

FishEye on Blockchain

Vision document

Version 3.0

This document is based on vision document from NTNU. Revision, customizations and adaptations to use at IDER, DATA-INF done by Carsten Gunnar Helgesen, Svein-Ivar Lillehaug and Per Christian Engdal. The document is also available in Norwegian.

REVISION HISTORY

Date	Version	Description	Author
27.01.2022	1.0	Problem formulation	Arsenii Dmitriev, Karl Gjølsjø, Adrian Eidsnes Phillips
25.01.2022	2.0	further, elaborating initial thought,	Arsenii Dmitriev, Karl Gjølsjø, Adrian Eidsnes Phillips
20.04.2022	3.0	Elaborating some aspects.	Arsenii Dmitriev, Karl Gjølsjø, Adrian Eidsnes Phillips

TABLE OF CONTENTS

F	ISHEYE	ON BLOCKCHAIN	. 1
1	INT	RODUCTION	. 1
2	SUM	IMARY OF PROBLEM AND PRODUCT	. 2
	2.1	PROBLEM SUMMARY	. 2
	2.2	PRODUCT SUMMARY	. 3
3	DES	CRIPTION OF STAKEHOLDERS AND USERS	. 3
	3.1	SUMMARY OF STAKEHOLDERS	. 3
	3.2	SUMMARY OF USERS	. 4
	3.3	Users' environment	. 4
	3.4	SUMMARY OF USER'S REQUIREMENTS	. 4
	3.5	ALTERNATIVES TO OUR PRODUCT	. 5
4	PRO	DUCT OVERVIEW	
	4.1	THE PRODUCTS' ROLE IN THE USERS' ENVIRONMENT	. 6
	4.2	Prerequisites and dependencies	. 6
5	PRO	DUCT FEATURES/FUNCTIONAL REQUIREMENTS	. 6
6	NON	F-FUNCTIONAL REQUIREMENTS	. 6
7	REF	ERENCES	. 6

1 INTRODUCTION

The vision document is a collection of our thoughts on the project. Here, we reflect on our ideas for the project as well as develop the problem. It helps us to keep the focus on the main aspects. Furthermore, the purpose is to define the problem correctly, which is crucial for delivering a quality product.

2 SUMMARY OF PROBLEM AND PRODUCT

2.1 Problem summary

Problem formulation	We would love to start with the research question that					
110010111101111111111111111111111111111	will help us stay focused on the problem and main					
	details of the project: "To what extent the challenges					
	in the current fish supply chain be mitigated by using					
	blockchain?". This question addresses two main thing					
	in the project – problems related to data integrity in the					
	fish farm production industry and how/to what extent					
	blockchain may mitigate the challenges.					
	The fish industry in Norway requires an automated					
	supply chain solution that prevents fraud and cheating					
	that are possible in the fish production industry. Not					
	only data integrity and product authentication are					
	crucial, but a track of supply chain issues and a trustful relationship with end customers.					
Affects	*					
Affects	The product will affect Ørn Software, a company is planning to utilize the API we develop. Ørn Software					
	intends to integrate the API into a supply chain					
	solution for the Fish production companies in					
	Norway.					
	Next, the end-costumers that consume fish products					
	are affected so that they can examine the origin of					
	fish products and be sure that the data presented is					
	legitimate.					
	Transportation companies are affected indirectly.					
	Milestones in the logistic scheme will end up in					
	blockchain.					
Consequences/result	· · · · · · · · · · · · · · · · · · ·					
	and utilized by the fish production companies in					
	Norway. The logic is that each fish cage would have					
	its RFID tag with information. The system will					
	extract information and forward it to the API we					
	develop when one is scanned. The API is responsible for interacting with blockshain and completing a task					
	for interacting with blockchain and completing a task respective to the requirements.					
	Such a system ensures data transparency and					
	integrity. The end customers will be able to check the					
	integrity. The end editioniers will be able to effect the					

	product's origin. Thus, customer attitude towards farm fish may improve. Cheating by either party in the fish production process will be minimized. Moreover, any issues in the supply chain may be defined faster.
A successful solution will	A successful solution will be a thorough report, answering the research question and presenting facts. Yet, a beta version of a functional API is responsible for getting various requests and performing the desired task in the blockchain.

2.2 Product summary

For	Ørn-Software.		
That	Will receive research on the way blockchain technologies may be integrated and why it is		
	functional.		
Name of the product	FishEye On Blockchain		
That	It provides details on economy estimations and		
	technical aspects of the solution.		
And opposed to	Lower the cheating factor in the production or		
	transportation phases. Increase companies'		
	openness and improve the end-customer		
	relationship.		
Our product ensures	An overview of the timespan from the moment fish		
	are bred till consumed		

3 DESCRIPTION OF STAKEHOLDERS AND USERS

3.1 Summary of stakeholders

Name	In-depth description	Role under the development
Ørn	The company delivers	A company's
Software	Software as a Service	representative helps us
	products for various	define the indeed
	businesses. Ørn Software	problem as well as sends
	desires to secure marine	insider information if
	ecosystems and thus sees	needed.

potential in a Bl	ockchain as
a Service produ	ct utilized
by the fish prod	uction
companies.	

3.2 Summary of users

Name	In-depth description	Role under the development	Represented by
Fish	No particular user.	Share data	Ørn Technologies
farms	The API will be	fragments	
	integrated into an		
	autonomous logistic		
	solution available		
	for fish farms.		

3.3 Users' environment

A team of software developers will further use our API to pack it all into an automated system. Individual units will be used by scanning an RFID tag containing data during the production process to capture all the stages.

3.4 Summary of user's requirements

Requirement	Priority	Affects	Existing solution	Suggested new solution
Data transparency		End-customer, Fish farms.	may choose which internal data to share with customers, but	Creation of an API that proceeds and uploads data to a blockchain to make the data public and verified.
Data integrity		Fish Farms, logistic companies, end-customer.	traditional way of storing data via a	Blockchain ensures data integrity. Thus it's being used to achieve the goal.

		DBMS which is considered secure to a low extent.	
Data facilitation		alternatives to our product on the market.	All the data that wasn't used previously will get a chance to be facilitated with our product. Data on fish transportation, breeding, feeding, vaccination, etc., are represented to the end customer.

3.5 Alternatives to our product

- Det Norske Veritas (DNV) Norway[1]
- Norway in a Box Norway[2]
- Amazon blockchain for supply chain USA[3]

The list is not complete. Although, there is no public solution on the market developed specifically for the fish industry in Norway.

Det Norske Veritas offers a product called My Story. My Story is a BaaS providing a product for data management of packaged goods. My Story Veritas uses VeChain as their blockchain. My Story must be elaborated to suit the farm fish industry in Norway.

Norway in a Box utilized Vechain for fish products export. They built the so-called Nibchain, but the technology is private and cannot be used by other companies without developing a new system.

Amazon Managed Blockchain is a service used to set up and manage scalable blockchain networks. This allows for creating private blockchains that are easily managed and highly scalable. Companies can use this service to build supply chain solutions. Using private blockchain results in a more centralized solution compared to a public blockchain

4 PRODUCT OVERVIEW

4.1 The products' role in the users' environment

Ørn Software may bring the project further and make it to life.

The product allows the end customers to investigate the entire lifespan of fish, including the transportation and preparation. Thus, the brand-loyalty increases as end customers may view validated and trusted data.

4.2 Prerequisites and dependencies

The project mainly depends on research and valuable data sources. Moreover, the project should define the best suiting blockchain to utilize.

5 PRODUCT FEATURES/FUNCTIONAL REQUIREMENTS

- 1. The product must include research that covers the requirements.
- 2. A functional API must be presented to prove the solution.
- 3. The API must proceed with requests further and interact with a blockchain.
 - 3.1. The API must be able to send requests to a blockchain to post data.
 - 3.2. The API must be able to send requests to a blockchain to receive data.
 - 3.3. The API must respond to the request with either the demanded data or the status code of the request.
- 4. The solution must guarantee data integrity.

6 NON-FUNCTIONAL REQUIREMENTS

The API must be easy to use as it will be integrated into larger systems further.

The API must be secured by an authentication service to counter third-person penetration attacks.

Quality of performance is an essential aspect of such a system.

7 REFERENCES

- [1] "Om DNV," DNV. https://www.dnv.no/Default (accessed May 05, 2022).
- [2] "Norway in a Box." [Online]. Available: https://norway-in-a-box.no

- [3] "Amazon Managed Blockchain." https://aws.amazon.com/managed-blockchain/ (accessed May 05, 2022).
- [4] "About ConsenSys," ConsenSys. https://consensys.net/about/ (accessed May 05, 2022).
- [5] "Home," Deepshore. https://deepshore.de/en (accessed May 05, 2022).
- [6] "About Us," ChromaWay. https://chromaway.com/about-us (accessed May 05, 2022).
- [7] "The identity platform for building trust," *iov42*. https://iov42.com/ (accessed May 05, 2022).
- [8] "Blockchain solutions by LimeChain, a result-driven company." https://limechain.tech/about/ (accessed May 05, 2022).