Western Norway
University of

Applied Sciences

Bachelor Thesis Report

The Gamification of Fjell Fortress

Simon Vaular
Griffin Marshall Retzius
Oneal Didrik Ferkingstad Lane

Computing / Information Technology
Faculty of Engineering and Science
Supervisor: llona Heldal

Client: HVL Media Lab

Submission date: 23.05.2022

| confirm that the work is self-prepared and that references/source references to all sources used in the work are
provided, cf. Regulation relating to academic studies and examinations at the Western Norway University of Applied
Sciences (HVL), § 10.

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Report title Date: 22.05.2022
The Gamification of Fjell Fortress

Authors Pages without appendices: 62

Simon Vaular, Griffin Marshall Retzius, Oneal Lane
Pages of appendices: 1

Field of study: Amount of floppy discs / CDs: 0
Computer engineering / Information technology

Contact at study: llona Heldal Classification: No

Notes: None

Client: HVL Media Lab Clients reference:

Clients contact person: @yvind Fosse Phone number: 55 58 77 66
Summary:

The goal is to create a historically correct, enjoyable learning experience for pupils by gamifying the
previous bachelor project, as well as increase the performance and playability of the game. It is built
upon two previous bachelor groups. The application will be available for 9th grade middle school
students and possibly an exhibition at the Fjell Festning Museum. Today’s solution will further develop
existing code based on the preceding bachelor groups. The end result will not only be useful through
education, but it will also preserve local Norwegian history in a digital environment.

Keywords:
VR development Gamification Unity
Fjell Festning Map Design Educational

Western Norway
University of
Applied Sciences

Table of contents

Terms and Abbreviations

1. Introduction
1.1 Context
1.2 Motivation
1.3 Problem description and goal
1.4 Client
1.5 Report structure

2. Project description

2.1 Practical background
2.1.1 Previous work

2.2 Initial requirements and proposed solution
2.2.1 Initial Requirements
2.2.2 Clients proposed solution

2.3 Limitations

2.4 Resources

3. Project design
3.1 Possible solutions
3.1.1 Unity version
3.1.1 Framework and API
3.1.3 High Definition Render Pipeline
3.1.4 Universal Render Pipeline
3.1.5 Discussion of alternatives
3.2 Chosen solution
3.2.1 Technical Solution
3.2.2 Chosen features
3.3 Chosen tools
3.4 Project methodology
3.4.1 Development methodology
3.4.2 Project plan
3.5 Evaluation plan
3.5.1 Performance Tests
3.5.2 Functional Tests
3.5.3 Alpha Tests
3.5.4 Beta Tests

4. Design and Development

4.1 Architecture
4.1.1 Basics of Unity
4.2 Architecture Overview

4.2 Gamification
4.2.1 Dialogue System
4.2.2 Event System
4.2.3 XR Rig, Interactors and Interactables

Faculty of Engineering and Science

© ©O© 0o NO O O

10
10
10
10
10
1"
1
12

13
13
13
13
14
15
15
15
15
15
17
18
18
19
23
23
23
23
23

24
24
24
24
27
27
29
30

Western Norway
University of
Applied Sciences

4.2.4 Inventory
4.2.5 Animations
4.2.6 NPC Navigation
4.2.7 Visual Effects
4.3 Environment and Design
4.3.1 Lighting
4.3.1.1 Directional Lighting
4.3.1.2 Spot Lighting
4.3.2 Nature recreation
4.3.3 Map/Game design
4.3.4 Scenes
4.3.5 Photogrammetry
4.4 Performance
4.41 What dictates good performance?
4.4.2 Unity Profiler
4.4.3 Culling
4.4.4 Light Baking
4.4.5 Models
4.4.6 Materials and Textures
4.4.7 Batching and instancing
5.1 Evaluation method
5.2 Evaluation result
5.2.1 Performance Test
5.2.2 Alpha Tests
5.2.3 Beta Test
5.3 Project Result
5.4 Project Execution

6. Discussion
6.1 Collaboration
6.2 Project Setup
6.3 Code Practices
6.4 Unaccomplished Goals

7. Conclusions and Further Work
7.1 Goals and Results
7.2 Relevance of the project
7.3 Further Work

8. References

Appendix A: Vision Document
Appendix B: Requirements Document
Appendix C: System Documentation
Appendix D: Project Handbook

Appendix E: Test Questions

Faculty of Engineering and Science

31
32
33
34
35
35
35
35
36
37
38
40
42
42
42
43
44
45
45
46
47
48
48
48
49
51
51

53
53
53
54
55

55
55
57
57

63

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Terms and Abbreviations

Word Explanation

VR Virtual Reality. Virtual reality is about creating a sense of a physical
presence within a virtual world (Qualcomm, n.d.). Typically virtual reality
hardware consists of the head mounted display, and hand controllers.

AR Augmented Reality. In AR the physical world is enhanced with digital
elements.

XR Extended Reality is an umbrella term consisting of VR, AR, Mixed Reality
and everything in between (Qualcomm, n.d.).

XR Rig According to Unity: “An XR Rig is the user’s eyes, ears, and hands in the
virtual world.” (Unity Technologies, 2021).

LOD Level of Detail. A computer graphics method used for rendering objects
with lower detail distant from the camera.

NPC Stands for Non-Player Character. It is used to refer to all in-game
characters that are not controlled by the player.

Al Artificial Intelligence can mean two slightly different things in the
context of this project. These days Al typically refers to systems that
learn over time based on large quantities of data.

In video games however, it typically refers to the system that controls
the behavior of non-player characters.

Scene The 3D environment in which the player, the story and 3d objects
reside.

FPS Frames per second. Refers to how many fully rendered pictures are
shown on the screen per second. A 60hz monitor can display a
maximum of 60 frames per second.

VEX Visual Effects. Typically refers to particle simulations, explosions,
shockwaves and other purely visual elements.

Shader Shader - A computer graphics function that produces effects such as
shade from lighting.

Mesh A Collection of polygons, edges and faces that make up a 3D object.

GPU Graphics processing unit. A piece of computer hardware dedicated to
efficiently drawing objects to the screen.

CPU Central processing unit. Essentially the brain of the computer.

URP Universal Render Pipeline.

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences
1. Introduction

1.1 Context

During the German occupation of Norway during world war 2, the Germans built a fortress on
the mountains above the town of Fjell. It was built to protect the coast outside Bergen from a
potential allied invasion. The fortress was built by soviet prisoners of war, as well as local
entrepreneurs. At the war's end, uncertain times awaited those left at the fortress. What will
happen to the German soldiers, and those who cooperated with them? What would happen to
the Soviets upon arrival in their own country? Would Stalin have mercy on them for
surrendering to the Germans?

This is a theme that Museum Vest, the current owners of the Fjell Fortress, wants to explore.
They want to do this in the form of a video game. Since 2018, Media Lab has, on behalf of
Museum Vest, been developing a mobile game called Batteri Fjell 1945. Set in 1945, shortly
after the war, the player encounters a cast of characters with their own unique ethical
dilemmas, stories and struggles. The story takes place on the fortress, using elements of real
events to create a captivating and educational experience.

Start samtale

Han du festalla litt om dag salbu?

Figure 1.1: Batteri Fjell 1945

Media Lab is, in the words of Western Norway University of Applied Sciences “the Western
Norway University’s competence unit for the development and use of digital media and new
technology in teaching, research and dissemination.” (Western Norway University of Applied
Sciences, 2020). Media Lab has for this reason an interest in the game as a teaching tool. More

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

specifically they aim to have the game integrated as a part of middle school 2nd year (9th
graders) curriculum in certain schools.

During the process of planning the mobile game, Media Lab got the idea of using the same
story but in Virtual Reality (VR), allowing the user to fully immerse themselves into the scenario.
It would allow players to wander around a 3D representation of the fortress as it might have
looked at the end of the war, and to also get a much greater sense of how the lives of the
people there might have been. The decision was made to have a near completely student
driven VR version of the game developed in addition to the mobile game.

It is the VR version of the game that this rapport and associated work is built upon.

The VR project has been worked on by two bachelor groups prior to the current. The first group
3D scanned the fortress, and together with data from The Norwegian Mapping Authority,
created a rough 3D representation of the terrain. The second group processed the rough
terrain, and in combination with different objects textures managed to create a realistic
environment within the Unity engine. They even got time to add some characters and gameplay
elements.

Figure 1.2: The scene made by the two previous groups.

The current group’s job is to build upon the foundation laid down by the previous groups to
create an immersive, VR learning experience.

1.2 Motivation

The hope is for the final product to provide players with an experience that is both educational
and fun. Virtual Reality has extraordinary potential in the areas of storytelling and education.
World War 2 happened a long time ago, and so it can seem very distant for the youth growing
up today to relate to. VR addresses this by allowing players to use their senses to a higher
degree than traditional games, which often leads to a greater sense of immersion and realism.
When discussing serious topics like the treatment of prisoners of war and German soldiers,
their girlfriends and children, that extra level of realism and engagement might help players to
get a deeper understanding of the stories than they otherwise would.

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Letting the player be able to interact with the world not only helps with the realism, but also
allows the story to involve the player to a greater extent.

Having a VR representation of the fortress allows players to experience the fortress in an
entirely new way. Players can wander the area and experience the fortress as it might have
been in 1945. Structures that no longer exist and areas that are closed off can be made
accessible. If the game is set up at the museum, it would allow the visitors to explore these
areas, and to also have a nice educational experience. The project files can at a later date be
repurposed to serve as a 3D reconstruction of the fortress.

With Media Lab being the Western Norway University’s competence unit in the use of digital
media in learning, they have an interest in exploring VR as an educational tool. They also have
an interest in the tools and methods used to achieve this. Particularly the use of 3D scanning to
create digital representations of real life objects. Media Lab has a lot of experience with the
technology, but its use within video games is uncharted territory. This project allows Media Lab
to get a greater understanding of its practical use cases, and the workflows associated with
implementing it. Media Lab has also expressed an interest in studying the learning outcomes of
the VR and mobile versions.

1.3 Problem description and goal

The VR version in its current state features a 3D environment with some buildings and
characters. It contains some gameplay elements, but the functionality is basic, and not fully
implemented. The job of the current team is to build upon the previous work, and turn it into a
video game that is both engaging and educational.

In the mobile game, the player’s goal is to investigate Fjell Festning as a journalist. Your job as
the player is to interview different characters, learning about their stories and struggles. Media
Lab has created a dialogue script for each character in the game along with a base storyline for
the mobile app.

The team’s job is to implement the pre-written story, turning what is essentially just a 3D
environment into a full game. However the story on its own might not be enough to make the
game enjoyable. The team has for this reason a lot of freedom to add elements that they
believe will enhance the user experience. On the other hand, the game should be complete at
the end of this group's work, so making the scope of the project too big should be avoided.

In order to make the game as accessible as possible, the client wants the game to be playable
on mobile VR headsets, including Oculus Quest 2 which is as of february 2022 the headset of
choice for 46% of VR users on the SteamVR platform (Ridley, 2022). Having the game
accessible on mobile VR platforms would allow institutions, like schools and Museum Vest, to
invest only in VR hardware, instead of also having to invest in computers with expensive
graphics cards. The problem with this is that the project currently runs poorly even on many
gaming computers, and to get the game to run well on these, let alone mobile VR hardware, will
require a lot of performance optimizations.

With the tremendous work ahead it leads us to the group's main problem: how can the group
finish the VR game within the deadline, and at the same time ensure an engaging, educational
and enjoyable user experience?

Western Norway
University of Faculty of Engineering and Science

Applied Sciences
1.4 Client

Media Lab is the group's client, and are the same people who develop the mobile version.
@yvind Fosse of Media Lab is the project manager and largely the ones that the group has to
relate to. Media Lab is the Western Norway University of Applied Sciences’s (HVL's)
competence unit for the development and use of digital media, new technology in teaching and
research (Western Norway University of Applied Sciences, 2020). They explore different
technologies and their use cases on behalf of the University. Their work is not limited to the
university, as they use their competence to take on external projects.

Media Lab is also responsible for the operations of Learning Lab, a branch within the university,
offering both advice and equipment in areas of technology and pedagogy (Western Norway
University of Applied Sciences, 2020).

Media Lab has been collaborating with Museum Vest throughout the project's lifetime. Museum
Vest is the organization running the Fjell Fortress museum and will be the owner of the final
product. The museum will aid the development process through information as well as a guided
tour. The script has been written in large part by Vigleik Rekke Mathisen who is the museum
educator on Fjell Fortress, and the client and the team’s main contact. They will periodically
supervise the project, checking in on its current state.

1.5 Report structure

The first chapter of the report will emphasize the goals and motivations behind the project, as
well as give a good idea of what the game is about and what the group wants to achieve.

Chapter 2 will help the reader understand the background of the project, and it will be
described in more detail. This chapter will also highlight the previous bachelor projects that
have taken part in Fjell Fortress.

The different technologies and methods used to carry out the project will be described in
chapter 3. Here, the group will evaluate and justify the choices that were made and alternative
solutions. Furthermore, the group will also state the chosen solution and the discussion around
it, as well as a discussion around that subject. Lastly, project/development methodology will be
presented, a project plan, risk evaluation and an evaluation plan.

Chapter 4 will consist of the project’s design and structure. The chapter will also include the
project’s game implementations and how these have been accomplished.

Chapter 5 will include the project’s evaluation and results, aslo the methods used for
evaluation.

Chapter 6 discusses the project’s results and why these results were as they were. The chapter
gives an insight of how these results could have also been refined and will also further discuss
improvements upon them.

Chapter 7 highlights the further work that could, or should be done in order for the project to
be in an ideal state.

Chapter 8 includes all references used in the report.

Applied Sciences

\ Western Norway
University of Faculty of Engineering and Science

2. Project description

2.1 Practical background

2.1.1 Previous work

Media Lab is nearing completion of their mobile game Batteri Fjell 1945. The VR version is
essentially the same, only within a different environment. Media Lab has recorded voice lines
for all 12 dialogue interactions, created 8 different characters and created a bunch of 3D
models. The 3D models include the main canon, different variations of barracks as well as other
smaller objects.

The first bachelor group who worked on this project used a variety of 3D scanning techniques,
as well as online map data from the Norwegian Mapping Authority to create a realistic digital
replica of Fjell Fortress and the surrounding areas. The second group focused on the
development side, using the Unity engine, they mainly focused on the environment, but also
added characters, prefabs and the basis for a dialogue system.

The project consists of a runnable Unity project with a small collection of assets (3D models,
textures etc.) and uses Unity 2019.3. The project features dialogues in the form of text. This is
implemented for 6 of the 12 total interactions.

Figure 2.1: Screenshot of the scene at the current groups project start.

2.2 Initial requirements and proposed solution

2.21 Initial Requirements

The client does not have an extensive list of requirements and instead lets the developers have
a large amount of freedom in terms of functionality. The story has however to follow that of the
mobile game. All dialogues have been pre-recorded, so changes to the storyline are difficult.
The client wants the game to be comparable to the mobile version, but also to utilize the

10

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

possibilities that VR provides. Table 2.1 describes the initial requirements presented by the
client.

Table 2.1 /nitial Requirement table

Nr. Initial Requirements

1 The game must be in a finished, playable state by the deadline. Playable means
the story according to the script must be completely implemented, as well as an
intro and outro scene.

2 Be able to run on an Oculus Quest 2 device without the use of an external
computer.

3 Create the best possible gaming experience for the target audience (9th graders).

4 Add effects to amplify the story, and in turn the user experience.

5 Easter eggs. Things like hidden objects and features. Developers have a lot of

freedom here.

6 Use of Al. In this context it refers to NPC behavior and not machine learning. The
goal is to add some unpredictability to the game.

2.2.2 Clients proposed solution

The group has been given a large degree of freedom in terms of how the end goal is met. In
terms of solutions they recommend the team to investigate the use of 3D scanning in order to
accurately recreate the environment.

Media Lab wishes to work closely with the team, recommending the team to use the resources
within Media Lab and Learning Lab to aid during the development process. Learning Lab in
particular, has both access to appropriate hardware and the competence to guide the team in
their use. The team is allowed to take advantage of Media Lab’s previous work on the mobile
game within the VR game. This includes models, plugins and assets, as well as information on
how to use them.

Media Lab encourages the team to add their own flavor to the game through effects and easter
eggs. Easter eggs is a term in video games and media referring to hidden features or objects.
The client acknowledges that video games have evolved a lot since they were young, and is
open for suggestions on how to make the game more appealing to a younger audience.

Ideally the game should be performance optimized to such a level that it can run on an Oculus
Quest 2 VR headset. To do this the group plans to apply various performance enhancing
methods such as culling and replacing objects with high vertex count from the previous version
of the game.

2.3 Limitations

e Resources: The project has no funding, this means that some resources are out of
reach. These may be expensive 3D models or third party components that could be
used in the game.

1"

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

e Time: Time is the greatest limitation in the project considering all the possible
implementations, problems, bug fixing, and the short project phase.

e Lack of experience: The group has limited experience when it comes to developing in
Unity. A challenge for the group will be to put realistic limits to the development. The
group will need to focus their efforts and prioritize certain functionalities to implement.

e Project Design: The current project builds on previous work done by other bachelor
groups. This means that the group needs to further develop existing code based on not
necessarily well-documented decisions of the preceding groups.

2.4 Resources

Since the project was originally started by a preceding group, all code, documentation and
essential information that correlates to the project is required. This project is composed of
multiple files and a large amount of information which has been conveyed by @yvind Fosse
(HVL Media Lab). The game itself has been developed in Unity, which is to be used for further
development and improvement of the game.

The aforementioned required information consists of historical lessons and facts that are
related to the second world war and Fjell Fortress. This information is important to gain an
understanding of the project and increase the focus on historical accuracy. This will help the
group during development in relation to historically accurate functionalities within the game.

In addition to this, the group may require new assets, models and more from the Unity Asset
Store, Sketchfab and other sources. Items such as interactable objects and particles will help in
the gamification.

The team is in possession of great support from both Media Lab and Museum Vest. Support for
developing in Unity is supplied by Alexander Miguel Jensen Sewe. He has assisted us with
questions regarding development and different techniques within Unity. @yvind Fosse is the
primary client, he assists the group with ideas that can be implemented into the game and
important quality control for evaluations. llona Heldal provides counseling for the scientific and
literary part of the project. Lastly Vigleik Mathisen from Fjell Fortress guides us with
documentation and information about the compound.

12

Western Norway
University of Faculty of Engineering and Science

Applied Sciences
3. Project design

3.1 Possible solutions

Some technological and software choices were already set by Media Lab and the previous
bachelor group. Therefore the project will continue in the Unity game engine, which was the
chosen development environment from the previous bachelor groups.

If the project would be remade from scratch, a better choice for this particular project could be
choosing the Unreal Engine 5. This would make it easier to create characters by using the
engine’s MetaHuman creator (Epic Games, n.d.) instead of hand modeling, or buying models,
and more importantly the engine allows for directly using photogrammetry scans, or other high
poly models in the scene through Unreal Engine’s Nanite technology (Epic Games, n.d.). The
project does focus heavily on recreating a historical landmark, and directly using photoscanned
assets would result in a more realistic end result.

The previous group used Unity version 2019.3 with the SteamVR VR framework. This version of
the project runs on the Oculus Quest 2 VR headsets when run from PC, however input from the
controllers does not work, making the game unplayable without some changes to the input
system. The project is also using the High Definition Render Pipeline (HDRP), which does not
support building the game to android, and in return does not work on mobile VR headsets.

3.1.1 Unity version

Sticking with Unity 2019.3 allows for a quicker start to development. It has minimal risks in
terms of potential issues, as no project files would be altered significantly. It also ensures
compatibility with the plugins used by previous developers.

Upgrading to Unity 2021.2 grants greater flexibility by opening up the possibilities of newer
tools, features and workflows that do not exist in older versions. This also allows the
developers to explore technologies Media Lab could be interested in for future projects.

3.1.1 Framework and API

When working with a complex input system like a head mounted display, a layer of abstraction
is needed. Several VR headset manufacturers provide plugins and assets for Unity that aim to
make developing VR applications easier.

The inherited project uses the SteamVR plugin for Unity, a VR framework by Valve that handles
input from the most popular VR controllers and head mounted displays (Valve Corporation,
2021). It also provides other tools and assets that aid in the development of VR applications. As
the name suggests, it is specifically made to interface with SteamVR. SteamVR is a VR platform
that allows users to play VR games, browse and buy games, chat with friends and utilize a
variety of different hardware.

In 2019, the OpenXR specification was released (Khronos Group, 2019). OpenXR serves as a
layer between the game engine and the VR hardware. This allows developers to write code for
the OpenXR API instead of targeting specific hardware. Brent E. Insko, lead XR Architect at
Intel, and OpenXR working group chair explains the purpose of OpenXR as follows:

13

A}

Western Norway
University of Faculty of Engineering and Science
Applied Sciences

OpenXR seeks to simplify AR/VR software development, enabling applications to reach
a wider array of hardware platforms without having to port or re-write their code and
subsequently allowing platform vendors supporting OpenXR access to more
applications (Insko, n.d.).

OpenXR differs from SteamVR by first being purely an API. It does not provide any tools or
scripts, other than handling input from the hardware. Secondly it is implemented by the
hardware manufacturers themselves, and for this reason does not rely on Valve to add support
for that particular headset. This means that as long as OpenXR continues to be implemented by
headset manufacturers, the VR application will be compatible with all future VR hardware (see
Figure 3.1).

XR APP / XR APP / XR APP / XR APP / XR APP / XR APP /
EXPERIENCE EXPERIENCE EXPERIENCE EXPERIENCE EXPERIENCE EXPERIENCE

OpeD(Rm APPLICATION INTERFACE

. VA4 %) STEAMVR © oculus O VIVE
® == \Windows © AvVIvE magic 9 .
of B vixed Realty leap C’O u® \\indows magic And
STEAMVR Hololens 2 oculus BB \ixed Reality O leap more!
Monado Hololens 2
Before OpenXR: Applications and engines needed separate OpenXR provides a single cross-platform, high-performance
proprietary code for each device on the market. API between applications and all conformant devices.

Figure 3.1: Before OpenXR on the left, and after OpenXR on the right (Khronos Group, n.d.).

Since OpenXR only serves as an APl between Unity and the hardware, actions like moving the
camera with your head, picking up objects and locomotion must be programmed manually. The
XR Interaction Toolkit is a framework that does all of this and more, providing developers with
easy to use and modifiable scripts for handling interactions and movement as well as premade
player controlled rigs.

3.1.3 High Definition Render Pipeline

The existing project uses the High Definition Render Pipeline. According to the Unity manual: “A
render pipeline performs a series of operations that take the contents of a scene, and displays
them on a screen.” (Unity, 2022).

The High Definition Render Pipeline, or simply HDRP, is one of the render pipelines Unity
provides. It is designed to take advantage of cutting edge technology to create high fidelity
graphics (Unity, 2022). The increase in visual fidelity does however come with a performance
cost. HDRP also utilizes compute shaders which require compatible hardware. For this reason,
mobile devices including mobile VR headsets like Oculus Quest 2, are not supported build
targets.

14

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

3.1.4 Universal Render Pipeline

The Universal Render Pipeline, or URP, is a render pipeline with a focus on performance and
device compatibility (Unity, 2022). It provides developers with easy to use workflows, and
optimized graphics allowing developers to more quickly create efficient and visually impressive
games. Unlike the High Definition Render Pipeline (HDRP), URP supports building games for
every platform Unity targets which includes Android, which most mobile VR headsets run on.

Converting the project from HDRP to URP could cause issues with the currently used assets.
According to the Unity manual: “Porting your project from HDRP to URP and vice versa is
possible, but it is not a 1-click operation and will require manual rework of the lighting, the
materials, and the shaders!” (Unity, 2022).

3.1.5 Discussion of alternatives

Sticking with Unity 2019.3, SteamVR and HDRP would require very little project setup, which
would leave more time for development of gamification elements and environment. However it
could lead to a less flexible and more restricted development process down the line, as it
prohibits the use of newer technologies and frameworks. Most importantly it would completely
rule out mobile VR, for both present and future VR headsets.

Updating Unity, switching framework and render pipeline would significantly increase project
setup time, and could carry unforeseeable problems. It does however have several advantages
like mobile VR support, immediate compatibility with almost all modern VR headsets, better
performance, better framework and plugin support and better documentation.

3.2 Chosen solution

3.2.1 Technical Solution

Considering the extra flexibility updating the project might provide, the choice was made to
update the project to Unity 2021.2, and to switch to the Universal Render Pipeline. The game
from the previous bachelor group does not run at the recommended frame rate of 72 frames
per second , and switching to URP will most likely lead to a noticeable performance increase
(Unity, 2021). While it is uncertain whether the game will have good enough performance to run
on current generation mobile VR headsets, a big factor in the decision was allowing for the
possibility of a mobile VR port now or sometime in the future.

SteamVR will be replaced by OpenXR and the XR Interaction Toolkit. The industry is quickly
adopting OpenXR, and we see that continuing in the future. If that prediction is correct, the
game would be playable on all upcoming VR devices without having to change or update
anything. SteamVR needs more maintenance. The plugin already from the start had to be
updated in order to use it with the Oculus Quest 2.

3.2.2 Chosen features

Number one priority will be to finish the required functionality to the game. This will include
fundamentals like the XR Rig, which handles head tracking, player movement and hands, as
well as the necessary gameplay elements like the dialogue system.

15

Western Norway

University of

Faculty of Engineering and Science

Applied Sciences

Once these elements are added, the team plans to add a wide array of features that is going to
make the game more interesting. Table 3.1 lists some of the features planned to add at this
stage of development. A full list of features and non-functional requirements can be found in
the vision document (See Appendix A). All features might not make it into the final product due
to time constraints.

Table 3.1: List of features

Feature

Description

Interactable

Different objects the player can pick up, inspect, throw and possibly use for

environment

objects something.

Notes A form of interactable objects that contain some piece of information
relating to the story.

Notebook Hosts the Ul for the dialogue system.

Animations Animations for the characters and for surrounding vehicles.

Improved 3D Includes improving the terrain textures, adding more plants, foliage and

rocks, modifying the terrain shape to more accurately represent the terrain
at Fjell, removing unnecessary parts of terrain. Adding new objects,
buildings, bunkers etc.

Minefields Populate the area with some form of danger encouraging players to stay on
the path.

Timer Add a timer in order to motivate players to not mess around too much.

Rewards Gives the player extra time if they complete a small task.

Achievements

Score relates to how much information the player has gathered both from

or score dialogues and from inspecting notes and objects.

Facial Synchronize the movement of the mouth to the spoken audio.
animations

Remodel Remodel some of the photo scanned objects in order to reduce polygon.
objects

Intro and New intro scene where the player drives towards the fortress.

outro

Visual Effects

Visual effects like smoke, embers, dust etc.

Performance
optimizations

Optimize performance through methods like light baking, occlusion culling
and batching.

How the player will interact with the different functionalities are explained in the requirements
documentation (See Appendix B).

16

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

3.3 Chosen tools

Unity

Unity is a 2D/3D cross - platform game engine used for both game development, animation and
simulations. Unity was chosen as the main development environment mainly because the
previous bachelor groups used it. This allows us to pick up where they left off without having to
remake everything from scratch. Unity has good support for both standard VR and mobile VR.

Unity scripts are written in C#. The team has experience in Java which is very similar.

Blender

Blender is a tool for modeling, texturing, animating and simulating (Blender, 2022). It is used to
create handcrafted 3D models for the project. There is basic experience with this application
within the team, and it is free to use. Blender was used by Media Lab for some of the existing
models. The team has access to the original blender files and can through Blender make
modifications to them.

Mixamo

Mixamo is a website from Adobe that offers a wide variety of animations and character models
for free. It also offers automated character rigging for humanoid characters. These can be
imported from handmade Blender created characters or models from Mixamo (Mixamo, n.d.).

Krita

Krita is an open source free painting program (Krita Foundation, n.d.). In this project the
program will mainly be used for tweaking textures such that they correlate with the respected
model, for example scaling the texture or altering its basecolor.

xNode
xNode is a very powerful and intuitive node editor framework ideal for coding your own
dialogue systems, state machines, procedural generation, behavior trees etc. (Brigsted, 2021).

Oculus Lipsync

The Oculus Lipsync plugin for Unity will be used for handling mouth movement for the NPCs
during dialogue. Oculus Lipsync analyzes the audio and maps them to mouth gestures or
expressions called visemes (Facebook Technologies, n.d.). This plugin requires 15 different
visemes (or mouth expressions) to be defined on a model in the form of blend shapes. Not all
models have these visemes. For this reason Oculus Lipsync is used in conjunction with SALSA
LipSync Suite.

SALSA LipSync Suite

SALSA LipSync Suite is a plugin for Unity that provides high quality and fast lip sync
approximation without phoneme mapping (Crazy Minnow Studio, 2022). It is used as it does
not require nearly as many visemes as Oculus Lipsync, and the visemes used are completely
customizable, meaning it can be used on nearly all characters, as long as they have more than
one mouth blendshape defined.

FL Studio 20/Logic X Pro

Both FL Studio 20 and Logic X Pro are digital audio workstations used for audio sequencing
and mixing. In the context of this project they are used to combine and alter sounds for use in
the game, as well as recording of temporary voice lines.

17

Western Norway
University of Faculty of Engineering and Science

Applied Sciences
3.4 Project methodology

Developing a game takes time, especially with limited resources. This, combined with the
group's lack of previous experience in game development means there is a considerable risk of
the game not being finished in time. To make sure the end product is as good as possible, a
realistic and well structured project plan must be established, as well as a solid development
methodology. This is used in conjunction with regular testing with the client, to make the best
possible product.

3.4.1 Development methodology
Agile

While the project does not use a specific framework, the agile methodology is central to the
way the project is operated. Key points are continuous delivery of working software, welcoming
changing requirements, simplicity of solutions and code, and regularly reflecting on the
efficiency of the development process. Key points are taken from the Agile Manifesto (Beck et
al., 2001).

Weekly client meetings

Meetings discussing weekly progress are hosted at the end of every week. Each team member
will give the client a rundown on what they have done, and present any short or long term goals
they work on. This is an opportunity for the client and the development team to discuss
possible solutions as well as new ideas.

Iterations

Every two to four weeks a running, working version of the game will be built, and made
available to Media Lab for testing. These iterations will contain features defined in the project
plan, with most important features being prioritized. The first iteration will likely take quite a bit
longer than subsequent iterations. This is due to the iterations following the minimal viable
product strategy, resulting in the first iteration needing to implement a lot more features to
adhere to this principle.

Minimal Viable Product

Seeing as time is the project's primary limitation, it is important to spend it wisely. The aim is for
every iteration to be a playable version of the game. A playable version must contain the
necessary gameplay elements that enables the story to be told, at least to some extent. Every
iteration builds upon the next, adding new features and refining existing ones, making the user
experience better.

Weekly development team meetings

At the start of every week, the team hosts a short meeting where each team member informes
the team on which features they will work on. This allows for a discussion around prioritization
of features, and prevents multiple members working on the same problem, leading to inefficient
time management. This also prevents team members from not carrying their load, as they have
to present their work at the client meeting at the end of the week.

18

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences
3.4.2 Project plan

The group has been given a lot of freedom to themselves determine what features to
implement. The client might however request ideas and features during development. For this
reason, the priorities for the different features are subject to change during development.
Figure 3.2 shows the initial plan of when to develop the different features. The project plan
serves as a guideline of what features to implement. The team will discuss internally at the
start of every week what features to implement with a preference towards important key
features and features requested by the client.

Project Plan

Research and
planning

Project setup,
and conversion

VR rig, hands
and locomotion

Bug fixes

Dialogue
system

Game state /
Event system

Interactables

Environment
design

Events

Animations

Timer and
rewards

Achievements

Tests

Performance
improvements
Finishing
touches

@ ® @
Setup Iteration 1 Iter. 2 Iter. 3 [teration 4
complete finished finished finished finished

Figure 3.2: Gantt chart of the initial project plan.

The project is composed of a project setup period, followed by 4 iterations. Each iteration is an
entirely playable version of the game, however in terms of certain functionality they are

19

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

different. Even though the project plan groups the different features into specific iterations, the
features are intended to be polished, or even changed based on feedback until it has reached
its desired state. The goal is for every iteration to improve the user experience, or the learning
outcome.

According to the project the planning phase is limited to the first four weeks, however this is
mainly to identify what tools to use and what features to implement. While some features are
already planned to a large extent, most will be planned during the course of development, and
communicated during the weekly meetings. Sketches like Figure 3.3 can help to communicate
planned features with the client.

Question |

Question 1 S\
D

Figure 3.3: Early sketch displaying the dialogue system’s notebook UI.

The team aims to communicate features early, and regularly in order to take advantage of the
principles of Agile Research. Agile Research is an approach that favors gathering information
and input early and often allowing developers to test their ideas and adapt to changes more
easily (Knowles, 2020).

Iterations 1-3 each have well defined goals in terms of features. Between iteration 3 and 4,
there will be in-house tests, which allows for an opportunity to make changes. Iteration 4 is
dedicated to making use of the feedback gathered from the tests, as well as finishing touches,
and unfinished features left over from previous iterations. Figure 3.4 shows when the team
plans to start developing the different features.

20

A}

Western Norway
University of
Applied Sciences

Project start

User tests

Faculty of Engineering and Science

Figure 3.4: List of most important features per iteration.

Project Setup

Research
Planning
Familiarize
with project
Convert
project to
Unity 2021.2
Convert to
URP, including
material and
lighting
conversions

Iteration 1

VR Rig
replacement
VR locomotion
with OpenXR
input system
Virtual hands
with finger
movement
Basic
performance
improvements
Test build for
mobile VR

Iteration 2

Reworked
dialogue
system
w/voice lines
Ul rework
Game state
management
system

3D
Environment
improvements
Interactable
map object
Character
modeling

Iteration 3

Events

NPC
animations
and lip sync
Timers and
rewards
Interactable
story elements
Big 3D
environment
improvements
3D model
improvements
Performance
improvements

Iteration 4

NCELSS
according to
feedback
Performance
improvements
Finishing
touches

Final build

Iteration 1 will in terms of gameplay be almost identical to the received project, but will be
updated and converted as described in chapter 3.2. It will also feature a build for Android in

order to test the games performance on the Oculus Quest 2.

The amount of work is too large to be compressed into a single diagram. Some smaller features
are left out of the project plan, and can be used to fill empty time slots. These are
functionalities that are not considered necessary, or high in priority, yet could be added if time
allows. All features can be found in the vision document (see Appendix A).

User tests will be conducted after iteration 4. These are described further in Chapter 3.5:
Evaluation. These user tests will consist of gameplay tests conducted by HVL Media Lab.

21

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

3.4.3 Risk assessment

There are several events that could end up hurting the development process. Time is of the
essence, and being able to foresee and mitigate risks could prove to be crucial. Table 3.2
highlights some of the risks associated with the development process, the probability and
consequence and what measures are in place to prevent them.

Table 3.2 Risk assessment table. The risk product is the product of the probability of the event,
and its consequence should it happen. A higher number, or warmer color displays a higher total
risk, and needs to be addressed appropriately.

Event /Risk | Cause Probability | Consequence | Risk Measures
produ
ct
1 | Outdated New and better Low (2) Medium (3) 6 Make sure we use the
technology technology is taking most up-to-date
over tools, and avoid using
tools with bad
support
2 | Technical Unforeseen High (4) Medium (3) 12 Use the resources
issues problems with available to us for
project and assets troubleshooting.

Factor in time for
research and bug
fixing when time

scheduling
3 | Too high lliness, obligatory Low (2) Low (2) 4 Good project
absence assignments in management, and
other courses and options to work from
other events home
4 | Uneven and | Poor Medium (3) | Medium (3) 9 Actively using our
overlapping | communication and project management
workload cooperation. tools, like teams, and

teamgantt to mark
which task you are

working on.

5 | Projectis Too big ambitions, Medium (3) | Very high (5) Using an iterative
not finished poor time process to always
in time management or have a playable

inefficient project version ready.
management Prioritize important

functionality.

22

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

3.5 Evaluation plan

3.5.1 Performance Tests

Performance will be continuously monitored as features are added or removed. For a typical
software project, this might be a bit excessive, but for this project it is important. The game in
its current state is most likely not playable on any current generation mobile VR headset. The
user would benefit greatly if the game was able to run on mobile VR as it would eliminate the
need for a powerful gaming machine. This would significantly reduce the cost for users, and
expand the game’s reach.

The goal of the early performance tests is to determine whether or not it is possible to achieve
this, and what it would take to make it happen. The performance tests will also shape the
team's priorities. Should it become clear that a well running mobile VR build is improbable, the
team can prioritize other features, like higher visual fidelity.

Tools for performance monitoring include the Unity Profiler, Frame Debugger and Memory
Profiler. Monitoring the VR headsets metrics is done through the Oculus Developer Hub. The
device logs are also available through this application, which makes it useful for identifying
device specific errors.

3.5.2 Functional Tests

Features are internally tested by the development team during the week. These are to verify
that the features work as the developer intends. At the weekly client meetings, the features
worked on that week will be displayed with the client present. This allows the client to approve,
or suggest improvements to the added features. These tests are mainly to ensure the team,
and client are on the same page in terms of the game’s functionality. It also helps confirm that
the clients requirements are still fulfilled. Other topics of the meeting are what problems the
team are facing and next steps going forward.

3.5.3 Alpha Tests

Full gameplay testing will be done by the team, and the client primarily. It will start with a
system test, verifying that the software works on a variety of different machines. Then it will be
followed by an acceptance test. This will be a complete playthrough of the game, including all
added features. This is done before iteration 4, giving the team time to fix potential bugs or
missing features.

3.5.4 Beta Tests

When development is complete, the team and client will conduct beta tests. These tests will
test the educational program as a whole. Subjects will be external testers, in different age
groups and with different levels of VR experience. The subjects will first conduct the
onboarding, The onboarding consists of a video prepared by Media Lab. They then get to play
the game for a period of time. After or during the playthrough they will be asked a list of
questions as shown in Appendix E. The questionnaire is primarily focused on the user
experience, but users can also express their thoughts on the story as these comments could
benefit the client. The goal is to identify flaws in the execution of the system as a whole, and to
identify potential aspects of which the VR application fails to provide a good experience.

23

Western Norway
University of Faculty of Engineering and Science

Applied Sciences
4. Design and Development

This chapter will describe the finished solution in an appropriate amount of detail. As this
project expands beyond a system development project, it will also contain a brief rundown on
some of the workflows used.

4.1 Architecture

This subchapter aims to explain the overall architecture of the game, in reasonable detail. In
order to understand the architecture, it is recommended to have a basic understanding of how
Unity works.

411 Basics of Unity

A unity project consists of one or more scenes. A scene is a 3D space in which objects, terrain,
lights, audio sources etc. are placed to make an environment.

Every single entity within a scene is a GameObject. These GameObjects act as containers for
different components. GameObjects can be nested within other GameObjects, making it a child
of the root GameObject. All GameObjects come with a Transform component that controls the
GameObjects position in world space, or in relation to its parent. As mentioned previously,
every single entity is a GameObject, which means that even global scripts running in the
background, have to be attached to a GameObject, which is placed somewhere within the
scene.

Components are classes that can be added to a GameObject. Unity comes with a wide variety
of predefined components that makes development easier. Examples are Mesh Filter to define
a GameObjects mesh, a Mesh Renderer for adding materials to the mesh, colliders, audio
sources and more.

Custom components are the main way of adding custom functionality to the game.
Components are C# classes. Essentially all components inherit from the MonoBehaviour class.
This gives access to engine specific functionality and allows the component to be attached to a
GameObject.

Components can interact with other components, even on other GameObjects. For example, a
component on the player object, can change the color of another object, as long as you can
obtain a reference to that other object.

4.1.2 Architecture Overview

When explaining the game’s architecture it is mainly referring to the elements that dictate the
game's flow. Due to the nature of the story being linear, players must speak to characters in the
right order, as some dialogues build upon information gained in previous interactions. The
solution for this was to track the player's progress, and to both restrict and guide the player to
the correct character. This subchapter will briefly explain the key components and how they
interact. The different system will be explained in more detail in chapter 4.2.

24

A}

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Figure 4.1: Planned sequence of character interactions, as well as placements of key objects.

The Event Manager controls the game's state. The event manager's state can be accessed
and changed by other components. The event manager will notify other components that are
subscribed to it that the state has changed, and what the new state is. Other components can
declare a function to be run in the event of a state change. A component can also check the
current state without waiting for an update.

The NodeParser is responsible for handling interactions with NPCs. Every dialogue interaction
has a NodeParser instance. The PlayerSensor component activates the notebook, and starts a
selected NodeParser’s dialogue when the player is near an interactable NPC. A dialogue can
only be started if the game is in the correct game state. There are in total 14 game states.

The notebook is a GameObject that contains the Ul elements for the dialogue system,
including text, buttons and visual effects. These are controlled through the NodeParser
components.

The MapHandler component listens for changes in game state and updates the map
GameObject accordingly. The map always points to the next interactable NPC.

The NPCHandler component is the script primarily responsible for hiding and showing NPCs
depending on the game's state. Every character could have their individual event listeners for
game state changes, and react accordingly. However having it all in one script makes it easier
to manage, and lowers the amount of subscribers to the event system. Over the course of
development, the NPC handler was extended to handle more objects than just NPCs.

25

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Character
PlayerSensor

+ parser : NodeParser

+ notebook : GameObject

+ visemes : BlendShape

AudioSource

+ clip : AudioClip

Notebook NodeParser + playOnAwake : bool

+ Play(): void
+ PlayOneShet(AudioClip clip) : void

TextMeshProUGUI

+ text : String

Button

+ text : String

+ Play() : void MapHandler

: GameObject

EventHandler StateChanged(GameState s) : void

+ state : Gamestate + SwitchMarker(String markerName) : void

+ instai EventHandler

+ UpdateGameState(GameState s) : void

(NPC, truck, blockade etc)

NPC Handler Transform
+ delay : float + position : Vector3
+ gameObjects : GameObject[] . .. + rotation: Quaternion
+ localScale : Vector3

+ OnStateChanged(GameState s) : void
Animator

+ speed : float

+ Play(String name, int layer, float time) : void

+ SetBool(String name, bool value) : void

Figure 4.2: Modified class diagram of the most central features.

The class diagram displayed in figure 4.2, shows the connections between the most important
components. GameObjects are in the diagram displayed as gray containers with components
within them. All components are attached to GameObjects, but only components where
GameObject methods are used are displayed in the diagram. A common use of these methods
are to activate and deactivate the object.

26

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

4.2 Gamification

4.21 Dialogue System

The inherited project featured a simple dialogue system created with VIDE Dialogues (Version
2.2.2, Albazcythe, 2018). This dialogue system was remade from scratch using the xNode
framework for Unity. The xNode framework makes it easier to create custom node based
systems for Unity. Developers can make their own custom nodes, and connect them in a node
graph. A script can then parse through the nodes one by one, processing the data of each
node. xNode does not come with any premade nodes or parsers, but supplies developers with
tools that make creating these easier.

Dialogue

Question Graph

som har kemmandoen her?

Figure 4.1: An example dialogue graph. The graphs used in the game are typically much bigger

The new dialogue system consists of one dialogue graph per dialogue interaction. Every
dialogue and every combination of questions within one interaction is located within one graph.
In the game you meet each NPC two times, this means there are in total 12 dialogue graphs in
the game. These graphs contain a start node, followed by a combination of dialogue nodes,
guestion nodes and ending with an end node. New nodes can be added easily by right clicking
the graph and selecting the desired node. Nodes can be connected by dragging the output
port towards an input port creating an edge between them.

A dialogue node features an audio clip field for the dialogue audio, and a field for the text
version of the dialogue. In the script these are represented as public variables. It contains a
single input and output port.

Question nodes contain a list of questions. The amount of questions is decided in the node
graph. The node does not have an upper limit to the number of questions, but the current

parser script will only display as many questions as can fit on the UL.

The node parser script is responsible for cycling through the nodes and processing their data.
It starts by finding the node labeled start, and uses that as the starting node. The name of the

27

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

nodes determine the action to be performed. When a question node is parsed, the parser tells
the Ul to show the buttons, and hide every other Ul element. The buttons are then populated
so that each button represents one question. Each button is linked to a specific output port,
and fires an event when clicked, telling the parser to follow that particular output. The buttons
are then hidden.

The dialogue Ul takes place on a physical object that appears in your hand when in proximity of
an interactable character. The notebook is locked in the character's hand to ensure the player
does not accidentally lose it, as seen in Figure 4.3 (p. 30). This was also done as a measure to
prevent grip fatigue during long interactions. The layout of the notebook varies depending on
which node is being played. In the event of a dialogue node, the notebook will display two
fields: a header with the speaker name, and a text field for the dialogue itself. In the events of a
question node, it will hide the speaker and dialogue fields and instead display up to three
buttons. The number of buttons corresponds to the number of questions in the node, with an
upper limit of three questions.

Figure 4.2: Node Parser visualization

28

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Figure 4.3: The notebook when a question node is being parsed.

4.2.2 Event System

In order to determine the game flow and behavior from user input and interactions, the group
built an Event System/State Machine. In Fjell Festning, each state changes after the player has
finished a dialogue. There are 12 dialogue interactions, therefore 12 states were added, as well
as the “StartGame” and “EndGame” state. When a player enters a new state, it gives the team
the opportunity to change the game's behavior according to the state the player is in. When the
player is conversing with the various characters in the game, the state will change after each
dialogue.

MapHandiler

UpdateState(State) OnStateChanged(State)
Event manager NPCHandlingSeript
Gatekeeper
GetState()

Figure 4.4: Structure of the event system

The state machine also helped structure the story’s narrative. A player cannot interact with a
character if it hasn’t interacted with a required character beforehand. For example, the player

29

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

can not start a conversation with Gerd if the player didn’t converse with Nazarenko. This
allowed the group to have a set of rules and constraints for what the player can and can not do
during runtime. Letting the player interact with all the characters in the scene without having
these constraints based on the state the game is in would have ruined the story line and
confused the player. Figure 4.4 illustrates some of the GameObjects that publish and subscribe
to the Event Manager, where objects to the left publish a new state and the objects to the left
subscribe to the Event Manager.

4.2.3 XR Rig, Interactors and Interactables

Interactions with the environment is a key feature in any virtual reality experience. VR has three
distinct characteristics: Interaction, immersion and imagination (Li, 2019). In order to make the
game as immersive as possible, interactions with objects and characters is essential.

The XR interaction toolkit package is a high level, component based interaction system for
creating VR and AR experiences (Unity, 2022). The group used the toolkit’s premade XR Rig in
order to quickly create a movement system. The XR Rig acts as the player’s eyes and ears in
the virtual world (Unity Technologies, 2021). The rig also features two Ray Interactors in the
position of each hand, allowing the player to grab objects by pointing at them and hitting the
grab button. The group also added a feature called snap turn, allowing the player to turn using
the joystick instead of having to physically turn around.

Figure 4.5: Two interactable objects, the pistols and beer bottles

The XR Interaction Toolkit contains the XR Grab Interactable component, which when attached
to an object in the scene allows it to be grabbed and held. Grab Interactables can be grabbed
by any Interactor, like for example the player's hands. For realism and functionality, only some
objects should be grabbable. For example it would not make sense for the player to grab and
hold a car.

For example, Figure 4.5 has multiple interactable objects, two pistols and several bottles. The
pistols can be used with a max limit of 7 bullets per weapon and lets the player shoot down a
gun range with targets. When the magazine is empty, an audio clip will play indicating that the
pistol is empty. The bottles can also be grabbed. These were added to emphasize how chaotic
Fjell Festning was at the time, where weapons were laid out in the open, and guards were
drunk on duty.

30

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences
4.2.4 Inventory

Having somewhere to store your items is extremely helpful as certain interactables are
necessary for traversing through the game, and constantly grabbing them with your hand
becomes very tiresome after a while. To improve the user experience, the team decided to
create an inventory system. A Ul based inventory was considered, but instead the team landed
on a physically based inventory system as it increased realism and was also more satisfying to
use.

The inventory system consists of a belt attached to the player. The belt follows the position of
the camera, with a custom script component attached that calculates the belt’s rotation to
always point with the camera. Without the script, the belt would stand still facing one direction
independent of the camera’s position and direction, ruining the immersion of wearing a belt.

Figure 4.6: Inventory

The belt itself consists of two Socket Interactors from the XR toolkit that can hold Interactable
GameObjects (Unity Learn, 2021). Any object that contains a grab interactable component can
be placed inside of a socket. The sockets will hold the item in place and as such will act as the
player’s inventory system. The group chose to have two Sockets for the inventory, one for the
map and another for the player’s identification papers. Altering the pivot point of the Socket
made it easy to position the objects when they snap onto the Sockets.

The map is an interactable gameobject, helping the player navigate through the story. It has 12
markers each pointing to a different character interaction. The map's state is based on the
current game state, using it to enable / disable markers. When the player starts the game, only
one marker is lit up, indicating that there is an interaction. When the state changes, a new
marker is lit up. Figure 4.6 shows the first interaction with only one blue marker glowing on the
map.

The group was slightly worried that the players won’t understand the whole concept of the
inventory system. A gatekeeper was then added to familiarize the use of the belt before the
story takes place, introducing VR object interactions. Here, the gatekeeper walks towards the
player and asks for identification papers by playing an audio clip made by the group. The player
here must find the papers and give them to the security guard. When identified, the gatekeeper
will give the player a map, which then opens the gate for further exploring the game.

31

A

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Figure 4.7: The gatekeeper checking the journalists identification papers.

The gatekeeper was created entirely from scratch by members of the group, using Blender to
model and Mixamo for animation and rigging. Creating this character and the associated
interaction is perhaps the most complex task completed by the group, as the interaction is
fundamentally different from the rest. This little interaction plays a big part in helping the player
learn the controls and familiarize themselves with the inventory system and map.

The character was created with reusability in mind. The character is performance optimized,
cycles between idle, walk and run animations based on movement speed and even has mouth
expressions that can be controlled through a lip sync plugin. The character also moves his
head to look at the player.

4.2.5 Animations

Unity has great animation features that make it possible to implement animations with a simple
set of tools. The group took advantage of this and created animations for characters, both
hands and vehicles to make the game feel more lively.

Animations were made by animating the targeted object with recorded keyframes for each
movement. In order to instantiate an animation, an Animation Controller must be added to the
object. An Animation Controller arranges and maintains a set of Animation Clips (animations)
and Animation Transitions (Unity, 2017). This helps determine when an animation should start
or stop. The group can also trigger an animation by the state the game is in or by adding trigger
objects around the scene. Figure 4.7 shows the initial state of the object, which is set to “Idle”.
When a trigger or state changes during run - time, a script starts the “SpitfireAnimation”. Being
able to change these animation clips helped game development since at any given time the
animations can be set.

32

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Any State

Entry SpitfireAnimation

Figure 4.8: Animation Controller

Some animations were made by the in - house animation tool. An example of this is the Spitfire
fighter planes that fly past the player at a certain point in the game. The reason for the plane
being a Spitfire is because it was a detailed free asset in the Unity Asset Store. There were also
British soldiers roaming Fjell Festning, so realistically having a Spitfire flying over the compound
could have occurred during 1945 after the war.

For example, the propellers for the Spitfires are animated per frame and are then looped. This
creates the illusion that the animation is running continuously. This method was also used
when animating the wheels for the German trucks. The other animation clip for the plane
focuses on the Spitfires world space coordinates and is animated in a straight line by moving
the object's axis from point A to B in a single keyframe. Unity’s animation tool lets the transition
of moving an object to the desired location seamless and smooth. Combining these two
animations make up a realistic airplane flyby. These methods were also used for other dynamic
objects in the scene, not only the Spitfire.

Figure 4.9: Spitfire Animation per rotation keyframe

Other animations were imported from Mixamo (Mixamo, n.d.), an Adobe website that
specifically offers free professional character animations and character rigging that
corresponds to the character's humanoid figure. All animations for the characters are from
Mixamo, the team would have used countless hours if these humanoid figures had to be
animated by hand.

4.2.6 NPC Navigation

The first interaction the player encounters is a gatekeeper wanting the player's identification
before gaining entry into the fortress. Problems occurred based on the gatekeeper's movement

33

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

and how he will move towards the player according to the player’s position. Animating the
gatekeeper’'s movement would take a lot of time and experience to complete since every
keyframe must move a part of the gatekeepers' joints.

A simple solution was adding a navmesh to the terrain and using the navmesh agent
component on the gatekeeper. A navmesh is a flat plane showing where an agent can walk.
The mesh is generated by creating a mesh above the terrain. The areas immediately around
meshes that are marked as static, are subtracted from the mesh if their angle in relation to the
rest of the NavMesh is steep enough. This creates a navigation mesh that estimates a walkable
surface of the scene (Unity Documentation, n.d.). The navmesh agent is a component you add
to a GameObject that uses the baked navmesh information, allowing the agent to navigate
through the scene. Through a script you can give the agent a destination, and using the
navmesh, it will calculate the fastest route. It can also determine when the destination has been
reached.

In the script, the gatekeeper’s destination is the player's position. The destination will be
updated each frame, since the player can be in a different position depending on where the
player decides to position themselves for the interaction. The blue area in Figure 4.10 visualizes
where a NavMesh Agent can navigate with the help of baking the terrain.

s ==L,

Figure 4.10: Baked NavMesh. Walkable areas are highlighted blue.

The NavMesh will only consider static elements when baking the NavMesh. Since the NavMesh
is baked, it means it is pre computed. For dynamic objects the team wished the agent to avoid,
they added a Navmesh Obstacle component to it. Every object with this component will allow
the agent to identify the moving object. This feature became useful for moving objects like cars
etc.

4.2.7 Visual Effects

The smoke, flames and sparks in the game were created with the help of Unity’s particle
system with the downloadable Unity asset VFX Graph. The asset enabled the use of visual
effects with the assistance of a visual node - based logic (Unity Learn, 2021). The use of this
tool made the smoke implementation easy and efficient.

34

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Having a visual real time scene window of the particles while developing the smoke made it
easy to both visualize and edit the smoke effect while the game is running. Without the VFX
Graph, it would be difficult to estimate the scale and light interactions the smoke will have in
the end result. The VFX Graph also renders particles on the graphical processing unit (GPU)
which lets the developer render far more particles than you otherwise could. The drawback is
that the particles do not react to the environment, for example sparks bouncing off the terrain
surface and other objects.

= — = e e = z =

Figure 4.11: Visual effect of a burning barrel.
4.3 Environment and Design

4.3.1 Lighting

4.3.1.1 Directional Lighting

Lighting is a uniquely powerful tool when it comes to improving a game’s visual fidelity.
Directional lighting is a useful light component for creating sunlight in a scene (Unity
Documentation, n.d.). In the scene, the directional light behaves as the sun (the main light
source) and gives off light wherever the directional light is positioned in the scene. The rotation
of the light can be used to determine the time of day.

The lighting was configured in such a way that it matches the time, color and sun position of
May, which is the month the story takes place. The initial project's directional light had a
completely white color, but now the color is warmer, reminiscent of a morning in May.

4.3.1.2 Spot Lighting

A spotlight is a lighting source that projects light within a specific location and range. The light
gives off a cone - shaped area of illumination (Unity Documentation, n.d.)d. In one of the
bunkers the player can enter, there are several spotlight objects directing light from the roof of
the bunker. Before the spotlights were added, the cave was dull and lacking excitement, with
little to no atmosphere. With just a couple spotlights, it helped make this part of the game more
ambient and intimidating to enter.

35

A}

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Figure 4.12: No spotlights

Figure 4.13: Spotlights

4.3.2 Nature recreation

In regards to the 3D environment, the goal is to have it look as close as possible to what it did
in 1945. The first group did a great job of photo scanning the terrain and added rocks and trees
to make it look more realistic. Unfortunately, that group did not have enough time to further
improve upon this. The asset pack used for foliage and various nature objects is Meadow
Environment - Dynamic Nature. This pack includes trees, bushes, grass, rocks, cliffs, terrain
textures, etc.

The team’s first goal in recreating the environment was to replace the already existing grass
with a more realistic and detailed foliage without losing much performance. GPU instancing
helped the game increase the amount of grass around the terrain, making the scene feel more
realistic. GPU instancing is a draw call optimization method that renders multiple copies of a
mesh with the same material in a single draw call (Unity, n.d.). A wind shader from the previous
group was added on both the grass and trees from the Meadow Environment pack. The project
client commented on the wind and wanted it removed in the finished product. Performance

36

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

wise, this worked well since the game engine won’t be doing any calculations for these during
runtime.

Previously, the cliff prefab in the asset pack was only used in certain areas of the scene. By
scaling these up, these cliff objects could occupy a large area of terrain while only being one
object, limiting the amount of objects in the game.

Figure 4.14: Grass and Cliffs

The terrain has multiple textures that blend together creating a realistic template to add
objects and scenery to. These textures also focus on creating depth, bumps, roughness and
the illusion of lighting. Certain textures such as gravel, have normal maps. These maps help a
texture create the illusion of light absorption and roughness. The benefit of including a normal
map is that it does not lower the game's performance, even though the object has more detail.

4.3.3 Map/Game design

When filling in the scenes with objects, the main focus is comparing the photos from Fjell with
the map design of the game. Using assets that correlate with WWII helps create a realistic
environment when compared with old photos from Fjell. Every aspect of the main scene is
based off of real pictures from Fjell during the war, this includes buildings, fencing, gates,
rivers, etc. These images were given to the team with the camera positions of where soldiers
were believed to be taking the picture from. Having this information helped estimate the
position of the barracks and where the terrain is rough or smooth.

37

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Figure 4.15: Map design with the help of reference images. Reference image is on the left
believe it or not (Museum Vest, n.d.)

The flow of the game (Game Design) also needs to be consistent with the map design.
Restricting the player to walk in certain areas must match with the fencing and building
positions. The aim is to restrict player movement so the player will have to follow the questline,
and not move to areas where they get stuck etc. The creation of these barriers requires
strategic placement of fencing and other objects to avoid having invisible walls.

Other areas will also open up when a state changes after a dialog. For example, a German truck
blocks the player’s path before one of the bunker entrances. After entering the bunker and
talking to one of the characters, the truck will move and drive off by triggering the truck’s
Animation Controller, leaving the blocked area open for the player. Restricting pathways and
navigating them through map design made it easier for the developer to control the game flow,
knowing when and where a player can move at certain points of the game.

Figure 4.16: Truck blocking a path, the truck drives off after a new state

New areas have also been added to resemble the state Fjell was in after the war by examining
photos from Fjell in the 1940’s. This includes more fencing, a barracks near the canon and a
medical bunker. As well as roughness in the terrain with more dirt and gravel. The terrain was
photo scanned which visualizes how the terrain at Fjell looks like today, however the terrain in
1945 had more flaus with creators created by mines and dirt like areas where there may have
been construction.

When designing the map, it was important to have multiple points of interests (POI's). These
locations will present new valuable information for the player or let the players interact with
new objects. The previous group had 6 dialogue interactions, whereas this project has 12. This
made it possible to create more locations the player will walk through. Some of the new
locations are the gun range, a revamped tunnel, the barracks outside the cannon, a truck
explosion site, the barracks near the gun range and more.

4.3.4 Scenes

The game consists of four scenes, an intro, taxi, main game and an outro scene. All four scenes
make out the whole game. A scene in Unity is where a developer can make content for the

38

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

game. A game can have one or multiple scenes, in Fjell Festning there are four. Three out of the
four scenes are for visual purposes only, where the player won't be able to move, only absorb
information by studying their environments. This sub - chapter will focus on the three other
scenes included in the game.

Intro

When booting up the game, the player is introduced to the intro scene. Here, the player is
placed in an environment similar to the main scene. The sole purpose here is introducing the
player to the story and background of Fjell. A canvas is placed in the scene which displays a
video given from Media Lab that explains who the player is and what they will be doing
throughout the game. After the video is done, a fade in screen will appear which makes the
transition for each scene seamless for the player.

Figure 4.17: Intro scene

Taxi drive

After the transition from the intro scene, a new fade out screen will appear. Every scene has
implemented this concept for making transitions comfortable for the player. It consists of
making the scene visible by first altering the alpha value from dark to transparent and vice
versa. The taxi scene is a 22 second long taxi drive into the gated area of Fjell Festning.

The player is placed in the back of a car animated to drive towards the gate, with a taxi driver
in the front seat driving the vehicle. Here, the taxi driver has an audio clip explaining what
recently happened that day which builds upon the storyline. It also acts as a bridge introducing
the player to the base game.

39

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Figure 4.18: Taxi drive scene

Outro

The outro is very similar to the intro scene, in regards to its content. After the player has
finished the last dialogue in the main scene, a taxi will be seen driving towards the player. An
audio clip of a car honk will also be played, helping the player look for the taxi before the fade
script is triggered and a new scene is rendered in.

The player will then spawn in a theater with a canvas, here the player won't be able to move,
only rotate. The canvas will display a video given to the team from Media Lab. When the video
finishes, it will exit the application.

Figure 4.19: Theater scene

4.3.5 Photogrammetry

Photogrammetry is the science of creating 3D models from photographs. The process consists
of taking multiple overlapping photos of an object to then convert and render them into a
digital, three dimensional object. The preceding bachelor group created 3D models of various
buildings from Fjell festning, such as RegelBau bunkers and the underbelly of the Gneisnau
cannon.

Photogrammetry is an exciting idea in theory, but much harder to execute in practice. The
challenge is that scans have to be near perfect and in well lit areas to get good results. This is

40

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

especially difficult in areas with uneven lighting such as bunkers or even just outside with
natural lighting. Less than perfect scans will create unwanted artifacts, this happens as the
program tries to fill in blank spaces where the scan is subpar. This in turn creates an
abundance of extra vertices, which in turn is tremendously destructive towards the
performance of the game.

ommandoburier 2nd pass textura

Figure 4.20: Photo scanned commando bunker

Figure 4.20 shows the original photo scanned commando bunker. As shown in the photo the
vertex count for this model is a total of 163 541 vertices. A very high count for a model of its
size. The solution to this problem was to recreate the model manually in Blender. Tedious work
that yielded great results, as shown in Figure 4.21. The total vertex count went down to 1403
vertices, which is an immense improvement of the photo scanned model. The team made a
total of three new models replacing the older photos scanned models.

41

A}

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

@ 12°C Mest skyet

Figure 4.21: Recreated commando bunker

This is not to say that photogrammetry cannot work in VR development. Unfortunately, VR
games must have the lowest amount of vertices rendered per frame for it to run smoothly. It is
also possible to put the photo scanned models into Blender and use the decimate function. The
decimate function allows you to reduce the vertex count of a mesh with minimal shape
changes (Blender, 2022). One could increase the performance further by having different levels
of decimation, for different levels of details (LOD) depending on how far away the player is from
the mesh. In sum, with better technology, photogrammetry could have been a viable option for
creating 3D models in this project.

4.4 Performance

4.41 What dictates good performance?

Several aspects of the project determine the game’s performance. By analyzing the game
through developer testing and analyzation tools, the project group discovered multiple areas of
performance drops as well as an increase of draw calls and vertices.

Visible objects in a scene are sent to the GPU for it to be drawn on the screen. What
determines the frame rate, is the amount of draw calls the GPU needs to render (Unity Support,
2021). The GPU is fast, however if the central processing unit (CPU) has too many instructions
to send to the GPU, it will lower the amount of frames per second (FPS). One needs to also take
into consideration the other tasks the game needs to perform, for example scripts and
animations.

4.4.2 Unity Profiler

In many cases it is hard to identify cases of performance drops by trough gameplay testing.
Unity has a Profiler tool that gathers and displays data on the performance of a running
application in areas like the CPU, memory, renderer and scripts (Unity Documentation, 2022).
It's a tool that can identify where the application needs performance improvements.

42

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

When running the game, it allows the team to play and pause the application to iterate over
areas with bad performance. It is then possible to point out areas such as assets, camera
rendering and code with a visual representation as a chart (Unity Documentation, 2022). While
in Play Mode with the profiler on, the team can study the individual frames to get a better
sense of the underlying issue. Using the Unity Profiler, the team was able to identify that the
game is currently GPU bound. Unfortunately the profiler cannot explicitly tell which objects are
causing the most GPU load. The methods used to fix these issues will be further discussed in
the following chapters.

4.4.3 Culling

When rendering a scene, the main focus is to render objects that are in view of the
camera/player. Rendering unnecessary geometry not visible to the player can drastically lower
the game’s performance.

By default, the Unity game engine is equipped with a culling method called Frustum Culling.
This method is used to filter out all objects that lie outside of the camera's eye by removing
them out of the scene. Frustum culling helps the GPU limit the amount of draw calls it needs to
calculate per frame. However, there is still a problem when rendering out unwanted geometry
inside the frustum area.

Figure 4.22: Frustum Culling on

While bug testing, the project group made notice of FPS drops and a high vertice count in the
smallest of areas where the map had little to no objects visible to the player. The problem was
that frustum culling does not cull objects that lie behind other objects, these were still being
rendered in, adding unnecessary GPU draw calls.

Occlusion Culling was then added to prevent this from happening, further improving the game’s
performance. This method occludes geometry that lies behind other geometry. The data for
culling in Unity is composed of cells, these are generated when baking in the occlusion culling
(Unity Documentation, n.d.). The data/cells are used to help the camera specify what
GameObject should be rendered in the scene and what should be occluded (Unity
Documentation, n.d.). For this process to work, all objects in the scene should be marked as
static. GameObjects marked as static tells the Unity Engine that the light and gravity

43

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

calculations on the object do not need to be performed. The occlusion culling process already
has a solution to this, but keeping the amount of dynamic objects to a minimum will help the
performance of the game as well.

Figure 4.23: Frustum and Occlusion Culling on

4.4.4 Light Baking

Light Baking is a common performance technique that precomputes lighting on static
GameObjects in a scene. The precomputed light data is saved in a texture, commonly called a
light map. These light maps store how much shade each pixel will have corresponding to the
position of the light source. Any game can benefit from this since it calculates the lighting
beforehand rather than calculating the lighting during runtime. In Fjell Festning, the light source
never translates or rotates, this decreases the load on the CPU substantially.

Unfortunately, the team encountered several issues when trying to bake lighting into the scene.
Overlapping UV maps are believed to be the main problem. Overlapping UVs happen when two
or more parts of a model share the same area of a texture. If the front and the back of a
building share that texture space, when baking the lighting, the texture might simultaneously
be overlayed by sunlight and shadow. This is likely to produce artifacts when lightmap baking.

44

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Figure 4.24: The scene currently when baking lighting. Bad lightmap UVs are believed to be the
problem

Auto-generating lightmap UVs through Unity sometimes helps, but in this case it did not. It
would require manually setting the UVs of the objects within the modeling software so that
they have no overlap.

4.4.5 Models

Each model in a scene has a vertex count which determines the complexity of how detailed the
geometry of an object should be. A big problem in game development is how one should render
each model depending on the player’s position. The main goal here is to make rendering more
efficient and increase the game’s framerate, especially if the game is in virtual reality.

Level of Detail (LOD) is a technique that renders models distant from the player with a lower
poly count which reduces the number GPU operations (Unity Documentation, 2022). The
concept is determining how important objects are from the camera. Fjell Festning uses discrete
LODs which are often used in games where each model has several versions of itself that
descend in quality from where the player is standing. The Unity Game Engine has an inbuilt
LOD system that does this automatically for the developer. The system takes in all versions of a
model and the developer can adjust the value of when a new version of the model will be
rendered in.

The Meadow Environment - Dynamic Nature asset pack has three LOD models for each object
in the pack. Grass, rock and cliff models were frequently used in the scene. Having these LODs
significantly helped the games performance, especially when culling is activated in the
background.

4.4.6 Materials and Textures

When working with textures it is important to keep the texture resolution as low as possible
without affecting the visuals. The smaller the object, the smaller the texture size required to
make it look good. In order to ensure there are no textures larger than 2048%2048 pixels, the

45

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

project is set up to automatically lower the resolution of imported textures if they exceed that
threshold.

Every material on an object requires a separate draw call. If you for an instance have a matte
concrete building with reflective glass windows, you would need two draw calls for that single
object. To optimize performance, our custom models contain as few separate meshes and
materials as possible.

Sharing materials between objects is a good way of improving performance. It allows unity to
batch the different object meshes into the same draw call. There are two methods Unity uses
to accomplish this: static batching, and GPU instancing, each with their own advantages and
requirements.

4.4.7 Batching and instancing

Instancing as previously mentioned is a method to optimize draw calls, so that it renders
multiple copies of a mesh instead of creating new ones (Unity, n.d.). This helps performance
immensely, especially when used in relation to forming realistic nature. If the machine had to
render each blade of grass or rock it would cause a performance bottleneck. This is because
rendering an object requires the GPU to find the right buffer, and the right vertex attributes
which have to be transferred from the CPU (De Vries, 2017).

Static batching requires the object to be marked as static. A static object is an object that is
guaranteed not to move. GPU instancing requires that the objects share the same mesh, and
material, but allows for moving objects. GPU instancing can be enabled on the material. GPU
instancing is not very effective on meshes with few vertices. Unity recommends using GPU
instancing on models with more than 256 vertices.

This was used on some of the objects scattered around the scene. More specifically
interactable objects like glass bottles that the player could pick up and move. Objects with less
vertices like grass used static batching. This was possible as the Client did not want the grass
to interact with the wind.

46

Applied Sciences

\ Western Norway
University of Faculty of Engineering and Science

5. Results

5.1 Evaluation method

Evaluation was executed in accordance with the project evaluation plan. This included regular
functional and performance tests during the course of development, followed by alpha and
beta tests towards the end.

The alpha tests were conducted on the 21st of April. The test took place on 3 different
computers, allowing the team to test the build on different hardware, and to check whether or
not the setup process worked as expected. The client had originally expressed willingness to
perform the playthrough, however due to complications with the setup process, the
playthrough was performed by the group. The game was projected on a canvas for the client to
monitor. The goal was to identify compatibility issues, and an overall acceptance test used to
validate that the product is as the client expects. The alpha tests were conducted early enough
so that potential issues or missing features could be implemented before beta tests and the
projects end.

Figure 5.1: Beta tests with external users.

Beta tests were conducted on May 6th. Corrections in the setup process based on the
knowledge gained from the setup difficulties in the alpha tests allowed for a quicker start. 7
subjects were confirmed to join, with many more suspected to join. Testers would arrive in pairs
of two to avoid downtime if any testers are delayed, or if testers have to quit mid session due

47

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

to nausea etc. Testers would complete the first two steps in Media Labs planned education
program: watching the onboarding video, followed by a playthrough of the game. The group
and client would monitor the playthrough, taking notes and asking questions underway. The
testers were encouraged to point out difficulties, issues, improvements and wanted features.

5.2 Evaluation result

5.21 Performance Test

Performance tests early in development signaled that a version running purely on mobile VR
hardware was unlikely. To get the game to launch on the Oculus Quest 2 headset it required
the texture resolution to be lowered to 1/4th the original size as the game crashed due to
memory shortage. The game then ran at a shocking 6 frames per second.

The original build ran at only 28 frames per second on PC. The decision was made to focus on
making the PC experience as good as possible instead of potentially wasting time on
performance improvements that were not going to make a difference.

In the course of development, several causes for the low performance were identified. Profiling
the game using the built in Unity Profiler showed the game to be mainly GPU bottlenecked.
This is a situation where the CPU has to wait for the GPU to finish before proceeding to the
next frame, resulting in lower frame rate. Unity does not have access to the inner workings of
the GPU. Because of this, the graphically intensive objects were manually identified by
disabling groups objects in the hierarchy while monitoring the performance.

After figuring out the causes for the low performance, the group actively fixed or removed the
origins. As of today the game runs at most locations a smooth 72 frames and in some areas
even higher. The load times also subsequently decreased during the course of development,
some assets caused the load time to be considerably longer. Performance is at a level which,
with a few, minor tweaks to the terrain and models can run on an Oculus Quest 2 unit.
Something which seemed improbable earlier in the development phase.

5.2.2 Alpha Tests

During the alpha tests it became clear that there were some compatibility issues between

certain machines and the application. While the exact cause was unknown, it was likely an
issue with the machine's standard XR runtime being SteamVR. Switching the XR runtime to
OpenXR through the Oculus app was for some reason locked on these machines. However,
using SteamVR we were able to get the game running on these machines as well.

The client stated that he was happy with what had been achieved in the three months of
development. However, the tests did highlight some areas on which improvements could be
made. A common theme being the fact that the area feels a bit empty, considering there was
likely a couple of hundred people present at the fortress at that time according to the client.
Table 5.1 contains a list of features and issues in addition to a priority

Table 5.1: Feedback table with priority level

Feature Priority

48

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Add the outro scene, including a taxi that picks up the player, and a scene in a 1
theater showing a clip of the miners risking their lives as the story might not do a
good enough job at explaining this aspect of the story.

Add interactable objects like notes, journals and personal items that the player can 2
inspect to get a deeper understanding of the situation on the fortress.

Look into adding more characters to the scene. |dentify what performance impact 3
this would have and how to mitigate it. Characters on the crash site have higher
priority as they are mentioned in the story.

Add german propaganda posters to the compound, minefield signs and potentially 4
wanted posters showing the wanted fugitive mentioned in the story.

Add a radio broadcast to the radio next to the barracks. 5

Work on the sound design, mainly more ambient sounds. Also includes modifying 6
the footstep sounds and fixing the audio of the planes flying by.

Tweak certain objects. Some objects are seemingly too large. Some seem to 7
disappear at certain camera angles likely due to occlusion culling.

5.2.3 Beta Test

During the beta tests the group got a lot of valuable input from the users in the form of real
time verbal reactions and points. The feedback the team got through testing was very similar to
other players, almost every test subject gave the same feedback as the previous tester.

As shown in Figure 5.2, 6 out of 10 users experienced some form of nauseousness when
playing the game. This was due to factors like varying collisions with the terrain, and
continuous movement with the joystick and head turning. A potential fix would be to implement
locomotion by teleportation as an option to continuous movement.

Nauseous
1

Not nauseous
4

A little nauseous
5

Figure 5.2: Pie chart displaying 6 out of the 10 testers experienced some form of nausea

A lot of users struggled to understand how to control the player and how to interact with the
world around them. This included a difficulty understanding how to move the character,

49

\ Western Norway
University of Faculty of Engineering and Science

Applied Sciences

grabbing objects, interacting with characters and how to use the inventory system. When
explained, most testers were able to complete the playthrough without additional explanation.
This indicates that the system works, but needs to be explained better within the game. This
was the initial plan with the gatekeeper interaction, but it is clear it still needs some work.

Understood immediatly
20%

Needed repeated outside instruction
20%

Understood after in-game instruction
20%

Understood after outside instruction
40%

Figure 5.3: Pie chart displaying the difficulty testers had understanding the controls.

Most testers experienced some level of difficulty regarding navigating the game with the
majority of testers expressing the difficulty of navigation to be somewhere between moderate
and difficult (see Figure 5.4). When asked about how they thought the map worked, 4 out of 10
answered that the blue dot represented the players position and not the target position.

Number of
answers

3 & &

S
& N

Figure 5.4: Bar chart displaying the testers experienced difficulty of navigation.

50

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

It became clear that the wish of having players orient themselves according to the map and
their surroundings was at the expense of the user experience. On the other hand, some testers
experienced no issues navigating using the map, indicating that the map, and environment is
accurate enough for navigation to be possible using it. Testers also experienced some difficulty
identifying which NPCs were interactable, and some spent a significant amount of time trying
to interact with non-interactable NPCs.

Multiple testers dropped or lost the map during their playthrough making it very difficult to
understand where to go. A quick fix would be for the map to automatically return to the players
inventory should they step too far away from it.

The team was mostly interested in constructive feedback, but that does not mean all feedback
was negative. A large number of testers were impressed by the game’s visual fidelity and map
design. The ambient sounds of birds/wind and footsteps while moving through the game made
the game more realistic, and seeing objects move around the scene, for example the German
trucks and airplanes made the world feel alive. Other aspects of the gameplay design like
interacting with the gatekeeper and using the notebook for conversing was generally well
received by the testers, especially being able to pick up random objects in the scene, even if
some struggled with actually grabbing them.

5.3 Project Result

The project result is evaluated in regards to the goals the group set at the start of the project

phase. The original project goals were to create an entertaining and pedagogical virtual reality
video game, by further developing a Unity project. Additionally the other goal was to optimize
the project by reducing the file size and gaining performance.

The game is now in a finished state as in regard to the original project goals set by the group
and Media Lab. The solution contains a game with multiple scenes, user interactions, non
playable characters with voice lines and moving entities like trucks and planes. The game's
storyline is now fully playable from start to finish.

Moreover, the game itself now has a substantially decreased file size compared to the original.
In addition to this, the game’s performance has increased, now having a much higher average
frame rate. This means the game is more optimized and can potentially be run on lighter
machines, such as a Quest 2 unit.

Some tasks from Media Lab were not completed, such as certain interactable events and more
characters moving around in the scene. This was not included both due to time and mostly
because of performance constraints. However, the fundamental parts of the game are
complete, as well as other significant gamification and scenery additions.

5.4 Project Execution

Figure 5.5 (p. 52) displays the actual project execution compared to the plan. Beige represents
time spent on a feature outside the original plan. Red represents the original plan where no
actual work was done in that time frame. Orange represents the timeframes where the feature
was developed in accordance with the original plan.

o1

\ Western Norway
University of
Applied Sciences

Faculty of Engineering and Science

Project Plan

Research and
planning

VR rig, hands
and locomotion

Bug fixes

Dialogue
system

Game state /
Event system

Interactables

Environment
design

Events

Animations

Timer and
rewards

Achievements

Tests
Performance
improvements
Finishing
touches
L
Setup
complete

Figure 5.5: Actual project execution.

1
1
Project setup,
and conversion

lteration 1
finished

o
Iter. 2

finished

lter. 3

finished

|teration 4
finished

In most areas the group was able to keep up with the project plan. Most deviations were not
due to setbacks but rather due to shifts in priority. Due to the chosen project methodology, this
was not an issue. While the team are saddened by not having time to add achievements and
rewards, they were able to add many other features that were not part of the original plan, like
the map, inventory and the gatekeeper. Due to the minimal viable product approach, the game

was for the most part always in a playable state and had little risk of

The weekly meetings with the client were a big reason for the project's success. It allowed the
group to quickly get feedback on both the planned features, and the features under

development.

52

Western Norway
University of Faculty of Engineering and Science

Applied Sciences
6. Discussion

At the project's end, the team delivered on the initial requirements of finishing the project,
however, the end product could be better. Mainly, the team believes the game is not as fun,
and engaging as it could be. This is mainly a product of the short timeframe that was provided,
but there are still things that could have been done differently.

In this chapter we will reflect on what went well, and what could have been done better.

6.1 Collaboration

We believed the initial project description was a little vague. The client did not initially have
many specific requirements. Thankfully we had close contact through the entire development
process and was able to get a better sense of the direction the client wanted us to go. We do
however believe it might have been beneficial to set some of the requirements in stone earlier
in development, as we would continue to get new requirements up until two weeks before the
deadline.

Collaboration within the team was for the most part very good. The team would meet up
multiple times per week, either physically or through zoom / discord, to work on, plan or
discuss the project. We tried to keep each other accountable for their work by declaring what
each member would work on. At the end of the week we would explain the work done that
week. A problem with this is that it is easy to lose track of what has been done by yourself, and
what other team members were supposed to do. It is also difficult to confront other team
members in such a small team when they don't do their fair share. A better approach might be
to use a kanban board to more easily visualize what team members did and did not do.

At the start of the project we used Unity Collaborate as our source control system. This worked
well for the first couple of months before we started experiencing some issues. Mainly when
multiple people worked in the scene, it would result in a file conflict that could not be resolved
by merging. This in spite of working on different parts of the scene. We have to this date not
been able to identify the reason for this, we even contacted the Unity cloud service support
team, but they were unable to identify the issue.

This issue meant that multiple people could not work in the scene simultaneously. This severely
impacted the speed of development and meant we had to plan out in detail who would do what
when. We later were forced by Unity to migrate from Unity Collaborate to PlasticSCM source
control. This process took some time and the same issue as before persisted, indicating that
the issue lies within Unity or the structure of the scene. Since PlasticSCM had the same issue,
we determined it would not be worth the risk to switch to for example GitHub as it is likely to
not fix the issue, and the integration with Unity is worse than the current option.

6.2 Project Setup

As discussed in 3.2, we decided to update the project to URP and to Unity 2021.2. Setting up
the project took several attempts, as the project got errors and crashes that were believed to
be caused by the engine or by one of the frameworks. These were very difficult to
troubleshoot, so a strategy that seemed to work best was to create a brand new project in
Unity 2021.2 using the URP template. Then installing all necessary plugins and creating a

53

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

simple test scene for testing basic XR integrations. Scene includes a player controlled rig, a flat
ground plane and a grabbable cube. This scene was then built and deployed on Oculus Quest 2
headsets, verifying that android support was working as intended.

The scene from the initial project was then imported to the project. The scene looked almost
completely empty as we had not yet added the assets. The assets were added one by one to
the assets folder, until the scene was filled. This was done to lower the project's file size, as the
project was taking almost 15 minutes to launch, as well as allowing us to identify the assets
that were causing errors and crashes. At the end of this process we had a clean scene with
only working assets that we were expected to use.

Although it took a while to do this entire process it gave us a far better basis to work from. We
were ensured that an android build was theoretically possible, and any issues with this were
likely to be performance based and not asset or project based. The file size was severely
reduced and the project launch and build speed was noticeably quicker. It also gave us a much
deeper understanding of the project, the scene and the assets we had access to.

6.3 Code Practices

Working independently with so many different features often resulted in a lot of scripts with
very specific functionalities. In some instances this was unavoidable, but we could have done a
better job at generalizing some of the scripts which would increase the reusability.

Another bad practice was not documenting or planning the functions and methods properly
from the start. This was not a problem early on, but as the methods grew more complex they
also became difficult to read and follow. If we had time we would like to restructure a couple of
these scripts, mainly the NodeParser and NPCHandler.

The NodeParser has steadily increased its functionality over time, but has resulted in a very
large script with a number of different functions. It might be difficult for new developers to
understand how things are connected. We have however a few things we have agreed to fix in
the time frame between the report submission and the EXPO on the 15th of June, including
documentation.

Originally the NPCHandler was strictly for controlling the interactable characters in the game.
This includes disabling and enabling them as the story develops. However during the course of
development this script was expanded to cover more than just that. This was a quick and easy
way of implementing certain features, but made the script unnecessarily large. It also makes it
more vulnerable to crashes, as an error with one object or character can cause other events to
not fire. There is however a positive side to this. It allows us to quickly discover issues. Having
every event and character controlled through one script also helps to visualize the flow of the
game, and makes it quick and easy to alter the chain of events.

The documentation could definitely be better at this stage. Currently, many of the scripts do
not have documentation, other than the one provided in the system documentation (See
Appendix C). We plan to document the most relevant scripts using XML documentation
comments, and Unity inspector customization like we did in NodeParser.

o4

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

6.4 Unaccomplished Goals

One of the big goals of the project was to have the game running on the Oculus Quest 2
hardware. There were from the beginning some questions regarding whether or not this goal
was possible. After the initial performance tests we saw it as improbable that we would be able
to make this a reality, however as changes were made to the project, the performance
increased significantly. The game is currently in a state where with just some more
performance improvements could run on the mobile VR platform. Some of the potential
improvements are listed in Chapter 7.3: Further work

According to the vision documents list of features (See Appendix A) There were 3
unimplemented features. We were unfortunately unable to add achievements and scores, two
features we believe would make the game significantly more fun if implemented correctly. The
reason we did not is because of lack of time. We believe that this feature had to be
implemented well in order to have the desired effect and we simply did not have the time to do
that. Another example was to include multiple characters that moved about to fill the scene,
this was not possible since the characters given to the team were too performance heavy.

7. Conclusions and Further Work

This final chapter will present the conclusion of the project in relation to the discussion in
chapter 6. Additionally the project result will be compared to the original goals set by the group
and Media Lab, which were presented in chapter 1.

7.1 Goals and Results

The original project goal was to create a historically correct, enjoyable learning experience for
pupils by gamifying the previous bachelor project, as well as increase the performance and
playability of the game.

The goal was reached by further developing the previous solution to a working VR game which
includes gamification elements as well as other improvements to create an immersive,
enjoyable learning environment. The project owner is satisfied with the results with all initial
expectations being fulfilled. As mentioned in chapter 5, the beta testers had a lot of positive
feedback regarding the state of the game, and how immersive the experience was. Much of the
feedback came in relation to moveable objects, interactions and moving entities in the scene,
such as planes and trucks. The new dialogue system is also completed, letting any developer
easily expand the system.

55

A}

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Figure 7.1: Before project start.

Figure 7.2: The game in its current state.

Furthermore, the goal was also achieved by improving the game’s FPS. The average frame rate
from the previous project was below 28 (on a GTX 1070 GPU), which is nowhere near the
recommended 72 FPS benchmark for Oculus VR games. The group finds the results
satisfactory, seeing as the FPS now is at a stable level, even above the 72 frames per second in
certain areas. The file size is also smaller due to removing unnecessary assets which will
considerably reduce the installation time.

Additionally, as mentioned in chapter 6.4, a goal was to create a version of the game which
would be runnable on a stand alone Oculus Quest 2 unit, without the need for a robust gaming
computer. With this version, the game could be used in classrooms for students who do not
have the possibility to travel to the actual fortress. The end result here is as expected. The
team had communicated early that reaching this goal would be improbable, due to the bad
performance at the current time. As of today, the project requires a gaming computer as well as

56

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

an Oculus Link cable, to run to its full capability. However the performance optimizations the
group has done, has increased the performance to a point where a mobile VR version is within
reach, but it still needs just a little work.

The mine and timer features were implemented and were also functional objects in the game.
As of today, these still lie in the projects assets folder. These features were not included in the
final product since the project team had no more time to integrate these correctly with a
respawn / score system. Features such as the achievement system were also not implemented,
this will be further discussed in Chapter 7.3.

During development, the team developed features outside the original plan that made the user
experience more enjoyable and interactive. These were features such as the inventory system,
map, pistol, identification papers and the gatekeeper. More technical tools like the Event
Manager, were not part of the original plan, but were an addition that helped structure our
code. These were prioritized because the team determined these features to be more effective
at improving the user experience than timers or mines.

7.2 Relevance of the project

Virtual reality games for educational purposes is by no means a new phenomenon, yet it is still
an exciting field for technology. With newer and better technologies and solutions being rapidly
produced, VR has remained a core part of the future.

This project could have relevance for other museums who would like to create similar solutions,
either to create video games or digital recreations of historic buildings and areas. A lot of
museums are looking to add this type of technology to their locations as mentioned by @yvind
Fosse during one of the project meetings.

Furthermore, the project does not only have relevance for historical purposes. The project
could also tie in to other projects in relation to pedagogical games for schools. Other subjects
may be just as relevant as history, such as religion, ethics and science.

7.3 Further Work

The group recommends replacing or modifying the characters. The characters currently have a
severe impact on performance. Certain areas of the game run at less than half the frame rate
with characters enabled. We believe the reason to be the fact that the characters comprise of
8 different meshes. Animated characters use Skinned Mesh Renderers for their meshes as they
need to deform. Skinned Mesh Renderers are very taxing and should be limited to one per
character. We recommend either combining the meshes of the characters or replacing them.
The gatekeeper model has better performance, so it can be kept.

Given the last recommendation, the second recommendation would be to add more non
playable characters in the scene. One could take advantage of the better performing
characters, and add more of them to the scene. This will in turn increase immersion in the
scene by having a greater quantity of NPC’s moving about the virtual fortress.

Some of the models are making lightmap baking impossible. We recommend taking a look at
these and fixing their overlapping UVs. The main problems are the barracks and the

57

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

surrounding buildings. Unity is unable to automatically generate good lightmap UVs for these,
so we recommend manually setting these and avoid any overlap. Using this in conjunction with
light probes could severely improve the CPU load should it prove to be a problem.

The game currently does not have a main menu. We recommend adding one that allows the
player to start the game from several stages. This is to make it possible for players to skip the
intro, or to resume the game from a state close to where they left off. This is especially helpful
in the event of a crash. Other options in the menu could be sound settings and preferred
locomotion method, where players could choose between teleportation and continuous
movement. This feature should ideally be available from within the main scene as well.

Achievements and scores are two features we unfortunately did not get the time to add. We
believe this would greatly improve the user experience as it would give the player a sense of
progression and rewards for doing so. Achievements could be to find a hidden object or room,
or to perform a specific action. Score could be tied up to the amount of information you were
able to gather. The final score could be displayed at the end of the game, which would in turn
increase replayability, as players would be encouraged to increase their total score, and gather
more information in the next playthrough.

58

Western Norway
University of Faculty of Engineering and Science

Applied Sciences
8. References

Aber, J. S., Marzolff, I, & Ries, J. (2010). Small-Format Aerial Photography: Principles,
Techniques and Geoscience Applications. Elsevier Science.
https://doi.org/10.1016/B978-0-444-53260-2.10003-1

Beck, K., Beedle, M., van Bennekum, A., & Cockburn, A. (2001, 11). Manifesto for Agile Software
Development. Manifesto for Agile Software Development. Retrieved March 12, 2022,
from https://agilemanifesto.org/

Blender. (2022, 02 05). Decimate Modifier. Retrieved 05 14, 2022, from
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/decimate.htmi

Brigsted, T. (2021). xNode [Node editor for Unity]. Github/xNode.
https://github.com/Siccity/xNode

Crazy Minnow Studio. (2022, Feb 04). SALSA LipSync Suite /Animation Tools. Unity Asset
Store. Retrieved May 10, 2022, from
https://assetstore.unity.com/packages/tools/animation/salsa-lipsync-suite-148442#des
cription

De Vries, J. (2017, 10 26). LearnOpenGL - Instancing. Learn OpenGL. Retrieved May 15, 2022,
from https://learnopengl.com/Advanced-OpenGL/Instancing

Epic Games. (n.d.). Digital Humans | MetaHuman Creator. Unreal Engine. Retrieved May 10,
2022, from https://www.unrealengine.com/en-US/digital-humans

Epic Games. (n.d.). Nanite Virtualized Geometry in Unreal Engine / Unreal Engine
Documentation. Unreal Engine 5 Documentation. Retrieved May 10, 2022, from
https://docs.unrealengine.com/5.0/en-US/nanite-virtualized-geometry-in-unreal-engine
/

Facebook Technologies. (n.d.). Oculus Lipsync for Unity Development: Unity. Oculus Developer
Center. Retrieved May 10, 2022, from

https://developer.oculus.com/documentation/unity/audio-ovrlipsync-unity/

59

Western Norway
University of Faculty of Engineering and Science

Applied Sciences

Immersion VR. (2022, jan 01). VR for Education - The Future of Education. Immersion VR.
Retrieved March 12, 2022, from
https://immersionvr.co.uk/about-360vr/vr-for-education/

Insko, B. E. (n.d.). OpenXR Overview - The Khronos Group Inc. Khronos Group. Retrieved May 4,
2022, from https://www.khronos.org/openxr/

Khronos Group. (n.d.). Retrieved May 9th, 2022, from https://www.khronos.org/openxr/

Khronos Group. (2019, July 29). OpenXR Overview - The Khronos Group Inc. Khronos Group.
Retrieved May 4, 2022, from https://www.khronos.org/openxr/

Knowles, R. (2020, January 8). What is Agile Research and Why Should Insights Teams Care?
LinkedIn. Retrieved May 22, 2022, from
https://www.linkedin.com/pulse/what-agile-research-why-should-insights-teams-care-
roddy-knowles

Krita Foundation. (n.d.). History. Krita. Retrieved May 10, 2022, from
https://krita.org/en/about/history/

Li, Y. (2019, February). Gesture interaction in virtual reality. Virtual Reality & Intelligent
Hardware, 1(1), 28. ScienceDirect.com. 10.3724/sp.j.2096-5796.2018.0006

Mixamo. (n.d.). Mixamo. Mixamo. Retrieved April 22, 2022, from https://www.mixamo.com/#/

Museum Vest. (n.d.). Korleis kjem du deg til Fjell festning? Fjell Festning. Retrieved May 22,
2022, from
https://fjellfestning.museumvest.no/norsk/praktisk-informasjon/korleis-kjem-du-deg-til-
fiell-festning/

Qualcomm. (n.d.). Extended Reality XR | Immersive VR. Qualcomm. Retrieved May 20, 2022,
from https://www.qualcomm.com/research/extended-reality

Qualcomm. (n.d.). Virtual Reality. Qualcomm. Retrieved May 20, 2022, from
https://www.qualcomm.com/research/extended-reality/virtual-reality

Ridley, J. (2022, February 8). The Quest 2 is now the headset of choice for 46% of Steam VR
users. PC Gamer. Retrieved May 22, 2022, from
https://www.pcgamer.com/the-quest-2-is-now-the-headset-of-choice-for-46-of-stea

m-vr-users/

60

Western Norway
University of Faculty of Engineering and Science

Applied Sciences
Unity. (n.d.). Manual: GPU instancing. Unity - Manual. Retrieved April 29, 2022, from

https://docs.unity3d.com/Manual/GPUlnstancing.html

Unity. (2017, 11 21). Manual: Animator Controller. Unity - Manual. Retrieved April 22, 2022, from
https://docs.unity3d.com/Manual/class-AnimatorController.html

Unity. (2021, August 31). Universal Render Pipeline overview / Universal RP / 11.0.0. Unity -
Manual. Retrieved May 10, 2022, from
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@11.0/manual/i
ndex.html

Unity. (2022, May 05). Choosing and configuring a render pipeline and lighting solution. Unity -
Manual. Retrieved May 9, 2022, from
https://docs.unity3d.com/Manual/BestPracticeLightingPipelines.html

Unity. (2022, May 5). Manual: Render pipelines. Unity - Manual. Retrieved May 9, 2022, from
https://docs.unity3d.com/Manual/render-pipelines.html

Unity. (2022, May 5). Manual: Using the High Definition Render Pipeline. Unity - Manual.
Retrieved May 9, 2022, from
https://docs.unity3d.com/Manual/high-definition-render-pipeline.html

Unity Documentation. (n.d.). Manual: Types of light. Unity - Manual. Retrieved May 1, 2022,
from https://docs.unity3d.com/Manual/Lighting.html

Unity Documentation. (n.d.). Occlusion Culling. Unity - Manual. Retrieved May 2, 2022, from
https://docs.unity3d.com/560/Documentation/Manual/OcclusionCulling.html

Unity Documentation. (n.d.). Scripting API: NavMeshAgent. Unity - Manual. Retrieved May 1,
2022, from https://docs.unity3d.com/ScriptReference/Al.NavMeshAgent.html

Unity Documentation. (2022, May 5). Manual: Profiler overview. Unity - Manual. Retrieved May
15, 2022, from https://docs.unity3d.com/Manual/Profiler.ntml

Unity Documentation. (2022, May 7). Manual: Level of Detail (LOD) for meshes. Unity - Manual.
Retrieved May 14, 2022, from https://docs.unity3d.com/Manual/LevelOfDetail.html

Unity Learn. (2021, February 11). Introduction to Particle Systems. Unity Learn. Retrieved April

22,2022, from https://learn.unity.com/tutorial/introduction-to-particle-systems

61

Western Norway
University of Faculty of Engineering and Science

Applied Sciences
Unity Learn. (2021, March 7). XR Interaction Toolkit: Working with the Socket Interactor. Unity

Learn. Retrieved May 4, 2022, from
https://learn.unity.com/tutorial/xr-interaction-toolkit-working-with-the-socket-interacto
r#

Unity Support. (2021, August 27). Why are my batches (draw calls) so high? What does that
mean? Unity Support. Retrieved May 5, 2022, from
https://support.unity.com/hc/en-us/articles/207061413-Why-are-my-batches-draw-call
s-so-high-What-does-that-mean-

Unity Technologies. (2021, February 22). Configuring an XR Rig with the XR Interaction Toolkit.
Unity Learn. Retrieved May 20, 2022, from
https://learn.unity.com/tutorial/configuring-an-xr-rig-with-the-xr-interaction-toolkit#

Valve Corporation. (2021, February 24). SteamVR Plugin //ntegration. Unity Asset Store.
Retrieved May 4, 2022, from
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647#descrip
tion

VIDE Dialogues. (2018, November 05). VIDE Dialogues. VIDE Dialogues. Retrieved April 26,
2022, from https://videdialogues.wordpress.com/

Western Norway University of Applied Sciences. (2020, August 19). Laeringslab. Hegskulen pa
Vestlandet. Retrieved May 22, 2022, from https://www.hvl.no/alu/medielab/laringslab/

Western Norway University of Applied Sciences. (2020, October 15). HVL. Media Lab - Western
Norway University of Applied Sciences. Retrieved May 21, 2022, from

https://www.hvl.no/en/alu/media-lab/

62

A

63

Western Norway

University of Faculty of Engineering and Science

Applied Sciences

Appendix E: Test Questions

Fjell Fortress 1945 User Test

Tests performed friday 6th. May. 2022

@ (not shared) Switch account ()

* Required

Did you feel any physical discomfort during the playthrough?

MNone
Headache
MNausea

Other:

Q20

How easy was it to understand the controls? (Moving the player character,
picking up objects, interacting with characters etc.)

1 2 3 4 5

Difficult O O O O O Easy

How intuitive was the inventory system?

1 2 3 4 5

Difficult O O O O O Intuitive

How easy was it to navigate through the game? *

1 2 3 4 5

Hard O O O O O Easy

How immersive was the game experience?
1 2 3 4 5

Felt completely artificial O O O O O eemool seperate_ Tiegame
from reality

To what extent did the surroundings reflect World War 117

1 2 3 4 5

Not very realistic O O O O O Very releastic

