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Models with an extended scalar electroweak sector can have vanishing vacuum expectation values
in a basis where an underlying symmetry is imposed. Such extensions are very well motivated.
If a symmetry prevents couplings between fermions and additional scalars, such scalars could
become viable dark matter candidates if some additional criteria are satisfied. We catalogue
𝑆3-symmetric three-Higgs-doublet models, also allowing for softly broken 𝑆3-symmetric scalar
potential terms, based on whether a specific model could possibly accommodate a dark matter
candidate. The variety of the 𝑆3-symmetric family models arises due to different possibilities
to arrange vacuum expectation values. Such models can have vacua with one or two vanishing
vacuum expectation values. In our study we assume that the dark matter candidate is stabilised
by the Z2 symmetry. The Z2 symmetry is a remnant of 𝑆3 symmetry which survived spontaneous
symmetry breaking, and not superimposed over 𝑆3. We explore two models; with an without CP
violation. These models have a single dark and two active scalar sectors. The active sectors behave
in many aspects like a Type-I two-Higgs-doublet model. The dark matter candidate masses, in
two cases, are different from the known (previously studied) models with three scalar doublets.
After investigating the models in detail, identifying parameters compatible with both theoretical
and experimental constraints, we found that the dark matter candidate mass could be within the
range of [52.5, 89] GeV or [6.5, 44.5] GeV for a model with CP violation.
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1. Introduction

Cosmological observations expose our limited knowledge of the Universe, namely that the
standard cosmological model proposes that around 85% of the matter of the Universe is made up of
hypothetical Dark Matter (DM), of which we have little to no knowledge. There are many models
attempting to account for the DM of the Universe. This paper summarises two studies [1, 2] based
on the assumption that the scalar electroweak sector of the Standard Model (SM) could be enlarged
by two SU(2) Higgs doublets and constrained by an 𝑆3 symmetry [3], while accounting for DM. In
the defining representation, 𝑆3 is the symmetry under permutations of three objects.

One of the simplest extensions of the SM which addresses the issue of DM is the Inert Doublet
Model (IDM) [4] . In the IDM, the lightest neutral member of a Z2-odd doublet could become a
DM candidate. Models with three Higgs doublets (3HDM) have also been proposed and studied:

1. Models with two non-inert doublets along with one inert doublet [5, 6];

2. Models with one non-inert doublet along with two inert doublets [7, 8].

This contribution is based on two models with an underlying 𝑆3 symmetry, classified in [9].
The models are denoted by R-II-1a [1] and C-III-a [2]. The C-III-a model allows for spontaneous
CP violation. The DM candidate mass ranges of several models are presented in figure 1.
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Figure 1: Sketch of allowed DM mass ranges
up to 1 TeV in various models. Blue: IDM
according to Refs. [10] , the pale region indi-
cates a non-saturated relic density. Red: IDM2
[6]. Ochre: 3HDM without [7] and with CP vi-
olation [8] Green: 𝑆3-symmetric 3HDM with-
out CP violation (R-II-1a) [1] and with CP vi-
olation (C-III-a) [2].

2. The 𝑺3-symmetric models

In terms of the 𝑆3 singlet (ℎ𝑆) and doublet (ℎ1, ℎ2) fields, the 𝑆3-symmetric scalar potential
in the irreducible representation can be written as [11]:
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We have chosen to work with real coefficients. However, there remains the possibility of breaking
CP spontaneously. The scalar 𝑆3-symmetric potential has an additional Z2 symmetry under which
ℎ1 ↔ −ℎ1. In the irreducible representation, the 𝑆3 fields can be decomposed as
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(
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where the 𝑤𝑖 and 𝑤𝑆 are vacuum expectation values (vev) that can be complex [9].

3. Scalar dark matter candidates

In Ref. [1] we identified all possible 𝑆3-symmetric 3HDMs which could accommodate a DM
candidate. Some models have minimisation conditions requiring _4 = 0, giving rise to an additional
O(2) symmetry [9]. Apart from this, additional continuous symmetries [12] could arise, which can
be spontaneously broken. These models are associated with Goldstone bosons and would require
soft breaking of the 𝑆3 symmetry in the potential to eliminate massless states.

There are two approaches when constructing the Yukawa Lagrangian, depending on how the
fermions transform under the 𝑆3 symmetry. If they transform trivially, they can only couple to ℎ𝑆

and there are no constraints on the couplings. Realistic masses and mixing can be generated. This
is no longer possible when a DM candidate resides in the 𝑆3 singlet and therefore 𝑤𝑆 = 0. Another
possibility is when fermions transform non-trivially under 𝑆3. In this case fermions are grouped
into 𝑆3 doublets and singlets, and it may not be possible to obtain realistic masses and mixing.

Most 𝑆3-symmetric models with a vanishing vev, which is required to stabilise DM, yield
massless scalars or an unrealistic fermionic sector. Despite the variety of models presented in
Ref. [1] (eleven in total), barring soft symmetry breaking, only three models survive the requirements
of having a good DM candidate: no additional massless scalars present and realistic fermion masses
and mixing. In these three models the fermions transform trivially under 𝑆3.

We explored two models: R-II-1a [1] and C-III-a [2] with vevs (0, 𝑤2, 𝑤𝑆) and (0, �̂�2𝑒
𝑖𝜎 , �̂�𝑆),

respectively. Both models share a common vacuum pattern, apart from the 𝜎 phase in the C-III-a
model. However, as discussed in Ref. [2], these models do not coincide in the limit of a vanishing
phase for C-III-a. The R-II-1a and C-III-a correspond to different regions of the parameter space of
the 𝑆3-symmetric 3HDM potential, which yields different acceptable DM candidate mass ranges.
The full particle content, including interactions, is presented in Refs. [1, 2].

4. Models analysis

The two models are described in terms of eight input parameters. In R-II-1a two angles and six
masses are used. In C-III-a, due to CP violation, we trade three masses for three angles to simplify
computation; five angles and three masses are used as input. We scan over these parameters in
order to identify regions that are compatible with a possible DM candidate. Several constraints are
imposed, with each subsequent constraint being superimposed over the previous ones:

• Cut 1: perturbativity, stability, unitarity checks, a selection of relevant LEP constraints;

• Cut 2: SM-like gauge and Yukawa sector, 𝑆 and 𝑇 variables, 𝐵 → 𝑋 (𝑠)𝛾 decays;

• Cut 3: SM-like Higgs particle decays, DM relic density, direct searches;

The applied numerical bounds are taken from PDG [13]. We impose 3-𝜎 tolerance along with
an additional ten per cent computational uncertainty in relevant checks. Only Cut 3 checks rely on
public codes. We used micrOMEGAs 5.2.7 [14] to evaluate these constraints.
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5. Discussion

In the R-II-1a model due to no mixing between the inert neutral states there are potentially two
possible DM candidates. However, only one of these states is a possible DM candidate, namely 𝜒1,
see eq. (2). The state [1 with 𝑚2

[1
∼ _4𝑣

2 does not satisfy Cut 3. In contrast to R-II-1a, there is a
single DM candidate in C-III-a due to mixing of the inert neutral fields. Moreover, there is mixing
among all neutral active scalars in C-III-a, and hence the SM-like Higgs boson is CP indefinite.

In figure 2 we present mass scatter plots after applying the previously discussed constraints. We
allowed for scalars to be as heavy as 1 TeV. However, after applying Cut 1 an upper bound of around
600-800 GeV develops. The allowed regions shrink after applying Cut 2 and Cut 3. Both models
favour light states of 200-400 GeV as indicated by the surviving grey regions. Such light states
are not completely ruled out by the LHC searches due to the suppressed couplings and imposed
constraints on the SM-like Higgs boson. While the active scalars of R-II-1a can in principle decay
into other active scalars, if kinematically allowed, in C-III-a the dominant decay channel for all of
the active scalars, except the SM-like Higgs, is into states with at least one DM candidate with the
second scalar also coming from the inert doublet. Such processes would be accompanied by large
missing transverse momentum in the detector.

Figure 2: Scatter plots of masses that satisfy different sets of successive Cuts. Left column: the charged
sector. Middle column: the active heavy neutral sector. Right column: the inert neutral sector. The blue
region satisfies Cut 1. The yellow region accommodates a 3-𝜎 tolerance with respect to Cut 2, whereas the
green region accommodates the 2-𝜎 bound. The grey region is compatible with Cut 1, Cut 2 and Cut 3.

After applying all three cuts over the parameter space we found that the viable DM mass
regions differ drastically from the multi-doublet DM models proposed earlier, see figure 1. There
is no high mass DM region in our models. In those the portal couplings grow fast with the DM
candidate mass. High portal couplings would lead to a DM candidate annihilating too fast in the
Early Universe. Heavy DM candidates in IDM-like models require the tuning of portal couplings
as well as near mass degeneracy between the inert scalars. In the C-III-a model near degeneracy is
impossible and we obtain a mass gap of around 70 GeV for the parameter region of interest for DM.
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Another interesting property, particular to C-III-a, is that there are only DM candidates with
masses 𝑚DM < 50 GeV, a region that is ruled out for the other models, whereas masses above this
limit are excluded due to the strength of the portal couplings. Furthermore, in the C-III-a model the
direct DM detection criteria are satisfied for light DM states, presented in figure 3. There are points
for both models with spin-independent DM-nucleon cross section several orders of magnitudes
lower than what would be probed by future DM experiments.

Figure 3: The spin-independent
DM-nucleon cross section compat-
ible with XENON1T [15] data at
90% C.L. The points represent cases
that satisfy Cut 3. The red line cor-
responds to an approximate neutrino
floor.

Deciphering the nature of DM remains one of the most important challenges in both particle
physics and cosmology. After applying a selected set of constraints we determined possible DM
mass ranges. Those are [52.5, 89] GeV for R-II-1a and [6.5, 44.5] GeV for C-III-a. These models
look very promising, showing that the 𝑆3-symmetric 3HDM has a very rich structure.
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