolution [24]
and a novel combination of a single BN and ReLU, which can
enhance the learning ability of the proposed RDDCNN. To
address long‐term dependency problem, the RB is used to
enhance the memory ability of shallow layer on deep layers and
construct a clean image. Besides, the RDDCNN can deal with
a blind denoising.

Our main contributions can be summarised as follows.

(1) A deformable convolution with a deformable learnable
kernel is fused in a CNN to address offset pixels of feature
mapping from a noisy image by convolution operations,
according to relations of surrounding pixels.

(2) A novel architecture is designed via some common com-
ponents, that is, a dilated convolution and a novel of
combination of a single BN and ReLU to efficiently
facilitate contextual interaction for improving the denois-
ing performance.

(3) The proposed denoiser can deal with blind denoising.

Remainder of this paper is arranged as follows. Section 2
illustrates related work of the proposed method. Section 3
reveals the main network architecture of the proposed
RDDCNN. Section 4 gives experiments. Section 5 is conclu-
sion of this paper.

2 | RELATED WORK

The section provides basis of the proposed method, including
CNNs for image denoising and CNNs based flexible kernels in
image applications.

2.1 | CNNs for image denoising

Due to strong expressive abilities, CNNs have obtained
remarked results in low‐level vision tasks, such as image
denoising [17]. These methods can be divided into two kinds in
general, improving the network architecture and fusing new
components into CNNs.

In terms of the first method, Zhang et al. [18] integrated
batch normalisation and residual learning into a CNN to filter
the noise. To reduce the computational cost, a fast and flexible
convolutional neural network used a noise mapping and a
noisy image patch to accelerate training speed for achieving
blind denoising [21]. To deal with noisy images from complex
screens, Tian et al. [25] used a dual network to extract com-
plementary features to enhance the robustness of a denoiser.
To extract salient features, Anwar et al. [26] merged a channel
attention block to enhance the relationship of different
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channels to improve the denoising effect. Besides, to remove
noise of unknown distributions, Guo et al. [27] proposed a
two‐phased method for blind denoising. The first phase used a
sub‐network to estimate the noise. The second utilised method
was used to learn a blind denoiser.

In terms of the second method, optimised methods
embedded into a CNN are very popular for image denoising.
For instance, Alawode and Alfarraj [28] combined a meta‐
optimiser and CNN to make a tradeoff between denoising
performance and efficiency. Besides, utilising Bregman itera-
tion algorithm to transfer a depth image inpainting into image
denoising is very effective [29]. The mentioned methods based
CNNs show that CNNs are very effective tools for image
denoising. Inspired by that, we also employ a CNN to address
image denoising problem in this paper.

2.2 | CNNs based flexible kernels for image
applications

It is known that CNNs tended to improve the performance in
image applications through increasing network depth or width
[30]. However, that may cause training costs. To resolve this
phenomenon, lightweight CNNs use smaller convolutions to
reduce computational costs. For instance, Tian et al. [31] uti-
lised heterogenous convolutions of 3� 3 and 1� 1 rather
than 3� 3 to extract representative features to improve pixels
of predicted images. Although these lightweight CNNs enjoy
fast processing fast in SR, they may reduce performance of
image applications by limiting depth and width of deep net-
works, and sizes of convolutional kernels [32]. To handle this
question, dynamic convolution techniques are presented [32].
This method fuses dynamically parallel convolutional kernels
by an attention mechanism rather than a certain kernel to
extract salient features. That is, an attention mechanism can
dynamically adjust weight of each kernel to enhance expressive
abilities of obtained features, according to different inputs [32].
Inspired by that, many variants of dynamic convolution
methods have been applied in many image applications [33–
35]. For instance, Wang et al. [36] used two dynamic parts to
restore images. The first part used dynamically select spatial
sampling locations to achieve a flexible extraction feature
process. The second part utilised different normalisation
methods to normalise observation features for image inpaint-
ing. Sun et al. [37] sampled different offset values to

dynamically adjust receptive field to address image segmenta-
tion task. Although these methods can make a tradeoff be-
tween performance and computational coats, they may have
challenges in deformed objects.

Alternatively, deformed convolution techniques are pro-
posed [38]. Chen et al. [39] used interdependency of different
attention mechanisms to define deformable mechanism to
improve the ability of single generalisation convolution in
image segmentation. Yu et al. [40] proposed a deformable
attention to enhance contextual information and inter‐
dependencies between target template and search image for
object tracking. Inspired by these, a deformable convolution is
used into a CNN to improve the clarity of predicted denoising
images.

3 | THE PROPOSED METHOD

We train a deep denoising model RDDCNN via breaking the
following rules: (1) designing a denoising architecture. (2)
Training a denoising model according to deep learning
knowledge. In this section, we only depict the whole archi-
tecture of the designed RDDCNN and implementational
details of important components.

3.1 | Network architecture

The paper presents a robust deformed denoising CNN
(RDDCNN), which is composed of a DB, an enhanced
block (EB) and a RB as shown in Figure 1. Because con-
volutional operations may change original distributions of
noise in corrupted images, which may increase the training
difficulty in image denoising. The 12‐layer DB is proposed
to extract more representative noise features via a deform-
able and stacked convolutional architecture, according to
relations of surrounding pixels. To mine more struct infor-
mation at a less cost, a 5‐layer EB can facilitate contextual
interaction via a dilated convolution to extract more robust
noisy information for enhancing learning ability of the
proposed RDDCNN. To address long‐term dependency
problem, the RB is used to enhance the memory ability of a
shallow layer on deep layers and construct a latent clean
image. To visually express the process, we conduct the
following Equation (1).

F I GURE 1 Architecture of RDDCNN
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Ic ¼ RDDCNN Inð Þ ¼ RB EB DB Inð Þð Þð Þ ð1Þ

where In expresses a given noisy image. RDDCNN denotes
function of the RDDCNN. Also, DB, EB and RB are functions
of DB, EB and RB, respectively. Also, Ic is symbolled as a
predicted clean image. Besides, parameters of the RDDCNN
model can be obtained by the following loss function.

3.2 | Loss function

To make obtained denoising model fairer and more robust, we
choose public mean square error (MSE) [41] as a loss function
to update parameters. The following loss function can be
represented as

LðθÞ ¼ 1
=2N

XN

i¼1

�
�
�RDDCNN Iin

� �
− I igc

�
�
�

2
; ð2Þ

where Iin and I igc stand for the i − th noisy image and given
clean image, respectively. Also, N expresses the total of noisy
images. Besides, obtained parameters can be optimised via
Adam [42].

3.3 | Deformable block

The 12‐layer deformable block utilises a deformable learnable
kernel and stacked convolutions to obtain more representa-
tive noise features. That is the first layer is deformable
Conv + ReLU, which denote a deformable convolution and
an activation function of ReLU. A deformable convolution
[38] uses relations of surrounding pixels to restore the po-
sition of the original pixel to enhance clarity of predicted
image. Also, ReLU is used to convert obtained linear features
into non‐linear features. Input and output channels of this
layer are 3 and 64. Specifically, if given images is grey, its
input channel is 1. Also, its kernel size is 3 � 3. The 2nd
layer ‐ 11th layer are composed of Conv + BN + ReLU,
which denotes the combination of a convolutional layer, BN
and ReLU. Their input and output channels are 64. Also,
their kernel sizes are 3 � 3. BN is used to normalise data to
accelerate network speed. To visually express the mentioned
process, we define some symbols as follows. DC and R are
used to represent a deformable convolution and ReLU,
respectively. C and B express functions of a convolution
and BN, respectively. Also, RBC denotes a Conv + BN
+ ReLU. 11 RBC is used to stand for eleven stacked
conv + BN + ReLU.

ODB ¼DB Inð Þ ¼ 11RBCðRðDCðInÞÞÞ ð3Þ

where ODB is the output of DB, which is followed by an
enhanced block. Also, the mentioned deformable convolution
[38] can be given as follows.

Obtaining more accurate contextual information can
improve clarities of damaged images in image denoising [43].
Deformable convolution has strong geometric reshaping capa-
bility, which is used in our network for image denoising in this
paper. It can learn from input and adjust position of each sam-
pling point in a kernel rather than rigid rectangle kernel in a
standard convolution. And its detailed information is as follows.

A standard convolution operation can be expressed as
Equation (4).

Y px; py
� �

¼
XN

k¼1

X px; py; k
� �

W px þ Δxk; py þ Δy
� �

; ð4Þ

where px; py
� �

represents location of centre point in a given
kernel W . Its size is set to 3 � 3. Also, X denotes obtained
feature map. N is total of pixels from obtained features in X .
Besides, Δxk denotes offset of px in horizontal and Δyk stands
for offset of py in vertical. Also, Δxk ∈ f − 1; 0; 1g and
Δyk ∈ f − 1; 0; 1g.

But for a deformable convolution with 3� 3 kernel, it is as
shown below:

where (Lxk, Lyk) are the learnt offset for the kth point.
According to analysis of mentioned formulae, we can see

that deformable convolution has good performance to obtain
more contextual information. Thus, we put a deformable
convolutional layer in the front of the whole denoising as
Figure 1, where its parameters are input channel of 3, output
channel of 64, kernel size of 3 � 3. Subsequently, a ReLU can
convert obtained linear features into non‐linear features. To
further learn accurate features, a 12‐layer the combination of
convolutional layer, BN and ReLU (i.e., Conv + BN + ReLU)
are embedded in the DB, where their parameters are input
channel and output channel of 64, kernel size of 3 � 3. BN is
used to normalise obtained features and ReLU is exploited to
convert obtained linear features into non‐linearity. The output
of the last Conv + BN + ReLU acts the EB.

3.4 | Enhanced block

It is known that deep architectures can extract more accurate
to enhance performance of image applications. Also, contex-
tual interaction can enhance the learning ability of deep
network. Inspired by these, a 5‐layer EB is designed. EB uses a
dilated convolution to obtain more contextual information for
enhancing SR performance. Also, three stacked convolutional
layers are used to further learn these obtained features for

Δxk;Δykð Þf g ¼ −1þ Lx1; −1þ Ly1
� �

; ::; 0þ Lx5; 0þ Ly5
� �

; ::; 1þ Lx9; 1þ Ly9
� �� �

ð5Þ
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image denoising. More information of EB can be shown as
follows.

The 1st layer is Dilated Conv + BN + ReLU, which rep-
resents the combination of a dilated convolution [24], BN and
ReLU. Also, its input channel and output channel are 64. Also,
convolutional kernel is 3 � 3. The 2nd, 3rd and 4th layers are
composed of Conv + BN + ReLU, where their input and
output channels are 64, and convolutional kernel is 3 � 3. The
mentioned illustrations can be presented via Equation (6).

OEB ¼ EB ODBð Þ

¼ C RBC RBC RBC R B DC ODBð Þð Þð Þð Þð Þð Þð Þ
ð6Þ

where DC denotes function of a dilated convolution. Also,
C and B express functions of a convolution and BN, respec-
tively. OEB stands for output of EB, which is input of RB.

3.5 | Residual block

The residual block is used to construct a latent clean image.
That includes a single convolutional layer, which is expressed
as Conv in Figure 1. The residual block utilises a residual
learning operation to remove the noise from the given image as
follows.

Ic ¼ RB OEBð Þ ¼ In − OEB ð7Þ

where − presents a residual operation, which is as well as ⊕ in
Figure 1.

4 | EVALUATION

4.1 | Training and test datasets

Training datasets: To fairly evaluate denoising performance of
the proposed method, we choose public dataset the same as a
denoising CNN (DnCNN) [18] as a training dataset to train a
grey synthetic noisy image denoiser. Specifically, the mentioned
training dataset has 400 Gy images with sizes of 180 � 180. To
further verify denoising effect of our model on devices in the
real world, we choose real noisy images from the PolyU [44] to
conduct experiments, where they contain 80 natural images
with size of 2784 � 1856. To increase diversity of training
samples, we use the following two kinds to solve this problem
[45]. Firstly, we scale every training image via one of bicubic
interpolations from 1, 0.9, 0.8 and 0.7 to increase the number
of training samples. Secondly, we randomly choose one of eight
modes (i.e., no manipulation, rotating by 90° counter clock-
wise, rotating by 180° counter clockwise, rotating by 270°
counter clockwise, horizontal flip, rotating by 90° counter
clockwise together with horizontal flip, rotating by 180°
counter clockwise together with horizontal flip, and rotating by
270° counter clockwise together with horizontal flip) to deal
with noisy training images for increasing diversities of noisy
images.

TABLE 2 Comparisons of deformable convolution and common
convolution

Metrics RDDCNN

RDDCNN
repacling
deformable
convolution
with common
convolution

Denoising result (PSNR/dB) on
BSD68 for noise level of 25

29.270 29.262

Parameters 556,302 556,096

Running time on a grayscale image of
256 � 256

0.0119 s 0.0079 s

TABLE 1 Denoising results of different methods on BSD68 for
noise level of 25

Methods
PSNR
(dB)

RDDCNN without dilated convolution, deformable
convolution and BN

29.219

RDDCNN without dilated convolution and Conv + BN + ReL
U in DB

28.952

RDDCNN without convolution and deformable convolution 29.258

RDDCNN without dilated convolution and three Conv + BN +
ReLU in EB

29.226

RDDCNN without dilated convolution 29.263

RDDCNN 29.270

TABLE 3 Peak Signal to Noise Ratio
(PSNR) (dB) results of several networks on
BSD68 for noise level of 15, 25, and 50

Methods BM3D [8] WNNM [14] EPLL [52] TNRD [51] CSF [54] MLP [53]

σ = 15 31.07 31.37 31.21 31.42 31.24 –

σ = 25 28.57 28.83 28.68 28.92 28.74 28.74

σ = 50 25.62 25.87 25.67 25.97 – 26.03

DnCNN [18] IRCNN [50] ECNDNet [31] FFDNet [21] ADNet [43] RDDCNN RDDCNN‐B

31.72 31.63 31.71 31.63 31.74 31.76 31.62

29.23 29.15 29.22 29.19 29.25 29.27 29.16

26.23 26.19 26.23 26.29 26.29 26.30 26.23

ZHANG ET AL. - 5
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Test datasets: we choose public BSD68 [46] and Set12 [47]
as test datasets to verify grey noisy image denoising perfor-
mance of our method. Also, CC [48] is used to evaluate the
denoising performance of the proposed RDDCNN on real
noisy image denoising.

4.2 | Implementation details

All the experiments are conducted on a GPU of Nvidia
TiTAN XP, a CPU of Intel Xeon Gold 6140, a RAM with 51G.
Also, CUDA is 10.1 and cuDNN is 7.0. All codes are

TABLE 4 Average Peak Signal to Noise Ratio (PSNR) (dB) results of different methods on Set12 with noise levels of 15, 25 and 50

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average

Noise level 15

BM3D [8] 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10 32.37

WNNM [14] 32.17 35.13 32.99 31.82 32.71 31.39 31.62 34.27 33.60 32.27 32.11 32.17 32.70

EPLL [52] 31.85 34.17 32.64 31.13 32.10 31.19 31.42 33.92 31.38 31.93 32.00 31.93 32.14

CSF [54] 31.95 34.39 32.85 31.55 32.33 31.33 31.37 34.06 31.92 32.01 32.08 31.98 32.32

TNRD [51] 32.19 34.53 33.04 31.75 32.56 31.46 31.63 34.24 32.13 32.14 32.23 32.11 32.50

DnCNN [18] 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 32.42 32.46 32.47 32.86

IRCNN [50] 32.55 34.89 33.31 32.02 32.82 31.70 31.84 34.53 32.43 32.34 32.40 32.40 32.77

FFDNet [21] 32.43 35.07 33.25 31.99 32.66 31.57 31.81 34.62 32.54 32.38 32.41 32.46 32.77

ECNDNet [31] 32.56 34.97 33.25 32.17 33.11 31.70 31.82 34.52 32.41 32.37 32.39 32.39 32.81

RDDCNN 32.61 35.01 33.31 32.13 33.13 31.67 31.93 34.57 32.62 32.42 32.38 32.46 32.85

RDDCNN‐B 32.20 34.88 33.14 32.05 32.87 31.57 31.73 34.44 32.22 32.28 32.28 32.34 32.67

Noise level 25

BM3D [8] 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.97

WNNM [14] 29.64 33.22 30.42 29.03 29.84 28.69 29.15 32.24 31.24 30.03 29.76 29.82 30.26

EPLL [52] 29.26 32.17 30.17 28.51 29.39 28.61 28.95 31.73 28.61 29.74 29.66 29.53 29.69

CSF [54] 29.48 32.39 30.32 28.80 29.62 28.72 28.90 31.79 29.03 29.76 29.71 29.53 29.84

TNRD [51] 29.72 32.53 30.57 29.02 29.85 28.88 29.18 32.00 29.41 29.91 29.87 29.71 30.06

DnCNN [18] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.43

IRCNN [50] 30.08 33.06 30.88 29.27 30.09 29.12 29.47 32.43 29.92 30.17 30.04 30.08 30.38

FFDNet [21] 30.10 33.28 30.93 29.32 30.08 29.04 29.44 32.57 30.01 30.25 30.11 30.20 30.44

ECNDNet [31] 30.11 33.08 30.85 29.43 30.30 29.07 29.38 32.38 29.84 30.14 30.03 30.03 30.39

RDDCNN 30.20 33.13 30.82 29.38 30.36 29.05 29.53 32.40 30.03 30.19 30.05 30.10 30.44

RDDCNN‐B 29.95 33.03 30.70 29.29 30.25 28.99 29.40 32.30 29.62 30.09 29.97 30.00 30.30

Noise level 50

BM3D [8] 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46 26.72

WNNM [14] 26.45 30.33 26.95 25.44 26.32 25.42 26.14 29.25 27.79 26.97 26.94 26.64 27.05

EPLL [52] 26.10 29.12 26.80 25.12 25.94 25.31 25.95 28.68 24.83 26.74 26.79 26.30 26.47

CSF [54] 26.37 29.64 26.68 25.43 26.26 25.56 26.12 29.32 25.24 27.03 27.06 26.67 26.78

TNRD [51] 26.62 29.48 27.10 25.42 26.31 25.59 26.16 28.93 25.70 26.94 26.98 26.50 26.81

DnCNN [18] 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.18

IRCNN [50] 26.88 29.96 27.33 25.57 26.61 25.89 26.55 29.40 26.24 27.17 27.17 26.88 27.14

FFDNet [21] 27.05 30.37 27.54 25.75 26.81 25.89 26.57 29.66 26.45 27.33 27.29 27.08 27.32

ECNDNet [31] 27.07 30.12 27.30 25.72 26.82 25.79 26.32 29.29 26.26 27.16 27.11 26.84 27.15

RDDCNN 27.16 30.21 27.38 25.72 26.84 25.88 26.53 29.32 26.36 27.23 27.22 26.88 27.23

RDDCNN‐B 27.07 30.07 27.27 25.62 26.78 25.81 26.45 29.19 26.20 27.16 27.16 26.78 27.13
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conducted by PyTorch of 1.1.0 and Python of 3.7.10. Besides,
initial learning rate is 1e‐3 and it reduces to 0.2 times each 30
epochs. Parameter epsilon and momentum are set to 1e‐4 and
0.95, respectively.

4.3 | Network analysis

The proposed RDDCNN is composed of DB, EB and RB.
Their rationality and validity are shown as follows.

DB: It is known that convolutional operations can extract
effective information to enhance performance in image ap-
plications. However, convolutional operations may change

original distributions of noise in given corrupted images, which
may increase training difficulty for image denoising. To address
this problem, we design a DB. DB uses a deformable
Conv + ReLU as the first layer to restore distribution of noise,
according to surrounding pixels. Also, ReLU is used to covert
linear features to non‐linearity. Its effectiveness is verified as
shown Table 1, where ‘RDDCNN without dilated convolution’
outperforms ‘RDDCNN without dilated convolution and
deformable convolution’ in Peak Signal to Noise Ratio (PSNR)
[49]. To prevent overcorrection of deformable convolution, we
use 11‐layer combination of a convolutional layer, BN and
ReLU in the DB to refine obtained features as shown in
Figure 1. Its effectiveness is verified in Table 1. That is,

F I GURE 2 Denoising results of different
methods on one image from BSD68 when noise
level 25. (a) Original image (b) Noisy image/
20.19 dB (c) BM3D [8]/36.59 dB (d) WNNM [14]/
37.22 dB (e) IRCNN [50]/38.17 dB (f) FFDNet
[21]/38.41 dB (g) DnCNN [18]/38.45 dB
(h) RDDCNN/38.64 dB

ZHANG ET AL. - 7
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‘RDDCNN without dilated convolution’ has higher
PSNR result than that of ‘RDDCNN without dilated convo-
lution and Conv + BN + ReLU in DB’. Besides, the last
Conv + BN + ReLU acts EB.

To further validate the superiority of the deformable
convolution over common convolution, we provide a
comprehensive comparison of the RDDCNN and RDDCNN
replacing deformable convolution with common convolution.
The deformable convolution with the flexible kernel can model
the pixel relations and thus extract more salient features, which
makes it effective for image denoising. This can be tested
through the comparison of ‘RDDCNN‘ and ‘RDDCNN
replacing deformable convolution with common convolution’

in PSNR in Table 2. Besides, the deformable convolution only
brings about sufferable parameter amount and computational
overhead. This can be seen in Table 2 through the comparisons
of parameter amount and running time between ‘RDDCNN’
and ‘RDDCNN replacing deformable convolution with com-
mon convolution’. Therefore, the deformable convolution is
useful in image denoising.

EB: It is known that deep architectures can extract more
accurate to enhance performance of image applications. Also,
contextual interaction can enhance the learning ability of deep
network. Inspired by these, a 5‐layer EB is designed. EB uses a
dilated convolution to obtain more contextual information for
enhancing SR performance. Its effectiveness is tested via

F I GURE 3 Denoising results of different
methods on one image from BSD68 when noise
level is 50. (a) Original image (b) Noisy image/
14.66 dB (c) BM3D [8]/29.87 dB (d) WNNM [14]/
30.07 dB (e) IRCNN [50]/30.33 dB (f) DnCNN
[18]/30.48 dB (g) FFDNet [21]/30.56 dB
(h) RDDCNN/30.67 dB

8 - ZHANG ET AL.
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‘RDDCNN’ and ‘RDDCNN without dilated convolution’ in
Table 1. To refine obtained features, three stacked convolu-
tional layers are used to further learn these obtained features
for image denoising. Specifically, the last convolutional layer is
used to convert obtained features into noisy mapping images.
Also, effectiveness of the front two Conv + BN + ReLU
is proved via ‘RDDCNN without dilated convolution’ and
‘RDDCNN without dilated convolution and three Conv + BN
+ ReLU in EB’ as illustrated in Table 1.

RB: To construct a latent clean image, we use a residual
operation to act output of EB and given noisy image to obtain
a clean image as shown in Figure 1 and Section 3.4.

4.4 | Comparisons with the state‐of‐the‐art
denoising methods

To test denoising performance of RDDCNN, we conduct
experiments on grey synthetic noisy images, real noisy im-
ages. Also, we use running time and complexity to test
denoising efficiency. To verify good performance of
RDDCNN for image denoising, we choose ten popular
denoising methods as comparative methods, where they are
BM3D [8] and weighted nuclear norm minimisation
(WNNM) [14], DnCNN [18], FFDNet [21], enhanced con-
volutional neural denoising network (ECNDNet) [31], image
restoration CNN (IRCNN) [50], one trainable nonlinear
reaction diffusion (TNRD) [51], one generative algorithm
expected patch log likelihood (EPLL) [52], multi‐layer per-
ceptron (MLP) [53] and cascade of shrinkage fields (CSF)
[54]. In the synthetic noisy image and image blind denoising
experiments as shown in Table 3 and Table 4, we test these

methods for three noise levels (i.e., 15, 25, and 50). In terms
of testing denoising efficiency, we choose an image with
three sizes (256 � 256, 512� 512 and 1024 � 1024) to

F I GURE 4 Denoising results of different methods on one image from Set12 when noise level is 15. (a) Original image (b) Noisy image/24.60 dB (c) BM3D
[8]/31.37 dB (d) WNNM [14]/31.62 dB (e) FFDNet [21]/31.81 dB (f) DnCNN [18]/31.83 dB (g) IRCNN [50]/31.84 dB (h) RDDCNN/31.93 dB

TABLE 5 Complexity of different denoising methods

Methods Parameters (G) Flops (GFLOPs)

DnCNN [18] 0.56 0.891

ADNet [43] 0.52 0.832

DUBD [55] 2.09 –

RED30 [56] 4.13 10.33

ATDNet [57] 9.45 –

RDDCNN 0.56 0.891

TABLE 6 Running time (s) of different methods for 256 � 256,
512 � 512, and 1024 � 1024

Methods Device 256 £ 256 512 £ 512 1024 £ 1024

CSF [54] CPU – 0.92 1.72

TNRD [51] CPU 0.45 1.33 4.61

BM3D [8] CPU 0.59 2.52 10.77

WNNM [14] CPU 203.1 773.2 2536.4

DnCNN [18] GPU 0.0344 0.0681 0.1556

ADNet [43] GPU 0.0467 0.0798 0.2077

CTCNN [58] GPU 0.068 0.103 0.364

MemNet [59] GPU 0.8775 3.606 14.69

RED30 [56] GPU 1.362 4.702 15.77

RDDCNN GPU 0.0119 0.0437 0.182

ZHANG ET AL. - 9
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conduct experiments. Besides, we use complexity to test the
efficiency of the proposed method in image denoising. The
detailed analysis of mentioned illustrations as follows.

To test visual effect of the proposed method, we use
BM3D, WNNM, IRCNN, FFDNet and DnCNN as compar-
ative methods on BSD68 and Set12 to conduct experiments.
Specifically, we choose an area of predicted images to amplified
it as observation areas, where an observation area is clearer, its
corresponding method has better denoising performance. As
shown in Figure 2 and Figure 3, our method is clearer than
DnCNN on BSD68 for noise level of 25 and 50, which shows
that our method has better denoising result for noise of me-
dium and high levels. As shown in Figure 4, our method is
clearer than other method on Set12 for noise level of 15, which
illustrates our method is more effective than other method for
noise of low‐level. According to mentioned illustrations, our
method is very effective for noise of high, medium and low‐
level.

We use running time and complexity to verify its efficiency
as shown in Tables 5 and 6. The following 11 methods are
selected for comparison: DnCNN, ADNet, Deep universal
blind denoisor (DUBD) [55], Residual encoder decoder
network (RED30) [1, 56], Adaptively tuned denoising network
(ATDNet) [57], CSF, TNRD, BM3D, WNNM, Countourlet
transform based CNN (CTCNN) [58], Memory network
(Memnet) [59], Due to the different computational perfor-
mances on different GPU devices, the running time can be
significantly different. Therefore, in the spirit of equality, we
directly pick the experiment results from their original paper.
Our denoising method is competitive with other denoising
methods. That shows the effectiveness of the proposed
method in denoising efficiency.

We extend our denoising method on real noisy images (i.e.,
CC) to test its performance. In Table 7, we can see that our
method is competitive with targeted image denoising (TID)
[60] and generalised anscombe transformation BM3D (GAT‐
BM3D) [61], which shows its performance in real noisy image
denoising.

According to mentioned illustrations, it is known that our
method is effective for image denoising.

5 | CONCLUSION

We propose a robust deformed denoising CNN as well as
RDDCNN to enhance the pixels, according to relations of
surrounding pixels. RDDCNN is implemented by collabo-
rations of a deformable block, an enhanced block and a
residual block. Deformable block uses a deformable learnable
kernel and stacked convolutions to obtain more representa-
tive noise features. Enhanced block uses a dilated convolu-
tion and a novel combination of convolutional layers, BN
and ReLU to better facilitate contextual interaction, which
can accelerate the convergence speed of training a denoiser.
Also, residual block utilises a residual operation to construct
a clean image. These components make RDDCNN robust in
image denoising.
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