) Hegskulen
paVestlandet

Bachelor thesis:

FPGA solution for communication
between IPbus and a power control
unit using a custom USART

Martin Eggen
Jakob Hauser

28/05/2022

Rev: 1.10 Page | 1 28/05/2022

Document control

Document control

Thesis title: Date/Version

FPGA solution for communication between IPbus and a power | 28. May. 2022 / 1.10

control unit using a custom USART Report number:
BO22EB-08

Authors: Study:

Martin Eggen 19HEEL

martineggen99@gmail.com The number of pages

including attachments: 53
Jakob Hauser
jakob.hauser72@gmail.com

HVL’s supervisor/quide: Grading:
Svein Haustveit Open
svein.haustveit@hvl.no

Other notes:
We accept that the report may be published

Client: Clients reference:
Department of Physics and Technology - University of Bergen BO22EB-08

The client’s contact person (including contact information):

Johan Alme

+47 555828 71
johan.alme@uib.no

Revision | Date Status Performed by

0.10 26. Apr. 2022 | First draft. Martin Eggen & Jakob Hauser
0.20 3. May 2022 Second draft. Martin Eggen & Jakob Hauser
0.21 6. May 2022 Restructure. Martin Eggen & Jakob Hauser
0.30 19. May 2022 | Third draft. Martin Eggen & Jakob Hauser
1.00 26. May 2022 | Release draft. Martin Eggen & Jakob Hauser
1.10 27. May 2022 | Release version. Martin Eggen & Jakob Hauser

Rev: 1.10 Page | 2 28/05/2022

mailto:martineggen99@gmail.com
mailto:jakob.hauser72@gmail.com
mailto:svein.haustveit@hvl.no
mailto:johan.alme@uib.no

Acknowledgements

Acknowledgements

First and foremost, we would like to thank our supervisor, Professor Johan Alme, for being a
great supervisor. Helping us throughout our whole project of writing this bachelor. From the
very start, he was very helpful and encouraging giving us a good start to the project. He could
help us with every part of the process as well. No matter if it was giving technical advice,
teaching about GitHub and Linux, or helping us write the thesis.

We also want to thank our project neighbours Birger Olsen and Havard Birkenes for being very
active in the project, and always prepared to do joint testing or problem-solving. As well as
being very helpful and willing to help, when asked about parts of the project.

A big thanks also has to go to our long-time lecturer and supervisor, Assistant Professor Svein
Haustveit, for giving us the necessary knowledge to fulfil our task at hand. Teaching us to look
at VHDL code as physical circuits rather than just code. Giving us a more in-depth
understanding of how our written code would translate to circuitry.

Rev: 1.10 Page | 3 28/05/2022

Abstract

Abstract

The proton Computed Tomography (pCT) project in Bergen is a project aiming on designing a
CT-scanner prototype using protons instead of photons. The current solution is using multiple
layers of Monolithic Active Pixel chips (MAPS), called ALPIDE, to create a three-dimensional
image scan. The ALPIDEs were developed at CERN for the inner Tracking System in a large ion
collider experiment (ALICE).

A stable and reliable power supply chain is needed during operation. For that, a power supply
is used for each layer, distributing even power to all layers. Custom PCBs housing
microcontrollers are installed between the power supplies and the sensor layers. The PCBs are
named Power Control Units (PCU). They are responsible for enabling the power to the layers
and cutting the power if monitored currents, voltages or temperatures exceed programmable
thresholds. An Ethernet connection is set up between the FPGA board and the control room
computers, using a special protocol called IPbus developed at CERN. The PCUs use a custom
Universal Synchronous/Asynchronous Receiver/Transmitter (USART) protocol for
communication with the FPGA board. This thesis is a detailed VHDL solution for the FPGA that
is responsible for this communication. The design consists of multiple different components
that are to function on their own as well as in combination. For each component, a testbench
is made, and documentation is presented. In the tests, the UVVM library [1] has been used to
provide a structured methodology. The work is also available in a git repository [2].

The thesis contains a complete, and functioning solution for communication between IPbus
and multiple USART slaves. In addition, two additional modules are planned for the design: (1)
a version module including a version number and the git hash from the repository, and (2) a
local housekeeping unit monitoring board-specific parameters such as current consumptions,
voltage levels and temperatures. These modules were not realized due to time constraints.

The design has been simulated and verified using structural verification methodology.
Hardware tests using an IPbus connection and preliminary versions of the PCU have also been
conducted. These tests prove the design is operating as specified by the requirements.

Rev: 1.10 Page | 4 28/05/2022

https://git.app.uib.no/pct/powermonitor

Acronyms

Acronyms
ALICE - A Large lon Collider Experiment
BUS - Electrical conductors that carry digital signals between components
DUT - Device Under Testing
FPGA - Field-programmable gate array
GUI - Graphical User Interface
HW - Hardware
12C - Inter-Integrated Circuit
IPbus - Control link by CERN
LED - Light-Emitting Diode
LSB - Least Significant Bit
LVDS - Low-voltage differential signalling
MCU - Microcontroller
MICU - Martin & Jakob’s Communication Unit
MSB - Most Significant Bit
MUX - Multiplexer (digital logic)
PCB - Printed Circuit Board
pCT - Proton Computed Tomography
PCU - Power Control Unit
PSU - Power Supply Unit
SOBP - Spread-Out Bragg Peak
SW - Software
uUiB - Universitetet i Bergen
USART - Universal Synchronous/Asynchronous Receiver/Transmitter
UvvM - Universal VHDL Verification Methodology
VHDL - The Very High-Speed Integrated Circuit Hardware Description Language

Rev: 1.10 Page | 5 28/05/2022

Table of Contents

DOCUMENT CONTION .ttt st sttt b e bt e s b e sae e sab e et e e st e e sheesaeesanesabe e beenbeens 2
Yol g LoV 1= Pl <Y o Y=Y o USSRt 3
FY o1 - [ot AT T PSP PP PPTOPPT 4
FAXe 0101V 0 1 LTS 5
I o ST = { 0 LRSS 8
I oo B N1 [T~ 4 ST 9
LISt OF TADIES ...ttt st sttt et b s b sae e s b e b ns 9
OULTINE ettt e b e b e s a e e s a e st e bt e bt e e bt e she e sa e e e a b e et e e ebeesheesabeeabe e be e beenns 10
1 INErOAUCTION ettt ettt ettt e sttt e st e s bt e s bb e e s bt e e be e e s abeesabeeesabeesabaesasaeesbeeean 11
1.1 [T [ol LT I =T =T Y PP 11
1.1.1 Medical Imaging Methods.......cuuii i 12

1.2 The Bergen protonCT PrOJECTccicuiii ettt ettt e e tree e e e eabee e s e be e e e eeabeeeeeennaeas 13
13 REQUITBIMENES e 16

2 REIAEE WOTK ittt ettt ettt e b e s bt e s bt st e st e b e b e bt e sheeene e et e enreen 17
21 IPBIUS .ttt s et et s n e e r e b re e eneeeaeeenreen 17
2.2 (00T T =Tt 1 =Te I o] o] 1T o1 v PP PPRRRRN 20
221 The CONEIOl FOOM ..ttt sttt s e e 20
2.2.2 The Power CoNtrol UNit.....cooeiiiirieeieeieeieseee ettt s s 20

I o o] (=] 0 4 1T o =1 2] U URRPPPRRt 21
N B T 1< 4 U PP PPPPPPRUPIRE 22
4.1 Y o0 I o o R 1Y PP 23
4.2 (oo 0 0 Y a2 Yo Yo 111 =TSRRI 24
421 (oo 4 T 0 Lo T (U] LT o =T~ SR 25
4.2.2 COM_MOAUIE_FIfO uriiiiiiee e ettt e 29
4.2.3 (oo 4 T 0 oY (U] [T U 7= AU 31

4.3 Fodo] o T=1 I 0o Yo [L USRS 34
4.4 AUMMY_MOAUIE .o e et e e e e bt e e e e sbaeeeesataeeesntaeeesanes 35
4.5 version_module and housekeeping_ mModule.........c.eeeviiiiiiiiiiie e 35
45.1 VErsioN _MOGUIEuuiiiiee e e e e e e e e e e s e re e e e e e e e sensnaeeeeeaeeesnnnenns 35
4.5.2 Housekeeper MOAUIEcoooe e e e e e e 35

5 Tests and VErifiCationccueoiuiiiiiieee e e s 36
5.1 VErfiCAtION ceeeieiieee ettt st st st sr e e b r e e 36

Rev: 1.10 Page | 6 28/05/2022

5.1.1 UVVIM Lttt ettt sttt ettt e b e b e s be e s bt e sae e et e e nbeesbeesheesanenas 37
5.1.2 D10 11 TSP URPPPN 39

5.2 HArdWare 18STINGvieii it e e s ee e e s e e s s sab e e e e e sbee e e ennreeas 39

O B ol U 1Y (o o PP PP PPPPROR 43
7 ConClUSION aNd OULIOOKeiiiiiiiiiiiiiiteee ettt sttt e sb e st bee e 44
7.1 CONCIUSION 1ttt ettt sttt et e s bt e s bt e sat e sat e et e e b e e beenbeesmeesmeeeneeentean 44
7.2 OULIOOK -ttt ettt e s e e s bt e e st e e s be e e bt e e s bt e e sabee s bt eeaneeesareeenanes 44

I = 11 o [To Y= =T] 1} V2R RTPPPR 45
Appendix A DLV] (oY oTg o =Y oYk o To OSSPSR 46
Appendix B Address map for all modules inside the MICU.........cocovciieiicciiie e 47
Al MOAUIE AAAIrESSES ...ttt ettt sttt s 47

N 1 Vo o [T 3 1 o T o JO PPN 48

Appendix C DATA FLOW ..ottt eee s e s ees s s ees e s es e eseseeseeeeeenesesesnasseneees 50
Appendix D Picture Of @n ALPIDE SENSOuuiiiiiiiiieeeciiiieeecieee e sttt e e sereeeesstaeesssnrreeessnsreeessnsaeeeeas 52
Appendix E [o [=Tot d o] - [o PSPPSR 53

Rev: 1.10

Page | 7 28/05/2022

List of Figures

Figure 1 - Graphical illustration of how the dose is delivered to the tissue [3]cccccvvvviieeiiiciieeeineen. 11
Figure 2 - Simplified CAD of the pCT iNStrUMENT.......cooiiiiiiiieciee e e e 13
Figure 3 — Bergen PCT ProjECt OVEIVIEWuuuuuuuuuruiiiuiuiiiiiiiiiiiiiaiaeaeaeaeaeseaeaeaeanaeaeaeeeaaaaaeanaeanaeaeaaanaaanan.. 14
Figure 4 - Simplified overview of the pCT power control SyStemccccceeeiiiiiieiriiiee e, 14
Figure 5 — POWETI CONTIOL UNIt....iiiiiiiiieciiiie ettt e et e e e s tte e e e st ae e e e nteeesenasaeeeennneeas 15
Figure 6 — PCU connected to a power SUPPIY UNIT.....coocuieiiiiiieie e e e e e 15
Figure 7 - The Xilinx KCUL05EValuation Board [4].......eeeeeeeecciiiieeee e eeccirreeeee e eeecvreee e e e e e e e ennraaeeea e e 16
Figure 8 - ipbus implemented in @ top-fil@ooi i 17
Figure 9 - ipbus_fabric_sel with modules conNeCted.........cocuviiiieiiie i e 18
Figure 10 - powermonitor repository - folder structure inside each module........cccccoevvieviiiiieninnnen. 22
Figure 11 - Block diagram of MJCU as Payloadcoeecuiiiieiiieee ettt e e 23
Figure 12 - com_module block diagram...........ueiieiiiiiieiiie et e e 24
Figure 13 - IPbUS Wait State SIQVESccivuiiiiiciiie et ee e e 25
Figure 14 — Zero-wait State rEAdccccciiiieeciiie ettt e et e e e e tre e e e e abe e e e eabeeeeenseeeeennneeas 26
FIgUre 15 — Zero-wait STate WL .iiiiveeiiiieiee ettt e s e e e e s s s s saabraeeeeesssenas 27
Figure 16 - part one in a pointer-based FIFO illustration.cccoccvieiiiiiiis e 29
Figure 17 — part two in a pointer-based FIFO illuStration.ccccccoueeeieiiiie e 29
Figure 18 - part three in a pointer-based FIFO illustration.cccccceeeiiiiiiiiiiiiee e, 30
Figure 19 - part four in a pointer-based FIFO illustration.ccccccvvieiiiiiei i, 30
Figure 20 - Custom USART protocol between the FPGA and PCUS........cceeeeeciieeecciiee e 31
Figure 21 — The state machine in com_module_UsSart.......cccocueeiiiiieie i 32
Figure 22 - Example of a wave diagram from a small testbenchcccoeiiiiiiiiiii e, 36
Figure 23 - MJCU writing 0xO0AA to PCU-address 0x01 (asynchronous).......cccceeeecveeeeecreeeeecieeeeeeneen. 40
Figure 24 - MJCU reading Ox00AA from PCU-address 0x01 (asynchronous)ccceevcveeecieeesieescnneenns 40
Figure 25 - Mean bit error using 115200 Daudoiiiiiiiiiiiiee et sbre e e 42
Figure 26 - Mean bit error using 921600 DauUdccccciiieiiciieee et e e sbae e e e eareeas 42
= U Ny A o o T[Tt dl o] - o ISP 43
Figure 28 - Project plan for BO22EB-08............cuiiiiiieieeiiieeeesireeeesiiee e sstee e ssiree e e ssabaee s ssnvaeesssaseeessnasenas 53

Rev: 1.10 Page | 8 28/05/2022

List of Listings

Listing 1 - CoNNECcting @ SIaVe tO IPDUSeiiiiiiiiiiceeee ettt e s e sbee e s e naneeas 19
Listing 2 - HOW ACK fOHOW StrODEeeiieiiiiieciee ettt et tee e e et ae e e e 25
Listing 3 - IPDUS SIAQVE - FEAU PrOCESS ...ccuvviiieeiiieeeeiiteeeecttee e e st e e e stte e e e e atee e e s trae e e e sabae e e ensaeesennsaaeeennseeas 26
Listing 4 - IPDUS SIaVe ~WIt@ PrOCESS ..ciicuviiiieiiiieieitiee ettt esree e st e e e e e s s e e e s sabee e s ssabeeesesabeeesenareeas 27
Listing 5 - IPbUS SIave - address Map ..cccuvieiieciiiec ettt e et e e tee e e vae e e s eabae e e e nbee e e enabaae e e aneeas 28
R u T Y= I WA AV A1V I oY= =T o Yo] o RS RR 37
LiSTING 7 - UVVIM dO-TilE.eiiiiieiiiee ettt st e e st e e e s abe e e s sabee e s enabeeesenareeas 38
List of tables
Table 1 - IPbus signals between master and slave [5].....ccoiiieiiee e e 18
Table 2 - address Map COM_MOUUIEuiiiieiiieecee e e s ee e s e sbee e e esabeee e eeareeas 28
Table 3 - Address map global_MOAUIEcc.eeiiiiee e e e e e e 34
Table 4 - Address map dummy_MOAUIEcccuuiiiiiiiie e e e e e sree e e s sabee e e e areeas 35
Table 5 - Bit-error test with varying baud rates, performing 1000 read operations 100 times............ 41
Table 6 - MOAUIE AAUIESSESeecveiecieeeiee ettt e eree st e et e e sbteesbeeesbeeessteessseeesaseesnseeenseeesseeenns 47
Table 7 - Address Map fOr MICU ...ttt e e ree e s e e e s abae e e snsbaeeeeenreeas 49

Rev: 1.10 Page | 9 28/05/2022

Outline

Outline

Chapter 1: Introduction. This chapter contains an introduction to the project that this thesis
is a part of. Also included are the requirements for the project connected to this thesis.

Chapter 2: Related work. The related work chapter focuses on giving background information
on what work was needed for this project to work. IPbus is explained and given an
introduction. Both adjacent master theses are also presented.

Chapter 3: Problem analysis. This is the start of the project. Problem analysis is an analysis of
the requirements and the earlier work, to conclude with an idea on how to solve the task.

Chapter 4: Design. Designing the VHDL solution was the biggest part of creating a working
solution. In this chapter, a detailed walkthrough of all the different components in this solution
is given. As well as some in-depth information on the workings of each component.

Chapter 5: Tests and verification. In this chapter, the focus lies on what tests were performed
on and around the project. Including what type of tests were performed, and what tools were
used to perform said tests. Thereby looking into what UVVM is and why it was used.

Chapters 6: Discussion, and Chapter 7: Conclusion and Outlook. These chapters evaluate the
work done in this thesis. Outlook also gives a discussion on the future work needed.

Rev: 1.10 Page | 10 28/05/2022

Introduction

1 Introduction

1.1 Particle Therapy

Radiotherapy is the traditional form of cancer treatment using irradiation. In radiotherapy,
high-energy electromagnetic radiation is used to kill cancer cells. Radiotherapy is an important
method for cancer treatment. It can be used alone, or in combination with other methods like
surgery, chemotherapy, and/or immunotherapy. The goal of the treatment is to damage the

cancer cells either directly or indirectly. Stopping them from reproducing or causing them to
die.

Sending ionizing radiation through the body is effective for killing cancer cells, but it also
damages healthy cells in the process. Healthy tissue has an advantage over tumorous tissue
though. It heals faster. Treatment is therefore distributed over multiple sessions of irradiation.
Each dose administered is weak enough for the healthy tissue to recover in between the
treatments. The photon beams are sent through the body from several directions to further
spread out the damage. A high level of precision is important to make sure that the healthy
tissue receives a low amount of radiation. With higher precision comes the possibility of safely
increasing the dosage. Resulting in fewer sessions to complete the treatment.

The biological structure varies from tumour to tumour. It can even vary within a single tumour.
Oxygen is a mediator for indirect damage to DNA. Parts of a tumour, which have reduced
access to oxygen, can be more resistant to radiation. Samples, MR- and PET pictures are used
to provide information about the tumour’s biology. This makes it possible to individualize the
treatment of different tumours [3].

Photon Proton

Figur fra Engeseth, GM (Haukeland)

== Photons 21 MeV
w—12C 270 MeV/u

Protons 148 MeV/u
] ////
"1 L

Relative Dose
w

0 20 40 60 80 100 120 140 160

Depth in Water (mm)

Figure 1 - Graphical illustration of how the dose is delivered to the tissue [3]

Rev: 1.10 Page | 11 28/05/2022

Introduction

Particle therapy uses positively charged ions like protons or carbon ions instead of the
traditional photons. This opens the possibility for treatment of delimited areas inside a
patient, whilst damaging DNA more efficiently. Compared to radiotherapy, particle therapy
results in fewer side effects such as organ damage or secondary cancers because it reduces
the radiation to the surrounding tissue.

The two methods differ the most in how the energy is deposited in the tissue. Figure 1 shows
how the energy is transferred using radio- and particle therapy.

The photons (blue) transfer a large amount of energy to the tissue a short distance after they
penetrate the skin. Therefore, the tumour is radiated from different angles to achieve the
correct amount of radiation. The yellow line illustrates how the protons deposit a major part
of their energy directly into the tumour. This peak is called the Bragg peak. It can be adjusted
to target where the tumour is located. The Bragg peak is not wide enough to cover the whole
tumour. A modified beam is therefore created to get a broader range. This beam is called
Spread-Out Bragg Peak (SOBP). The graph also shows the potential of using carbon-ions with
an even more effective peak.

1.1.1 Medical Imaging Methods
Computed Tomography

A Computed Tomography (CT) scan combines multiple images taken from different angles of
a body using beams of photons. The device is rotated around the body, and the body is moved
horizontally to create a three-dimensional image.

Proton Computed Tomography

Proton Computed Tomography (pCT) uses protons instead of photons. The images are created
by sending a beam of protons with enough energy to pass directly through the patient so that
the Bragg peak ends up in the calorimeter. This reduces the amount of irradiated tissue. The
protons will interact with electrons and/or the nuclei of an atom. These interactions will cause
them to change paths. The path of the protons after exiting the body is then reconstructed
from the data collected by the calorimeter.

It is possible to achieve higher accuracy when using pCT-scanning for dose planning compared
to a CT scan. Currently, the proton treatment is estimated by the Houndsfield units from CT
scanning. This estimation causes an error of 2-3% [3]. This implies that by using proton CT, less
of the healthy tissue will be irradiated and the risk of late effects is reduced.

Rev: 1.10 Page | 12 28/05/2022

Introduction

1.2 The Bergen protonCT Project

The University of Bergen is the leading part of the Bergen proton CT project. The project
consists of multiple parts, as shown in Figure 3. The main part of this project is the calorimeter
depicted in Figure 2. It is made out of 43 layers with 108 ALPIDE sensors on each layer. They
are monolithic active pixel sensors (MAPS) created for the CERN ALICE experiment. These
layers are responsible for collecting information about the proton’s velocity and position.

3 8 % % 8 0 0 % 3

- 3 8 U 0 % 9 ¥ U U
..
o % & 3 % ¥ ¥ ¥ ¥ 4y
8 8 0 4 8 4 3 ¥ 8
..
% % 4 8 % % ¥ % U U
-

g7z

Figure 2 - Simplified CAD of the pCT instrument

Each of the layers is connected to individual transition cards and custom power control units
(PCU) that deliver the power from the power supply units (PSU) to the layer. This thesis is
aimed to make a system that could write and read information to and from the PCUs and
forward it to a computer inside the control room. An FPGA board is being used to achieve this.

Rev: 1.10 Page | 13 28/05/2022

Introduction

Power
4 N\
Data
i IPBUS FPGA
43 x ALPIDE layers Control and Monitor
(2 of those are o|lo 3 |_
. o =]]
tracking layers) z(|2 H
e C e 43x T 43x
Central
Control Room
Clock 40 MHz Clock 40 MHz W:hn:ksysun
1 ALPIDE layer = 12 Power Soniei CAkatied by oot
; staves _ " Control
i in folded fashion Control Transition Card Readout Unit
_ 108 chips in 1 layer
1stave =9 1 [Data Data Data (1.2 Gbls)
ALPIDE chips «~— - . - __°

ALPIDE chip (30x15 mm)
512x1024 pixels
One pixel 29.24 x 26.88 um

Figure 3 — Bergen pCT project overview

Figure 4 shows how the different components in the pCT power control system are connected
to this thesis. The computer in the control room connects to the FPGA board with an ethernet
cable using the IPbus protocol. The FPGA board is connected to 43 PCUs via ethernet cables,

using a custom USART protocol for communication.

Controlroom

x43 connections

USART

Xilinx KCU105 Evaluation Board

Power control units

Figure 4 - Simplified overview of the pCT power control system

Rev: 1.10 Page | 14 28/05/2022

Introduction

Figure 5 shows what in Figure 4 is labelled as “Power control units”. These are the custom-
made circuit boards that transfer power from the PSUs (shown in Figure 6) to the ALPIDE
layers. The connections are depicted in Figure 3. 43 of these boards will be connected to the
FPGA board through an RJ45 rack.

The PCUs have full control over the power given to the ALPIDE layers by the PSUs. They can
control the maximum voltage and current on its outputs and shut down the connected layer
if a maximum temperature is reached. All the information about different values and
thresholds is available to read and modify by the user through the FPGA.

PSU connector

Power good
status

Mains power Enable signals Power to TC RJAS to IPBUS
input connecor connector FPGA

Figure 5 — power control unit

Figure 6 — PCU connected to a power supply unit

Rev: 1.10 Page | 15 28/05/2022

Introduction

1.3 Requirements

The prime objective of this thesis is to make a stable communication link between a computer
inside a control room (using IPbus by CERN) and 43 external devices (using a custom USART
protocol). Designing it to be as stable and reliable as possible. Prioritizing stability over
efficiency.

The requirements are as follows:

e FPGA design fit to a Xilinx KCU105 Evaluation Board containing
o An IPbus gateway.
o A bus connected to multiple slaves containing
= 43 slaves for communication with external devices
= A global module overarching all 43 communication slaves
= Atest module, for confirming functionality
= Slaves managing onboard functions and a version GitHash
e Developed using a type of GIT version control system.
e Developing every component with testbenches using the UVVM library.
e Good documentation for every part of the system.

The Xilinx KCU105 Evaluation Board features the Kintex XCKU040-2FFVA1156E FPGA. It has all
the 1/0 resources that would be necessary for this project. The required resources contain an
RJ45 port for connecting to the control room, some GPIO for prototyping, and two FMC
connectors (high/low pin-count) for connecting the PCUs.

HDMI Dual Quad-SPI FMC1 FMC2
Video Output Flash Memory (HPC, 8x GTHs) (LPC, 1x GTH)

Micro SD Card Slot
(Backside of Board)

User Clock Input SMAs
Pmod Header Male

USB-UART Connector

USB-JTAG Connector Pmod Header Female

User GPIO SMAs
RU4S PMBus Header
(10/100/1000 Mb/s Tri-Speed Ethernet PHY)
XCVR SMAs

(1x GTH to 4x SMAs)

DDR4 64-bit
2x SFP+Cages
(2x GTHs)

GTH Reference PCle Edge Connector JTAG Header XCKU040-2FFVA1156E
, Clock Input SMAs Gen3 x8 (8x GTHs)

Figure 7 - The Xilinx KCU105Evaluation Board [4]

Rev: 1.10 Page | 16 28/05/2022

Related work

2 Related work

2.1 IPbus

IPbus is a packet-based control protocol made by CERN for communicating with address-
aware hardware inside an FPGA [5]. They have made both the software and the firmware side
that communicate with each other through 1Gbit ethernet. It does not support devices with
auto-negotiation. The software side has a Control Hub that uses an IPbus reliability mechanism
to correct for losses or duplications. The firmware side can be connected to multiple slaves
made by a user, using high-performance and reliable connections.

The IPbus firmware module is an on-chip system. All the calculations and timings are being
made and processed inside the FPGA chip. No external devices are needed. This makes it
compatible with a wide range of FPGAs regardless of what type of sensors or circuitry
surrounds the chip. It is designed to be a common module that can run by itself alongside a
user’s main code inside the same FPGA. This makes it easy to integrate into a project.

TOP

31Mhz clock

IPBUS fob wbus PAYLOAD

ipb_rbus

USER LOGIC

Figure 8 - ipbus implemented in a top-file

CERN has made several example designs for different development boards. This is currently
made for Xilinx devices only, but the code is adaptable to fit onto Intel devices as well.

The firmware side of IPbus acts like a master within the FPGA and communicates with
connected slaves located inside the PAYLOAD-block using a 31Mhz clock and seven signals
shown in Table 1. These seven signals are located inside two types named ipb_wbus and
ipb_rbus. Ipb_wbus has all the signals going from master to slave, and ipb_rbus got the ones
going from slave to master. These signal types can be used to declare signals or ports like this:

IPBUS 1IN : in ipb wbus;
IPBUS OUT : out ipb rbus;

The reduction of signals makes it easier to follow the routing of the signals between the
different modules and components.

Rev: 1.10 Page | 17 28/05/2022

Related work

Signal Direction

ipb_addr Master to slave
ipb_wdata Master to slave
ipb_write Master to slave

ipb_strobe Master to slave

ipb_rdata Slave to master
ipb_ack Slave to master

ipb_err Slave to master

Width

32

32

32

Description

Bus address

Data to be written to a slave

Asserted for a write cycle, deserted for a read cycle

Qualifies address and data; assertion marks start of
a cycle

Data read from a slave
Acknowledge flag; assertion marks end of cycle

Bus error flag; assertion marks end of cycle

Table 1 - IPbus signals between master and slave [5]

The slaves themselves do not need to handle the address signal from IPbus. This is handled by
a component inside PAYLOAD named ipb_fabric_sel shown in Figure 9. lpb_fabric_sel is

responsible for which slave gets to communicate with the IPbus. This makes it possible to

make slaves that do not know what address to respond to. They are just waiting for a strobe

signal from fabric_sel. As a result, all slaves can interpret the signals the same way. They just

need to take care of any internal registers.

IPBUS

PAYLOAD

ipbus_fabric_sel

» Slave[4]

» Slave[3]

» Slave[2]

» Slave[1]

» Slave[0]

Figure 9 - ipbus_fabric_sel with modules connected

Rev: 1.10

Page | 18 28/05/2022

Related work

The implementation of fabric_sel also makes it easier to add more slaves to the system if
needed. Using the port map of the dummy_module slave as an example:

-- Slave 67
dummy module
port map (

CLK =>
RST =>
IPBUS IN =>
IPBUS OUT =>

)

: dummy module
: entity work.dummy module

ipb clk,
ipb rst,
ipbw (67),
ipbr (67)

Listing 1 - Connecting a slave to IPbus

Dummy_module will answer to module address 67 because it is connected to in- and output
number 67 on fabric_sel. If more slaves are introduced, they can be connected to pin 68, 69
and so on. They will then automatically answer to the corresponding module address.

Rev: 1.10

Page | 19 28/05/2022

Related work

2.2 Connected projects

In the previous chapter, a mention was given to the wider project that stretches beyond the
borders of this assignment. Where in Figure 3 and Figure 4 a complete overview and a
simplified view of the entirety of the project was shown. In relevance to the FPGA, the
connecting parts of the project can be split into two parts. The “control room” and the “power
control units”. These two parts have each their own master student working on them.

2.2.1 The Control room

The software for the control room is designed by Havard Birkenes [6]. The control room as it
is referred to is a computer connected to all information channels of the project. The section
Havard is responsible for contains all that is connected to the power control system. It is
responsible for handling the control, configuration, and monitoring of the power system. The
configuration data are stored in a MongoDB database, and the monitoring data are stored in
a time-based database (inFluxDB). Grafana is used to visualize the monitored values.

Python is used as the design language in this part, and this enables the possibility to
communicate with the API directly using script-based functions. This is extremely valuable in
the test and development phase.

2.2.2 The Power Control Unit

The PCU and the concept of the distributed power system is designed by Birger Olsen [7],
Originally, the plan was that all layers should be powered by one large power supply, and there
should be one central power control unit for all layers. However, the solution proposed by [7]
proved cheaper, more elegant and easier to implement.

The PCU, which sits directly on the power supply, includes filters to reduce the power supply
noise, as well as a microcontroller that enables the power to the sensor layers and monitors
the currents, voltages and temperatures. Additionally, it contains programmable thresholds.
The power is cut if the monitored values exceed these thresholds. This gives a short response
time which is needed to avoid damage to the sensor layers and lowers the speed requirement
for the rest of the power control system. Making it possible to prioritize reliability before
speed. It is important to stress that since the sensor layers measure ionizing radiation, errors
can be expected that for instance generates high current consumption due to single event
effects in the sensors.

Rev: 1.10 Page | 20 28/05/2022

Problem analysis

3 Problem analysis

Writing a design to an FPGA requires a VHDL design tool. In this case, since the selected FPGA
is from Xilinx, we were given access to a program called Vivado. This was made available to us
by the University in Bergen.

The Xilinx KCU105 Evaluation Board featuring the Kintex UltraScale XCKU040-2FFVA1156E
FPGA was chosen on the premise that it featured everything that was needed in terms of 10-
resources and FPGA. It was also the most convenient choice since other options would have
to include a custom PCB design. The need for prototypes during development and the low
guantity production would have led it to be more expensive than buying a finished product.
This would also require a design team that would increase the costs even further.

With the requirements in mind, there are still multiple options on how to structure the VHDL
design. The FPGA’s task is to transfer data between a control room and the multiple power
control units. One way of designing a system like this would be to make multiple components
that take care of different requirements and then connecting them together. This way of
design results in a tidy, and easy to test and troubleshoot. Each of the components can be
verified in a controlled testbench. Making it easy to add more components in the future if
needed. A goal of the design is to make it as efficient as possible, to make sure it’s not the
bottleneck of the system. One of the ways to accomplish this is to make sure the system can
communicate with the PCUs in parallel. Since the solution is an FPGA design, it is possible to
have the communication between one PCU take the same amount of time as communicating
with all 43 of them at the same time. It is important to state that the system does not have a
strict timing requirement. It is however important that the configuration time does not feel
slow for the user, and that the monitoring is frequent enough. In this case, reliability is more
important than speed. One of the ways to make it more reliable is by writing the data that has
been written to a given address to the control room using what is called a handshake. The
PCUs already have this as a built-in function in their custom USART protocol. It confirms which
address was reached by sending a copy of the address back as soon as it is received. This
confirmed address is then put together with the data received inside the FPGA to formulate a
handshake to the control room as well.

Since this bachelor thesis is a part of a bigger system, it was important to make the project
structured and understandable for other people that may modify or reuse it after this bachelor
thesis has ended. UiB were already using a custom version of GitHub namely git.app.uib as a
Git version control system. Which we used as well in the development of this project.

The project has multiple modules with independent testbenches and files, so it was important
to keep everything organized and well structured. To be consistent with the naming of folders
and components was also a high priority.

Rev: 1.10 Page | 21 28/05/2022

Design

4 Design

The main essence of this project was to make an FPGA solution that would take in data from
an already existing bus design (IPbus) and convert said data into a serial data transfer toward
the PCUs, and the other way around. The protocol for the PCUs was made a few weeks after
this project began but it was still prone to change.

It was made clear that the goal should not be to complete every requirement given, but to
make sure everything that was constructed was working as intended. A lot of time went into
the creation of testbenches because of this.

To make this project well-structured and easy to understand, each of the modules was created
separately. This made it possible to connect them to different testbenches to show how the
individual parts of the system worked. To make sure the git repository [2] was well structured,
all the folders for the different modules got the same layout. Every module has its own folder
including the subfolders components, scripts, source files (src) and testbench (tb). This makes
navigating to the desired files easier, and each testbench can be compiled the same way. The
reason structure is so important is because someone else should be able to do further work
and development on it in the future if it is needed.

Name Last commit Last update
B3 components FIFO behaviour 1 week ago
B3 scripts Update MJCU_tb log.txt 1 week ago
BEasrc Update MJCU_pkg.vhd 4 days ago
Eatb FIFO behaviour 1 week ago

Figure 10 - powermonitor repository - folder structure inside each module

Rev: 1.10 Page | 22 28/05/2022

https://git.app.uib.no/pct/powermonitor

Design

4.1 MJCU - top-level

MIJCU is an acronym for Martin and Jakob’s Communication Unit. Figure 11 shows a simplified

block diagram of how the modules are connected to each other, to IPbus and to the power

control units. Since the modules have internal registers, a decision was made that

ipb_fabric_sel should use ipb_addr(15 downto 8) to determine which module to select.

Leaving Ipb_addr(7 downto 0) available for selecting internal registers inside the modules. This

should give a sufficient amount of both potential slaves and slave addresses. The modules in

this design are com_module, global_module and dummy_module.

,LRMS

7

IPbus
payload: MJCU T
¥
RFRERY) Fabric > i
comM1 rRx b GLOBAL_CONTROL control| 7% | Rx
- /status
~ K i GLOBAL_STATUS T
com_module_usart | [RX_FIFO [TX_FIFO 1 GLOBAL_WRITE Dummv
Controlfl_|
Istatus frol GLOBAL_RESET
~O N us o
@ @ m COM_MODULE_ENABLE
N\ 2 |5 B CLOCK_SPEED
@ Global BAUDRATE
e — oba
L
|1
[1 RI45 Hub
™ |rx ebus cemiPbusmodue
! Global : global_module '
! Dummy :dummy_module |
| COM :com_module i
! Fabric :ipbus_fabric_sel :
PCU LPCU .. _:powercomtrolunit
x43
Figure 11 - Block diagram of MJCU as payload
Rev: 1.10 Page | 23 28/05/2022

Design

4.2 com_module

Com_module is short for communication module. It is the largest of the modules in this design
and is responsible for communicating with the power control units. This module is meant to
be duplicated as many times as the amount of power control units connected to the system.
One com_module will be connected to one PCU.

Com_module consists of four components. Com_module_reg, two com_module_fifos and
com_module_usart. Com_module_reg handles the communication with IPbus. It can read data
from one com_module_fifo and write to the other. FIFO stands for “First In First Out”, and is
used to temporary queue up data. Every com_module has two FIFOs. One for the data from
(TX_FIFO),
com_module_usart to com_module_reg (RX_FIFO). Com_module_usart communicates with
a power control unit using a custom 8-bit USART protocol. This protocol sends data in bulks of
8 bits, one bit at a time with a start bit for every transaction. The bits are being sent with a
given baud rate. Because the baud rate (default set to 115200 bits/s) is much slower than the
clock speed the modules are using (31 MHz), it is necessary to use FIFOs to prevent the loss of
data.

com_module_reg to com_module_usart and one for the data from

com_module_top
CLK
RST I I
|
com_module_fifo_RX
com_module_reg
ok + CLK
L LIRsT RST_FIFO |—— '[+ RST_FIFO com_module_usart
PBUS_IN.ipb_ L el
RX_R_Enable[1] +——— RX_R_Enable[1] o
IPBUS,_IN strobe(1] i -- RST
well] — Strobe[1] RX_is_empty[1] RX_is_empty[1]
write
o Write[1] RX_R_data[32] RX_R_data[32]
addr(32]
o Address[32] .)
wdata[32] Write_data[32] RX_is_full[1] RX_is_full[1] RX_is_full[1]
L T
e-cata RX_W_Enable[1] RX_W_Enable[1]
IPBUS_OUT.ipb RX_W_data[32] RX_W_data[32]
IPBUS_OUT ack[1] TX_is_empty[1] [«
= errld] Ack[1] com_module_fifo_TX
e Error[1] CLK
data[32
rdata(32] Read_data[32] 1{ RsT_FIFO
TX_is_full[1] J— TX_is_full[1]
TX_W_Enable[1] — T W _Enable[1)
_ TX_W_datal32) J T%_w_data[32]
GLOBAL_TX_WRITE T TX R Enable[1
DATA ‘ T nable[1} TX_R_Enable[1] PSU_controller
. TX_is_empty[1] TX_is_empty[1]
ENABLE TX_R_data[32] TX_R_data[32] PSU_CLK
PSU_DATA
Figure 12 - com_module block diagram
Rev: 1.10 Page | 24 28/05/2022

Design

4.2.1 com_module_reg

Com_module_reg is the component that handles the signals between the IPbus interface and
any given com_module. The goal was to make com_module a “zero wait state”-slave, meaning
that it can receive or transmit data on every clock cycle. Figure 13 shows two write
transactions between IPbus and two slaves. The slave written to in cycle 0 is what is referred
to as a “one wait state”-slave. It uses one clock cycle before it responds with ipb_ack. IPbus is
made in a way that the slave can have multiple wait states. IPbus will wait for ack before
proceeding. Cycle 1 shows a slave with zero wait states. These types of slaves are the most
efficient ones because they never require IPbus to wait for a response.

o | L] L L]
strobe / \
\
X

addr %

write | /
wdata % | ‘

rdata 1 : % V

cycle 0

cycle 1 -

Figure 13 - IPbus wait state slaves

To make “zero wait state”-slaves, it was necessary to have the ipb_ack mirror the ipb_strobe.
In the first iteration, ack was given strobe’s value directly. But because of the way
ipbus_fabric_sel (Figure 9) handles the ack-signal, it had to be given its value via a MUX like
this:

IPBUS OUT.ipb ack <= '1' when IPBUS IN.ipb strobe = '1' else '0';

Listing 2 - How ACK follow strobe

The first plan was to make one process for both read- and write operations. This would cause
the slave to require one wait state on every read operation because they both would be
following the clock. Therefore, it has separate read and write processes.

Rev: 1.10 Page | 25 28/05/2022

Design

IPbus read transaction

The signal diagram in Figure 14 shows a read transaction with a com_module_reg. The
communication is made possible by reacting to every signal coming from IPbus. In a read
transaction between IPbus and a zero-wait state slave, IPbus will change the signals going to
the slave on one clock cycle. The slave can then interpret these signals and change rdata’s
value accordingly. IPbus will then read from rdata on the next clock cycle.

ck []

strobe

ack

/
/
addr / % X7/

write

%
wdata /// /// /
rdata 7 / %(X/// /

Figure 14 — zero-wait state read

The p_read process monitors every signal inside IPBUS_IN and reacts if any of them change. If
strobe is high and write is low, DATA is written to rdata for the IPbus to read.

p _read : process(IPBUS IN) -- Module writes data to IPBUS
begin
IPBUS OUT.ipb rdata <= (others => '0');
if IPBUS IN.ipb strobe = 'l1' and IPBUS IN.ipb write = '0' then
IPBUS OUT.ipb rdata <= DATA;
end if; -- STROBE & READ & MODULE ADDRESS

end process p read;

Listing 3 - IPbus slave - read process

Rev: 1.10 Page | 26 28/05/2022

Design

IPbus write transaction

The timing in the write transaction in Figure 15 is synchronized with the clock. The slave checks
if strobe and write are high on every rising edge of the clock. If so, it reads the data from wdata.

ck []

strobe /

|
ack / \

addr 777222} N2
write / \

wdata % W/
rdata 00777277

— write

Figure 15 — zero-wait state write

p _write : process(CLK) -- Module reads data from IPBUS
begin
if rising edge(CLK) then
if RST = '1' then
else
if IPBUS IN.ipb strobe = 'l' and IPBUS IN.ipb write = 'l' then
DATA <= IPBUS IN.ipb wdata;
end if; -- STROBE & WRITE & MODULE_ADDRESS
end if; -- RST
end if; -- CLK

end process p write;

Listing 4 - IPbus slave -write process

The process p_write also includes the reset signal to make sure this only happens on a rising
edge of the clock.

Rev: 1.10 Page | 27 28/05/2022

Design

Address map

As already mentioned, ipb_addr(7 downto 0) from IPbus is available for selecting internal
registers inside the modules. Com_module_reg takes care of this selection. Table 1 shows the
address map of a com_module. The first two registers are reserved as control and status.
Nothing is implemented here, as there was no need to do so. This was just a habit from earlier
designs and makes it easier to implement more features later if needed. The data written to
register 3 is sent to com_module_usart through one of the FIFOs and further down towards
the power control units. Register 4 holds the data received by the power control units. Register
5 is a trigger register that resets both FIFOs. It does not matter if the data sent to register 5 is
all zeros or all ones, everything is considered a reset if the register is reached.

Name Register | Width | Access | Default Value | Description
address

COM_MODULE (module address 0x01 — 0x40)

CONTROL 0x01 32 w 0x00 Not in use

STATUS 0x02 32 R 0x00 [31..4] Not in use
[3]1 TXis full (1 =full)
[2] TX is empty (1 = empty)
[1]1RXis full (1 =full)
[0] RX is empty (1 = empty)
WRITE 0x03 32 w 0x00 Writes data to the corresponding PCU.
[31] R/W bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data to PCU

READ 0x04 32 R 0x00 Reads a 32-bit vector from the corresponding
PCU.
[31] R/W bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data from PCU

RESET_FIFO 0x05 32 w 0x00 Resets both TX and RX FIFO to clear them.

Table 2 - address map com_module

One of the goals with com_module_reg was to make the code behind the address map easy
to understand and modify for future use. That’s why both p_read and p_write have a case
statement, shown underneath, to interpret ipb_addr(7 downto 0). To add more registers,

4

simply add one or more lines with “when X”..” => " in either or both p_read or p_write

depending on if the register should be read-only, write-only or read/write.

case IPBUS IN.ipb addr (7 downto 0) is
when ¢ CONTROL =>
when ¢ STATUS =>

when c WRITE =>
when c READ =>
when C_RESET => —-- RESET FIFO
when others =>
end case; -- REGISTER

Listing 5 - IPbus slave - address map

Rev: 1.10 Page | 28 28/05/2022

Design

4.2.2 com_module_fifo

The FIFO is an acronym for “First In First Out”. The main and only purpose of a FIFO is to act
as a temporary backed up data storage. We decided to use a pointer-based design. Using two
pointers that are moving through a list of saved messages as they are written or read. Where
one of them is responsible to read and the other one to write to their current location. An
example of this is illustrated in Figure 16 and Figure 17. In Figure 16 there have been eight
messages sent into the FIFO, two of these messages have then been read. That means that
there are now six messages in the FIFO, messages three through eight. In Figure 17, another
twelve messages have been sent into the FIFO, and now a total of nine messages have been
read. At this point, messages ten through twenty are still in the FIFO, and one through nine
are out. This shows how the “pointer in” has moved through the whole list and moved back
to the start, but it isn’t a problem because enough messages have already been read. The
place where messages five through nine were stored is now “free space”.

| Iw?e;sagel E FIFO Messages
| Message2 i — Messages already
essage 8 {1 |Message 1 _ | out of the FIFO
i i 2 |Message 2 _ Pointerout | /FREE SPACE
i out: E 3 |Message 3
| Message 1 E 4 |Message 4
| Message2 1| 5 |Message 5 | Messages
i : 6 |Message 6 in the FIFO
s ' 7 |Message 7
8 |Message 8 Pointerin |
9 | —
10
11
12
13
14
15
16
Figure 16 - part one in a pointer-based FIFO illustration.
Cn: '
| Messagel | FIFO Messages
! Message 2 ! _
b 11 |Message 17
g Message204) 5 Message 18 | Messages
. 1|3 |Message 19 [in the FIFO
i Sel:sta.ge]_ |4 |Message 20 Pointerin |
| Message 2 |5 |Message 5 9
Message 8 | 6 |Message 6 Messages already
. | 7 |Message 7 L out of the FIFO
8 |Message 8 / FREE SPACE
9 |Message 9 Pointer out
10 |Message 10 7
11 |Message 11
12 |Message 12
13 |Message 13 L Messages
14 |Message 14 in the FIFO
15 |Message 15
16 [Message 16]

Figure 17 — part two in a pointer-based FIFO illustration.

Rev: 1.10 Page | 29 28/05/2022

Design

There are some important corner cases to take into consideration when working with a FIFO.
First and foremost, you will encounter one of these if you only write messages into the FIFO,
but never read any out. This will end up in the FIFO being full. In this case, this FIFO will not
accept any more messages, and any message that is still trying to get in will just be forgotten.
However, when this happens the signal FIFO_IS_FULL, which is an output, will be set to 1. This
corner case is illustrated in Figure 18.

Vn: :
| Messagel FIFO Messages
E Message 2 E .
S 11 |Message 17
| Message 23 i| 2 |Message 18
Signal change : o i| 3 |Message 19
i Out: | 4 |Message 20
The Pointerin | Messagel | 5 m & S | Messages
catches up with p Message2 <S5age in the FIFO
h . b [6 |Message 22
the pointer out. l___e_sf?%e_?__: 7 |Message 23
8 |Message 24 Pointerin
Pointer out
—1 20 megsage i; 1~ NO FREE SPACE
essage
FIFO_IS_FULL 0 g
11 (Message 11
12 |Message 12 M
13 |Message 13 L i;saglelii)
14 |Message 14 inthe
15 |Message 15
16 |Message 16

Figure 18 - part three in a pointer-based FIFO illustration.

Another corner case to take into consideration is what happens if you only try to read from
the FIFO. At some point, there will be no more messages inside, and the FIFO will be empty.
In this case, the FIFO will return only 0. As well as when full, there is an out signal
“FIFO_IS_EMPTY” that is set to 1 when this corner case is hit. lllustration of this case in Figure
19.

FIFO Messages

Message 1
Message 2

- 1 |Message 17
i Message 25 . 2 |Message 18
Signal change E /| 3 |Message 19
) P Outt 114 IMessage 20
The Pointer qut : m:::s:; |5 |Message 21 — FREE SPACE
catche§ up v.wth - 6 |Message 22
the pointerin. | Message2s §| o Message 23
8 |Message 24 Pointer out
v 1 9 |Message 25 tmz— No }:nesls;ges
E 10 [Message 10 in the
FIFOIS_EMPTY I 0 11 |Message 11
12 (Message 12
13 [Message 13 — FREE SPACE
14 |Message 14
15 [Message 15
16 [Message 16

Figure 19 - part four in a pointer-based FIFO illustration.

Rev: 1.10 Page | 30 28/05/2022

Design

4.2.3 com_module_usart

The main part of the com_module is the com_module_usart. This part is responsible for the
communication between the MJCU and the PCUs. When it came to choosing how to design
this component, the choice was very clear. In earlier subjects in our study, we have had
multiple experiences with state machines. So, it felt natural to choose a state-machine
solution for the design.

The TX_FIFO sends out one 32-bit message at a time every time the com_module_usart tells
it to do so. The FIFO has two additional information outputs, “FIFO_IS_EMPTY” and
“FIFO_IS_FULL”. The component continuously tells the FIFO to send out a new message as
long as “FIFO_IS_EMPTY” is false. This is to make the component as time efficient as possible.

In Figure 20 a signal diagram is showing the protocol that is used for communicating. Starting
every transaction with an initializing bit where high goes to low. A 7-bit address is sent
followed by a R/W bit. Then for every read or write transaction a handshake is sent. The
handshake is just the slave repeating what it has just received. Depending on if it is a read or
a write, either master or slave then proceeds to send its data.

Read
4 o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19
LU L L L L L
asve T HN.,_«WWMMMT Recieved_Addr 7 bits '

11 12 13 14 15 16 17 18 19

LT L LT LT

\ / Data_H - 8 bits A Data_L- 8 bits /

Write
-1 0 1 2 3 4 _5 6 7 8 9 10 11 12 13 14 15 16 17 18 _19
ek L LTI LT L L L L

Recieved_Addr—7 bits R/IW /

Data_Master \ / Addr -7 bits

Data_Slave X\\\\
NN

11 12 13 14 15 16 17 18 19

L L L L

Data_Master) / Data_L - 8 bits

Figure 20 - Custom USART protocol between the FPGA and PCUs

Rev: 1.10 Page | 31 28/05/2022

Design

The state machine

The state machine contains the following states: IDLE, NEW_ADDRESS, ADDRESSING_PART1,
ADDRESSING_PART2, RUNNING, FINISHING.

| IDLE —

ckout |

—
ﬁ READ FROMFIFO |

NEW_ADDRESS |

SETTING VALUES |

A

| ADRESSING_PART1 |

» cKkouT |

ﬁ ADDRESSOUT |
-

| ADRESSING_PART?2 |

—> ckouT |

rv{ ADDRESSIN |
5

RUNNING |

—| CLK OUT |
ﬁ DATA IN "\ DATA OUT|
.

FINISHING |

—> ckour |
—> MERGEDATA |
—{ WRITETOFIFO |

Figure 21 — The state machine in com_module_usart.

The component will be in IDLE until FIFO_IS_EMPTY goes from 1 to 0. Then it moves into
NEW _ADDRESS to set up all the different signals and reset the counters. After this state was
created, the next part was to figure out how to do the transaction itself. There is one master
(com_module_usart) and one slave (PCU). The serial transaction is split into 3 parts.

The first part is the master writing to the slave which one of the internal registers of the PCU
it wants to read or write to. Then in part two, the slave responds with the same read/write-
bit and register address that it received from the master. This is called a handshake. With a
handshake, the master can be certain that the correct address has been reached, and that the
slave is active and responding correctly.

Rev: 1.10 Page | 32 28/05/2022

Design

When the handshake is received, the next part depends on if the message is a “read” or a
“write”. In both cases, 16 bits split into two chunks of 8 bits will be transferred between master
and slave. When it is a “read” that is being executed, the slave will know, because of the
read/write-bit, to write its data to the bus, and the master will read it. When a “write” is being
executed, the master sends data to the bus, and the slave reads.

This sequence contains the states ADDRESSING_PART1, ADDRESSING_PART2, and RUNNING.
ADDRESSING_PART1 takes care of sending the read/write-bit and the register address.
ADDRESSING_PART2 reads the read/write-bit and the address that the slave responds with.

RUNNING includes both the “read” and “write” sequences. Read reads 16 bits from the slave
and write writes 16 bits to the slave. The read/write-bit that was sent during the
ADDRESSING_PART1 decides which one of the two sequences to run. Either way, the whole
RUNNING state must get through the same number of bits. This means that the only thing that
changes is whether to write to the slave or to read from the slave.

Then there is one more state, FINISHING. This state serves the purpose of delivering the data
package to the RX_FIFO and telling the TX_FIFO that it is ready for the next transaction.

Then it switches back to IDLE.

While all this is happening, a 32-bit vector is constructed in the same format as the one read
from the TX_FIFO. This data package includes if it was a read or write that was executed, what
register it spoke with, and the data received/sent.

There is one more important part. Because this is USART, it needs an additional clock signal to
synchronize the data transfer. There is a separate process that takes care of the USART clock
signal. This signal is generated at a given baud rate that is controlled by the global_module.
The main process that handles the communication follows this signal when writing or reading.

How the data is read

In all parts of the state machine where data is being read or written, it is only one bit at a time.
This means that the serial data that goes in or out needs to be converted to a vector at some
point. This is solved by using a counter that iterates through a vector and writes one bit at a
time into the vector. It would have been more space-efficient to use a shift register rather
than a pointer-based design. A shift register uses as many flip-flops as there are bits in the
vector. This is not a problem for this project because the FPGA is as big as it is. The pointer-
based design gave options for easy modification while developing. Coincidentally this ended
up being very useful. The reason is that there was some confusion regarding if the most
significant bit should come first or the least significant bit. In the end, the data needed to be
flipped. All data transactions in the USART are LSB to MSB as of the current version.

Rev: 1.10 Page | 33 28/05/2022

Design

4.3 global_module

The global_module is just a modified com_module_reg with a couple more outputs towards
the com_modules. The first two registers are reserved to control and status. Nothing is
implemented here, as there was no need to do so. This was just a habit from earlier designs
and makes it easier to add more features in the future if needed. The data written to register
3 is sent to every com_module in the system. This makes use of a big advantage the FPGA has
over a standard computer or an MCU. Since all com_modules get the same message, they can
begin communicating with all power control units at the same time. In other words,
communicating with one PCU takes the same amount of time as communicating with all of
them. Register 4 does not do anything because this module never gets any of the data from
the PCUs. Writing to register 5 will reset all other modules. This includes resetting the FIFOs
inside every com_module. Register 6 and 7 are used to control the baud rate between the
com_modules and PCUs. Write these values in binary, and they will be converted internally.

Name Register | Width | Access | Default Value | Description
address

GLOBAL_MODULE (module address 0x00)

GLOBAL_CONTROL 0x01 32 W 0x00 Not in use
GLOBAL_STATUS 0x02 32 R 0x00 Not in use
GLOBAL_WRITE 0x03 32 w 0x00 Writes data to every com_module in the system.

[31] R/W bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data to PCU

GLOBAL_RESET 0x05 32 w 0x00 Resets all modules except the global_module
COM_ENABLE_O 0x06 32 R/W OXFFFFFFFF These 32 bits enable com_modules[1->32]
‘1’ = ENABLED

Bit[n] controls com _module_[1+n]

This function is made in the case that modules
are not connected to a PCU.

COM_ENABLE_1 0x07 32 R/W OXFFFFFFFF These 32 bits enable com_modules[33->64]
‘1’ = ENABLED
Bit[n] controls com _module_[33+n]

This function is made in the case that modules
are not connected to a PCU.

SYSTEM CLOCK 0x08 32 R/W 0x1D905C0 The speed of the clock used by the

SPEED com_modules.
This is used to calculate the baud rate towards
the PCUs.

Default: 31Mhz (clock from IPbus)

PSU BAUD RATE 0x09 32 R/W 0x1C200 The baud rate to use towards the PCUs

Table 3 - Address map global_module

Rev: 1.10 Page | 34 28/05/2022

Design

4.4 dummy_module

Dummy_module is the simplest module, and it was also the first one to be completed. After
the creation of com_module_reg, one signal was added to store a 32-bit vector. The thought
behind having a dummy_module is to make sure the communication between IPbus SW and
an IPbus HW-slave works properly. Write something to register 3 and it can be read back from
register 4.

Name Register | Width | Access Type Default Value | Description
address

DUMMY_MODULE (module address 0x43)

WRITE 0x03 32 w STAT 0x00 Write anything to store a new value
READ 0x04 32 R STAT OxDEADBEEF | Read back the stored value

Table 4 - Address map dummy_module

4.5 version_module and housekeeping_module

4.5.1 Version_module
The version_module is meant to include the iteration of code being used on the FPGA and the

githash connected to it. The githash is meant to be implemented automatically when
compiling the project in Vivado.

4.5.2 Housekeeper_module
The KCU105-board has some internal sensors. The housekeeper_module is meant to get

information from these sensors.

Rev: 1.10 Page | 35 28/05/2022

Tests and verification

5 Tests and verification

Testing and verification are important parts of every development process. It is important to
have data to back up the claims about how the part performs. Under development, testing is
also used to confirm correct behaviour along the way. The testing performed while developing
are often virtual testing.

5.1 Verification

Testbenches in VHDL are a great way to make sure the code is working as intended.
Testbenches provide the possibility to simulate every part of a system with user-defined
stimuli in a controlled and stable environment. This is a repeatable and reliable way of testing
because it is not affected by external interference since everything is happening in SW. After
the simulation is complete, a wave diagram is used to show the results. This diagram shows
the state of every desired signal throughout the simulation. This can make it easier to debug
any errors because it is possible to see where they happened. A wave diagram is also a good
way of explaining what the code does. A diagram is often more intuitive to understand than
straight-up code.

MJCU has a master testbench including all of the modules where every com_module is
connected to a dummy version of the PCUs. This testbench covers every task that should ever
occur in the system it is built for. All of the modules in MJCU also have their own testbenches
to make it possible to have a closer look at the modules individually.

Figure 22 - Example of a wave diagram from a small testbench

In small testbenches, like the one shown in Figure 22, it is possible to confirm that the
behaviour is correct. But when the testbenches get longer and more complex, this would be a
tedious task to do manually. Therefore, there is an automatic way to give a summary of the
testbench at the end of the simulation. This tool is called Universal VHDL Verification
Methodology (UVVM) [1].

Rev: 1.10 Page | 36 28/05/2022

Tests and verification

5.1.1 UVVM
UVVM [1] is an open-source tool, made by a Norwegian company named Bitvis, for making a
structured testbench in VHDL. It provides useful functionality that can make sure that the
outputs of the design under testing (DUT) have the expected values. It can wait on a signal to

change if the timing varies, and it can stop the simulation if a given time has passed without

getting an answer from the DUT. After the simulation has finished, it will give a report written

in a text file including all the information about what types of tests were performed and the

result. The report looks something like this:

UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UvVVM:
UvVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UvVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:
UVVM:

ID LOG HDR LARGE 0.0 ns TB seq.

Start Simulation of TB for MJCU tb

ID LOG_HDR

40.0 ns TB seq.

Write to PSU address 1 -> 5 via module 01

***x FINAL SUMMARY OF ALL

ALERTS ***

REGARDED

NOTE
TB NOTE
WARNING

TB WARNING
MANUAL CHECK :
ERROR :
TB ERROR
FAILURE

TB FAILURE

0

OO OO OO oo

EXPECTED

0

OO OO OO oo

IGNORED
0

OO OO OO oo

Comment?
ok
ok
ok
ok
ok
ok
ok
ok
ok

>> Simulation SUCCESS:

No mismatch between counted and expected serious alerts

ID LOG HDR

1813771.0 ns TB seqg.

SIMULATION COMPLETED

Rev: 1.10

Listing 6 - UVVM log report

Page | 37

28/05/2022

Tests and verification

The UVVM-libraries required for a given testbench must be compiled before they can be used.
UVVM uses do-files to do this. The file named “compile_all.do” is located inside the “script”-
folder and is executed by calling it with three arguments.

Compile UVVM Dependencies (compile all.do)

This file can be called with three arguments:

arg 1l: Part directory of this library/module

arg 2: Target directory

arg 3: Path to custom component list file

do [simulation file (.do)] [arg 1 1[arg 2][arg 3 1

Listing 7 - UVVM do-file

The component list mentioned above is a text file that includes the names of the libraries that
the user wants to compile.

Rev: 1.10 Page | 38 28/05/2022

Tests and verification

5.1.2 DO-file

The use of do-files to compile libraries, and one example project that used it to run a
simulation, inspired the use of do-files in this thesis. All the modules have individual
testbenches with a do-file to run them. All of the compiling and simulation in Multisim or
QuestaSim can be done through the terminal manually. This is a tedious task if the DUT has
multiple files. A do-file is a tool for automating this process. The ones in this project create a
folder named “sim”. Then it compiles all the UVVM- and IPbus-libraries necessary for the
testbenches and components into the folder. After all the external libraries are done, it
compiles all of the components for the DUT and the package file made for MJCU. Then it
simulates the testbench and opens the wave diagram.

To simulate a module or the MJCU itself in either Multisim or Questa Sim, navigate to the
“script” folder in the desired module and run the do-file by typing “do sim.do” in the terminal.
This will compile all of the necessary libraries, package files and components and simulate the
testbench. It is also possible to run the sim.do file with an argument to save time the next time
the user wants to simulate the module. It’s the same commando but followed by an argument.
For example, “do sim.do example”.

5.2 Hardware testing

Physical testing is performed to test if the parts work as intended in the real world. This should
theoretically be done in the same environment as the part will be living in. This is because it
could be affected by external interference. There is also a possibility that the communication
protocol was misunderstood by one or both ends of a transmission line. This happened more
than once in this case. The first error between the MJCU and the PCUs was the Read/write bit.
It was the wrong way around. Then it became clear that the chip on the PCUs that deals with
the communication sends the data with LSB first and MSB last. The reason this didn’t cause an
error in the simulation was that both the master and slave were created by the same person.
This was a known risk when it was created. It is often easier to create a working
communication if the same person creates both sides. If the protocol is misunderstood, it may
not matter because both the master and the slave would have the same flawed protocol. This
is the reason why good documentation is important.

Rev: 1.10 Page | 39 28/05/2022

Tests and verification

Oscilloscope verification

Oscilloscopes are a good tool to verify correct behaviour in smaller data transfers. They make
it possible to see how signals behave instead of just looking at the result on the computer
screen. The two figures, Figure 23 and Figure 24 below show the first successful test between
the control room and a prototype of the PCU via the MJCU. The prototype was not configured
to synchronize the transfer with the clock signal generated by the MJCU. Instead, it was using

a baud rate of 115200 just like the standard. The timings were not perfect, so it is possible to

v | . -
3 0
2 ! 2
> 00000000 5 0J1i0j1lol1]o01

see some shifting in Figure 24.

Figure 23 - MJCU writing 0x00AA to PCU-address 0x01 (asynchronous)

e I e e L

] =
Hl1jo 000 0 0%

PP P

|
: 0 ‘= Eoooooo0o0o0 £ ofijof1lo]1fofs
Ll 1|0 0 0 0 0 O4e 5) &

Figure 24 - MJCU reading 0x00AA from PCU-address 0x01 (asynchronous)

Rev: 1.10 Page | 40 28/05/2022

Tests and verification

Large scale tests

The first large sample size test was done after the PCU prototype was able to use the USART
clock to synchronize data transfer. The test was to write a random 16bit-value to a given
register inside the PCU, then read from the register 1000 times. This was repeated 100 times
to get a mean number of errors. The errors only occurred on the data bits, never the address
bits. This test was performed multiple times to find the error rate of different baud rates. That
resulted in a bit error of around 4% when using 57 600, 115 200, 230 400 and 460800. While
921 600 and 1 000 000 gave an error rate of 0%.

Baud rates Mean bit error
57 600 4.3%
115 200 4.0%
230400 4.2%
460 800 4.4%
921 600 0.0%
1 000 000 0.0%

Table 5 - Bit-error test with varying baud rates, performing 1000 read operations 100
times.

The reason for this behaviour is unclear. A possible cause might be a delay in the
communication. At lower baud rates a notable delay can be noticed in the response from the
PCUs. The delay is observed to be different from transaction to transaction, which could
explain the spread of errors on the graph in Figure 25.

Rev: 1.10 Page | 41 28/05/2022

Tests and verification

115200 baud

Number of errors during 1000 read transactions (sample size)=100

with std

e L L L LT T

Erroneous bits

Figure 25 - Mean bit error using 115200 baud

The last test was done over a period of 17 hours. 60 million transfers were successfully
transferred using a baud rate of 921600 without a single error. Depicted in Figure 26.

921600 baud

Number of errors during 1000 read transactions (sample size)=100

Figure 26 - Mean bit error using 921600 baud

Rev: 1.10 Page | 42 28/05/2022

Discussion

6 Discussion

The project plan shown in Figure 27 was created to make sure we had enough time to learn
how to use the different programs, Linux, and GitHub before starting the development of the
MJCU. The time required was a bit shorter than expected for all activities except one. We were
supposed to make a test design in Vivado and upload it to the FPGA. Nothing more advanced
than a blinking LED, or something along those lines. Unfortunately, there were some troubles
regarding the licenses we had available for using Vivado, so this activity had to be delayed
until the licences were working. But because everything else took less time, we ended up being
ahead of the schedule. The communication towards the PCUs was estimated to take four
weeks because it was similar to something we had created before, and the protocol was
already established. This ended up being the most time-consuming part of the project because
the protocol changed a bit under the development and testing.

The goal was to finish the design before the Easter holiday. That would leave us with enough
time to comfortably create the MJCU. This goal was meant to be a bit out of reach to make us
work harder in advance of the holiday. In reality, the design was ready for its first physical test
before the deadline. The result of this test was that the communication between the control
room and FPGA was flawed. This was a quick and easy fix, and it ended up working the week
after the holidays. The next four weeks went into further development on the communication
towards the PCUs. In the third week, it was kind of working but with some hiccups. In the
fourth week, this was corrected and it was working as intended.

. Plan Duration % % Complete (beyond plan) Deadlines
Project Planner Wt I

% Complete . Easter(Holiday)

PLAN PLAN ACTUAL ACTUAL PERCENT peRrIODS

AcTivITY START DURATION START DURATION COMPLETE
1 2 3 45 6 7 8 9 101112 13 14{15/16 17 18 19 20(21|22 23 24
Writin 100%
= 2 20 2 20 _I

i 0,
Halfway presentation 12 5 12 1 100% .
H i 9
andin 2 1 2 1 100% I
7
1 0,
Bachelor presentation 23) 23) 0%
i 0,
Preparations) 4 2) 100%

Making our own test
e 100%

design 6 2 6 7

Comunication towards 100%
PCUs 8 4 8 12 °
Complete design 100%

8 8 8 14

Figure 27 - Project plan

Rev: 1.10 Page | 43 28/05/2022

Conclusion and Outlook

7 Conclusion and Outlook

7.1 Conclusion

An FPGA solution (MJCU) that can transfer data between a control room and multiple Power
Control Units has been developed and is working as intended. The communication towards
the control room is using IPbus. A well-documented and tested communication protocol
developed at CERN for communicating with address-aware hardware inside an FPGA. The
control room is the master of the power control system in the Bergen pCT project. It uses the
SW side of IPbus to communicate with the MJCU. MJCU consists of multiple types of slaves:
43 com_modules, a global module, and a dummy module. The 43 com_modules are
responsible for communicating with all of the PCUs using a custom USART protocol. The global
module can forward data to all of the com modules at the same time. The dummy module is
a feature to test the communication between the control room and MJCU.

Every module has its own testbench that could be simulated using a script. Download the
powermonitor repo, navigate to a desired module, and run the “sim.do”-script using either
Questa Sim or Multisim. This will compile everything necessary and run the simulation to show
how the module behaves and what features it has. The MJCU itself has a testbench where it
is connected to dummy_PCUs to show its behaviour and functionality. All the testbenches use
UVVM for verification and logging.

In conclusion, the design has been proven to work as intended, and the design process has
been conducted with a focus on documentation and verification. Hardware tests have shown
that the communication from top-level software to the PCU microcontroller is reliable and
stable. The requirements that were set at the start are met. Extensive testbenches are
designed, not only for the complete build, but also at the level of each individual component.

7.2 Outlook

The plan was to design two more modules. A version control and a housekeeper. The version
module would keep track of the version and GitHash and have it available for the control room
to read. There are some internal sensors on the Xilinx Evaluation Board that are possible to
read from via I12C. The housekeeper module was supposed to take care of this.

These two modules are left to be designed. What comes next would be to connect all three
parts of the system, the control room, the KCU105 Evaluation Board and the PCUs together
physically. The communication with the PCU has only been done using single-ended
communication signalling for the clock and the two data connections (TX and RX). This remains
to be swapped with bidirectional low-voltage differential signalling (LVDS). This means that
the RJ45 connector rack needs to be set up, and testing needs to be done to make sure
everything works at the intended scale. The control room and the PCUs need to be finalized
as well and then operate as a complete working system.

Rev: 1.10 Page | 44 28/05/2022

https://git.app.uib.no/pct/powermonitor

Bibliography

8 Bibliography

[1] Bitvis, “GITHUB - UVVM,” 55 2022. [Online]. Available: https://github.com/UVVM/UVVM.
[Accessed 11 5 2022].

[2] M. Eggen and J. R. Hauser, “GitAppUiB,” 5 2022. [Online]. Available:
https://git.app.uib.no/pct/powermonitor.

[3] T. Bodova, “High-Speed Signal and Power Distribution of,” Department of Physics and
Technology - University of Bergen, Bergen, 2020.

[4] “AMD - Xilinx,” 2022. [Online]. Available: https://www.xilinx.com/products/boards-and-
kits/kcu105.html#specifications. [Accessed 21 05 2022].

[5] ipbus - cern, “cern.ch,” 20 06 2021. [Online]. Available:
https://ipbus.web.cern.ch/doc/user/html/firmware/bus.html.

[6] H. Birkenes, Design of Configuration and Monitoring System for Power Supply in ProtonCT
Project, Bergen: Institute of Physics and Technology - University of Bergen, Soon to be released.

[7] B. Olsen, Power and Monitor Solution for the ProtonCT, Bergen: Institute of Physics and
Technology - University of Bergen, Soon to be released.

Rev: 1.10 Page | 45 28/05/2022

Development Tools

Appendix A Development Tools

Software:
e Vivado 2019
e Questa Sim 2020.4
e GitHub

Hardware:

e KCU105 Evaluation Board featuring the Kintex UltraScale XCKU040-2FFVA1156E FPGA

Rev: 1.10 Page | 46

28/05/2022

Address map for all modules inside the MJCU

Appendix B Address map for all modules inside the MJCU

A1l Module addresses
All the slaves inside the MJCU have different addresses.

From IPbus SW -> IPbus HW-slaves

They are as follows.

AME ADDRESS
HEX DEC

GLOBAL_MODULE 0x00
COM_MODULE_1 0x01
COM_MODULE_2 0x02

VERSION 0x41 65
HOUSEKEEPER 0x42 66
DUMMY_MODULE 0x43 67

Table 6 - Module addresses

Rev: 1.10 Page | 47 28/05/2022

Address map for all modules inside the MJCU

A.2 Address map

Address map for all internal slaves inside the MJCU including two examples.

From IPbus SW -> IPbus HW-slaves

Name Register | Width | Access

address

Default Value

Description

GLOBAL_MODULE (module address 0x00)

GLOBAL_CONTROL 0x01 32 w 0x00

GLOBAL_STATUS
GLOBAL_WRITE

GLOBAL_RESET
COM_ENABLE_O

COM_ENABLE_1

SYSTEM CLOCK
SPEED

PSU BAUD RATE

0x02
0x03

0x05
0x06

0x07

0x08

0x09

32
32

32
32

32

32

32

R/W

R/W

R/W

R/W

0x00
0x00

0x00
OXFFFFFFFF

OXFFFFFFFF

0x1D905C0

0x1C200

Not in use
Not in use

Writes data to every com_module in the system.
[31] R/W bit towards PCU

[30..24] Not in use

[23..16] PCU reg address

[12..0] Data to PCU

Resets all modules except the global_module

These 32 bits enable com_modules[1->32]
‘1’ = ENABLED
Bit[n] controls com _module_[1+n]

This function is made in the case that modules
are not connected to a PCU.

These 32 bits enable com_modules[33->64]
‘1’ = ENABLED
Bit[n] controls com _module_[33+n]

This function is made in the case that modules
are not connected to a PCU.

The speed of the clock used by the
com_modules.

This is used to calculate the baud rate towards
the PCUs.

Default: 31Mhz (clock from IPbus)

The baud rate to use towards the PCUs

COM_MODULE (module address 0x01 — 0x40)

CONTROL
STATUS

WRITE

0x01
0x02

0x03

32
32

32

0x00
0x00

0x00

Not in use

[31..4] Not in use

[3]1 TXisfull (1 =full)

[2] TX is empty (1 = empty)

[1] RXis full (1 =full)

[0] RX is empty (1 = empty)

Writes data to the corresponding PCU.
[31] R/W bit towards PCU

[30..24] Not in use

[23..16] PCU reg address

[12..0] Data to PCU

Rev: 1.10

Page | 48

28/05/2022

Address map for all modules inside the MJCU

Name Register | Width | Access | Default Value | Description
address

READ 0x04 32 R 0x00 Reads a 32-bit vector from the corresponding
PCU.
[31] R/W bit towards PCU
[30..24] Not in use
[23..16] PCU reg address
[12..0] Data from PCU

RESET_FIFO 0x05 32 w 0x00 Resets both TX and RX FIFO to clear them.

DUMMY_MODULE (module address 0x43)

WRITE 0x03 32 w 0x00 Write anything to store a new value

READ 0x04 32 R OxDEADBEEF | Read back the stored value

Table 7 - Address map for MJCU

Address for reaching [NAME] register:

Example:

To reach WRITE in global_module:

To reach READ in com_module_23:

Rev: 1.10

Ox[MODULE ADDRESS] & [REGISTER ADDRESS]

0x0003

0x1704

Page | 49

28/05/2022

DATA FLOW

Appendix C

DATA FLOW

Data flow from the Control room to the PCUs and back

8 bits 16 bits

Rev: 1.10

Control room

32 bits 32 bits

Ipbus interface

1
m Module address | Register address

8 bits |16 bits l 8 bits

Select

Fabric sel

m Module address | Register address | Data to slave

8 bits 16 bits 8 bits 32 bits

-
—t—

Data to slave

Com module top

I 8 bits l 1 bits 7 bits 8 bits 16 bits
Com module [n]

Global module

Dummy module

Select [1—1‘] l

QLD
(/W bi | Notin use | PeUadaress | P data

A4
[/ bit | ot use | e acres | Pev o

1 bits 7 bits 8 bits 16 bits 1 bits 7 bits 8 bits 16 bits

I !

TXFIFO

Com module [n]

TXFIFO
Com module [1-45]

RXFIFO

Com module [n]

R/W bit | Not in use | PCU address | PCU data Bl R/W Hs bit | Notin use | PCU address HS | PCU data SENT/RECIEVED

1 bits 7 bits 8 bits 16 bits 1 bits 7 bits 8 bits 16 bits

(Shortcut to all TX FIFOs.

Process from here is
explained to the left)

(1)

Data to slave

32 bits

H

32-bit memory

28/05/2022

Rev: 1.10

R/W bit | Not in use | PCU address | PCU data [l R/W Hs bit | Notin use | PCU address HS | PCU data SENT/RECIEVED

H

TXFIFO

Com module [n]

RXFIFO

Com module [n]

l

I

1 bits 7 bits 8 bits 16 bits 1 bits 7 bits

|

!

R/W bit | Notin use | PCU address | PCU data
Select 7 bits 8 bits 16 bits

USART

Com module [n]

8 bits

TXFIFO

Com module [1-45]

16 bits

-1

e Lrove B v]

1 bits 7 bits

W/RHS J Add HS W/R HS | Add HS
i f HS = Handshake

1 bits 7 bits

ml

8 bits

8 bits

1 bits
1 bits
8 bits

8 bits

I I

PCU [n]

7 bits

7 bits

| B
W, | e

Page | 51

(Shortcut to all TX FIFOs.

Process from here is
explained to the left)

H

32-bit memory

28/05/2022

Picture of an ALPIDE sensor

Appendix D Picture of an ALPIDE sensor

This picture shows the sensors used inside the calorimeter

Rev: 1.10 Page | 52 28/05/2022

Project plan

Appendix E

Project plan

Project Planner

Period Highligt 21 Plan Duration%ctual Sta .;Comple1%‘ctual (beyond plar.amplete (beyond p.xster(HoIida. Deadlines .Completed deadline

cmviy ;I'L::I' nu':/-:\T':‘oN ASCTT:R:L DG::"JTQ:N C':)ElclﬁlgE PERIODS
1 2 6 7 8 9 10 11 12 13 14 16 17 18 19 20|21 |22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Meet with UiB representative 1 1 1 1 100% .
Gain Lab and software access 2 1 1 2 100% -
Feasability study 2 4 2 4 100%

2 19 2 19 100%

5 17 5 17 100%
Guidance settlement 6 1 6 1 100%
Halfway presentation 12 2 12 1 100%
Reflection paper 20 1 20 1 100% .
Exam + handin (physics) 21 2 21 2 0% 7
EXPO poster 22 1 22 1 100%
Hand in 22 1 22 1 100%
Bachelor presentation 23 2 23 2 0%
Graduation party 24 1 24 1 0%
Learn to use GIThub 4 1 4 1 100%
Learn to use Vivado 5 2 5 2 100%
Learn to use Questasim 5 2 5 2 100%
Learn to use Linux 4 2 4 2 100%
Test IPbus(wp3) 5 2 5 2 100%
Making our own test design 6 2 6 7 100%

8 4 8 9 100%

8 8 8 9 100%
Introduction 2 2 2 2 100%
FPGA design thinking 3 3 3 3 100%
Log 2 21 2 21 100%

Figure 28 - Project plan for BO22EB-08
Rev: 1.10 Page | 53 28/05/2022

	Document control
	Acknowledgements
	Abstract
	Acronyms
	List of Figures
	List of Listings
	List of tables
	Outline
	1 Introduction
	1.1 Particle Therapy
	1.1.1 Medical Imaging Methods

	1.2 The Bergen protonCT Project
	1.3 Requirements

	2 Related work
	2.1 IPbus
	2.2 Connected projects
	2.2.1 The Control room
	2.2.2 The Power Control Unit

	3 Problem analysis
	4 Design
	4.1 MJCU – top-level
	4.2 com_module
	4.2.1 com_module_reg
	4.2.2 com_module_fifo
	4.2.3 com_module_usart

	4.3 global_module
	4.4 dummy_module
	4.5 version_module and housekeeping_module
	4.5.1 Version_module
	4.5.2 Housekeeper_module

	5 Tests and verification
	5.1 Verification
	5.1.1 UVVM
	5.1.2 DO-file

	5.2 Hardware testing

	6 Discussion
	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	8 Bibliography
	Appendix A Development Tools
	Appendix B Address map for all modules inside the MJCU
	A.1 Module addresses
	A.2 Address map

	Appendix C DATA FLOW
	Appendix D Picture of an ALPIDE sensor
	Appendix E Project plan

