

 Fakultet for ingeniør- og naturvitskap

 Institutt for datateknologi, elektroteknologi og realfag

Visualizing Smart Charging of Electrical Vehicles
for Support Personnel

Vision document

Version 1.4

This document is based on Visjonsdokument from NTNU. Revision, customisations and adaptations to use at

IDER, DATA-INF done by Carsten Gunnar Helgesen, Svein-Ivar Lillehaug and Per Christian Engdal. The document

is also available in Norwegian.

 Fakultet for ingeniør- og naturvitskap

 Institutt for datateknologi, elektroteknologi og realfag

REVISION HISTORY

Date Version Description Author

26/JAN/22 1.0 Summary of product and problem Kristin Standal

08/FEB/22 1.1 User’s environment, requirements Mads Henrik Sørbø

10/FEB/22 1.2
Functional and non-functional

requirements
Kristin Standal

28/FEB/22 1.3
Resolving comments from

supervisor

Mads Henrik Sørbø

Roger Karlsen

20/MAY/22 1.4 Finalizing the document for hand-in Kristin Standal

 Fakultet for ingeniør- og naturvitskap

 Institutt for datateknologi, elektroteknologi og realfag

TABLE OF CONTENTS

1 INTRODUCTION .. 1

2 SUMMARY OF PROBLEM AND PRODUCT .. 2

2.1 PROBLEM SUMMARY ... 2

2.2 PRODUCT SUMMARY ... 2

3 DESCRIPTION OF STAKEHOLDERS AND USERS ... 3

3.1 SUMMARY OF STAKEHOLDERS ... 3

3.2 SUMMARY OF USERS ... 3

3.3 USERS’ ENVIRONMENT... 3

3.4 SUMMARY OF USER’S REQUIREMENTS ... 4

3.5 ALTERNATIVES TO OUR PRODUCT ... 5

4 PRODUCT OVERVIEW ... 6

4.1 THE PRODUCTS’ ROLE IN THE USERS’ ENVIRONMENT .. 6

4.2 PREREQUISITES AND DEPENDENCIES.. 7

5 PRODUCT FEATURES / FUNCTIONAL REQUIREMENTS .. 8

6 NON-FUNCTIONAL REQUIREMENTS .. 9

7 REFERENCES ... 10

1

1 INTRODUCTION

How can the different events and data streams involved in charging an electrical vehicle be

visualized online, in a way that makes it easy for a non-technical support person to help

customers.

Currently Tibber customer support needs to fetch, manage, and interpret data manually in

various databases and systems. The types of data can be timeseries or state variables, which

are fetched from the customer's electrical vehicle or their smart charger. Tibber wishes to

ease this process for the support department and wishes to aggregate the data from the

various logs and present it within a single view within their in-house support application

named Varys.

2

2 SUMMARY OF PROBLEM AND PRODUCT

2.1 Problem summary

The problem with

The internal tool Varys does not have a single view

for all the information needed for customer

support to aid customers with smart charging

problems and/or troubleshooting.

affects
The customer support team at Tibber and the

customers that contact customer support.

as a result of this

Customer support spends unnecessary time

gathering the information within Varys.

Sometimes they might not find the information

they need because it is hard to find.

a successful solution will

The customer support team will be more efficient

and manage to help the customers in an overall

better way. The new solution will make their jobs

easier.

2.2 Product summary

For Tibber

who Needs a simple overview of the collected data

the product named Smart Charging

which Makes the customer support team more efficient.

Unlike
Today’s system, which is complicated and

confusing for a non-technical person.

our product has

A simple overview with all the necessary details to

help customer support help customers with their

smart charging questions/troubles.

3

3 DESCRIPTION OF STAKEHOLDERS AND USERS

3.1 Summary of stakeholders

Name Description Role during development

Tibber Customer

Support

The customer support

team at Tibber is the

group that will reap the

rewards of this project.

It will make their job

easier/more efficient.

Our project will be in “beta” during

development and the customer

support team will be able to test it

while in development. Their feedback

will help form the solution, as they

have knowledge and experience

about what would be a good

solution.

Tibber

Helping us develop the solution:

technical support, experience, and

knowledge about the pre-existing

system.

3.2 Summary of users

Name Description Role during development Represented by

Tibber

Customer

Support

Currently customer

support needs to fetch

different logs and interpret

results manually. They

have the knowledge of

common customer

questions.

Assist by informing the

students what the

common questions are

when customer calls

with questions

regarding smart

charging.

Kai Marius,

Thomas,

Natalia

3.3 Users’ environment

The new system is to be created in an existing application, Varys. Therefore, it needs to

match with the existing design and layout, both visually and functionally. We do not have

100% freedom in designing this system the way we want but need to follow the limitations

of the existing system. The new system is not really dependent on any hardware, as Varys

is a web application and runs without problems in modern web browsers.

4

3.4 Summary of user’s requirements

These requirements are obtained from the smart-charging team in Tibber. All of the

requirements affect Varys and currently there is no existing solution for any of these

requirements.

Requirement Priority Suggested new solution

SC 1: Overview - Smart

Charging
1 New page in Varys containing the smart charging outline

SC 2: Show configuration 1

For each device a customer has related to smart charging,

list the current configuration(s) of the device. Fetching

information must be fast, support should not have to wait

for critical information.

SC 3: Configuration

checks
1

Support personnel shall get a good overview if the

configuration has any known/common configuration

error.

If so, it shall be clearly shown.

SC 4: List scheduler

events
1

Support personnel shall get a good overview of all

charging schedules that have been calculated on all

devices for this home.

SC 5: Visualize charging

schedule
1

It shall be possible for support personnel to get a visual

representation of the input and output from the

scheduler algorithms (pyML execute and pyML response).

SC 6: Filter scheduler

event
1

Support personnel shall be able to filter which scheduler

event to see.

SC 7: Show price graph 2
Support personnel shall be able to see the price overlayed

the smart charging schedule.

SC 8: Changeable values 3 Support personnel shall (maybe) be able to change values

SC 9: Load balancing 2
Support personnel shall be able to see when load

balancing kicks in.

SC 10: Calculator 3
Support personnel shall be able to convert A to kW for 1

and 3 phases.

5

SC 11: Add visualization

of logs
2

Support personnel shall be able to view the logs visualized

with charts, instead of numbers/text.

SC 12: Statistics 3 We want to know how often functions are being used

SC 13: Device view 3
We have specific device views for some devices. Make the

device clickable.

3.5 Alternatives to our product

As the product to be developed is unique to Tibber there are not many alternatives.

Alternative products are related to visualizing charts but there is not any specific

product that can be purchased and that would work “out of the box” with Varys. This

means the alternative products are npm-packages for visualizing data. For example:

• Chart.js

• Highchart

• D3.js

• Recharge

6

4 PRODUCT OVERVIEW

4.1 The products’ role in the users’ environment

Figure 4.1 Use case diagram

The support department is equipped with personal laptop computers which are issued

by Tibber. They dock their laptops when at the office such that they may have multiple

monitors to work with. Varys is a browser application, so it has to support the various

browsers and resolutions of customer support’s monitors, which varies from 1920x1080

to 3456x2234. In some cases, support may also use their phones to access Varys, so the

product must adhere to responsive web design.

Support also has access to a test environment where features that are not yet pushed to

production can be tested. The data on this test environment consists of dummy data

that has been manually created and can be manipulated without worrying about making

changes to an actual customer.

The Smart Charging view consists of three simple use cases:

Show data

This happens when the actor clicks on the ‘smart-charging’-

button on the customer page. It fetches all the necessary data

and displays it for the actor.

Edit information
Some of the information is editable, for example, names of

devices.

Discover new devices
A button to discover new devices that are connected but not

yet displayed in the view.

7

4.2 Prerequisites and dependencies

Varys is built with the Vue framework which is a progressive framework for building

user interfaces – it is implemented as additional markup to HTML.

Varys consists of both frontend (Vue) and backend which mostly consists of

authentication, authorization, and endpoints. The endpoints fetch data from a series of

microservices, which together with Varys, are hosted in AWS.

Major changes in Varys could break the project, but it is unlikely that this will happen

and if it happens, it is simply fixed with a patch or a rollback to an earlier version. Tibber

has no plans to move away from Varys.

Varys depends on other microservices to fetch data (web-APIs). It’s likely that some of

these needs to change to meet the requirements. Additionally, a smart-charging

centered microservice service needs to be deployed for maintainability/scalability

reasons.

Some of these microservices are documented to some extent (GitHub/Notion), but

mostly reduced to the minimal requirements to run them locally for testing and

development. However, thanks to good coding practices they are relatively easy to read

and understand.

8

5 PRODUCT FEATURES / FUNCTIONAL REQUIREMENTS

1. The system must show all the cars, chargers and load balancing devices for a

customer, and specific parameters belong to these vehicles/devices. If a customer has

several homes (addresses), devices and cars must be separated by homes in different

tabs.

2. The system must show alerts if there are any errors in the data extracted from the

state.

3. The system must show highlights for certain configuration checks (if a setting is

on/off, etc.)

4. The system must have a tab for scheduled events and a log.

a. The support personnel must have an overview of all charging schedules that

has been calculated on all devices for this customer/home.

b. All execute pyML and pyML response must be listed.

5. The system must visualize the charging.

a. It should be possible for support personnel to get a visual representation of

the input and output from the scheduler algorithms.

b. Requirements:

i. Start from when the schedule was calculated and show the next 24

hours.

ii. Show which hours the algorithm decided to change

iii. Show the charge input

6. The system must filter scheduler events.

a. Support personnel must be able to filter which scheduler events to see.

b. Requirements:

i. Must be able to filter the list where the event pairs are shown.

ii. Must be able to filter on time and device.

9

6 NON-FUNCTIONAL REQUIREMENTS

Scalability

The code must be written in such a way that it is scalable. It should not fetch data that is not

needed and the code itself must be adaptable to new requirements.

Efficiency

The code must be written so it is efficient. It should fetch data in parallel where possible and it

should reuse data that is unlikely to be changed during a session by caching. The CPU and

memory constraints are initially set relatively conservative, and they can be lifted if needed

later in development.

Flexibility / modifiability

The code must be written in such a way that it is reusable, e.g., flexible components that

accept various parameters. If this is done correctly, the code itself becomes more manageable

as it is easier to make changes later. There would be fewer places to make changes and it is

easier to scale the software.

Testability

Testability is usually consistent with flexibility. It should be possible to create test data and test

the different parts of code. When errors or incorrect input occur from the user, it should not

have negative consequences, but prevent the execution of the code.

Usability

The user interface must be user-friendly and intuitive. When a customer support

representative makes a mistake, e.g., invalid input in fields, they must be informed in a way

that makes it obvious where the error has occurred. This can be done by marking the input

with colors or descriptive error messages.

10

7 REFERENCES

Function requirements: https://en.wikipedia.org/wiki/Functional_requirement

Non-functional requirements: https://en.wikipedia.org/wiki/Non-functional_requirement

What is Vue.js? https://v2.vuejs.org/v2/guide/?redirect=true

https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://v2.vuejs.org/v2/guide/?redirect=true

