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Abstract
We solve the closed range problem for Volterra-type integral operator on Fock spaces.
Several applications of the result related to the operators invertibility, Fredholm, and
dynamical sampling structures from frame perspectives are provided.We further prove
a boundedVolterra-type integral operator preserves no frame property.On the contrary,
the adjoint operator preserves frame if and only if it is noncompact but fails to preserve
both tight frames and Riesz basis.
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1 Introduction

For holomorphic functions f and g in a given domain, we define the Volterra-type
integral operator Vg by

Vg f (z) =
∫ z

0
f (w)g′(w)dw.

Various aspects of Vg have been widely studied since 1997 mainly on spaces of holo-
morphic functions: see for example on Hardy spaces [4, 5, 15], Bergman spaces [6, 8,
14], and Fock spaces [7, 11, 12] and the respective reference therein. The purpose of
this note is to take the study further and solve the closed range problem for Vg on the
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Fock spaces.We further provide several application of the result concerning invertibil-
ity and dynamical sampling structures of the operator from frame perspectives. Note
that the closed range problem is one of the basic problems in operator theory which
finds lots of connections in various parts of mathematics.

For 1 ≤ p < ∞, the Fock spaces Fp consist of all entire functions f on the
complex plane C for which

‖ f ‖p
p = p

2π

∫
C

| f (z)|e− p
2 |z|2d A(z) < ∞,

where A denotes the Lebesgue area measure on C. The bounded and compact Vg
on Fock spaces had been identified in [7, 11]. In deed, for p ≤ q, the operator
Vg : Fp → Fq is bounded if and only if g(z) = az2 + bz + c for some a, b, c ∈ C.
In this case, compactness is described by the condition a = 0. On the other hand, for
p > q, Vg : Fp → Fq is bounded if and only if it is compact, and this holds if and
only if g(z) = az + b and q > 2p/(p + 2).

The rest of this note is organized into two parts. In the first part we study the closed
range problem for Vg on the Fock spaces. Theorem 1.1 provides a complete answer
to this problem. We apply this result and identify conditions under which the operator
becomes Fredholm and draw the conclusion that it fails to be surjective and hence not
invertible. In the second part, we further apply the result to study more applications
related to the dynamical sampling behaviours of the operator from frame perspectives.
It is proved that there exists no function f in F2 for which its orbits under Vg or its
adjoint represents a frame family for the space. In addition, we show that the operator
fails to preserves frames structures. On the contrary, the adjoint operator preserves
frame if and only if it is noncompact but fails to preserve both tight frames and Riesz
basis.

Note that if g is a constant, then the operator Vg reduces to the zero operator, and
we excluded this case in the rest of the manuscript. We may now state the first main
result.

Theorem 1.1 Let 1 ≤ p, q < ∞ and Vg : Fp → Fq be bounded and hence g(z) =
az2 + bz + c for some a, b, c ∈ C. Then Vg has a closed range if and only if a �= 0
and p = q. The closed range is given by

R(Vg) = {
f ∈ Fp : f (0) = 0

}
. (1.1)

Aswill be explained latter, the result equivalently characterizes when Vg is bounded
from below. That is, there exists a constant ε > 0 such that ‖Vg f ‖q ≥ ε‖ f ‖p for
all f ∈ Fp. In contrast to conditions often given in terms of sampling sets or reverse
Carelson measures, our condition here is quite simple to apply.

As first immediate consequence of the result, we observe that the classical integral
operator I f (z) = ∫ z

0 f (w)dw and Hardy operator H f (z) = 1
z

∫ z
0 f (w)dw have no

closed ranges on Fock spaces. As another consequence of Theorem 1.1, we record the
next corollary about Fredholm Volterra-type integral operators. Recall that a bounded
operator T in a Banach space is said to be Fredholm if its range R(T ) is closed and
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both Ker T and Ker T ∗ are finite dimensional. If T is Fredholm, its index is the number
given by dim(KerT ) − dim(KerT ∗). It is known that every bounded operator with
closed range has an inverse called the pseudo-inverse, or the Moore-Penrose inverse.
Since Ker V ∗

g is the orthogonal complement of the range of Vg , (1.2) implies that
Ker V ∗

g = C.

Corollary 1.2 Let 1 ≤ p < ∞ and Vg is bounded onFp and hence g(z) = az2+bz+c
for some a, b, c ∈ C. Then the following statements are equivalent.

(i) a �= 0;
(ii) Vg is Fredholm of index one and its Fredholm inverse is given by

V−1
g f (z) =

⎧⎨
⎩

lim
w→ −b

2a

f ′(w)
2aw+b z = −b/2a

f ′(z)
2az+b , z �= −b/2a.

(1.2)

Note that the differential operator Df = f ′ is not bounded on Fock spaces [10].
Thus, thewell definedness and the boundedness of V−1

g onFp comes from the require-
ment a �= 0 and the estimate in (1.3) below.

We remark that applying integration by part in the definition of the operator Vg
above gives the relation

Mg( f ) = f (0)g(0) + Vg( f ) + J f (g),

where Mg( f ) = g f is the multiplication operator and Jg f = V f (g) is the Volterra
companion integral operator. It is known that Jg : Fp → Fq is bounded if and only
if Mg is bounded, and this holds only when g is a constant where the constant being
zero for p > q. Thus, these operators have obviously closed ranges on Fp and will
not be a point of further discussion in the rest of our consideration.

We give a word on notation. The notion U (z) � V (z) (or equivalently V (z) �
U (z)) means that there is a constant C such that U (z) ≤ CV (z) holds for all z in the
set of a question. We write U (z) � V (z) if both U (z) � V (z) and V (z) � U (z).

1.1 Proof of Theorem 1.1

Assuming that g is not a constant, we first show Vg is an injectivemap. Let f1 and f2 in
Fp such that Vg f1 = Vg f2. Taking derivative on both sides we notice f1(z) = f2(z)
for all z ∈ C except possibly at points where g′ vanishes. But since f1 and f2 are
entire, it follows that f1 = f2. Consequently, as known from an application of Open
Mapping Theorem, an injective bounded operator has closed range if and only if it is
bounded from below (see for example [1, Theorem 2.5]). Thus, we proceed to use this
equivalent reformulation as a tool to prove the claim. Another important tool in our
work is the estimate

‖ f ‖p
p � | f (0)|p +

∫
C

| f ′(z)|p(1 + |z|)−pe− pα
2 |z|2d A(z) (1.3)
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which holds for all entire functions f [7]. Suppose now that a �= 0 and p = q. Then
for every f ∈ Fp,

‖Vg f ‖p
p �

∫
C

|g′(z)|p
(1 + |z|)p | f (z))|pe− p

2 |z|2d A(z) �
∫
C

| f (z)|pe− p
2 |z|2d A(z) � ‖ f ‖p

p,

which readily shows Vg is bounded from below. Hence, the conditions in the theorem
are sufficient.

Conversely, suppose for the sake of contradiction Vg is bounded from below and
a = 0. Applying the operator to the normalized kernel function kn = Kn/‖Kn‖2 and
estimate (1.3)

‖Vgkn‖qq � 1

‖Kn‖q2

∫
C

|g′(z)|q
(1 + |z|)q |Kn(z))|qe− q

2 |z|2d A(z)

= n−q |b|q
‖Kn‖q2

∫
C

|nKn(z))|q
(1 + |z|)q e− q

2 |z|2d A(z) � |b|q‖Kn‖qq
nq‖Kn‖q2

= |b|q
nq

→ 0

as n → ∞. This contradicts boundedness from below. Therefore, a �= 0.
Next, we assume a �= 0 and show that p = q whenever range of Vg is closed. If

p > q, then as already indicated above, boundedness of the operator is achieved only
when a = 0. Thus, it remains to check for p < q. Since a �= 0, note that for every
f ∈ Fq boundedness from below implies

‖Vg f ‖qq �
∫
C

|g′(z)|q
(1 + |z|)q f (z))|qe− q

2 |z|2d A(z) � ‖ f ‖qq ≥ ε‖ f ‖qp (1.4)

for some ε > 0. The last inequality in (1.4) clearly indicates we need to compare the
norm of functions in Fp and Fq . We may consider the sequence fn(z) = zn, n =
1, 2, ... in Fp. Using polar integration and Stirling’s approximation formula

‖ fn‖p
p = p

∫ ∞

0
rnp+1e−pr2/2dr =

( 1

p

)np/2
�

(np + 2

2

)
�

(n
e

) np
2 √

n. (1.5)

See also [16, p.40]. It follows from this and (1.4), the estimate

‖Vg fn‖q � ‖ fn‖q ≥ ε‖ fn‖p

holds only

‖ fn‖q/‖ fn‖p � n
1
2q − 1

2p ≥ ε

for all n ∈ N. This gives a contradiction when n → ∞.
It remains to verify (1.1). From the proof made above, we already have p = q and

henceR(Vg) ⊆ Fp. On the other hand, for each h ∈ Fp, we consider the function fh
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defined by

fh(z) =
⎧⎨
⎩

lim
w→ −b

2a

h′(w)
2aw+b z = −b/2a

h′(z)
2az+b , z �= −b/2a.

Observe that fh is entire and by (1.3), it belongs to Fp and Vg fh = h. Therefore, the
other inclusion Fp ⊆ R(Vg) holds and completes the proof.

2 Dynamical sampling with Vg and V∗
g

We now turn our attentions to some applications of Theorem 1.1 on dynamical sam-
pling from frame perspectives. Dynamical sampling deals with representations of
frames { fn}∞n=0 in the form {T n f }∞n=0 for some linear operator T defined on a given
Hilbert space H where

{T n f }∞n=0 = {
f , T f , T 2 f , T 3 f , ...

}

is the orbit of f ∈ H under the operator T . Recall that a family ( f j ), j ∈ I of vectors
in a Hilbert space H is a frame if there exist positive constants A and B such that for
any g ∈ H

A‖g‖2H ≤
∑
j∈I

|〈g, f j 〉H|2 ≤ B‖g‖2H. (2.1)

The constants A and B are called the lower and upper bounds of the frame respectively.
It is called a tight frame when A = B. Frames are generalizations of bases and their
main applications comes from the fact that a frame can be designed to be redundant
while still providing a reconstruction formula for each vector in the space. Thus,
identifying methods that generate new frames has been an interesting problem in
frame theory. A special type of frame is Riesz basis. A family ( f j ), j ∈ I of vectors
inH is a Riesz basis if it is complete and there exist constants 0 < A ≤ B < ∞ such
that for any c j ∈ �2(I )

A
∑
j∈I

|c j |2 ≤
∥∥∥∥

∑
j∈I

c j f j

∥∥∥∥
2

H
≤ B

∑
j∈I

|c j |2. (2.2)

We may start with the following important lemma which connects the closed range
problem with dynamical sampling in frame theory.

Lemma 2.1 Let H be a Hilbert space and T be a bounded linear operator on H. If
{T n f }∞n=0 is a frame for some f ∈ H, then

(i) T is surjective.
(ii) ‖(T ∗)ng‖H → 0 as n → ∞ for all g ∈ H.
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While the proof of part (ii) is available in [3], part (i) follows easily since {T n f }∞n=0
is a frame for each h ∈ H, there exists sequence (cn) such that

h =
∑
n=1

cnT
n f = T

(∑
n=1

cnT
n−1 f

)

from which the claim follows. Note here that the frame property implies R(T ) = H
is closed and this in particular connects us with our result in Theorem 1.1.

Theorem 2.2 Let Vg is bounded on F2 and hence g(z) = az2 + bz + c for some
a, b, c ∈ C. Then neither {V n

g f }∞n=0 nor {(V ∗
g )n f }∞n=0 is a frame for any choice of f

in F2.

Proof Suppose, for the sake of contradiction, that there exists an f ∈ F2 such that
{V n

g f }∞n=0 is a frame. Then by Lemma 2.1, Vg is surjective which contradicts Theo-
rem 1.1.

Next we consider the case with the adjoint operator. Suppose that there exists an
h ∈ F2 such that {(V ∗

g )nh}∞n=0 is a frame again. Then the range of V ∗
g is closed. By

Theorem 1.1 and Closed Range Theorem, this holds if and only if a �= 0. On the other
hand, set f (z) = z and consider the iterations

Vg f (z) =
∫ z

0
(2aw + b)wdw = 2a

3
z3 + b

2
z2,

V 2
g f (z) =

∫ z

0
(2aw + b)

(2a
3

w3 + b

2
w2

)
dw = 22a2

3 · 5 z
5 + 10ab

2 · 3 · 4 z
4 + b2

2 · 3 z
3,

V 3
g f (z) =

∫ z

0
(2aw + b)

(
22a2

3 · 5 w5 + 10ab

2 · 3 · 4w4 + b2

2 · 3w3
)
dw

= 23a3

3 · 5 · 7 z
7 + 132a2b

6! z6 + 18ab2

5! z5 + b3

4! z
4,

and

V 4
g f (z) =

∫ z

0
(2aw + b)

(
23a3

3 · 5 · 7w7 + 132a2b

6! w6 + 18ab2

5! w5 + b3

4! w
4
)
dw

= 24a4

3 · 5 · 7 · 9 z
9 + a3(384 + 1148b)

8! z8 + 324a2b2

7! z7 + 28ab3

6! z6 + b4

5! z
5.

Continuing the iteration,

V n
g f (z) =

∫ z

0
(2aw + b)V n−1

g f (w)dw = c2n+1a
nz2n+1 + c2na

n−1z2n

+ · · · + cn+2ab
n−1zn+2 + cn+1b

nzn+1,
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where the sequence ck is of the form pk/qk , qk ≤ k! and pk is a sequence of numbers
some of them involve multiples of b with p2n+1 = 2n and pn+1 = bn . Now,

‖V n
g f ‖2 = ‖c2n+1a

nz2n+1 + c2na
n−1z2n + · · · + cn+2az

n+2 + cn+1z
n+1‖2

≥ 1

(2n + 1)!
∣∣∣|2nan |‖2z2n+1‖2 − |p2nan−1|‖z2n‖2

− · · · − |pn+2a|‖zn+2‖2 − |pn+1|‖zn+1‖2
∣∣∣

= ‖z2n+1‖2
(2n + 1)!

∣∣∣∣|2nan | − |p2nan−1|‖z2n‖2
‖z2n+1‖2 − · · · − |pn+2a|‖zn+2‖2

‖z2n+1‖2 − |bn |‖zn+1‖2
‖z2n+1‖2

∣∣∣∣.

(2.3)

On the other hand, by (1.5)

‖zn‖2 �
(n
e

)n√
n

which obviously grows much faster than exponential and factorial sequences. Setting
this in (2.3), we observe that

‖V n
g f ‖2 → 0, n → ∞

as required by part (ii) of Lemma 2.1 only when a = b = 0 which is a contradiction,
and the claim is proved. ��

2.1 Frame preserving Vg and V∗
g

Another interesting operator related question on frame property is as to when Vg
preserves frame;in the sense that Vg fn is a frame whenever fn is. This is known to be
one of the approaches used to construct new frames using tools in operator theory.

A useful result connecting the closed range and the frame preserving problems is
the following [2, 9, 13].

Lemma 2.3 Let T be a bounded linear operator on a Hilbert space H. Then T pre-
serves

(i) frames on H if and only if T ∗ is bounded below on H, and the latter happens if
and only if T is surjective on H.

(ii) tight frames if and only if there exists a positive constant λ such that ‖T ∗ f ‖H =
λ‖ f ‖H for all f ∈ H.

We may now state our main result for the section.

Theorem 2.4 Let Vg be bounded on F2 and hence g(z) = az2 + bz + c for some
a, b, c ∈ C. Then

(i) Vg fails to preserve frame in F2.
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(ii) V ∗
g preserves frame in F2 if and only if a �= 0.

(iii) V ∗
g preserves neither tight frame nor Riesz basis in F2.

Said differently, the result asserts that the adjoint of a boundedVolterra-type integral
operator preserves frame structure onF2 if and only if it has no compactness property.

Proof Suppose Vg preserves frame on F2. Then an application of Lemma 2.3 and
Theorem 1.1 leads to a contradiction. Statement (ii) follows again from a simple
application of Lemma 2.3, Theorem 1.1, and the Closed Range Theorem. Thus we
proceed to verify (iii) and suppose V ∗

g preserves tight frame. By Theorem 2.4, it
follows that a �= 0. On the other hand, by Lemma 2.3, there exists a λ > 0 such that
‖Vg f ‖2 = λ‖ f ‖2 all f ∈ F2. Using the function K0, we obtain

λ = ‖VgK0‖2
‖K0‖2 = ‖az2 + bz‖2.

Furthermore, considering the sequence of the monomials

Vgz
n = 2a

n + 2
zn+2 + b

n + 1
zn+1

for all n ∈ N. Consequently,

‖az2 + bz‖2 = λ = ‖Vgzn‖2
‖zn‖2 = ‖ 2a

n+2 z
n+2 + b

n+1 z
n+1‖2

‖zn‖2 (2.4)

Using orthogonality of the monomials, we simplify further to deduce that (2.4) holds
if and only if

(n2 + 4n)|a|2
(n + 2)2

(
‖z2‖22‖zn‖22 − ‖zn+2‖22

)

+ (n2 + 2n)|b|2
(n + 1)2

(
‖z‖22‖zn‖22 − ‖zn+1‖22

)
= 0.

Applying the norm of the monomials in (1.5), the above holds if and only if a = b = 0
and hence a contradiction.

Next,we show thatV ∗
g does not preservesRiesz basis either. Suppose on the contrary

it does. Recall that a ( f j ), j ∈ I is a Riesz bases if and only it is a frame and ω−
independent. That is if

∑
j∈I

c j f j = 0

for some sequence of scalars (c j ), then c j = 0 for all j ∈ I . In view of this, suppose
( f j ), j ∈ I is a Riesz basis and

∑
j∈I

c j V
∗
g f j = 0.
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for some scalars c j . Using linearity, for each h ∈ F2

〈 ∑
j∈I

c j V
∗
g f j , h

〉
=

〈 ∑
j∈I

V ∗
g (c j f j ), h

〉
=

〈 ∑
j∈I

c j f j , Vgh
〉
= 0.

This shows
∑

j∈I c j f j belongs to the orthogonal complement of the range of Vg . Then
by (1.1),

∑
j∈I c j f j ∈ C = KerV ∗

g . On the other hand, f j is a Riesz basis. Hence,∑
j∈I c j f j is not necessarily zero.
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