
Dynamic analysis of a multi-
body floating wind turbine

Ole-Martin Risnes Grindheim

Bachelor’s thesis in Havteknologi
Bergen, Norway 2022

Dynamic analysis of a multi-body floating wind
turbine

Ole-Martin Risnes Grindheim

Department of Mechanical- and Marine Engineering
Western Norway University of Applied Sciences

NO-5063 Bergen, Norge

IMM 2022-M04

Høgskulen på Vestlandet
Institutt for Maskin- og Marinfag
Inndalsveien 28,
NO-5063 Bergen, Norge

Cover and backside images © Norbert Lümmen

Norsk tittel: Dynamisk analyse av en flerlegeme flytende vin-
dturbin

Author(s), student number: Ole-Martin Risnes Grindheim h585912

Study program:
Date:
Report number:
Supervisor at HVL:
Assigned by:
Contact person:

Havteknologi
June 2022
IMM 2022-M 04
Thomas Impelluso
HVL
Thomas Impelluso

Antall filer levert digitalt: 2

Dynamic analysis of a multi-body floating wind turbine

Preface
This Bachelor project is written as the final part of the bachelor’s programme Ocean Technol-
ogy at the Western Norway University of Applied Sciences (HVL). The topics of concern in
this thesis are mainly multi-body dynamics using the Moving Frame Method with simplified
hydrodynamic and aerodynamic loads. This project has been supervised by internal supervisor
Prof. Thomas J. Impelluso.

A special thanks to Thomas, for providing expertise on the Moving Frame Method but also
for being a great mentor and an inspiration. I would also like to mention my gratitude for the
guidance and support provided by Tone Helene Bergset Røkenes.

i

Dynamic analysis of a multi-body floating wind turbine

Abstract
This immediate objective of this project is to apply the moving frame method (MFM) to the
OC3 phase IV spar buoy with the NREL MW5 turbine, and verify previous results. The long
term goal is to lay the foundation for leveraging the moving frame method to create a self-
contained software system for future analyses that can incorporate more sophisticated effects.
In this first evidentiary phase, this project treats the floating turbine as a three-bodied system
consisting of the platform (platform + tower), nacelle and rotor (hub + blades). Then the
MFM is discussed in the context of this problem’s resolution. The equations of motion obtained
through the MFM is supplemented by simplified and reduced hydrodynamic, aerodynamic and
mooring loads to simulate the translational and rotational response of the floating turbine under
various load conditions. The results closely approximate that which has been found in previous
work, and in the process demonstrates the the power of the moving frame method. Current
results capture the coupled responses in all degrees of freedom as well as gyroscopic effects that
occur when the platform pitches with the spinning rotor. The project thus provides a complete
dynamic model for the dynamics of the turbine and opens the door to insert correct advanced
hydrodynamics to further validate the model. The simulations for the different load cases will
be displayed through a 3D web page using WebGL and the THREEJS library.

iii

Dynamic analysis of a multi-body floating wind turbine

Sammendrag
Det øyeblikkelige målet med dette prosjektet er å bruke Moving Frame Metoden (MFM) på en
OC3 fase IV sparbøye plattform med NREL 5MW vindturbin og verifisere tidligere resultat.
På sikt er målet å legge grunnlaget for å utnytte MFM til å lage selvstendig programvare for
fremtidige analyser som kan inneha mer sofistikerte effekter. I denne startfasen av prosjektet
blir den flytende turbinen behandlet som system bestående av tre legemer; plattform (plattform
+ tårn), nacelle og rotor (hub og blader). Dette prosjektet utdyper MFM sett i lys av omfanget
til flerlegeme systemet. Bevegelsesligningene anskaffes gjennom MFM og forenklede samt re-
duserte hydrodynamiske-, aerodynamiske- og forankrings-krefter blir brukt for å simulere den
kinematiske responsen til en flytende offshore vindturbin (FOWT) i forskjellige vær- og vind-
forhold. Resultatene er en nær tilnærming av det som tidligere har blitt vist i tidligere arbeid
og demonstrerer dermed kraften til Moving Frame metoden. De nåværende resultatene fanger
den koblede responsen i alle frihetsgrader som FOWT’en har samt gyroskopiske effekter som
oppstår når rotoren roterer og plattformen stamper. Dette prosjektet legger derfor til rette for
en komplett dynamisk modell for kinematikken til turbinen og åpner døren for å bruke avansert
og mer nøyaktig hydrodynamikk for å videre validere modellen. En visuell simulering av ulike
scenarioer vil bli presentert via en 3D-webside som er laget ved hjelp av WebGL og THREEJS
biblioteket.

v

Dynamic analysis of a multi-body floating wind turbine

Contents
Abstract iii

Sammendrag v

Nomenclature xi

1 Introduction 1

2 Dynamics and the Moving Frame Method 2

3 Applying the Moving Frame Method 5
3.1 Platform kinematics . 5
3.2 Kinematics of the Nacelle . 7
3.3 Blade kinematics . 11
3.4 Generalized Coordinates . 13
3.5 Hamilton’s Principle and kinetics . 15
3.6 Reconstruction of the Rotation Matrix . 18

4 Hydrodynamics 19
4.1 Hydrostatics . 19
4.2 Wave Excitation Loads . 20
4.3 Radiation loads . 23
4.4 Viscous Drag . 24

5 Mooring Lines 25
5.1 Non-linear load representation . 25

6 Aerodynamics 28

7 Pulling it all together 30
7.1 General Matlab Method . 30
7.2 Matlab: Moving Frame Method . 31
7.3 Mooring Line implementation . 32
7.4 Aerodynamics . 35
7.5 Hydrostatics . 35
7.6 Viscous Drag implementation . 35
7.7 Wave Radiation Implementation . 36
7.8 Wave Excitation Implementation . 36
7.9 Added Mass . 36
7.10 Dealing with cases . 36
7.11 System description . 37

8 Results 40
8.1 Wave excitation loads . 40
8.2 Loads from the mooring lines . 42
8.3 Free decay . 45

8.3.1 Free Decay Surge . 45
8.3.2 Free Decay Pitch . 46
8.3.3 Free Decay Heave . 47

8.4 Load Case 4.1 . 47

vii

O.M.R. Grindheim

8.5 Load Case 5.1 . 48
8.6 Load Case 5.3 . 50

9 Conclusion 53

10 Future work 54

References 55

Appendix 57
Appendix A: MAIN script . 57
Appendix B: Runge-Kutta Loop script . 62
Appendix C: Solve Mstar Nstar Fstar script . 66
Appendix D: Create data file script . 70
Appendix E: Loads from all mooring lines script . 72
Appendix F: Hydrostatic Load . 75
Appendix G: Viscous Drag Load . 76
Appendix H: Wind Load . 77
Appendix I: Reconstruction . 78
Appendix J: Line tension . 79
Appendix K: Irregular wave . 83
Appendix L: Regular wave . 86

List of Figures
1 Normalized directional derivatives . 2
2 Turbine with moving reference frames . 5
3 Platform Kinematics . 6
4 Linking the platform and the nacelle . 8
5 Linking the blade and the nacelle . 11
6 Propagating waves . 21
7 Jonswap and P-M spectra . 23
8 Waves radiated away from the platform . 23
9 Fairlead delta-connection . 25
10 Horizontal and vertical forces at anchor and fairlead 26
11 2D-Foil element of blade . 28
12 Flowchart for solving EOM . 30
13 Force-Displacement Curve . 33
14 PSD Jonswap and PM . 40
15 Time-series ζ: Hs=6, Tp=10 . 41
16 Regular wave time-series H=6m, T=10s . 42
17 Surge displacement/Mooring loads . 42
18 Sway displacement/Mooring loads . 43
19 Heave displacement/Mooring loads . 43
20 Roll displacement/Mooring Loads . 44
21 Pitch displacement/Mooring loads . 44
22 Yaw displacement/Mooring loads . 45
23 Free Decay Surge No Added Mass . 46
24 Free Decay Surge With Added Mass . 46
25 Free Decay Pitch No Added Mass . 46

viii

Dynamic analysis of a multi-body floating wind turbine

26 Free Decay Pitch With Added Mass . 46
27 Free Decay Heave No Added Mass . 47
28 Free Decay Heave With Added Mass . 47
29 Displacements for all DOF . 48
30 Time series of response in all DOF . 49
31 Rotor RPM . 50
32 Translational response . 51
33 Rotational response . 51
34 Rotor RPM . 51

List of Tables
1 Generator data [3] . 29
2 Generator torque/RPM [3] . 29
3 Data table for mooring lines . 33
4 Platform structural data [8] . 37
5 Tower structural data [8] . 38
6 Nacelle structural data [9] . 38
7 Hub structural data [9] . 38
8 All three blades structural data [9] . 39
9 Position vectors. Emphasizing that the frame is not stated here. 39
10 Coordinate ranges . 45
11 Load Case 5.1 . 48
12 Load Case 5.3 . 50

ix

Dynamic analysis of a multi-body floating wind turbine

Nomenclature
F → Force and/or moment vector
M → Moment vector
g → Gravity
X → Cartesian Coordinates
L → Linear Momentum
H → Angular Momentum
Jc → 3x3 Mass moment of Inertia matrix
M → Mass matrix for multi-body system
e → Moving frame
R → Rotation matrix
ω → Angular velocity vector
←→ω → Angular velocity Matrix
E → Frame Connection Matrix
q → Generalized Essential Velocity vector
B → B matrix

COG → Center of Gravity
COB → Center of Buoyancy
SWL → Sea-Water-Line
ζ → Wave elevation
Hs → Mean Wave height
Tp → Wave period
γ → Peak shape parameter

xi

Dynamic analysis of a multi-body floating wind turbine

1 Introduction
The world’s ever increasing need for energy makes renewable energy sources an attractive solu-
tion. While the demand for renewable energy increases so does the resistance to onshore wind
farms due to the environmental impact which puts certain species at risk [13]. Offshore wind
farms will lessen the environmental impact regarding installations of permanent structures and
it will also yield more favourable wind conditions [1].

In order to maximize the potential it is critical that continually improved solutions for floating
offshore wind farms are implemented. Floating offshore wind turbines (FOWT) experience
harsher environmental loads and also increased freedom to translate compared to fixed instal-
lations. This implies that predicting the movement of the FOWT is a complex operation. The
loads such as wind, currents and waves coupled with the complete translational and rotational
freedom of the FOWT makes it a coupled multi-body dynamic issue. The Moving Frame
Method (MFM) can ease the process of obtaining the equations of motion as well as having the
potential to reduce simulation time substantially when implemented without the computational
overhead of commercial software.

The MFM utilizes Lie algebra and Cartan’s notion of Moving frames to extract the equations
of motion of both single- and multi-body systems as well as 2D and 3D kinetics in a consistent
notational matter [6]. The aim of this project is to construct the equations of motion using the
MFM and to implement some of the environmental loads. It will analyse the OC3 Phase IV
spar-buoy platform and the NREL 5MW reference turbine due to extensive research already
having been performed on the platform and the turbine.

The goal is not simply to replicate previous found results but also to lay the foundation for
further use of the MFM when addressing complex multi-body dynamic systems. This project
will also demonstrate computational advanced techniques, such as how the MFM enables easy
transitions between scenarios where the tower-nacelle-rotor connection is considered rigid bod-
ies as well as scenarios where the rotor is spinning yet the nacelle remains rigid from the tower.

The calculations will be performed using simple aspects of Matlab. The MFM presents the
final equation in a form ready for a Runge-Kutta 4th order solution. The project will code
RK4 directly, without recourse to a Matlab math library. Several of the environmental loads
such as aerodynamics and certain aspects of the hydrodynamic problem will be implemented
in simplified terms. The loads from the mooring lines will also be accounted for. A Javascript
function will be written for all the simulations performed in Matlab to create a web page to
display the 3D results using WebGL and the THREE.JS library.

1

O.M.R. Grindheim

2 Dynamics and the Moving Frame Method
Rigid body dynamics is the study of the motion of rigid bodies subjected to applied forces.
Newton formalized three laws of motion for inertial reference frames; i.e., from the perspec-
tive of an inertial observer standing beside the machine. Next, Euler extended the study to
rotations under torques using geometry. Later, academicians developed a pedagogy founded
on inertial reference frames and planar motion, e.g., motion in a two-dimensional (2D) plane.
While such a traditional approach is legitimate, more powerful analyses can be conducted by
deploying modern mathematics.

A new approach to rigid body dynamics utilizes modern mathematics to lessen the reliance on
inertial frames, the non-associativity of the cross product, vector algebra, and an unnatural
focus on 2D dynamics. This new method, the Moving Frame Method (MFM), is founded on
the work of two mathematicians:

• Elie Cartan suggested every object come equipped with its own moving reference frame
and that the motion of each frame can be formulated in terms of the same frame.

• Sophus Lie’s continuous group theory can readily model rotations in 3D space.

The core of the MFM is the use of rotation matrices in lieu of vectors. Rotation matrices do
not carry the burden of non-associativity (more readily programmable), and can model the
changing direction of the base frame; and in this way, model rotations in 3D space, easily.

In the text following, certain aspects of the MFM are presented. Then, in the next section,
they are applied to the floating turbine and some aspects are repeated.

The first step is to layer a coordinate function system on an object. The origin is placed at the
leading body’s center of mass. Then, a frame from the Cartesian coordinate function directions
is derived:

e(1)(t) =
(
e(1)

1 (t) e(1)
2 (t) e(1)

3 (t)
)

=
(

∂
∂x1

∂
∂x2

∂
∂x3

)
(1)

∂
∂x3

s(
α/
xc

)

x1

x2

x3

∂
∂x2

∂
∂x1

∂

∂s
(α)
3

s
(α)
1

s
(α)
2

s
(α)
3

∂

∂s
(α)
2

∂

∂s
(α)
1

Figure 1: Normalized directional derivatives

Figure 1 represents a body layered with separate Cartesian coordinate systems (grey lines).
The directional derivatives of the coordinates are normalized to create individual unit reference
frames on the moving bodies. The goal is now to study the motion of each body frame in terms

2

Dynamic analysis of a multi-body floating wind turbine

of the same frame.

There is no true inertial frame, however, one can approximate one when necessary, by depositing
it from the moving frame at the start of an analysis. The rotation of the earth will not be
considered in any parts of this analysis; therefore the inertial frame can be deposited before the
analysis commences:

e(1)(0) = eI (2)

With the inertial frame and the moving body frame the orientation of the moving body frame
in space can be found:

e(1)(t) = eIR(1)(t) (3)

Rotation matrices are members of the Special Orthogonal Group R(t) ∈ SO(3). And come
equipped with the power inherent in group and its associated algebra as will be discussed,
herein.

Rotation matrices carry one frame into another, through post-multiplication in the structured
form described below. In the previously mentioned equation, R is a full 3x3 rotation matrix
allowing full rotational freedom. It is an absolute rotation matrix.

Two separate moving reference frames can be related through a relative rotation matrix. The
superscript of the rotation matrix will denote whether it is an absolute or relative rotation
matrix with the respective notational principle (α) and ((α + 1)/α).

e(2)(t) = e(1)(t)R(2/1)(t) (4)

Members of the SO(3) have an associated algebra←→ω ∈ so(3). They are found as follows, where
the superposed dot on the rotation matrix indicates the time derivative on this and all terms
carrying a similar notation:

←−−−→
ω(2/1)(t) = R(2/1)T (t)Ṙ(2/1)(t) (5)

Basically, this term represents the rate of change of the rotation matrix, pulled back through
the transpose, to the inertial frame. The equation above will be of skew-symmetric form. When
unskewed and associated with the moving frame, one obtains the angular velocity as a vector
which is free of the limitations of planar rotations.

ω(2) = e(2)(t)ω(2)(t) (6)

The previously mentioned term,
←−−−→
ω(2/1)(t), represents a relative angular velocity matrix. With

this, there exists a recursive relationship to obtain the absolute angular velocity matrix, through
a tree structure of linked frames, beginning with the first frame’s angular velocity:

←−−→
ω(α)(t) = R(α)T (t)Ṙ(α)(t) (7)

←−−−−→
ω(α+1)(t) = R(α+1/α)T (t)

←−→
ωα(t)R(α+1/α)(t) +R(α+1/α)T (t)Ṙ(α+1/α)(t) (8)

When this work is deployed using Lagrangian dynamics, one must take care with regard to the
variations of the angular velocity (pursuant to the use of the Calculus of Variations). Specifi-
cally, the commutativity of the rate and variation (mixed partials) upon which the Calculus of
Variations will hinge will now be addressed.

3

O.M.R. Grindheim

The variation of displacement rates is unrestricted; however, there does exist a restriction on
the variation of the angular velocity. As manifested through the commutativity of the rate and
variation, this restriction on the rotational information is manifested by the second equation
below, in comparison to the first one.

δẋ(α)
c (t) =

(
d

dt
δx(α)

c (t)

)
(9)

δ
←−−→
ω(α)(t) =

(
d

dt
(R(α)T δR(α)) +

←−−→
ω(α)(t)(R(α)T δR(α))

)
(10)

With these foundational expressions, the MFM is applied to a floating wind turbine, while also
presenting the final equations, at the same time. The following section will apply the MFM to
a FOWT in a tutorial form.

4

Dynamic analysis of a multi-body floating wind turbine

3 Applying the Moving Frame Method

e(1)
3

e(1)
2

e(1)
1

e(2)
3

e(2)
2

e(2)
1

e(3)
3

e(3)
2

e(3)
1

Figure 2: Turbine with moving reference frames

Figure 2 above illustrates how each body of the FOWT will be designated a separate frame.
The combined body of the platform and the tower will hold the first frame from which the
inertial frame will be deposited. The second moving reference frame is attached to the nacelle,
and the third is attached to the combined body of the hub and the blades. All frames will be
aligned with the centre of mass of the respective bodies. In the following section the kinematic
of each moving frame will be described and lay the foundation for obtaining the equations of
motion.

3.1 Platform kinematics

The platform will be oriented and positioned using the inertial frame as follows:

e(1)(t) = eIR(1)(t) (11)

r(1)
c (t) = eIx(1)

c (t) (12)

Since the platform will have full rotational and translational freedom the rotation matrix in
equation 11 will be a full 3x3 rotation matrix (a member of the special orthogonal group, SO(3))
that will reveal the roll, pitch and yaw of the FOWT.

5

O.M.R. Grindheim

Similarly x
(1)
c (t) will reveal translation in surge, sway and heave direction. Obtaining these

rotational and translational coordinates in the inertial reference frame will be the main focus
of later parts of the analysis. The kinematics of the platform could be concluded here, but to
further describe the kinematics the Special Euclidean Group, which can be considered a parent
of the Special Orthogonal Group, will be applied.

e(1)

3

e(1)

2

e(1)

1
eI3 eI2

eI1

r(1)
C

Figure 3: Platform Kinematics

The continued kinematic description of the FOWT will utilize frame connections. To create the
frame connection, both the frame and its position are grouped. Below, both the inertial frame
connection and the moving frame connection (the former asserts the origin) are displayed:(

eI 0
)

(13)(
e(1)(t) r(1)

c (t)
)

(14)

The two frame connections are related through a frame connection matrix, defined implicitly,
by the last equality, below. Notice that the expression below recapitulates the two equations
that commenced this section.(

e(1)(t) r(1)
c (t)

)
=
(
eI 0

)
E(1)(t) =

(
eI 0

) [R(1)(t) x
(1)
c (t)

0T 1

]
(15)

The frame connection matrix, E(1)(t), is a member of the Special Euclidean Group, SE(3), and
carries associated group properties and algebra. As a member of SE(3) the inverse can be found
analytically (one need only test it to assure it is the inverse, keeping in mind the orthogonality
of the embedded rotation matrix):

(
E(1)(t)

)−1
=

[
R(1)T (t) −R(1)T (t)x

(1)
c (t)

0T 1

]
(16)

6

Dynamic analysis of a multi-body floating wind turbine

The rate of change of the frame connection matrix is then derived:(
ė(1)(t) ṙ(1)

c (t)
)

=
(
eI(t) 0

)
Ė(1)(t) (17)

Expanding the Ė(1)(t), yields:

Ė(1)(t) =

[
Ṙ(1)(t) ẋ

(1)
c (t)

0T 0

]
(18)

Since the inverse of the frame connection matrix is analytically known through the algebraic
properties of SE(3), the rate of change of the frame connection matrix can be expressed in
terms of the same frame connection matrix (as per Cartan):(

ė(1)(t) ṙ(1)
c (t)

)
=
(
e(1)(t) r(1)

c (t)
) (
E(1)(t)

)−1
Ė(1)(t) (19)

(
ė(1)(t) ṙ(1)

c (t)
)

=
(
e(1)(t) r(1)

c (t)
)

Ω(1)(t) (20)

The two equations above implicitly define Ω(1)(t), and it can be expanded as follow:

Ω(1)(t) =

[←−−→
ω(1)(t) R(1)T (t)ẋ

(1)
c (t)

0T 0

]
(21)

From this the foundation has been laid to extract the translational and rotational information
in the following steps: ←−−→

ω(1)(t) = R(1)T (t)Ṙ(1)(t) (22)

As previously mentioned the angular velocity matrix in its skew-symmetric form is used to
express the time rate of change of the body frame in terms of the body frame:

ė(1)(t) = e(1)(t)
←−−→
ω(1)(t) (23)

From equation 21 the translational velocity information of the body in the moving frame can
also be extracted:

ṙ(1)
c (t) = e(1)(t)R(1)T (t)ẋ(1)

c (t) (24)

Which is easily referred back to the inertial frame using the inverse frame relation:

ṙ(1)
c (t) = eI(t)ẋ(1)

c (t) (25)

This concludes the kinematic of the platform and the next section will continue through the
tree structure of the platform, nacelle and blades. From here, the same structures will apply,
however, they will initially be formulated as relative frame connection.

3.2 Kinematics of the Nacelle

Atop the tower sits the yaw bearing motor which enables the rotation of the nacelle about the
tower’s vertical axis. This study will simply assume the motor and Nacelle as one body and
continue by locating the center of mass this entire structure.

7

O.M.R. Grindheim

e(1)
3

e(1)
2

e(1)
1

e(2)
3

e(2)
2

e(2)
1

s(
J
/
1
)

s(2/J)e(2) origin

Point J location

Figure 4: Linking the platform and the nacelle

To reach the center of mass of the structure, proceed as follows: translate, rotate and translate
to reach the nacelle’s centre of mass.

• Translate to yaw bearing, henceforth known as point J, using the turbine frame. Ulti-
mately, with the coordinate system presented in figure 2 the analysis will assert: s(J/1)

2 (t) =

s
(J/1)
1 (t) = 0. However, for now, the analysis leaves it as general:

s(J/1)(t) = e(1)(t)s(J/1)(t) = e(1)(t)

s
(J/1)
1 (t)

s
(J/1)
2 (t)

s
(J/1)
3 (t)

 (26)

• Rotation of the nacelle from the platform occurs about the third (vertical) axis as mani-
fested by the following standard rotation matrix:

R(2/1)(t) =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 (27)

• Translate from J to the centre of mass of the nacelle, in what will be the nacelle frame.
For simplicity it can be assumed that: s(2/J)

2 (t) = s
(2/J)
3 (t) = 0 (Ultimately, however, a

more proper analysis will include a mass center that is not aligned like this. Thus, the

8

Dynamic analysis of a multi-body floating wind turbine

analysis asserts the general form for now).

s(2/J)(t) = e(2)(t)s(2/J)(t) = e(2)(t)

s
(2/J)
1 (t)

s
(2/J)
2 (t)

s
(2/J)
3 (t)

 (28)

With the above mentioned rotational and translational coordinates, the relative frame connec-
tion matrix - that relates the platform frame to the nacelle frame - can be obtained as the
non-commutative product of the following matrices:

E(2/1)(t) =

[
I3x3 s(J/1)(t)

0 1

] [
R(2/1)(t) 0

0 1

] [
I3x3 s(2/J)(t)

0 1

]
(29)

Performing the matrix multiplication yields:

E(2/1)(t) =

[
R(2/1)(t) R(2/1)(t)s(2/J)(t) + s(J/1)(t)

0 1

]
(30)

Thus, the relative frame connection relationship is constructed:(
e(2)(t) r(2)

c (t)
)

=
(
e(1)(t) r(1)

c (t)
)
E(2/1)(t) (31)

By taking advantage of the platform’s frame connection matrix, equation 15, the relative na-
celle frame connection can be related to the inertial frame connection and the absolute frame
connection of the nacelle is found using the Group property of closure under matrix multipli-
cations: (

e(2)(t) r(2)
c (t)

)
=
(
eI 0

)
E(1)(t)E(2/1)(t) (32)

Define:
E(2)(t) = E(1)(t)E(2/1)(t) (33)

Using what was previously found it can be shown that:

E(2)(t) =

[
R(2)(t) R(2)(t)s(2/J)(t) +R(1)(t)s(J/1)(t) + x

(1)
c (t)

0T 1

]
(34)

Where R(2)(t) in the upper left of E(2)(t) is the absolute rotation matrix of the nacelle frame,
defined in the following manner:

R(2)(t) = R(1)(t)R(2/1)(t) (35)

The term located in the upper right quadrant of E(2)(t) describes the nacelle’s centre of mass
location from the inertial frame.
As in the previous section the inverse of the absolute frame connection matrix is easily obtained:

(
E(2)(t)

)−1
=

[
R(2)T (t) −R(2)T (t)

(
R(2)(t)s(2/J)(t) +R(1)(t)s(J/1)(t) + x

(1)
c (t)

)
0 1

]
(36)

The time rate of change of the absolute frame connection matrix:

Ė(2)(t) =

[
Ṙ(2)(t) Ṙ(2)(t)s(2/J)(t) + Ṙ(1)(t)s(J/1)(t) + ẋ

(1)
c (t)

0 0

]
(37)

9

O.M.R. Grindheim

Finally, using the data structure of SE(3) the time rate of change of the second frame connection
in terms of the second frame connection can be found:(

ė(2)(t) ṙ(2)
c (t)

)
=
(
e(2)(t) r(2)

c (t)
) (
E(2)(t)

)−1
Ė(2)(t) (38)

Define:

Ω(2)(t) =
(
E(2)(t)

)−1
Ė(2)(t) =

[
Ω

(2)
11 (t) Ω

(2)
11 (t)

0 0

]
(39)

Expanding on the terms in the Omega matrix:

Ω
(2)
11 (t) = R(2/1)T (t)R(1)T (t)

(
Ṙ(1)(t)R(2/1)(t)

+R(1)(t)Ṙ(2/1)(t)

)
(40)

Ω
(2)
12 (t) = R(2/1)T (t)R(1)T (t)

(
Ṙ(2)(t)s(2/J)(t)+

Ṙ(1)(t)s(J/1)(t) + ẋ
(1)
c (t)

)
(41)

From equation 40 the absolute angular velocity matrix can be extracted and used to find the
angular velocity vector:

ω(2)(t) = R(2/1)T (t)ω(1)(t) + ω(2/1)(t) (42)

Using equation 41 the translational velocity of the second body expressed in the inertial frame
can be found:

ẋ(2)
c (t) =

 R(2)(t)
←−−−→
s

(2/J)
c (t)Tω(2)(t)+

R(1)(t)
←−−−→
s

(J/1)
c (t)Tω(1)(t) + ẋ

(1)
c (t)

 (43)

For the sake of understanding a potential class structure in object coding, the recursive relation-
ships for only rotations, SO(3) and the combined rotation and displacement SE(3) is presented
here. A generalized code will not be developed in this project.

←−−→
ω(α)(t) = R(α/α−1)T (t)

←−−−−→
ω(α−1)(t)R(α/α−1)(t) +R(α/α−1)T (t)Ṙ(α/α−1)(t) (44)

Ω(α)(t) = E(α/α−1)T (t)Ω(α−1)(t)E(α/α−1)(t) + E(α/α−1)T (t)Ė(α/α−1)(t) (45)

Concluding the nacelle kinematics it must be emphasized that the nacelle will not rotate most
of the time, and this will be addressed in later parts of this project. Also the relative angular
velocity between the nacelle and the turbine is analytically known to involve only one rotation
since it is driven by a motor torque. It is written as:

ω(2/1)(t) = φ̇

0
0
1

 = φ̇e3 (46)

Recognizing that the column,above, is the uskewed form of the basis of skew symmetric angular
velocity matrices for a single rotation:

←→e3 =

0 −1 0
1 0 0
0 0 0

 (47)

Combing equation 46 and 42 the absolute angular velocity vector can be stated:

ω(2)(t) = R(2/1)T (t)ω(1)(t) + e3φ̇ (48)

10

Dynamic analysis of a multi-body floating wind turbine

3.3 Blade kinematics

e(2)
3

e(2)
2

e(2)
1

e(3)
3

e(3)
2

e(3)
1

s(3/2)

Figure 5: Linking the blade and the nacelle

In this project, the three blades and the hub will be considered one body. The rotation will
be induced by the wind speed, and a motor (the motor will be applied to slow the spinning of
the blades down and generate power). In this project the joint will be considered an abstract
mathematical point, however more detailed use of the MFM allows for accounting for the motor.

Since the centre of mass of the blades lies coincident with the spin axis of the blades there is
no need to translate after accounting for the rotation of the blades.

• Translate from the nacelle CM to the joint (which incidentally coincides with the CM of
the blades)

s(3/2)
c (t) = e(2)(t)s(3/2)

c (t)

s
(3/2)
c1 (t)

s
(3/2)
c2 (t)

s
(3/2)
c3 (t)

 (49)

• Rotation of the third frame from the second frame will happen about the 1 axis and the
rotation matrix is shown:

R(3/2)(t) =

1 0 0
0 cosψ −sinψ
0 sinψ cosψ

 (50)

The non-commutative building blocks of the relative frame connection matrix follows:

E(3/2)(t) =

[
I3x3 s

(3/2)
c (t)

0 1

] [
R(3/2)(t) 0

0 1

]
(51)

11

O.M.R. Grindheim

Through matrix multiplication it is known:

E(3/2)(t) =

[
R(3/2)(t) s

(3/2)
c (t)

0 1

]
(52)

Which is used in the context of frame connections in the following way:(
e(3)(t) r(3)

c (t)
)

=
(
e(2)(t) r(2)

c (t)
)
E(3/2)(t) (53)

The absolute frame connection matrix is found by pre-multiplying this result by the absolute
frame connection matrix for the nacelle:

E(3)(t) = E(2)(t)E(3/2)(t) (54)

The result of this matrix multiplication is shown below, however every step is not shown

E(3)(t) =

[
R(3)(t) R(2)(t)s

(3/J)
c (t) +R(1)(t)s

(J/1)
c (t) + x

(1)
c (t)

0 1

]
(55)

Since the translation for the yaw bearing to centre of mass of the nacelle happens in the same
frame as the translation from the nacelle to the centre of mass of the blades it is known that:

s(3/J)
c (t) = s(3/2)

c (t) + s(2/J)
c (t) (56)

The time rate of change of the frame connection of the rotor frame in terms of the rotor frame
can also be found:

Ω(3)(t) =
(
E(3)(t)

)−1
Ė(3)(t) (57)

Ω(3)(t) =

[
Ω

(3)
11 (t) Ω

(3)
12 (t)

0 0

]
(58)

Expanding on the terms in the matrix:

Ω
(3)
11 (t) = R(3)T (t)Ṙ(3)(t) (59)

The angular velocity vector can be extracted:

ω(3)(t) =

(
R(3/1)T (t)ω(1)(t)+

R(3/2)T (t)ω(2/1)(t) + ω(3/2)

)
(60)

Ω
(3)
12 (t) =

R
(3/2)T (t)

←−−−→
s

(3/J)
c (t)Tω(2)(t)+

R(3/1)T (t)
←−−−→
s

(J/1)
c (t)Tω(1)(t)+

R(3)T (t)ẋ
(1)
c (t)

 (61)

Which leads to the translational velocity of the rotor expressed in the inertial frame:

ẋ(3)
c (t) =

R
(2)(t)

←−−−→
s

(3/J)
c (t)Tω(2)(t)+

R(1)(t)
←−−−→
s

(J/1)
c (t)Tω(1)(t)+

ẋ
(1)
c (t)

 (62)

Before delving deeper into the solution it should be, for simplicity’s sake, acknowledged that
the relative angular velocity of the rotor from the nacelle is analytically known to involve only
one rotation. This rotation is driven by the lift forces acting on the blades yielding a torque.

12

Dynamic analysis of a multi-body floating wind turbine

This torque is closely related to the relative wind speed and will be examined further later in
this project.

ω(3/2)(t) = ψ̇

1
0
0

 = ψ̇e1 (63)

Similarly to the nacelle kinematics the column is the unskewed form of the basis of skew
symmetric angular velocity matrices fora single rotation about the shared first axis.

←→e1 =

0 0 0
0 0 −1
0 1 0

 (64)

And therefore the angular velocity vector can be restated as:

ω(3)(t) = R(3/1)T (t)ω(1)(t) +R(3/2)T (t)φ̇e3 + ψ̇e1 (65)

This concludes applying the frames to the turbine, in the next chapter the generalized essential
coordinates will be examined.

3.4 Generalized Coordinates

The work performed yielded the following Cartesian result which is summarized below. The
first two of which are tautological

ẋ(1)
c (t) = ẋ(1)

c (t) (66)

ω(1)(t) = ω(1)(t) (67)

ẋ(2)
c (t) =

 R(2)(t)
←−−−→
s

(2/J)
c (t)Tω(2)(t)+

R(1)(t)
←−−−→
s

(J/1)
c (t)Tω(1)(t) + ẋ

(1)
c (t)

 (68)

ω(2)(t) = R(2/1)T (t)ω(1)(t) + ω(2/1)(t) (69)

ẋ(3)
c (t) =

R
(2)(t)

←−−−→
s

(3/J)
c (t)Tω(2)(t)+

R(1)(t)
←−−−→
s

(J/1)
c (t)Tω(1)(t)+

ẋ
(1)
c (t)

 (70)

ω(3)(t) =

(
R(3/1)T (t)ω(1)(t)+

R(3/2)T (t)ω(2/1)(t) + ω(3/2)(t)

)
(71)

The next step is to reformulate these expressions and linearly extract what will be the minimal
set of generalized coordinates. Since there are three bodies the Cartesian coordinate rates will
be a 6x1 column vector holding the translational and rational velocity of each respective body,
where each element in the column will be 3x1 column. The full Cartesian rate column will be
18x1:

13

O.M.R. Grindheim

{
Ẋ(t)

}
=

ẋ
(1)
c (t)
ω(1)(t)

ẋ
(2)
c (t)
ω(2)(t)

ẋ
(3)
c (t)
ω(3)(t)

(72)

Meanwhile the rate of change of the generalized essential coordinates:

{q̇(t)} =

ẋ

(1)
c (t)
ω(1)(t)

φ̇

ψ̇

 (73)

In the previous equation, the first row consists of surge, sway and heave; the second row consists
of roll, pitch and yaw; the third row is one coordinate (the turning of the nacelle) and the last
row, also one coordinate, is the spin of the blades.

The Cartesian rates are related to the time rate of change of the generalized essential coordinates
through the B-matrix as follows. The system is linear in that the generalized rates are readily
extracted: {

Ẋ(t)
}

= [B(t)] {q̇(t)} (74)

For the FOWT the B-matrix will be a 6x4 matrix in compact notational form:

[B(t)] =

I3 03x3 03x1 03x1

03x3 I3 03x1 03x1

I3 B32 B33 03x1

03x3 R(2/1)T (t) e3 03x1

I3 B52 B53 03x1

03x3 R(3/1)T (t) R(3/2)T (t)e3 e1

 (75)

Where:

B32 = R(2)(t)
←−−−→
s(2/J)
c (t)TR(2/1)T (t) +R(1)(t)

←−−−→
s(J/1)
c (t)T (76)

B33 = R(2)(t)
←−−−→
s(2/J)
c (t)T e3 (77)

B52 = R(1)(t)
←−−−→
s(J/1)
c (t)T +R(2)(t)

←−−−→
s(3/J)
c (t)TR(2/1)T (t) (78)

B53 = R(2)(t)
←−−−→
s(3/J)
c (t)T e3 (79)

Now Hamilton’s Principle will be applied to formulate the kinetics, and the equation of motion
under applied and internal loads.

14

Dynamic analysis of a multi-body floating wind turbine

3.5 Hamilton’s Principle and kinetics

To obtain the equations of motion for the FOWT, Hamilton’s Principle is applied. To this end,
the Lagrangian is established in a structured form to account for all masses. The Lagrangian
describes the states of a dynamic system as the difference between kinetic and potential energy
for conservative forces.

L̂ = K − U (80)

By extending Hamilton’s Principle with the Principle of Virtual Work non-conservative forces
such as the applied motors and dissipative fluid forces can be accounted for. The work will be
formulated explicitly, later on when needed.

L̂ = K +W (81)

Both translational velocity and angular velocity contribute to the kinetic energy of dynamic
multi-body-systems. However, this energy will be expressed using the linear and angular mo-
mentum for each body, α = 1, 2, 3, stated here (using the mass mα, and mass matrix of inertia,
J

(α)
c , of each body) as:

L(α)
c = eI(t)L(α)

c = eIm(α)ẋ(α)
c (t) (82)

H(α)
c = eIH(α)

c = eI(t)J (α)
c ω(α)(t) (83)

The two expressions above can be grouped into one for, to enable compact formulation of ki-
netic energy, as follows:

A generalized mass matrix [M] is constructed. It consists of the alternating masses and mass
moment of inertia of the bodies in the multi-body system: (1)-Platform, (2)-Nacelle, (3)-Rotor.
Each entry on the diagonal below is, itself a 3 by 3 matrix. The deleterious impact of a sparse
matrix will be handled in the Matlab code.

[M] =

m(1)I3 0 0 0 0 0

0 J
(1)
c 0 0 0 0

0 0 m(2) 0 0 0

0 0 0 J
(2)
c 0 0

0 0 0 0 m(3) 0

0 0 0 0 0 J
(3)
c

(84)

Using the generalized mass matrix, the generalized momenta can be constructed:

{H} = [M]

ẋ
(1)
c (t)
ω(1)(t)

ẋ
(2)
c (t)
ω(2)(t)

ẋ
(3)
c (t)
ω(3)(t)

= [M]

{
Ẋ(t)

}
=

L
(1)
c

H
(1)
c

L
(2)
c

H
(2)
c

L
(3)
c

H
(3)
c

(85)

The kinetic energy of the entire multi-body system can be stated as:

K =
1

2

{
Ẋ(t)

}T
{H} (86)

15

O.M.R. Grindheim

With this expression for the kinetic energy and an understanding of the applied loads, Calcu-
lus of variations can be utilized to obtain the equations of motion. However, there will be a
difficulty in formulating the variation of the angular velocity and a digression must be made.

The variation of the generalized velocities needs to be obtained to take the variation of the
Lagrangian. The variation of any frame connection matrix has been defined by Murakami at
UCSD [10] and was obtained independently by Darryl Holmes at Oxford.

δΠα =

[←−−→
δπα(t) R(α)T (t)δx

(α)
c (t)

0T 0

]
(87)

Where
←−−→
δπα(t) is the variation of the angular displacements defined as:

←−−→
δπα(t) = R(α)T (t)δR(α)(t) (88)

Note that the unvaried form does not exist. This term above, is merely a definition that will
be structurally consistent with related terms in this analysis. Essentially, the rotation matrix is
varied, δR(α)(t), and pulled back to an inertial frame by post-multiplication of the transpose of
the original form: R(α)T (t). Next the virtual generalized displacement matrix column,

{
δX̃(t)

}
is presented:

{
δX̃(t)

}
=

δx
(1)
c (t)

δπ
(1)
c (t)

δx
(2)
c (t)

δπ
(2)
c (t)

δx
(3)
c (t)

δπ
(3)
c (t)

(89)

The commutativity of the time differentiation and the variation of the frame is essential during
the integration of the Lagrangian. The restriction on the variation of the angular velocities is
proved below:

δω(α)(t) =
d

dt
δπ(α)(t) +

←−−→
ω(α)(t)δπ(α)(t) (90)

The variation of the translational velocities:

d

dt
δx(α)

c (t) = δẋ(α)
c (t) (91)

Next the two equations above are consolidated into one form. This is done by construction
another sparse matrix system. [D] is a skew symmetric sparse matrix used to account for the
restriction on the variation of the angular velocities:

[D] =

0 0 0 0 0 0

0
←−−→
ω(1)(t) 0 0 0 0

0 0 0 0 0 0

0 0 0
←−−→
ω(2)(t) 0 0

0 0 0 0 0 0

0 0 0 0 0
←−−→
ω(3)(t)

(92)

Using the above equation the variation of the velocities can be stated as:

16

Dynamic analysis of a multi-body floating wind turbine

{
δẊ(t)

}
=

d

dt
δX̃(t) + [D]

{
δX̃(t)

}
(93)

The sparsity of the D matrix leaves the variation of linear velocities unchanged yet handles the
restriction on the variation of the angular velocities. In equation 75 the relationship between
the generalized Cartesian velocities and the generalized essential velocities is presented, and
the same can be shown for the variation of the generalized Cartesian displacements and the
essential generalized displacements:{

δX̃(t)
}

= [B(t)] {δq(t)} (94)

The virtual work done by all the forces, conservative and non-conservative can be stated as:

δW =
{
δX̃(t)

}T
{Q(t)} (95)

Where {Q(t)} holds all the applied forces and moments:

{Q(t)} =

F
(1)I
c (t)

M
(1)
c (t)

F
(2)I
c (t)

M
(2)
c (t)

F
(3)I
c (t)

M
(3)
c (t)

(96)

Recollecting equations 94 and 95 the generalized forces and a new expression for the virtual
work can be stated:

{F ∗(t)} = [B(t)]T {Q(t)} (97)

δW = {δq(t)}T {F ∗(t)} (98)

Varying the Lagrangian will now give the following expression:

δL̂ =
{
δẊ(t)

}T
[M]

{
Ẋ(t)

}
+ {δq(t)}T {F ∗(t)} (99)

The Lagrangian can now be integrated noting that the boundary condition of no variation at
the boundaries must be met:∫ t1

t0

{
δẊ(t)

}T
[M]

{
Ẋ(t)

}
+ {δq(t)}T {F ∗(t)} dx (100)

Taking advantage of integration by parts and the boundary conditions it can be shown that
the equation above yields the following:

[B(t)]T [M] [B(t)] {q̈(t)}+

[B(t)]T
(

[M]
[
Ḃ(t)

]
+ [D(t)] [M] [B(t)]

)
{q̇(t)} = {F ∗(t)}

(101)

And thus through Hamilton’s Principle extended by the Principle of Virtual Work the matrix
form equations of motion for the FOWT has been obtained.

17

O.M.R. Grindheim

3.6 Reconstruction of the Rotation Matrix

The platform is free to rotate in pitch, roll and yaw directions and therefore the rotation matrix
will be unknown and must be reconstructed from the calculated angular velocity of the platform.
If the angular velocity is constant, it can be shown that:

Ṙ(1)(t) = R(1)(t)
←−−→
ω(1)(t) (102)

By assuming a constant angular velocity and adopting a mid-point integration scheme for every
time step in the chosen numerical method to solve the equations of motion the reconstruction
formula can be used:

R(t+ ∆t) = R(t)exp {∆tω(t+ ∆t/2} (103)

By applying Cayley Hamilton Theorem to a skew symmetric matrix, it is known that:

exp {tω0} = I +
ω0

‖ω0‖
sin(t‖ω0‖) +

(
ω0

‖ω0‖

)2

(1− cos(t‖ω0‖)) (104)

18

Dynamic analysis of a multi-body floating wind turbine

4 Hydrodynamics
Solving the hydrodynamic problem in general requires knowledge about two different aspects of
the fluid; velocity and pressure [12]. The overarching Navier-Stokes equations are unnecessarily
too advanced for this first pass analysis. However, by assuming an inviscid, incompressible,
irrotational fluid flow the velocity can be derived by taking the gradient of a potential function
[4]. With the formulations presented below the MFM will be used to relate the hydrodynamic
loads to the FOWT.

To assess the hydrodynamic loads that act upon the platform several assumptions and simplifi-
cations must be made. The most important assumption is that the hydrodynamic problem can
be linearized. This assumption is mostly valid for deep water sea states where it is implied that
the wave elevation is relatively small compared to the wave length which in turn eliminates
breaking of waves in most cases[9].

By means of linearization, the superposition principle can be applied, and the true linear
hydrodynamic equation [11] is presented below:

F Platform
i =FHydrostatics

i + FWaves
i −

∫ t

0

Kij(t− τ)q̇j(τ) dτ+

FDrag
i + FLines

i − Aij(∞)q̈j

(105)

• Hydrostatics: FHydrostatics
i is the resultant force and moments from the body’s displace-

ment, altering the position of the buoyancy center and the amount of displaced fluid.

• Wave Excitation Loads: FWaves
i is the forces from regular or irregular waves. These latter

forces are obtained using a corresponding wave spectra and the normalized vector of wave
excitation loads which, in turn, is calculated from the geometry of platform.

• Radiation loads: The convolution integral term represents the energy radiated away from
the platform as it oscillates in the fluid.

• Viscous Drag: FDrag
I represents the loads from viscous drag due to the platform velocity

relative to the fluid velocity.

• Mooring lines loads: The combined forces and moments from all three mooring lines are
encapsulated in the FLines

i term.

• Aij(∞) is the added mass component at infinite frequency. Added mass is calculated in
the frequency domain using a numerical panel method with software such as Wamit.

The forces listed above are now expanded upon separately:

4.1 Hydrostatics

Buoyancy forces are based on fluid statics developed by Archimedes. The buoyancy force acting
upon the submerged body is equal to the weight of the fluid that the body displaces. For a
body that is in equilibrium position in pitch, roll and yaw degree of freedom, the centre of
gravity is aligned with the centre of buoyancy in the heave direction. Thus, there will be no
restoring moments resulting from hydrostatics. If the weight of the body equals the buoyancy
force, we can derive from Newton’s law’s that the body is not translating in the heave direction.
The hydrostatic equation is split up into two terms in the following manner [8]:

19

O.M.R. Grindheim

FHydrostatics
i = ρgV0δi3 − CHydrostatics

ij qj (106)

Where ρ is the seawater density, g is the gravitational acceleration constant, V0 is the static
displaced volume by the submerged body at equilibrium position and δi3 is the Kronecker-delta
which is zero for all values of i not equal to 3 in this case. This implies that the first term on
the right side of the equation will give a force vector which is non-zero only in the third row of
the column. The last term is the restoration term from displacements of the submerged body
where CHydrostatic

ij is the restoration matrix [8].

CHydrostatics
ij

=

0 0 0 0 0 0
0 0 0 0 0 0
0 0 ρgA0 0 −ρg

∫∫
A0
x dA 0

0 0 0 ρg
∫∫

A0
y2 dA+ ρgV0zcob 0 0

0 0 −ρg
∫∫

A0
x dA 0 ρg

∫∫
A0
x2 dA+ ρgV0zcob 0

0 0 0 0 0 0

(107)

Due to the platform being an upright submerged cylinder implying that it is symmetric about
the xz-plane and the yz-plane it is clear that the off-diagonal parts of the CHydrostatic

ij will be
zero. It is also clear from the equation above that any displacement in the surge, sway and yaw
direction will not give a restoring force or moment.

By utilizing the frame applied to the platform the buoyancy force and the heave restoration
effect is all that is needed to calculate the restoration moment in conjunction with the distance
from the frame to the COB. This assumes a fixed COB location and will be explained in
sections to come. A more accurate dynamic model, would also allow for recomputing hydrostatic
variables (COB, area integrals) based in how much of the platform is submerged. The MFM,
in returning power to the coder, can readily account for all of this in future studies.

4.2 Wave Excitation Loads

Fully developed and stable sea-states are the result of stable wind conditions for an extended
period of time. The propagating waves that occur in these sea states can be sufficiently modelled
through various power density spectrum. Propagating waves that pass by the platform will after
the pressure field about the mean wet surface of the platform and this is known as the Froude-
Kriloff loads[4]. Alteration of the wave field of the propagating wave due to the presence of the
platform is known as diffraction loads. The loads are closely related to the wave elevation[4].

20

Dynamic analysis of a multi-body floating wind turbine

e(1)
3

e(1)
2

e(1)
1

e(2)
3

e(2)
2

e(2)
1

e(3)
3

e(3)
2

e(3)
1

ζ(t)

Figure 6: Propagating waves

Regular waves are waves propagating at a constant frequency with the same wave elevation
represented by a sinusoidal function. Irregular waves are simply a summation of several si-
nusoidal waves with varying amplitude and period. And in most cases determined by various
wave spectrum.

The time realization of the wave elevation can be found through the following equation [9]:

ζ(t) =
1

2π

∫ ∞
−∞

W (ω)
√

2πS2−Sided
ζ (ω)ejωt dω (108)

Similarly for the loads acting upon the platform [9]:

FWaves
i (t) =

1

2π

∫ ∞
−∞

W (ω)
√

2πS2−Sided
ζ (ω)XI(ω, β)ejωt dω (109)

Where the right side of equation 109 is the inverse Fourier transform of a 2-sided wave spectrum,
S2−Sided
ζ (ω), multiplied by the wave-excitation vector, Xi(ω, β) normalized per wave amplitude.

It is a complex vector dependent upon the geometry of the submerged body and the frequency

21

O.M.R. Grindheim

of the waves as well as the wave heading angle. W (ω) is a White Gaussian Noise realization in
the frequency domain which can be defined through a piecewise Box-Muller formulation [3]:

W (ω) = 0, if ω = 0

W (ω) = r(cosϕ+ jsinϕ), if ω > 0

W (ω) = r(cosϕ+ jsinϕ), if ω < 0

(110)

In which:

r =
√
−2lnU1(|ω|)

ϕ = 2U2(|ω|)
(111)

The two sided wave spectra can be stated as:

S2−Sided
ζ (ω) =

{
1
2
S1−Sided
ζ (ω), ω ≥ 0

1
2
S1−Sided
ζ (ω), ω < 0

(112)

There are several existing wave spectrum to chose from and this project will use the JOint
North Sea WAve Project (JONSWAP) spectra which is based upon the Pierson-Moskowitz
spectra [3]. The Pierson-Moskowitz spectra representation:

S1−Sided
ζ (ω) =

1

2π

5

16
H2
sTp

(
ωTp
2π

)−5

exp

[
−5

4

(
ωTp
2π

−4)]
(113)

And the JONSWAP spectrum is defined as:

S1−Sided
ζ (ω) =

1

2π

5

16
H2
sTp

(
ωTp
2π

)−5

exp

[
−5

4

(
ωTp
2π

−4)]
α (114)

α = [1− 0.287ln(γ)] γ
exp−0.5

[
ωTp
2π −1

σ(ω)

]−2

(115)

Where σ(ω) is a scaling factor from the IEC 61400-3 standard and γ is a peak shape parameter
which are respectively defined as [9]:

σ(ω) =

{
0.07, for ω ≤ 2π

Tp

0.09, for ω > 2π
Tp

(116)

γ =

5, for Tp√

Hs
≤ 3.6

exp
(

5.75− 1.15 Tp√
Hs

)
, for 3.6 < Tp√

Hs
≤ 5

1, for Tp√
Hs

> 5

(117)

Where Tp is the peak spectral period and Hs is the significant wave-height. The figure below
presents a comparison of the Jonswap spectra and the Pierson-Moskowitz spectra.

22

Dynamic analysis of a multi-body floating wind turbine

Figure 7: Jonswap and P-M spectra

4.3 Radiation loads

Figure 8: Waves radiated away from the platform

The oscillating platform will induce waves to radiate away from the turbine. In turn, this will
have a damping effect upon the platform. This effect is calculated from the added mass and
damping components that are found in software such as Wamit as well as memory effects of
the platforms displacement in the fluid [9]. Known as the wave-radiation damping term first
proposed by Cummins as [2]:

23

O.M.R. Grindheim

∫ t

0

Kij(t− τ)q̇j dτ (118)

Where τ is a dummy variable and q̇j represents the velocity of the platform in the j’th direction
[9]. Kij(t), the wave-radiation-retardation kernel matrix is commonly computed in the following
way [3]:

[Kij(t)] =
2

π

∫ ∞
0

Bij(ω)cos(ωt) dω (119)

Which is an inverse cosine transformation of damping frequency matrix. It is the proposed
best way to calculate the wave-radiation-retardation kernel matrix as it converges faster than
the added mass matrix frequency realization and also is non zero for t = 0 [5]. Computing
the convolution is time consuming [3] and it is possible to approximate the results using a
state-space model [5]:

ξ̇ = [α] ξ + [λ] q̇

µ = [θ] ξ + [γ] q̇
(120)

• ξ is the state vector

• [α] , [λ] , [θ] , [γ] are state space matrices

• q̇ is the platform velocity vector

• µ is the approximated solution to the convolution integral

4.4 Viscous Drag

The Morison’s formulation will be used to compute the drag loads acting upon the platform. A
simplified version will be used in this project to capture the damping effect of the drag forces
using the following expression [9]:

dFDrag
i (z) =

1

2
CdρwaterDdz [−q̇i(z)] | − q̇i(z)| (121)

Note that the equation presented above does not account for the fluid velocity. The drag force is
calculated using strip theory and the drag force acting upon a differential strip of the platform
is calculated and the equation above must be summed up for the total length of the submerged
platform to find the total drag force.

• Cd is the drag coefficient equal to 0.6 in this analysis [9].

• ρwater is the fluid density

• D is the diameter of the platform

• dz is the strip length

• q̇i(z) is the platform strip velocity in the i’th direction (Surge and Sway).

This formulation ignores the fluid velocity and accounts only for the velocity of the platform
in a stationary fluid.

24

Dynamic analysis of a multi-body floating wind turbine

5 Mooring Lines
The platform’s displacement will be restricted by three mooring lines connected to three sepa-
rated fairleads set up in a delta connection[8].

120 ◦

12
0
◦

Anchor

Fairled

Sway

Surge

Figure 9: Fairlead delta-connection

The mooring lines will be anchored at the seabed and when the platform is at equilibrium
position the distance from the fairleads to its respective anchor will be 848.67m. The mooring
lines length when not stretched is 902.2m and thus the line will be slack at the equilibrium
position. This results in a portion of the mooring lines resting of the seabed when the distance
between the anchor and the fairlead is less than 858.5m. Thus the tension in the line will be
very much non-linear. However, a linear representation for the forces and moments is presented
below [8]:

FLines
i = FLines,0

i − CLines
ij qj (122)

FLines,0
I =

[
0 0 −1, 607, 000 0 0 0

]T (123)

CLines
ij =

41.180 kN

m
0 0 0 −2821 kN

rad
0

0 41.180 kN
m

0 2821 kN
Rad

0 0

0 0 11.940 kN
m

0 0

0 2816 kNm
m

0 311100 kNm
rad

0 0

−2816 kNm
m

0 0 0 311100 kNm
rad

0

0 0 0 0 0 11560 kNm
rad

 (124)

5.1 Non-linear load representation

Combining the elastic stiffness and the previously mentioned slack nature of the lines the
force-displacement relationship is highly non-linear. In this section the theory to calculate the
mooring line response will be presented.

25

O.M.R. Grindheim

As with the platform, the mooring lines will be subjected to currents, added mass and viscous
damping loads however these account for such a small part of the response that they are
negligible in the upcoming calculations [9]. In order to compute the force response from the
displacement some parameters needs to be defined. The line’s apparent weight in the fluid,
ωLine, the extensional stiffness, EA, the length of the line, L and the coefficient of friction, CB
for the portion of the line that rests on the seabed. Where the apparent weight in the fluid can
be calculated using:

ωLine =

(
µc − ρ

πD2

4

)
g (125)

• µc is the line mass per meter

• D is the diameter of the line

• g is the gravitational acceleration

• ρ is the density of the fluid

xF

xs

z F

HF

HA

VA

VF

Figure 10: Horizontal and vertical forces at anchor and fairlead

The tension of each individual line can then be calculated as a function of the vertical and
horizontal distance between the fairlead and the anchor. When no portion of the mooring line
rests on the seabed (implying that xF ≥ 858.5 and xs = 0) expressions for the vertical and
horizontal distance from the anchor to the fairlead follows [9]:

xF (HF , VF) =
HF

ω

ln

HF

VF
+

√
1 +

(
VF
HF

)2
−

ln

VF − ωL
HF

+

√
1 +

(
VF − ωL
HF

)2

+
HFL

EA
(126)

zF (HF , VF) =
HF

ω

√

1 +

(
VF
HF

)2

−√
1 +

(
VF − ωL
HF

)2

+
L

EA

(
VF −

ωL

2

)
(127)

To encapsulate the effects of a portion of the line interacting with the seabed a second set of
equation is needed for that scenario [9]:

26

Dynamic analysis of a multi-body floating wind turbine

xF (HF , VF) =

L− VF
ω

+
HF

ω
ln

 VF
HF

+

√
1 +

(
VF
HF

)2
+

HFL

EA
+

CBω

2EA

−
(
L− VF

ω

)2

+(
L− VF

ω
− HF

CBω

)
MAX

(
L− VF

ω
− HF

CBω
, 0

)

(128)

zF (HF , VF) =
HF

ω

√

1 +

(
VF
HF

)2

−√
1 +

(
VF − ωL
HD

)2

+
L

EA

(
VF −

ωL

2

)
 (129)

The MAX will be addressed in the program that computes the expressions and the program
will determine which ever of the expressions inside the MAX function is bigger and use that
one. The horizontal and vertical forces in the mooring lines can then be found by performing
a Newton-Raphson scheme to solve the system of non-linear equations. Jonkman created some
initial guess parameters which can be used when solving [9]:

H0
F = |ωxF

2λ0

|

V 0
F =

ω

2

[
zF

tanh(λ0)
+ L

] (130)

Where λ is the dimensionless catenary parameter depending on the initial conditions [9]:

λ0 =

1, 000, 000 for xF = 0

0.2 for L ≤
√
x2
F + z2

F√
3
(
L2−z2F
x2F
− 1
)

otherwise
(131)

That concludes the theoretic background and continuing it will be explained how everything is
brought together in a Matlab simulation.

27

O.M.R. Grindheim

6 Aerodynamics
The offshore deep-sea location of FOWT’s gives favourable wind conditions compared to on-
shore wind turbines. Offshore wind conditions will have a higher mean wind speed and reduced
turbulence due to the low surface roughness given mild sea conditions [1]. This leads to more
consistent and higher average power output from the FOWT.

Extracting kinetic energy from the wind will cause a reduction in the wind speed for the
wind particles that pass through the rotor area. The wind that passes through the rotor area
will cause aerodynamic lift and drag forces that act upon the rotor blades. These loads can be
calculated using blade-element/momentum theory and 2-D aerofoil characteristics of the blades.
The blades are split up into several elements and the drag/lift forces are calculated for each
individual element based on relative wind speed and angle of attack of the blade (blade pitch
angle). With this, coefficients for thrust force and rotor torque can be developed for various
relative wind speeds and blade pitch angles (BPA). In this project the previously mentioned
coefficient where given and used along with the relative wind speed and BPA to calculate the
loads using the following equations [3]:

F =
1

2
ρCt(λ, β)AU2

rel (132)

T =
1

2
ρRCq(λ, β)AU2

rel (133)

Where ρ is the density of air, R is the radius of the rotor and A is the area swept by the
blades. β is the BPA, U2

rel is the relative wind speed and Cq and Ct are the torque and thrust
coefficients respectively. λ is the tip speed ratio which is found with the following equation:

λ =
ωrotorR

Urel
(134)

The relative wind speed is calculated from the velocity of the rotating blade and the incoming
wind speed.

β

Uhub

Uwind

Urel

Figure 11: 2D-Foil element of blade

But a simplified version where the speed of the hub in the wind direction will be used here [3]
in which the angular velocity of the spinning rotor is ignored:

28

Dynamic analysis of a multi-body floating wind turbine

Urel = Uwind − Uhub (135)

The data presented in the next table is used for calculating the torque exerted on the rotor by
the generator as a function of the rpm of the rotor.

Description Value Unit
Generator Mass moment of inertia 534.116 [kgm2]

Gear ratio high-speed/low-speed shaft 97 [−]

Table 1: Generator data [3]

A 2-D table, presented below, is used to extract the generator torque acting on the high-speed
shaft [3]:

Generator RPM Generator Torque [Nm]
0 0
670 0
871 19600
945 23440
1022 27360
1096 31120
1128 32800

1161.963 38784.195
1173.7 43093.55
1273 39600
1391 36160

Table 2: Generator torque/RPM [3]

All of which is sufficient to simulate the wind loads. This concludes the theoretical background
needed to simulate the response of the FOWT and the following sections will describe how it
is implemented in Matlab.

29

O.M.R. Grindheim

7 Pulling it all together
This section shows how the MFM adapts all such forces, within a Matlab code. Special scenarios
will also be discussed such as when there is no rotation of the nacelle from the tower. Another
special case scenario that will be discussed is when the rotor is locked from spinning such as
under extreme wind states.

Matlab

RK-4

Read data files and
create data structures

Set up parameters
for load scenario

Compute wave
excitation load from
wave spectrum

Run simulation for
n steps

Compute hydrodynamic,
aerodynamic, hydrostatic
and mooring loads.
Which will be restated
as the generalized forces
inside the RK-4

Loads

Solve EOM from MFM

Compute cartesian
coordinates from
generalized essential

Create Javascript file
for web presentation

M∗q̈(t) +N∗q̇(t) = F ∗

Figure 12: Flowchart for solving EOM

Figure 12 provides a visual presentation of the structure used to compute the response of the
FOWT.

7.1 General Matlab Method

Matlab offers a range of differential equation solver’s however, for this project it was decided to
write the Runge-Kutta 4th order integration scheme- to keep the code general. It is desired to
keep the code as general as possible and use flags for solving different scenarios that could take
place. Recalling equation 101, the equations of motion extracted through the MFM, it can be
written in compact form as:

30

Dynamic analysis of a multi-body floating wind turbine

M∗ {q̈(t)}+N∗ {q̇(t)} = {F ∗(T)} (136)

Where:

M∗ = [B(t)]T [M] [B(t)]

N∗ = [B(t)]T
(

[M]
[
Ḃ(t)

]
+ [D(t)] [M] [B(t)]

) (137)

The process will start with calculating the forces acting upon the FOWT at the current time step
before initializing the Runge-Kutta method. Between every partial step of the Runge-Kutta
method the rotation matrix for the platform that holds the pitch, roll and yaw displacements
must be reconstructed using 104.

Once the essential generalized velocities are approximated the generalized coordinates are also
approximated through a simple mid-point integration scheme explained further in the next
section. The Cartesian coordinates are then calculated and saved for the visual 3D simulation.

7.2 Matlab: Moving Frame Method

A list of pertinent data used in the Matlab code is presented below:

• Current time

• Time step

• Generalized essential velocities

• The rotation matrix describing the full 3D rotation of the FOWT

• Angular velocity matrix of the platform

• Centre of mass location of the platform, nacelle and rotor

• Mass of the individual bodies

• Mass moment of inertia matrix for each body

• Forces and moments from external loads

Rearranging equation 136 and discretizing it:

q̈n+1 = [M∗
n]−1 [F ∗n −N∗n q̇n] (138)

The Runge-Kutta 4th-order method with the above equation reduces to:

k1 = [M∗
n]−1 [F ∗n −N∗n q̇n]

k2 =
[
M∗

n+0.5∆t

]−1
[
F ∗n+0.5∆t −N∗n+0.5∆t

(
q̇n +

1

2
k1∆t

)]
k3 =

[
M∗

n+0.5∆t

]−1
[
F ∗n+0.5∆t −N∗n+0.5∆t

(
q̇n +

1

2
k2∆t

)]
k4 =

[
M∗

n+∆t

]−1 [
F ∗n+∆t −N∗n+∆t (q̇n + k3∆t)

]
q̇n+1 = q̇n + ∆t(k1 + k2 + k3 + k4)

1

6

(139)

31

O.M.R. Grindheim

A simple mid-point integration scheme is implemented to calculate the general essential coor-
dinates:

qn+1 = qn +
(q̇n + q̇n+1)

2
∆t (140)

The main function found in Appendix A: MAIN script reads all the necessary data files and
computes the wave excitation loads from the given wave height and period. Required data
and flags are then passed through to Appendix B: Runge-Kutta Loop script, in which the loop
which iterates through all the time steps is located. This function works in the following way:

• Get the forces from Appendix E: Loads from all mooring lines script, Appendix F: Hy-
drostatic Load, Appendix G: Viscous Drag Load, Appendix H: Wind Load, and extract
the excitation load from the array provided by the main script

• Perform RK-4 through Appendix C: Solve Mstar Nstar Fstar script

• Between each step of the RK-4 reconstruct the rotation matrix with Appendix I: Reconstruction

7.3 Mooring Line implementation

Using the approximated displacements in the previous subsection, the loads on each of the
mooring lines can be calculated.

• The linear loads are easily calculated using the previously mentioned matrix and the
generalized essential displacements of the platform at the current step

• The non-linear loads will be pre-calculated and stored in tables in order to reduce com-
putation time

The loads on the fairleads from the mooring lines will be calculated for various horizontal and
vertical distances between the fairlead and the anchor, where the horizontal distance will be in
the range 812m ≤ xF ≤ 885m and vertical distance: 240m ≤ zF ≤ 260m. With a step size of
1m the horizontal and vertical forces at the fairleads are approximated for all possible distances
in the mentioned range.(

HF

VF

)
=

(
H0
F

V 0
F

)
− J−1

[
xF (H0

F , V
0
F)− xF (input)

zF (H0
F , V

0
F)− zF (input)

]
(141)

1. Determine initial guess values for H0
F and V 0

F

2. Check if horizontal distance exceeds 858.8m

3. Calculate xF and zF using initial load guess

4. Approximate next guess values for HF and VF using equation 141

5. Check the difference between the previous guess and the next

6. Repeat from 1 if tolerance is exceeded in the previous step

32

Dynamic analysis of a multi-body floating wind turbine

Figure 13: Force-Displacement Curve

The figure above shows the non-linearity of the force displacement relationship. This was cal-
culated using the script found in Appendix J: Line tension.

The displacement of the platform must be transferred to the coordinate system of each indi-
vidual mooring line. Thus the loads of the individual lines can be extracted from a table and
must be transferred back to the coordinate system of the platform.

Symbol Description Value
L Unstretched line length [m] 902.2
D Line diameter [m] 0.09
µc Line mass density [kg/m] 77.7066
EA Extensional stiffness [N] 384234000

Horizontal neutral length [m] 848.67
Vertical neutral length [m] 250

Table 3: Data table for mooring lines

The Moving Frame Method could also be used to tackle the issue of relating the mooring line
loads to the platform frame. A frame can be asserted at the vertical location of the fairleads,
with the principal axes aligned with those of the platform frame at all times.

e(Fairlead) = e(1)(t)I3

s(Fairlead/1)(t) = e(1)(t)s(Fairled/1)(t)
(142)

The loads from the mooring lines are returned as horizontal and vertical loads which will lie
parallel to the line and parallel to the heave axis respectively. By finding the vector that relates
the individual anchors and fairleads in the (1,2) plane of the inertial frame a unit vector can
be created to find the individual line forces in the inertial plane.
Frames can also be deposited at each point which the individual lines connect to the respective
fairlead:

e(L1)(t) = e(Fairlead)(t)

1 0 0
0 1 0
0 0 1

 (143)

33

O.M.R. Grindheim

e(L2)(t) = e(FairLead)(t)

cos(120) −sin(120) 0
sin(120) cos(120) 0

0 0 1

 (144)

e(L3)(t) = e(Fairlead)(t)

cos(−120) −sin(−120) 0
sin(−120) cos(−120) 0

0 0 1

 (145)

And the generalized vector depicting the distance between the connection point and the fairlead
frame is:

s(Fairlead/(L,α))(t) = e(L,α)(t)s(Fairlead/(Lα))(t) = e(L,α)(t)

−r0
0

 (146)

Thus the vector between the anchor and the fairlead can be stated as (note that Fairlead
notation is shortened to FL and A is used for anchor):

s(L,α/A) = eIx(1)
c (t) + e(1)(t)s(FL/1)(t)− e(L,α)(t)s(FL/L,α)(t)− eIsA (147)

The equation above is pushed to the inertial frame. By forcing the third element of the vector
above equal to zero the horizontal distance can be found:

‖sL,α/A‖ (148)
The normalized vector in the inertial(1,2) plane:

1

‖s(L,α/A)‖
s(L,α/A) (149)

The force vector in the inertial frame can be constructed using the equation above and the mag-
nitude of the horizontal force. The vertical force can be added to that vector as is. Constructing
the force vector in the inertial frame for the individual lines:

eIFLine,α = eI

 0
0

−V F,α

− eI
1

‖s(L,α/A)‖
s(L,α/A)HF,α (150)

Where the minus sign in the equation above is because the vector goes from the anchor to the
fairlead while the force will act in the opposite direction. Also, the third axis in the inertial
frame is directed upward while the vertical force will be pulling the FOWT towards the seabed.

Asserting a position vector from the frame on the platform to the fairleads where the mooring
line load will act s(Lα/1), the moments applied to the platform from each mooring line can be
calculated and summed up:

MLines =
α=3∑
α=1

eI(t)
←−−→
s(Lα/1)F I,Lineα (151)

The sum of the mooring line forces in the inertial frame:

FI,Lines =
α=3∑
α=1

eI(t)FLine,α (152)

By calculating the loads from the mooring lines as presented above the loads can be calculated
about the SWL to be compared with previous calculations while still readily available to be
extracted about the center of mass of the platform.

34

Dynamic analysis of a multi-body floating wind turbine

7.4 Aerodynamics

Different software can be used to construct wind velocity profiles to model various real world
scenarios. A turbulent wind field was provided for this project. A Matlab function is created
which first finds relative wind speed then the thrust, torque and power coefficients based on
the tip-speed-ratio and the blade pitch angle, it locates the corresponding coefficient values
in 2D-tables. Using the wind velocity profile created previously the wind speed for the given
time-step is given as an input to the function. The thrust force and the torque is calculated
using equation 132 and 133.

The torque that the wind exerts on the rotor will be resisted by a generator torque. This torque
is calculated using the table shown below, where the generator torque is extracted based on
the revolutions per minute (rpm) of the generator. For the NREL 5MW turbine a gear ratio of
97 between the low speed shaft of the rotor and the high speed shaft of the generator is used.
The generator torque is subtracted from the calculated wind torque and returned as the torque
acting upon the rotor along with the thrust force. The torque created by the generator which
is subtracted from the aerodynamic torque must also be applied to the nacelle in the opposite
direction of which it is applied to the rotor.

7.5 Hydrostatics

The hydrostatic restoring matrix provided in a previous section is created with regard to restor-
ing moments about the water-plane. By maintaining a hydrostatic force vector in the inertial
frame the restoring moments can be calculated using the crossproduct of the distance between
the COB and the frame on the platform (regardless of it’s location) and the buoyancy force
vector:

MHydrostatic = eI(t)R(1)(t)s(B/1)(t)× eI(t)FHydrostatic (153)

The hydrostatic force vector is calculated using the equilibrium value provided in the previous
hydrostatic section and the restoring value provided for heave displacements. The hydrostatic
force and moments are calculated at the beginning of every iteration and fed into the equations
of motion.

7.6 Viscous Drag implementation

A function is created which takes in the generalized essential velocities of the platform, the
rotation matrix of the platform and the angular velocity matrix. Individual strip load is calcu-
lated for the sway and surge direction and summed. The moment arm from the frame on the
platform and the point of attack for the load is calculated as well:

MDrag =
i=2∑
i=1

eI
←−→
sFi/1F I,Drag

i (154)

Thus the calculated drag force can be returned as one force vector:

FDrag =

FDrag
1

FDrag
2

0

−sF2/1
3 F I,Drag

2

s
F1/1
3 F I,Drag

1

0

(155)

35

O.M.R. Grindheim

A simplification is made here in which it is assumed that the submerged body is always 120m
meaning that it does not account for any heave displacement. In severe sea-states this could
prove to be quite a substantial difference in the calculated force but it is still neglected in this
analysis.

7.7 Wave Radiation Implementation

The state space model which is approximated using the FDI toolbox is solved using the ve-
locity history of the platform and Matlab’s lsim function. For the purpose of this project the
state space model was created only considering surge, heave and pitch displacements and the
calculated forces and moments are only in those directions.

7.8 Wave Excitation Implementation

A wave excitation force vector time-realization is determined pre-analysis. The time-series is
calculated for the time step used in the simulation and from there the force is extracted for
every complete cycle of the Runge-Kutta 4th-order.

At the start of the simulation the Jonswap spectrum is created by chosen mean wave-height
and period. A time realization of the wave-excitation force is returned. The force is extracted
for every time-step of the simulation. For the implementation of calculating the wave elevation
and the wave excitation force another simplification was made in which no white Gaussian
noise was used. Instead a random phase shift between [−π, π] was applied when performing
the inverse Fourier transform.

At the start of the simulation a excitation load time series is also created for a regular wave
scenario and which one is used in the simulation is determined by a flag.

7.9 Added Mass

From the vessel data structure the added mass data is extracted at the beginning of the calcu-
lation. The added mass at infinite frequency is extracted and added to the mass matrix of the
system. Since added mass, like the other components of the hydrodynamic problem, is solved
at SWL the added mass in the pitch and roll direction must be adjusted for the frames location
at the centre of mass.

7.10 Dealing with cases

In section 3.4 the B-matrix was constructed relating the Cartesian velocities with the generalized
essential velocities which allowed for 6 DOF for the platform as well as yawing of the nacelle
from the platform and spinning of the rotor from the nacelle. For most of the simulated cases
the nacelle will already be facing the wind and therefore it is not necessary to allow for the
yawing of the nacelle. Thus implying that the yaw rate is prescribed: φ̇ = 0. The new set of
generalized essential velocities becomes:

{q̇(t)} =

ẋ(1)
c (t)
ω(1)(t)

ψ̇

 (156)

And thus the new B-matrix becomes:

36

Dynamic analysis of a multi-body floating wind turbine

[B(t)] =

I3 03x3 03x1

03x3 I3 03x1

I3 B32 03x1

03x3 I3 03x1

I3 B52 03x1

03x3 R(3/1)T (t) e1

 (157)

Where:

B32 = R(1)(t)
←−−−→
s(2/J)
c (t)T +R(1)(t)

←−−−→
s(J/1)
c (t)T (158)

B52 = R(1)(t)
←−−−→
s(J/1)
c (t)T +R(1)(t)

←−−−→
s(3/J)
c (t)T (159)

The reader may compare the new B-matrix with the old and keep in mind that if there is now
yaw motion then R(2/1)(t) = I3. Thus implying that:

R(2)(t) = R(1)(t)R(2/1)(t) = R(1)(t)I3 = R(1)(t). (160)

This can be implemented easily in Matlab with flags that set the number of generalized essential
velocities before initializing the simulation based on the scenarios and removes the columns of
the B-matrix that corresponds to the removed generalized essential velocities. If it is required
to simulate scenarios where the rotor is not spinning the same procedure can be performed;
removing the ψ̇ from the generalized velocities and the column of the B-matrix that relates
the generalized velocity to the Cartesian rates. This could be desired for simulating free decay
as well as extreme wind conditions where the wind speed if above the cut-out speed of the
turbine.

7.11 System description

The OC3 phase IV spar buoy is already widely analysed. It is also the system used in [3] which
this project to a large extent is based upon. In the tables below all data used for the spar-buoy
is presented:

Description Value Unit
Overall length 130.0 [m]

Draft 120 [m]
Mass 7,466,330 [kg]

CM location below SWL 89.9155 [m]
Roll inertia about CM 4.23x109 [kgm2]
Pitch inertia about CM 4.23x109 [kgm2]
Yaw inertia about cm 1.64x108 [kgm2]

Table 4: Platform structural data [8]

37

O.M.R. Grindheim

Description Value Unit
Overall length 77.6 [m]

Mass 249718 [kg]
CM above SWL 43.4 [m]

Jxx 1.261× 108 [kgm2]
Jyy 1.261× 108 [kgm2]
Jzz 1.5632× 106 [kgm2]

Table 5: Tower structural data [8]

While the tower and platform are two separate bodies they will be considered as one rigid
body for this analysis. Therefore the data needs to be recalculated to fit the one rigid body.
To find the mass moment of inertia of the tower a simplification was made where the tower is
considered to be a hollow cylinder of length 77.6m, outer radius of 2.6m and inner radius of
2.4m.

J towerc =

∫
B

←→sP/c←→sP/cT dm (161)

Description Value Unit
Mass 240,000 [kg]

CM location above tower top 1.75 [m]
CM location downwind from yaw axis 1.9 [m]

Inertia about yaw axis 2.607x106 [kgm2]
Jxx 8.703× 105 [kgm2]
Jyy 1.741× 106 [kgm2]
Jzz 1.741× 106 [kgm2]

Table 6: Nacelle structural data [9]

Some assumptions had to be made for the nacelle also. Since the given mass moment of inertia
was about the yaw axis the parallel axis theorem had to be used to get the yaw moment of
inertia about the CM. The roll moment of inertia was assumed to be half of the yaw moment of
inertia and the pitch moment of inertia was assumed to be equal to the yaw moment of inertia.

Description Value Unit
Mass 56780 [kg]

CM above tower top 1.96256 [m]
CM upwind from yaw axis 5.01910 [m]
Inertia about spin axis 115926 [kgm2]

Jxx 57963 [kgm2]
Jyy 57963 [kgm2]

Table 7: Hub structural data [9]

38

Dynamic analysis of a multi-body floating wind turbine

Description Value Unit
Length of individual blades 61.5m [m]

Mass 53,320 [kg]
Inertia about spin axis 3.533x107 [kgm2]

Jxx 1.767× 107 [kgm2]
Jyy 1.767× 107 [kgm2]

Table 8: All three blades structural data [9]

The hub and the blades will also be considered one rigid body and again must be recalculated.
For the mass moments of inertia about the two other axis the blade and hub will be considered
to be a thin disk which implies that Jxx = Jyy = Jzz

2

Description Symbol Value

Platform CM to yaw bearing s(J/1) = s(SWL/1) + s(J/SWL)

 0
0

89.9

+

 0
0

87.6

Yaw bearing to Nacelle CM s

(2/J)
c

−1.9
0

1.75

Nacelle CM to Rotor CM s

(3/2)
c

6.92
0

0.16

Table 9: Position vectors. Emphasizing that the frame is not stated here.

With the data presented above the matrices needed to solve the EOM’s provided by the MFM
can be created. In the next section various load scenarios will be simulated and the results will
be shown.

39

O.M.R. Grindheim

8 Results
This section presents the results from the Matlab simulation. To facilitate comparison between
existing validated work, this section will present results from individual loads.
The FOWT’s response is simulated under various conditions as per the table below:

Type Wave Condi-
tions

Wind Condi-
tions

Tag

Free-decay time series No waves No wind LC1.4
Time series Regular wave:

Hs=6m, Tp=10s
No wind LC4.1

Time series Regular wave:
Hs=6m, Tp=10s

8m/s steady LC 5.1

Time series Irregular wave:
Hs=6m, Tp=10s

Turbulent
10m/s

LC5.3

8.1 Wave excitation loads

To validate the results the frequency realization of the wave spectrum is presented and the time
realization of the wave elevation:

Figure 14: PSD Jonswap and PM

40

Dynamic analysis of a multi-body floating wind turbine

Figure 15: Time-series ζ: Hs=6, Tp=10

To illustrate a figure representing a time-series of a regular wave is also presented:

41

O.M.R. Grindheim

Figure 16: Regular wave time-series H=6m, T=10s

8.2 Loads from the mooring lines

The platform is moored with 3 lines to resist displacement in the sway and roll direction. This
will result in asymmetric mooring loads. To compare the loads plots are presented displaying
the combined loads of all three lines for various displacements in all DOF’s.

Figure 17: Surge displacement/Mooring loads

42

Dynamic analysis of a multi-body floating wind turbine

Figure 18: Sway displacement/Mooring loads

Figure 19: Heave displacement/Mooring loads

43

O.M.R. Grindheim

Figure 20: Roll displacement/Mooring Loads

Figure 21: Pitch displacement/Mooring loads

44

Dynamic analysis of a multi-body floating wind turbine

Figure 22: Yaw displacement/Mooring loads

The table below shows how the Cartesian coordinates were varied and the step size:

Coordinate Start Step End
Surge -36m 4m 36m
Sway -36m 4m 36m
Heave -10m 2m 10m
Roll −10◦ 2◦ 10◦

Pitch −10◦ 2◦ 10◦

Yaw −20◦ 4◦ 20◦

Table 10: Coordinate ranges

The results show good agreement with [8] but some discrepancies are expected due to the
assumption of the Cb constant and the value chosen for the tolerance when calculating the
horizontal and vertical forces of the mooring lines as a function of line stretch. All of the
moments presented in the figures above are about a frame located at SWL.

8.3 Free decay

Free decay simulations has been run for initial displacements in surge, heave and pitch directions
separately. The simulations where calculated for a frame at the centre of mass of the rigid
combined body of the platform and tower. The results presented are presented for a frame
at the sea water line. Results are shown for simulations with and without the added mass
computed at infinite frequency. The reason for showing both are as mentioned previously that
the added mass is calculated about the centre of flotation yet the equations of motion are
calculated about the centre of mass of the base.

8.3.1 Free Decay Surge

The platform is initially displaced 20m in the surge direction and the free decay response
is simulated. The only loads considered are hydrostatic, mooring, drag from the platform
velocity. Also there is an added damping as per [8]. The coupling between surge, heave and
pitch displacements will be displayed:

45

O.M.R. Grindheim

Figure 23: Free Decay Surge No Added Mass

The results with no added mass accounted for shows good correlation with previous findings
[3] however the natural period is shorter due to the lack of added mass.

Figure 24: Free Decay Surge With Added Mass

The results with the added mass accounted for shows a bit more excessive surge response. This
is due to the increased pitch displacement which yields in turn larger displacements for the
frame at the SWL.

8.3.2 Free Decay Pitch

The platform is pitched to 10◦ and translated such that it is not displaced in the surge direction
from the inertial frame at the sea water line.

Figure 25: Free Decay Pitch No Added Mass

Figure 26: Free Decay Pitch With Added Mass

46

Dynamic analysis of a multi-body floating wind turbine

8.3.3 Free Decay Heave

The platform is lifted 5m at the start of the simulation and the free decay response is simulated.
The response is displayed for all degrees of freedom of the platform:

Figure 27: Free Decay Heave No Added Mass

Figure 28: Free Decay Heave With Added Mass

The free decay results are not a match to the previous results, but are in the correct range of
magnitude [7]. Possibly, this is due to the set up in the project with frames at the centre of
mass. The added mass value that was used in the results where calculated about the centre of
flotation of the FOWT and thus is not directly useable for calculations about the centre of mass
of the platform. The discrepancies are further enhanced by the radiation loads which are also
applied at the centre of flotation and the lack of validation of the method chosen to implement
the radiation forces.

8.4 Load Case 4.1

For this simulation the following parameters is used:

Parameter Value Comment
Waves Regular as in table above
Wind None

Tower-Nacelle-Rotor Rigid No rotation
Wave radiation 0 Not accounted for

Drag Only platform velocity Ignore water velocity
Mooring lines Non-linear table
Added Mass 0 Not accounted for

Simulation Time 3600s

The figure below shows a 100 second period of the translational and rotational displacements
for all degrees of freedom of the FOWT. The results are displayed for a frame at the located
at the SWL at the beginning of the simulation.

47

O.M.R. Grindheim

Figure 29: Displacements for all DOF

The simulation with the parameters stated above took slightly below 40s to run.

8.5 Load Case 5.1

This simulation uses the following parameters:

Parameter Value Comment
Waves Regular as in table above
Wind Steady As in table above

Tower-Nacelle Rigid No rotation
Rotor Free

Wave radiation 0 Not accounted for
Drag Only platform velocity Ignore water velocity

Mooring lines Non-linear table
Added Mass 0 Not accounted for

Simulation Time 3600s

Table 11: Load Case 5.1

As with the simulation above the figure below shows and 100s excerpt from the simulation:

48

Dynamic analysis of a multi-body floating wind turbine

Figure 30: Time series of response in all DOF

The figure displays the response of the FOWT for all DOF, and the gyroscopic effect due to the
pitch motion and the spin of the rotor is clearly visible in the yaw-direction. With the current
setup the RPM of the rotor can also easily be extracted:

49

O.M.R. Grindheim

Figure 31: Rotor RPM

8.6 Load Case 5.3

Parameter Value Comment
Waves Irregular as in table above
Wind Turbulent As in table above

Tower-Nacelle Rigid No rotation
Rotor Free

Wave radiation 0 Not accounted for
Drag Only platform velocity Ignore water velocity

Mooring lines Non-linear table
Added Mass 0 Not accounted for

Simulation Time 3600s

Table 12: Load Case 5.3

For this case the full simulation is presented with the response in all degrees of freedom:

50

Dynamic analysis of a multi-body floating wind turbine

(a) Surge (b) Sway (c) Heave

Figure 32: Translational response

(a) Roll (b) Pitch (c) Yaw

Figure 33: Rotational response

Figure 34: Rotor RPM

51

O.M.R. Grindheim

While the results presented here do not exactly replicate what has been found previously [3]
due to the missing wave radiation, drag forces from fluid velocity as well as added mass. It
clearly demonstrates the MFMmethods capability to create complete coupled dynamic response
analysis and incorporate various loads in an easy manner.

52

Dynamic analysis of a multi-body floating wind turbine

9 Conclusion
This project deployed the MFM to analyze the dynamic response of a floating wind turbine.
This work has demonstrated how equations of motion for the analysis are easily obtained with
the MFM, and in a form suitable for numerical solution by standard methods such as Runge-
Kutta.
The focus of this project was not a more advanced and detailed analysis, but a validation of pre-
vious work, with a method that is more easily deployed. Using the MFM, analysts need not turn
to commercial software and potential "black box" functions, but are able to create the entire
software system themselves (and, as this project demonstrates, by bachelor or master students).

This project has also been demonstrated how through use of input parameters, the generalized
essential velocities can be reduced to encapsulate only the translational and rotational freedom
of the platform as one rigid body.

By setting up the frames and generalized essential velocities properly it has been shown how
the method can capture the diverse response, from the spinning rotors due to the lift forces of
the wind as well as the gyroscopic effect when the platform pitches while the rotor spins.

The results presented in this project do not precisely replicate what was previously found but
this was expected due to the previously mentioned simplifications and assumptions (all of which
can be revisited, improved, or, if found to be faulty, corrected). However this project demon-
strates that the moving frame method is capable of complex multi-body dynamic analysis.

53

O.M.R. Grindheim

10 Future work
The discrepancies between this analysis and previous work are relatively simple and readily ex-
plained. The obstacles were the wave radiation, damping coefficients and related issues on the
location of the center of mass. These issues do not detract from the mathematical simplicity of
the MFM, nor its power. These discrepancies are easy to address in future work, with greater
attention paid to damping factors by a specialist in fluid mechanics. The primary goal of this
project was to demonstrate the MFM and to create the overarching model so that such more
refined analyses can be conducted.

By revisiting the hydrodynamic coefficients such as the added mass matrix, damping matrix
and this analysis could be more accurate (or, it might turn out that previous analyses could
be improved; or both). In either case, this project demonstrates the power of the MFM so
that analysts can readily conduct advanced research, beyond the restrictions and impositions
of commercial software.

Continuing, a validation must be conducted on the best way to solve the wave radiation damp-
ing state-space model and make it account for all couplings in all DOF’s. It could also be of
interest to use the MFM to model the delta connection (crowfoot) of the mooring lines correctly
such that there is no need for the added yaw spring stiffness.

Finally, in a world of machines that communicate and remember, there may be a need to infuse
future analyses with artificial intelligence and machine learning. In such cases, it will be wise
to redevelop analytical software and have greater understanding and control of the software
analysis–to develop it all, in-house. The MFM affords this possibility and return the power to
the analyst, not the commercial software.

This work has also demonstrated the evolving power of computer graphics. It is possible that a
visual inspection of results can provide as much insight as two dimensional plots. This project
demonstrates the ease of developing 3D graphics simulations using emerging technologies like
WebGL/ThreeJS. The next step is to deploy two software cameras and enable the occular fusion
needed for 3D fully immersive virtual reality. This is easily done with the software developed
here.

54

Dynamic analysis of a multi-body floating wind turbine

References
[1] Tony Burton et al. “Wind Energy Handbook (3rd Edition)”. In: (). Publisher: John

Wiley & Sons. issn: 978-1-119-45109-9. url:
https://app.knovel.com/hotlink/toc/id:kpWEHE0022/wind-energy-
handbook/wind-energy-handbook.

[2] W. E. Cummins et al. The Impulse Response Function and Ship Motions. 1962.
[3] Omar El Beshbichi, Yihan Xing, and Muk Chen Ong. “An object-oriented method for

fully coupled analysis of floating offshore wind turbines through mapping of
aerodynamic coefficients”. In: Marine Structures 78 (July 1, 2021), p. 102979. issn:
0951-8339. doi: 10.1016/j.marstruc.2021.102979. url:
https://www.sciencedirect.com/science/article/pii/S095183392100040X
(visited on 04/01/2022).

[4] Odd M Faltinsen and Odd M Faltinsen. Sea loads on ships and offshore structures.
Cambridge ocean technology series. Cambridge: Cambridge University Press, 1990.
isbn: 0-521-37285-2.

[5] Åsmund Hjulstad, Erlend Kristiansen, and Olav Egeland. “State-space representation of
frequency-dependent hydrodynamic coefficients”. In: IFAC Proceedings Volumes. IFAC
Conference on Computer Applications in Marine Systems - CAMS 2004, Ancona, Italy,
7-9 July 2004 37.10 (July 1, 2004), pp. 215–220. issn: 1474-6670. doi:
10.1016/S1474-6670(17)31734-2. url:
https://www.sciencedirect.com/science/article/pii/S1474667017317342
(visited on 04/03/2022).

[6] Thomas J Impelluso. “The moving frame method in dynamics: Reforming a curriculum
and assessment”. In: International Journal of Mechanical Engineering Education 46.2
(Apr. 1, 2018). Publisher: SAGE Publications Ltd STM, pp. 158–191. issn: 0306-4190.
doi: 10.1177/0306419017730633. url:
https://doi.org/10.1177/0306419017730633 (visited on 05/09/2022).

[7] J Jonkman. “Offshore Code Comparison Collaboration within IEA Wind Task 23:
Phase IV Results Regarding Floating Wind Turbine Modeling: Preprint”. In: (), p. 23.

[8] J. Jonkman. Definition of the Floating System for Phase IV of OC3.
NREL/TP-500-47535, 979456. May 1, 2010, NREL/TP–500–47535, 979456. doi:
10.2172/979456. url: http://www.osti.gov/servlets/purl/979456-qqFMGj/
(visited on 04/04/2022).

[9] J. M. Jonkman. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind
Turbine. NREL/TP-500-41958, 921803. Dec. 1, 2007, NREL/TP–500–41958, 921803.
doi: 10.2172/921803. url: http://www.osti.gov/servlets/purl/921803-yIIWm8/
(visited on 04/01/2022).

[10] H. Murakami. “A Moving Frame Method for Multi-Body Dynamics”. In: IMECE2013.
V04AT04A079. Volume 4A: Dynamics, Vibration and Control, Nov. 15, 2013. isbn:
978-0-7918-5624-6. doi: 10.1115/IMECE2013-62833. url:
https://doi.org/10.1115/IMECE2013-62833 (visited on 05/25/2022).

[11] T. Francis Ogilvie. “Recent progress toward the understanding and prediction of ship
motions”. In: David W. Taylor Model Basin, Washington D.C., USA, Presented at:
Proceedings of the 5th Symposium on Naval Hydrodynamics, Bergen, Norway, pp. 3-80
(1964). url:
https://repository.tudelft.nl/islandora/object/uuid%3A5accdabd-b484-4450-
9613-e1d2c5ee211e (visited on 04/01/2022).

55

O.M.R. Grindheim

[12] T. Perez and T.I. Fossen. “Tutorial on Modelling and Simulation of Marine System
Dynamics.” IFAC Conference on Control Applications in Marine Systems (CAMS). Bol,
Croatia, 2007. url:
https://github.com/cybergalactic/MSS/blob/master/documentation/Tutoiral%
20on%20modelling%20and%20simulation%20of%20marine%20craft/README.tex.

[13] Vindkraft og naturen. WWF. url:
https://www.wwf.no/klima-og-energi/vindkraft-og-naturen (visited on
05/09/2022).

56

Dynamic analysis of a multi-body floating wind turbine

Appendix

Appendix A: MAIN script

1 function OC3sim()
2 tic; %Starts a clock to time the simulation
3 close all;
4 clc;
5 %% Load all the necessary data
6 addpath('data/') %Path where data is stored
7 addpath('tools/') %Folder contains reconstruction of R, skew vector function ...

and prepare aero data structure
8 addpath('loads/') %Folder containing functions for calculating forces
9 addpath('mooringlines/')

10

11 load('NREL5MW_OC3_vessel.mat','vessel'); %Given from Yihan, holds A B and X ...
and Frequencies

12 load('NREL5MW_OC3_WT.mat','WT'); %Holds coefficients etc to calculate wind ...
loads

13 load('Vhub080_S001.mat','Vhub') %Wind velocity profile
14

15 %% Set up simulation parameters
16 %Free decay from initial displacement
17 %wind flag, wave flag should be set to 0
18 name = 'FDsurge.js'; % Name of the JS file
19 x0.surge = 20; %Initial surge displacement
20 x0.heave = 0; %Initial heave displacement
21 x0.roll = 0;%deg2rad(10);
22 x0.pitch = 0;%deg2rad(10); %Intial pitch displacement in radians, use ...

deg2rad(angle)
23 x0.yaw = 0;%deg2rad(5);
24 flag.freeDecay = 1; %1 deactives the spin of the blades and yaw of nacelle
25 flag.yawNacelle = 0; %0 deactives yaw of nacelle
26

27 flag.windFlag = 0; % 0=No wind, 1=Wind according to data in "Vhub"
28 flag.windSteady=1; % 0 = Turbulent wind, 1=Steady state wind
29 steadyWind = 8; %m/s
30

31 flag.waveFlag = 0; % 0=No waves, 1=Waves
32 flag.swlFlag = 1; % 0=Analysis at SWL, 1=At COG of platform
33 flag.waveRad = 0; % 0 to ignore radiation
34 flag.regwaveFlag = 1; % 0->Jonswap, 1-> Regular waves
35 %Mooring type
36 flag.mooringFlag = 1; %0 = Linear moooring, 1 = non-linear (Newton-Rhapson ...

was used to create a table)
37

38 createData(flag.swlFlag); %Creates data based on the frame location.
39 load('FOWTdata.mat','data'); %Inertia, center of mass locations etc
40

41

42

43

44 %Simulation time daata
45 tend = 300; %RUN TIME
46 dt = 0.1; % TIME STEP
47

48 %Jonswap
49 Hs = 6; %Wave height

57

O.M.R. Grindheim

50 Tp = 10; %wave period
51 gamma = 3.3; % PEAK SHAPE PARAMETER, IF less than 1 the function will ...

calculate it
52 w = vessel.freqs; %Load the frequencies to used in this simulation
53 load('X.mat','X'); %Loads the array of wave excitation force normalized per ...

wave amplitude in the freq domain
54

55 %Regular waves
56

57 Hreg = 6; %Wave height
58 Treg = 10; %Wave period
59

60

61

62

63

64 %% Adjust for added mass computed at inf freq
65 Nfreq=size(vessel.freqs,2); % How many frequencies
66 Ainf = vessel.A(:,:,Nfreq); %Extract added mass computed at inf freq
67 %data.base.inertia.mMat(1,1) = data.base.inertia.mMat(1,1) + Ainf(1,1);
68 %data.base.inertia.mMat(2,2) = data.base.inertia.mMat(2,2) + Ainf(2,2);
69 %data.base.inertia.mMat(4,4) = data.base.inertia.mMat(4,4) + Ainf(4,4);
70 %data.base.inertia.mMat(5,5) = data.base.inertia.mMat(5,5) + Ainf(5,5);
71

72

73 %% Get the wave excitation forces from irregular and regular waves
74 [FWexct, PSD, WaveElev, WaveAmp, ts] = jonswapSpec(Hs,Tp,gamma,w,tend,X,dt,1);
75

76 FWaveReg = regWaveF(Hreg,Treg,X,w,tend,dt); %Forces from regular waves
77

78

79

80 %Setup the wind data (Data is simulated at 0.1 time step for this
81 %profile)
82 if flag.windSteady==0
83 wind.Wspd = Vhub.Data; %Vector that holds windspeeds for 0.1s step ...

incrementwind
84 else
85 wind.Wspd = ones(tend/dt,1)*steadyWind; %Creates a steady state wind array
86 end
87

88 wind.aero = prepAero(WT); %Extract data needed from WT and add missing
89

90 %Load the state space model
91 ssmodel = vessel.ss_model;
92

93

94

95 %% Solves the matrix equation of motion using runge kutta 4th order:
96 [posis,veloc,acc,rotorRPM,axis,swlFramePos,steps] = ...

solveEOM(tend,dt,flag,data,x0,wind,FWexct,FWaveReg,ssmodel);
97

98

99 %% Write the Javascript function for Web simulation
100 check = writeJSdata(name,steps,axis,swlFramePos,veloc,rotorRPM);
101

102 %% Plotting
103 %Push from radians to degrees
104 posis(4:6,:)=posis(4:6,:)* (180 / pi);
105 veloc(4:6,:)=veloc(4:6,:)* (180 / pi);

58

Dynamic analysis of a multi-body floating wind turbine

106 acc(4:6,:)=acc(4:6,:)* (180 / pi);
107

108 %% Inspect results to compare with LC5.1
109 plotData(swlFramePos(1,:),axis,'m','Surge Displacement')
110 plotData(swlFramePos(2,:),axis,'m','Sway Displacement')
111 plotData(swlFramePos(3,:),axis,'m','Heave Displacement')
112 plotData(posis(4,:),axis,'deg','Roll Displacement')
113 plotData(posis(5,:),axis,'deg','Pitch Displacement')
114 plotData(posis(6,:),axis,'deg','Yaw Displacement')
115

116

117 %plotData(moments(2,:),axis,'Nm','Pitch')
118 %plotData(moments(1,:),axis,'Nm','Roll')
119

120 %plotData(veloc(4,:),axis,'deg/s','Roll Veloc')
121

122

123 %{
124 figure()
125 subplot(2,3,1)
126 plot(axis(25000:26000),swlFramePos(1,25000:26000),'g','LineWidth',2) ...

%%Testing frame at SWL
127 xlabel('Time(s)')
128 ylabel('m')
129 title('Surge Position')
130

131 subplot(2,3,2)
132 plot(axis(25000:26000),swlFramePos(2,25000:26000),'g','LineWidth',2) ...

%%Testing frame at SWL
133 xlabel('Time(s)')
134 ylabel('m')
135 title('Sway Position')
136

137 subplot(2,3,3)
138 plot(axis(25000:26000),posis(3,25000:26000),'g','LineWidth',2) %%Testing ...

frame at SWL
139 xlabel('Time(s)')
140 ylabel('m')
141 title('Heave Position')
142

143 subplot(2,3,4)
144 plot(axis(25000:26000),posis(4,25000:26000),'g','LineWidth',2) %%Testing ...

frame at SWL
145 xlabel('Time(s)')
146 ylabel('deg')
147 title('Roll Position')
148

149 subplot(2,3,5)
150 plot(axis(25000:26000),posis(5,25000:26000),'g','LineWidth',2) %%Testing ...

frame at SWL
151 xlabel('Time(s)')
152 ylabel('deg')
153 title('Pitch Position')
154

155 subplot(2,3,6)
156 plot(axis(25000:26000),posis(6,25000:26000),'g','LineWidth',2) %%Testing ...

frame at SWL
157 xlabel('Time(s)')
158 ylabel('deg')
159 title('Yaw Position')

59

O.M.R. Grindheim

160 %}
161

162

163 figure()
164 subplot(3,1,1)
165 plot(axis,swlFramePos(1,:),'g','LineWidth',2) %%Testing frame at SWL
166 xlabel('Time(s)')
167 ylabel('m')
168 title('Surge Position')
169 subplot(3,1,2)
170 plot(axis,veloc(1,:),'g','LineWidth',2)
171 xlabel('Time(s)')
172 ylabel('m/s')
173 title('Surge Velocity')
174 subplot(3,1,3)
175 plot(axis,acc(1,:),'g','LineWidth',2)
176 xlabel('Time(s)')
177 ylabel('m/(s^2)')
178 title('Surge Acceleration')
179

180 figure()
181 subplot(3,1,1)
182 plot(axis,posis(5,:),'g','LineWidth',2)
183 xlabel('Time(s)')
184 ylabel('Deg')
185 title('Pitch Position')
186 subplot(3,1,2)
187 plot(axis,veloc(5,:),'g','LineWidth',2)
188 xlabel('Time(s)')
189 ylabel('Deg/s')
190 title('Pitch Velocity')
191 subplot(3,1,3)
192 plot(axis,acc(5,:),'g','LineWidth',2)
193 xlabel('Time(s)')
194 ylabel('Deg/(s^2)')
195 title('Pitch Acceleration')
196

197 figure()
198 subplot(3,1,1)
199 plot(axis,posis(6,:),'g','LineWidth',2)
200 xlabel('Time(s)')
201 ylabel('Deg')
202 title('Yaw Position')
203 subplot(3,1,2)
204 plot(axis,veloc(6,:),'g','LineWidth',2)
205 xlabel('Time(s)')
206 ylabel('Deg/s')
207 title('Yaw Velocity')
208 subplot(3,1,3)
209 plot(axis,acc(6,:),'g','LineWidth',2)
210 xlabel('Time(s)')
211 ylabel('Deg/(s^2)')
212 title('Yaw Acceleration')
213

214 figure()
215 subplot(3,1,1)
216 plot(axis,posis(3,:),'g','LineWidth',2)
217 xlabel('Time(s)')
218 ylabel('m')
219 title('Heave Position')

60

Dynamic analysis of a multi-body floating wind turbine

220 subplot(3,1,2)
221 plot(axis,veloc(3,:),'g','LineWidth',2)
222 xlabel('Time(s)')
223 ylabel('m/s')
224 title('Heave Velocity')
225 subplot(3,1,3)
226 plot(axis,acc(3,:),'g','LineWidth',2)
227 xlabel('Time(s)')
228 ylabel('m/(s^2)')
229 title('Heave Acceleration')
230

231 figure()
232 plot(axis,rotorRPM)
233 xlabel('Time(s)')
234 ylabel('Revolutions per minute (RPM)')
235 title('Rotor: RPM')
236 toc;

61

O.M.R. Grindheim

Appendix B: Runge-Kutta Loop script

1 function [X,Xd,Xdd,rotorRPM,axis, swlFramePos, N] = ...
solveEOM(tend,dt,flag,data,x0,wind,fWexct,FWaveReg,ssmodel)

2 %%Initializing the simulation
3 N = tend/dt+1;
4 time = 0;
5 axis = zeros(1,N);
6

7

8 %Data storage below
9 X = zeros(6,N); %Holds the cartesian coordinates of the platform

10 Xd = zeros(6,N); %Holds the cartesian rates of the platform
11 Xdd = zeros(6,N); %Holds the cartseian acceleration of the platform
12 swlFramePos = zeros(6,N); %Holds the cartesian coordinates of a swl frame
13 rotorRPM = zeros(1,N); %Holds the RPM of the rotor
14 moments = zeros(3,N); %Meant to hold the hydrostatic moment for debugging ...

purpose
15 %Initial condition: The simulation starts from 0 displacement and rotation
16 %and 0 velocity
17 R1 = eye(3); %Initial Rotation matrix for the platform if not displaced
18 R1d = zeros(3,3);
19

20 %% Initial generalized essential velocity vector
21 q = zeros(8,1); %Note that this will be forced inside get_RK_k if not 8 ...

essential coordinate rates
22

23 uhub = 0; %Initial velocity of the hub for calculating wind loads
24

25 %% IF FREE DECAY HAS BEEN DECLARED EXTRACT THE DATA
26 X(1,1) = x0.surge;%Inital surge displacement
27 X(3,1) = x0.heave;%Intial heave displacement
28 X(4,1) = x0.roll;%Initial roll displacement
29 X(5,1) = x0.pitch;%Initial pitch displacement
30 X(6,1) = x0.yaw; %Initial yaw displacement
31

32 %% If there is an initial roll, pitch or yaw adjust the rotation matrix
33 if x0.pitch ~= 0
34 R1 = [cos(x0.pitch),0,sin(x0.pitch);
35 0,1,0;
36 -sin(x0.pitch),0,cos(x0.pitch)
37];
38 swlFramePos = X(1:3,1) + R1 * [0;0;89.915]-[0;0;89.915];
39 end
40 if x0.yaw ~= 0
41 R1 = [cos(x0.yaw),-sin(x0.yaw),0;
42 sin(x0.yaw),cos(x0.yaw),0;
43 0,0,1
44];
45 swlFramePos = X(1:3,1) + R1 * [0;0;89.915]-[0;0;89.915];
46 end
47 if x0.roll ~= 0
48 R1 = [1,0,0;
49 0,cos(x0.roll),-sin(x0.roll);
50 0,sin(x0.roll),cos(x0.roll)
51];
52 swlFramePos = X(1:3,1) + R1 * [0;0;89.915]-[0;0;89.915];
53 end
54

62

Dynamic analysis of a multi-body floating wind turbine

55

56 %% Setup for wave radiation calculation
57 %Incomplete
58 forces.radiation=[0;0;0;0;0;0];
59 tss=0:dt:3*dt;
60 stepsize = 3;
61

62 %% Setup wave-excitation force
63 if flag.waveFlag==0
64 waveF=zeros(6,length(fWexct(1,:))); %Creates a vector with all zero ...

elements
65 elseif not(flag.regwaveFlag)
66 waveF=fWexct; %choses the irregular excitation loads
67 else
68 waveF=FWaveReg; %Choses the regular excitation loads
69 end
70

71 %Data for non-linear mooring
72 load("completeMooring.mat",'line')
73

74 %% Assist the wind data
75

76 %% Note that it starts at step 2, this is because the first step is known
77 for i = 2:N
78

79 %Get wind forces; Inputs wind data, rotor speed, hub speed, windspeed
80 forces.wind = windLoads(wind.aero,q(8),uhub,wind.Wspd(i-1),flag.windFlag);
81 %Returns vector of zeros if windflag is 0
82

83 %Get wave exitation loads
84 forces.waveExct=waveF(:,i-1);
85

86

87 tn=time;
88 disp=X(:,(i-1)); %Extract the position of the PLATFORM at the previous step
89

90 %% Wave radiation testing
91 if i>10 && flag.waveRad
92

93 tss = axis((i-stepsize):i-2);
94 temp = ...

[Xd(1,(i-stepsize):i-2);Xd(3,(i-stepsize):i-2);Xd(5,(i-stepsize):i-2)];
95 y = lsim(ssmodel,temp,tss);
96

97 [~,I] = max(abs(y(:,1)));
98 [~,K] = max(abs(y(:,2)));
99 [~,L] = max(abs(y(:,3)));

100 forces.radiation=[y(I,2);0;y(K,2);0;y(L,3);0];
101 end
102

103 %% Get the Hydrostatic restoring moments from the buoyancy force, heave ...
displacement and R1

104 forces.hydroS = getHydroStaticForce(disp,data.cob,R1);
105

106 %% Get the cable forces
107 flDisp = fairleadDisp(disp, R1, flag.swlFlag); %Returns the translation ...

of the fairlead
108 forces.cable = mooringF(R1,flDisp,disp,line,data,flag.mooringFlag);
109 %mooringF return the force and moments for all the lines
110

63

O.M.R. Grindheim

111 %% Calculate the drag force due to platform velocity, not accounting for ...
fluid velocity :)

112 forces.drag = viscousDragF(q,R1,R1'*R1d,flag.swlFlag);
113

114 %% Debugging
115 moments(:,i) = forces.hydroS(4:6) ;%+ forces.cable(4:6);
116

117

118

119 %first prediction and get k1
120 qp = q;
121

122 [k1,uhub] = get_RK_k(tn,qp,R1,R1d,data,forces,flag);
123 qp = q + k1 * 0.5 * dt; %Next prediction used to get k2
124 qa = (q + qp) * 0.5;
125 o1 = qa(4:6);
126 %Reconstruct R1
127 xR1 = reconstructionR(o1,dt*0.5);
128 %Add the new R1 to the old
129 R1temp = R1 * xR1;
130 %Can construct R1dot knowing that The transpose is the inverse
131 R1d = R1temp * skewVec(o1);
132

133

134 %Next step get k2
135 [k2,uhub] = get_RK_k(tn + dt * 0.5, qp, R1temp, R1d, data,forces,flag);
136 qp = q + k2 * 0.5 * dt; %Next prediction used to get k3
137 qa = (q + qp) * 0.5;
138 o1 = qa(4:6);
139 %Reconstruct R1
140 xR1 = reconstructionR(o1,dt*0.5);
141 %Add the new R1 to the old
142 R1temp = R1 * xR1;
143 %Can construct R1dot knowing that The transpose is the inverse
144 R1d = R1temp * skewVec(o1);
145

146

147 %Next step get k3
148 [k3,uhub] = get_RK_k(tn + dt * 0.5, qp, R1temp, R1d, data,forces,flag);
149 qp = q + k3 * dt; %Last prediction to get k4
150 qa = (q + qp) * 0.5;
151 o1 = qa(4:6);
152 %Reconstruct R1
153 xR1 = reconstructionR(o1,dt);
154 %Add the new R1 to the old
155 R1temp = R1 * xR1;
156 %Can construct R1dot knowing that The transpose is the inverse
157 R1d = R1temp * skewVec(o1);
158

159

160

161 %Next step get k4
162 [k4,uhub] = get_RK_k(tn + dt, qp, R1temp, R1d, data,forces,flag);
163 qp = q + dt * (k1 + k2 + k3 + k4) / 6.;
164 qa = (q + qp) * 0.5;
165 o1 = qa(4:6);
166 %Reconstruct R1
167 xR1 = reconstructionR(o1,dt);
168 %Add the new R1 to the old
169 R1 = R1 * xR1;

64

Dynamic analysis of a multi-body floating wind turbine

170 %Can construct R1dot knowing that The transpose is the inverse
171 R1d = R1 * skewVec(o1);
172

173 %save what is needed and get ready for new loop
174 q = qp;
175 time = time + dt;
176 axis(i)=time;
177 Xdd(:,i) = (k1(1:6) + k2(1:6) + k3(1:6) + k4(1:6))/6;
178 Xd(:,i) = q(1:6);
179 rotorRPM(i) = q(8)*60*180/pi/360;
180

181

182 %Get the translation
183 X(:,i)=X(:,i-1) + (Xd(:,i-1) + Xd(:,i)) * dt * 0.5; %Midpoint ...

integration scheme
184 %% As for the angular displacements they have already been calculated ...

with the Caley-Hamilton Theorem
185 %% And can be extracted from the rotation matrix
186 X(4,i)=atan2(R1(3,2),R1(3,3));
187 X(5,i)=atan2(-R1(3,1),sqrt(R1(3,2)^2 + R1(3,3)^2));
188 X(6,i)=atan2(R1(2,1),R1(1,1));
189

190 %% This below is used to show the displacements of a frame at the SWL
191 %% Since this is how the results are displayed in other reports
192 %% Also the R1*data.swl - data.swl is just to force the SWL results to ...

be displayed from 0 in the vertical direction
193 swlFramePos(1:3,i) = X(1:3,i) + R1 * data.swl - data.swl; %% Stores the ...

position of a frame at SWL
194 swlFramePos(4:6,i) = X(4:6,i);
195

196 end

65

O.M.R. Grindheim

Appendix C: Solve Mstar Nstar Fstar script

1 %This function will return the value of k for the Runge Kutta 4th order
2 %Inputs: Time, q is the vector of the generalized essential translational ...

and angular velocities
3 %R1 Must be constructed for every value of k that is retrieved
4 %disp holds the cartesian translation and rotation of the platform 6x1
5

6 %vessel is intended to be a struct holding valuable information such as
7 %forces etc.. Might change such that it holds all the other variables
8 %except time
9

10

11 function [k_RK,uhub] = get_RK_k(time, q, R1, R1d, data,forces,flag)
12

13

14

15

16

17 %Extract what is needed from the data on the FOWT
18

19 m1=data.base.inertia.m; %Mass of platform and tower
20 m2=data.nacelle.inertia.m;
21 m3=data.rotor.inertia.m;
22 ma1=data.base.inertia.mMat; %Mass matrix WITH added mass computed at ...

infinite frequency
23

24 J1=data.base.inertia.j; %Mass inertia COMPENSATED FOR ADDED MASS
25 J2=data.nacelle.inertia.j;
26 J3=data.rotor.inertia.j;
27

28 scj1 = data.cm.sj1; %Distance from either SWL or COG of platform to the yaw ...
bearing

29 sc2j = data.cm.s2j; %Distance from yaw bearing to center of mass of nacelle ...
(Translation in 1 and 3 direction of the second frame)

30 sc3j = data.cm.s3j; %Distance from yaw bearing to center of mass of the hub ...
+ rotor

31

32 rGravityBody1 = data.cm.sswlcog;
33

34 %also need the skew of the translation to the different COG's
35 scj1s = skewVec(scj1);
36 sc2js = skewVec(sc2j);
37 sc3js = skewVec(sc3j);
38

39

40 o21 = zeros(3,1); %Initialize up the relative angular velocity vector
41 %o21(3) = data.nacelle.yaw;
42 o21(3) = q(7); %Extract the yaw rate and assign it to the correct row
43 nacelleAngle = o21(3)*time; %Calculate the rotation angle of the nacelle at ...

this time step
44

45 ca2 = cos(nacelleAngle);
46 sa2 = sin(nacelleAngle);
47

48 o32=zeros(3,1);
49 o32(1)=q(8); %Extract the spin rate
50 rotorAngle=o32(1)*time; %Get the angle of the rotor at current time
51

66

Dynamic analysis of a multi-body floating wind turbine

52 ca3=cos(rotorAngle);
53 sa3=sin(rotorAngle);
54

55 %Define to help
56 e1=[1;0;0];
57 e2=[0;1;0];
58 e3=[0;0;1];
59 g=9.806; %Gravitational constant
60

61 %%Setup the rotation matrices
62 %R21 Nacelle from tower
63 R21 = [ca2, -sa2, 0; sa2, ca2, 0; 0,0,1];
64 R21d = [-sa2, -ca2, 0; ca2 , -sa2, 0; 0, 0, 0];
65 R21d = R21d * o21(3);
66

67 %Relative rotation matrix of the rotor
68 R32=[1, 0, 0; 0, ca3, -sa3; 0,sa3,ca3];
69 R32d=[0,0,0;0,-sa3,-ca3;0,ca3,-sa3];
70 R32d=R32d*o32(1);
71

72 %Other rotation matrices
73 R31 = R21 * R32;
74 R31d = R21d * R32 + R21 * R32d;
75 R2 = R1 * R21;
76 R2d = R1d * R21 + R1 * R21d;
77

78

79 %Extract the angular velocity vector from q(4:6)
80 o1=q(4:6,:);
81 o1s=skewVec(o1);
82

83 %Compute the omega skew matrices
84 o2 = R21'*o1 + o21;
85 o2s = skewVec(o2);
86

87 %Compute the angular velocity vector o3
88 o3=R31'*o1+R32'*o21 + o32;
89 o3s=skewVec(o3);
90

91 %% Test B-matrix
92 B32=R2 * sc2js' * R21' + R1 * scj1s';
93 B52=R2 * sc3js' * R21' + R1 * scj1s';
94

95 B=[eye(3), zeros(3,3),zeros(3,1), zeros(3,1);
96 zeros(3,3), eye(3), zeros(3,1), zeros(3,1);
97 eye(3), B32, R2*sc2js'*e3, zeros(3,1);
98 zeros(3,3), R21', e3, zeros(3,1);
99 eye(3), B52, R2 * sc3js'*e3, zeros(3,1);

100 zeros(3,3), R31', R32'*e3, e1];
101

102 %% B-dot
103 Bd32=R2d * sc2js' * R21' + R2 * sc2js' * R21d' + R1d * scj1s';
104 Bd52=R2d * sc3js' * R21' + R2 * sc3js' * R21d' + R1d * scj1s';
105

106 Bdot = [zeros(3,3), zeros(3,3), zeros(3,1), zeros(3,1);
107 zeros(3,3), zeros(3,3), zeros(3,1), zeros(3,1);
108 zeros(3,3), Bd32, R2d * sc2js'*e3, zeros(3,1);
109 zeros(3,3), R21d', zeros(3,1), zeros(3,1);
110 zeros(3,3), Bd52, R2d * sc3js'*e3, zeros(3,1);
111 zeros(3,3), R31d', R32d'*e3, zeros(3,1)];

67

O.M.R. Grindheim

112

113 %% check freedecay flag, Since nacelle and rotor will be considered to be ...
rigid, the elements can be removed

114 if flag.freeDecay == 1 % 1 means no yaw of nacelle and no spin of blades
115 %% Delete the 7th and 8th column of B and Bdot, and row 7+8 from q
116 B(:,7:8) =[];
117 Bdot(:,7:8)=[];
118 q(7:8)=[];
119 end
120 if flag.yawNacelle == 0 && flag.freeDecay == 0 %If true means no yaw of nacelle
121 %% Remove 7th column of B and Bdot and 7th row of q which would account ...

for yaw of nacelle
122 B(:,7) =[];
123 Bdot(:,7)=[];
124 q(7)=[];
125 end
126

127 %% The generalized mass matrix
128 M = [m1*eye(3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3);
129 zeros(3,3), J1, zeros(3,3), zeros(3,3),zeros(3,3), zeros(3,3);
130 zeros(3,3), zeros(3,3), m2*eye(3),zeros(3,3), zeros(3,3), zeros(3,3);
131 zeros(3,3), zeros(3,3), zeros(3,3), J2, zeros(3,3), zeros(3,3);
132 zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), m3*eye(3), zeros(3,3);
133 zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), J3]; %% ...

DONT FORTGET THE ZERO YOU ENTERED ON M2 AND M3
134

135 %adjust the M matrix for the added mass
136 M(1:6,1:6) = ma1;
137

138 %% The D-matrix
139 D = [zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3);
140 zeros(3,3), o1s, zeros(3,3),zeros(3,3), zeros(3,3), zeros(3,3);
141 zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3);
142 zeros(3,3), zeros(3,3), zeros(3,3), o2s, zeros(3,3), zeros(3,3);
143 zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3);
144 zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), zeros(3,3), o3s];
145

146

147

148

149

150

151 %% Hydrostatic forces
152 Fhydro = forces.hydroS;
153

154

155 %% Cable forces
156 Fcable = forces.cable;
157

158 %% Wave Radiation
159 Frad = forces.radiation;
160

161

162 %% Aerodynamics
163 aeroW = [-forces.wind.F;0;0;];
164 aeroTq = [forces.wind.T;0;0];
165 %%Generator Torque that must be applied to the nacelle
166 genTq = [forces.wind.genTQ;0;0];
167

168 %% Linear added damping test

68

Dynamic analysis of a multi-body floating wind turbine

169 Bdamp=zeros(6,6);
170 Bdamp(1,1)=100000;
171 Bdamp(2,2)=100000;
172 Bdamp(3,3)=130000;
173 Bdamp(4,4)=0e6;
174 Bdamp(5,5)=0e6;
175 Bdamp(6,6)=13000000;
176 Fdamp = Bdamp*q(1:6);
177

178 %% Wave forces
179 Fwave = forces.waveExct;
180

181 %% Drag Forces
182 Fdrag = forces.drag;
183

184 %% Create the Mstar and Nstar
185 Ms = B' * M * B;
186 Ns = B' * (M * Bdot + D * M * B);
187 Nsq=Ns*q;
188

189 %% If the simulation is run at the SWL moments from gravity on the first ...
body neeed to be included

190 % This will be 0 if the frame is at COG
191 MGravityBody1 = skewVec(R1*rGravityBody1)*(-m1(3,3)*g*e3);
192

193 %% Forces and moments on each body
194

195 Fbody1 = zeros(3,1) - m1(3,3) * g * e3 + Fhydro(1:3) - Fdamp(1:3) + ...
Fcable(1:3) + Fwave(1:3) - Frad(1:3) + Fdrag(1:3);

196 Mbody1 = zeros(3,1) + Fhydro(4:6) - Fdamp(4:6) + Fcable(4:6) + Fwave(4:6) - ...
Frad(4:6) + MGravityBody1 + Fdrag(4:6);

197 Fbody2 = zeros(3,1) - m2*g*e3;
198 Mbody2 = zeros(3,1) + genTq;%- aeroTq;
199 Fbody3 = zeros(3,1) + aeroW -m3*g*e3;
200 Mbody3 = zeros(3,1) + aeroTq;
201

202 F = [Fbody1;Mbody1;Fbody2;Mbody2;Fbody3;Mbody3];
203 %% Create Fstar
204 Fs = B' * F;
205 %% Solve for qdd by inverting the Mstar
206 k_RK = Ms\(Fs - Nsq);
207

208 %% Need to check if there was any reduction in generalized essential ...
coordinate rates

209 %% If so the elements that got extracted from qd needs to be re-inserted but ...
forced to be 0

210 if flag.freeDecay == 1
211 k_RK = [k_RK;0;0];
212 end
213 if flag.yawNacelle == 0 && flag.freeDecay == 0
214 k_RK = [k_RK(1:6);0;k_RK(7)];
215 end
216

217 %% Calculate the hubs velocity in the surge direction (To calculate the wind ...
loads)

218 uhub = B(13:15,:)*q;
219 uhub = uhub(1);

69

O.M.R. Grindheim

Appendix D: Create data file script

1 function check = createData(swlFlag)
2 %% Masses of the individual bodies
3 massTower =250000;
4 massPlatform =7466330;
5 massNacelle =240000;
6 massRotor =110000; %
7

8

9 %% Vector holding the diagonal mass moment of inertia terms of the ...
individual bodies

10 platformInertia =[422923*1e4;422923*1e4;16423*1e4];%Roll pitch yaw
11 towerInertia =[1.261*1e8;1.261*1e8;1.5632*1e6];
12 nacelleInertia =[8.703*1e5;17.41*1e5;17.41*1e5];%Roll pitch yaw
13 bladeInertia =[38628141;35328141/2;35328141/2];%Roll pitch yaw 1:353.....
14 hubInertia =[115926; 57963; 57963];
15 rotorInertia = bladeInertia + hubInertia;
16 %Rotor needs the mass moment of inertia contribution from the generator
17 Igen = 534;
18 Ngear = 97;
19 rotorInertia(1) = rotorInertia(1) + Ngear^2 * Igen;
20

21

22 %% Declare distances from SWL to elements
23 %% Also check if frame is at centre of mass OR SWL and adjust
24 swl_fairlead = [0;0;-70]; %Vertical distance from SWL to FAIRLEAD
25 swl_platformCOG = [0;0;0-89.915]; %PLATFORM CENTRE OF MASS LOCATION FROM SWL
26 swl_towerCOG = [0;0;43.4]; %TOWER CENTRE OF MASS LOCATION FROM SWL
27 swl_baseCOG = (swl_platformCOG*massPlatform + ...

swl_towerCOG*massTower)/(massTower + massPlatform);%Distance between SWL ...
and COG of rigid tower + platform body

28 swl_J = [0;0;87.6];
29 swl_COB = [0;0;-62.1];
30

31 if swlFlag == 0
32 e1_to_swl =[0;0;0];
33 e1_to_COB = swl_COB
34 else
35 e1_to_swl =-swl_baseCOG
36 e1_to_COB = e1_to_swl + swl_COB
37 end
38

39 %% FIND THE DISTANCE BETWEEN e1 to COG to adjust the mass moment of inertia ...
matrix later

40 e1_to_COG = e1_to_swl + swl_baseCOG %Will be 0 or -86 if frame at COG or SWL
41 skew_COGe1 = skewVec(e1_to_COG)
42

43 %% Distance TOWER CM to BASE CM (BASE IS TOWER + PLATFORM)
44 tower_to_base = -swl_towerCOG + swl_baseCOG;
45 %Use parallel axis theorem
46 towerPAT_inertia = skewVec(tower_to_base)*skewVec(tower_to_base)'*massTower;
47

48 %% Distance PLATFORM CM to BASE CM
49 platform_to_base = -swl_platformCOG + swl_baseCOG;
50 %Use parallel axis theorem
51 platformPAT_inertia = ...

skewVec(platform_to_base)*skewVec(platform_to_base)'*massPlatform;
52

70

Dynamic analysis of a multi-body floating wind turbine

53 %% MASS MOMENT OF INERTIA OF BASE ABOUT ITS CM
54 base_JC = eye(3).*platformInertia + eye(3).*towerInertia + towerPAT_inertia ...

+ platformPAT_inertia;
55 nacelle_JC = eye(3).*nacelleInertia;
56 rotor_JC = eye(3).*rotorInertia;
57 %% DEFINE IMPORTANT POSITION VECTORS
58 e1_to_J = e1_to_swl + swl_J; % IN THE 1 FRAME
59 J_to_2 = [-1.9;0;1.75]; % IN THE 2 FRAME
60 J_to_3 = [5.01910;0;1.96]; %IN the 2 FRAME
61 e1_to_FL= e1_to_swl + swl_fairlead; %distance from e1 to FL
62

63

64 %% BELOW EVERYTHING IS SAVED INTO A STRUCTURE CALLED DATA WHICH IS SAVED TO ...
A FILE

65

66 %% Struct that holds the rotor data
67 data.rotor.inertia.m =massRotor*eye(3); %Mass matrix
68 data.rotor.inertia.j =rotor_JC; %Mass moment of inertia matrix
69 data.rotor.radius =61.5;
70

71 %% Struct with BASE (platform + tower) DATA
72 data.base.inertia.m =(massPlatform+massTower)*eye(3);
73 data.base.inertia.mMat =zeros(6,6); % BIG M MATRIX
74 data.base.inertia.mMat(1:3,1:3) =(massPlatform+massTower)*eye(3);
75 data.base.inertia.j = base_JC + skew_COGe1*skew_COGe1'*(massPlatform+massTower);
76 data.base.inertia.mMat(4:6,4:6) = data.base.inertia.j;
77

78 %% NACELLE MASS AND MASS MOMENT OF INERTIA MATRICES
79 data.nacelle.inertia.m = massNacelle*eye(3);
80 data.nacelle.inertia.j = nacelle_JC;
81

82 %% Save positional vectors to the struct
83 data.cm.sj1 = e1_to_J;
84 data.cm.s2j = J_to_2;
85 data.cm.s3j = J_to_3;
86

87 data.cm.sswlcog = e1_to_COG; %Distance from frame 1 to BASE COG [0;0;0] or ...
[0;0;-85....]

88 data.fairlead.dist = e1_to_FL;
89 data.cob = skewVec(e1_to_COB);
90 data.swl = e1_to_swl;
91

92

93 %% DATA FOR CALCULATING THE AERODYNAMIC TORQUE ADJUSTED FOR GENERATOR TORQUE
94 data.genTq = [0,0,19600,23440,27360,31120,32800,38784.195,43093.55,39600,36160];
95 data.genRpm= [0,670,871,945,1022,1096,1128,1161.963,1173.7,1273,1391];
96

97

98 save FOWTdata.mat data -v7.3;
99 check = 0;

71

O.M.R. Grindheim

Appendix E: Loads from all mooring lines script

1 function returnForces = mooringF(R,fldisp,disp,line,data,flag)
2 % Take in the the displacement of the platform and return the resulting
3 % force in the the inertial frame
4

5 %Disp will hold the displacement of a frame located at the center of the
6 %platform on the same height as the fairleads
7

8 %% Check if linear or non linear
9 if flag==0

10 cableF0 = [0;0;-1607000;0;0;0]; % 3:-1607000
11 restoreMat = [
12 41180, 0, 0, 0, -2821000, 0;
13 0, 41180, 0, 2821000, 0, 0;
14 0, 0, 11940, 0, 0, 0;
15 0, 2816000, 0, 311100000, 0, 0;
16 -2816000, 0, 0, 0, 311100000, 0;
17 0, 0, 0, 0, 0, 11560000];
18 returnForces = cableF0 - restoreMat*fldisp;
19 return
20 end
21

22

23 %% Non-linear
24 %%Thinking of it it will probably ignore the heave displacement for now
25 x0=848.5; %Equilibrium distance
26 z0 = 250.0; %Equilibrium
27 vs = data.fairlead.dist(3);%Vertical distance to fairlead from frame on platform
28 fairleadR=5.2; % Radius from platform center to fairlead
29 yaw = fldisp(6); % Yaw of platform
30

31 %% Testing Chapter 5.3 Mooring Line implementation
32 %Equation 145
33 F1=zeros(3,1);
34 F2=zeros(3,1);
35 F3=zeros(3,1);
36 Mtotal = zeros(3,1);
37 returnForces = zeros(6,1);
38

39 %% Rotation matrix from the platform frame to fairlead 1
40 Rfl1 = [1,0,0;
41 0,1,0;
42 0,0,1];
43 %% Rotation matrix from the platform frame to fairlead 2
44 Rfl2 = [cos(pi/3*2),-sin(pi/3*2),0;
45 sin(pi/3*2),cos(pi/3*2),0;
46 0,0,1];
47 %% Rotation matrix from the platform frame to fairlead 3
48 Rfl3 = [cos(-pi/3*2),-sin(-pi/3*2),0;
49 sin(-pi/3*2),cos(-pi/3*2),0;
50 0,0,1];
51

52 anchordist = [853.7;0;-250]; %Distance from platform frame to anchor
53 a1 = Rfl1 * anchordist; %Anchor 1
54 a2 = Rfl2 * anchordist; %Anchor 2
55 a3 = Rfl3 * anchordist; %Anchor 3
56 fairlead_Lalpha = [-5.2;0;0]; %Distance from fairlead to center of platform ...

in fairlead frame

72

Dynamic analysis of a multi-body floating wind turbine

57

58 %% Setting up vectors from anchor to fairlead in the inertial frame
59 L1_from_A = fldisp(1:3) - R*Rfl1 * fairlead_Lalpha - a1; %Vector from A to ...

fairlead 1
60 norm1 = norm(L1_from_A(1:2)); %Horizontal distance from A to fairlead1
61 force_unit_vec1 = (1/norm1)*L1_from_A(1:2); %Normalized vector
62

63 L2_from_A = fldisp(1:3) - R*Rfl2 * fairlead_Lalpha - a2; %Vector from A to ...
fairlead 2

64 norm2 = norm(L2_from_A(1:2)); %Horizontal distance from A to fairlead2
65 force_unit_vec2 = (1/norm2)*L2_from_A(1:2);
66

67 L3_from_A = fldisp(1:3) - R*Rfl3 * fairlead_Lalpha - a3; %Vector from A to ...
fairlead 3

68 norm3 = norm(L3_from_A(1:2)); %Horizontal distance from A to fairlead 3
69 force_unit_vec3 = (1/norm3)*L3_from_A(1:2);
70

71 % Array holding the horisontal distances
72 xf_test = [norm1;norm2;norm3];
73 % Array holding the vertical distances
74 zf_test = [L1_from_A(3),L2_from_A(3),L3_from_A(3)];
75

76

77 %Find the rows and columns,
78 %Line1
79 row1_test = find(line.row==round(zf_test(1),0));
80 col1_test = find(line.col==round(xf_test(1),0));
81 %Line2
82 row2_test = find(line.row==round(zf_test(2),0));
83 col2_test = find(line.col==round(xf_test(2),0));
84 %Line3
85 row3_test = find(line.row==round(zf_test(3),0));
86 col3_test = find(line.col==round(xf_test(3),0));
87

88

89 %Extract the forces from the matrix
90 L1HF = line.HF(row1_test,col1_test); %force line 1
91 L1VF = line.VF(row1_test,col1_test); %force line 1
92 L2HF = line.HF(row2_test,col2_test); %force line 1
93 L2VF = line.VF(row2_test,col2_test); %force line 1
94 L3HF = line.HF(row3_test,col3_test); %force line 1
95 L3VF = line.VF(row3_test,col3_test); %force line 1
96

97 %Construct the force vectors in the inertial frame
98 F1(1:2) = -force_unit_vec1 * L1HF;
99 F1(3) = -L1VF;

100 F2(1:2) = -force_unit_vec2 * L2HF;
101 F2(3) = -L2VF;
102 F3(1:2) = -force_unit_vec3 * L3HF;
103 F3(3) = -L3VF;
104

105 %% Distance from frame1 to fairleads in the inertial frame, VS holds the ...
vertical distance

106 testing = R*[0;0;vs];
107 testing(1:2)=0;
108 L1_from_1 = L1_from_A + a1 +testing - disp(1:3);
109 L2_from_1 = L2_from_A + a2 +testing - disp(1:3);
110 L3_from_1 = L3_from_A + a3 +testing - disp(1:3);
111

112 %% Calculate the moments about the first frame

73

O.M.R. Grindheim

113 Mtotal = skewVec(L1_from_1)*F1;
114 Mtotal = Mtotal + skewVec(L2_from_1)*F2;
115 Mtotal = Mtotal + skewVec(L3_from_1)*F3;
116

117 %% There is an additional yaw spring stiffness, as stated in Definition of ...
the Floating

118 %% System for phave IV of OC3 by jonkman which is added here
119 Mtotal(3) = Mtotal(3) - 98340000 * disp(6);
120

121 %% Put it all in one vector to return
122 returnForces(1:3)=F1+F2+F3;
123 returnForces(4:6)=Mtotal;

74

Dynamic analysis of a multi-body floating wind turbine

Appendix F: Hydrostatic Load

1 function hydroSForce = getHydroStaticForce(disp,locCOB,R1)
2 %Hydrostatic loads for the OC3 spar buoy
3 staticForce =[0;0;80737697.3;0;0;0]; %80737697.3
4 restoreMoment =zeros(6,1);
5

6 buoyF = [0;0;80708100];
7

8 cob = [0;0;23.4958]; % Above COG
9 locCOB;

10

11 heave = 332941;
12 roll = -4999180000;%4 999 180 000 or 1 300 000 000
13 pitch = roll;
14

15 %restoreMatrix(3,3) = heave;
16 %restoreMatrix(4,4) = roll;
17 %restoreMatrix(5,5) = pitch;
18

19 restoreHeave = [0;0;heave*disp(3);0;0;0];
20 buoyF = buoyF - restoreHeave(1:3);
21 restoreMoment(4:6) = skewVec(R1*cob)*buoyF;
22

23 R1*cob;
24

25 hydroSForce = staticForce + restoreMoment-restoreHeave;

75

O.M.R. Grindheim

Appendix G: Viscous Drag Load

1 function dragForce = viscousDragF(qdot,R1,o1,swlFlag)
2 Cd = 0.6; % Viscous drag coefficient
3 dz = 1; % z strip length
4 rhow = 1025;
5 D = ones(120,1) * 9.4;
6 dragForce = zeros(6,1);
7 for i=1:12
8 if i<5
9 D(i)=6.5;

10 else
11 D(i)= 9.4 - 2.9/8*(12-i);
12 end
13 end
14 F = [0;0];
15 F_times_z = [0;0];
16 qd = [0;0];
17 qd_square = [0;0];
18 if swlFlag == 0
19 swl =[0;0;0];
20 else
21 swl = [0;0;89];
22 end
23 z = 1:dz:120;
24 for j=1:length(z)
25 for k=1:2
26 test = R1*o1*(swl+[0;0;-z(j)]); % Velocity of strip in inertial ...

frame
27 qd(k) = -qdot(k) - test(k); % Velocity of strip in inertial ...

frame + x1d in inertial
28 qd_square(k) = qd(k) * abs(qd(k));
29 F(k) = F(k) + 0.5 * Cd * rhow * D(j) * dz * qd_square(k);
30 F_times_z(k) = F_times_z(k) + (swl(3)-z(j)) * 0.5 * Cd * rhow * ...

D(j) * dz * qd_square(k);
31 end
32 end
33 if F(1)~=0
34 armlen1 = F_times_z(1)/F(1);
35 dragForce(5) = armlen1 * F(1);
36 end
37 if F(2)~=0
38 armlen2 = F_times_z(2)/F(2);
39 dragForce(4) = -armlen2 * F(2);
40 end
41 dragForce(1:2) = F;

76

Dynamic analysis of a multi-body floating wind turbine

Appendix H: Wind Load

1 function wind = windLoads(aero, qrotor,uhub, Wspd,flag)
2 %IF NO WIND the following is returned
3 if flag==0
4 wind.F=0;
5 wind.T=0;
6 wind.P=0;
7 wind.genTQ=0;
8 return
9 end

10

11 %Extract necessary data from struct
12 rhoAir = aero.rhoAir; %Extract air density
13 rotorA = aero.rotorA; %Extract rotor area
14 bp = aero.bp; %Extract blade pitch angle
15 rotorR = aero.rotorR; %Extract rotor radius
16 Ctmat = aero.Ct; %Extract the matrix that holds the thrust coefficients
17 Cpmat = aero.Cp; %Extract power coefficient matrix
18 Cqmat = aero.Cq; %Extract torque coefficient matrix
19 TsrVec = aero.TSR; %Column that holds different tip speed ratios
20 BProw = aero.BP; %Row that holds different blade pitch angles
21

22

23 ts = qrotor*rotorR; %Calculate tip speed
24 Uhub = qrotor*1.5; %Hub speed? get confirmation
25 urel = sqrt(Wspd^2 + Uhub^2) ; %Relative windspeed
26

27

28 ureltest = Wspd - uhub;
29 tsr = ts / urel; %Tip speed ratio
30

31 row = find(TsrVec==round(tsr,1)); %Row that holds coefficient value
32 col = find(BProw==bp); %Column that holds coefficient value
33

34 Ct = Ctmat(row,col);
35 Cp = Cpmat(row,col);
36 Cq = Cqmat(row,col);
37

38 windF = 0.5 * rhoAir * rotorA * Ct * urel^2; %Calculate the wind force
39 windT = 0.5 * rhoAir * rotorA * rotorR * Cq * urel^2; %Calculate the wind ...

Torque
40 rotorP = 0.5 * rhoAir * rotorA * Cp * urel^3; %Calculate the rotor Power
41

42 %% Calculate the generator torque
43 N = 97; %Gear ratio
44 rpm = qrotor * 60 / (2 * pi) * N;
45

46 gentq = interp1(aero.genRpm,aero.genTq,rpm)*N;
47

48 wind.F = windF;
49 wind.T = windT-gentq;
50 wind.P = rotorP;
51 wind.genTQ = gentq;

77

O.M.R. Grindheim

Appendix I: Reconstruction

1 function R = reconstructionR(o1,t)
2 w1=o1(1);
3 w2=o1(2);
4 w3=o1(3);
5

6 normw = sqrt(w1*w1 + w2*w2 + w3*w3);
7

8 Imat = eye(3);
9 R = Imat;

10

11 if(normw > 0.0000001)
12 O=skewVec(o1);
13 sinval = sin(normw * t)/normw;
14 cosval = (1 - cos(normw * t))/normw/normw;
15 R = R + O * sinval + O * O * cosval;
16 end

78

Dynamic analysis of a multi-body floating wind turbine

Appendix J: Line tension

1 clc
2 %Setup the line parameters
3 %Might move this to oc3data and make this file a callable function
4

5 %Possibly just store the values in oc3 data as a table to look up in for
6 %given displacements
7

8 line.L = 902.2; %Unstretched length of a line
9 line.m = 77.7066;%Mass density per m length, kg/m

10 line.rhoW = 1025; %Density of seawater kg/m^3
11 line.g = 9.806; %gravtitational acceleration m/s^2
12 line.D = 0.09; %Diameter of the mooring line
13 line.A = pi*line.D^2/4;
14 line.EA = 384243000;%Insert elasticity modulus
15 line.xf0 = 848.5; %distance from anchor to fairlead where the combined
16 %horisontal forces of the lines will be 0
17 line.zf0 = 250;
18

19 %Calculate the weight of the lines in seawater
20 line.Wsea = (line.m - line.rhoW * pi * line.D^2 / 4)*line.g; % 698.0483N/m
21 line.Cb = .83;
22

23

24

25 %Initial forces at the fairlead
26 %[x1,x2]=newtonRaphsonTest(860,250,line)
27 dx = 1; %step size in metres
28 start = 810; %start distance to fairlead
29 stop = 890; %end distance to fairlead
30 x = start:dx:stop; %array of everypossible x value
31 dz=1;
32 startz = 240;
33 stopz = 260;
34 z = startz:dz:stopz;
35

36 HF=zeros(length(z),length(x)); %array to hold horisontal forces
37 VF=zeros(length(z),length(x)); %array to hold vertical forces
38

39 for i=1:length(z)
40 for j=1:length(x)
41 [HF(i,j),VF(i,j)]=newtonRaphsonTest(x(j),z(i),line);%Calculates the ...

Hf and Vf and stores it
42 end
43

44 end
45 line.HF=HF*1000;
46 line.VF=VF*1000;
47 line.col=x;
48 line.row=z;
49 save completeMooring.mat line -v7.3;
50

51 figure()
52 subplot(2,1,1)
53 plot(x,HF(11,:))
54 title('HF')
55 ylabel("Hf [kN]")
56 xlabel("xf [m]")

79

O.M.R. Grindheim

57 subplot(2,1,2)
58 plot(x,VF(11,:))
59 title('VF')
60 ylabel("Vf [kN]")
61 xlabel("xf [m]")
62

63

64 %lineF.H = vertcat(HF*1000,x);
65 %lineF.V = vertcat(VF*1000,x);
66 %save mooringData.mat lineF -v7.3;
67 %{
68 figure()
69 subplot(2,1,1)
70 plot(x,HF)
71 title('HF')
72 ylabel("Hf [kN]")
73 xlabel("xf [m]")
74 subplot(2,1,2)
75 plot(x,VF)
76 title('VF')
77 ylabel("Vf [kN]")
78 xlabel("xf [m]")
79 %}
80

81 function [x1,x2] = newtonRaphsonTest(xf,zf,data)
82 %Would like to generalize this function such that it could implement
83 %Newton-Rhapson for any system of non-linear algebraic equations
84

85 %In that case i would need to do the partial differentiates numerically
86 %I think. Would also need to pass the functions through
87

88

89 L=data.L; %Extract the full length of the mooring Line
90 Wsea= data.Wsea; %Extract weight in fluid of line
91

92 %Catenary parameter for calculating the initial guess for the forces
93 if xf == 0
94 lamda0 = 1000000;
95 elseif sqrt(xf^2+zf^2)>=L
96 lamda0=0.2;
97 else
98 lamda0 = sqrt(3 * ((L^2-zf^2)/xf^2)-1);
99 end

100

101 %Initial guess for the forces
102 H0 = abs((Wsea*xf)/(2*lamda0)); %initial guess Hf
103 V0 = Wsea / 2 * (zf/tanh(lamda0)+L); %initial guess Vf
104 tol = 100; %Declare tolerance high enough that the loop starts
105

106 while tol > 10^(-3)
107 H=H0; %dummy variable for intial guess
108 V=V0;
109

110 %Check if the line rests on the seabed or not
111 if xf > 858.5
112 [f1,f2,Jacobi]=lineFree(H,V,data);
113 else
114 [f1,f2,Jacobi]=lineOnSeabed(H,V,data);
115 end
116

80

Dynamic analysis of a multi-body floating wind turbine

117 %Newton Rhapson method for system of non linear algebraic equations
118 %xn+1=x0 - J^(-1)f(x0)
119 f=[f1-xf;f2-zf]; %f(x0)
120 x0=vertcat(H,V); %x0
121 xp = x0 - Jacobi\f; %Calculates the next step
122 %Pull out the biggest difference between the next step and the
123 %previous step
124 tol = max(abs(xp-x0));
125

126 %Setup for next guess
127 H0=xp(1);
128 V0=xp(2);
129

130

131 end
132 %Return the calculated forces for this distance from the fairlead
133 %Return the answer in kN
134 x1=H0/1000;
135 x2=V0/1000;
136

137 end
138

139 function [xf,zf,Jacobi] = lineFree(H,V,data)
140 w = data.Wsea; %weight in fluid
141 L = data.L; %Length of cable
142 EA= data.EA; %Extensional stiffness
143

144 %The formulations below are from Jonkmans model for mooringlines
145 xf = (H / w) * (log(V/H + sqrt(1 + (V/H)^2)) - log((V-w*L)/H + sqrt(1 + ...

((V-w*L)/H)^2))) + H * L /EA;
146 zf = (H / w) * (sqrt(1 + (V/H)^2) - sqrt(1 + ((V-w*L)/H)^2)) + 1/EA * (...

V*L-(w*L^2)/2);
147

148

149 %Do NOT look at these next lines please
150 %Partial derivatives using symbolic manipulator
151 dxdh=(log(V/H + (V^2/H^2 + 1)^(1/2)) - log((V - L*w)/H + ((V - ...

L*w)^2/H^2 + 1)^(1/2)))/w + L/EA + (H*(((V - L*w)/H^2 + (V - ...
L*w)^2/(H^3*((V - L*w)^2/H^2 + 1)^(1/2)))/((V - L*w)/H + ((V - ...
L*w)^2/H^2 + 1)^(1/2)) - (V/H^2 + V^2/(H^3*(V^2/H^2 + 1)^(1/2)))/(V/H ...
+ (V^2/H^2 + 1)^(1/2))))/w;

152 dxdv=-(H*((1/H + (2*V - 2*L*w)/(2*H^2*((V - L*w)^2/H^2 + 1)^(1/2)))/((V ...
- L*w)/H + ((V - L*w)^2/H^2 + 1)^(1/2)) - (1/H + V/(H^2*(V^2/H^2 + ...
1)^(1/2)))/(V/H + (V^2/H^2 + 1)^(1/2))))/w;

153 dzdh=-((V^2/H^2 + 1)^(1/2) - ((V - L*w)^2/H^2 + 1)^(1/2))/(w*(V^2/H^2 + ...
1)^(1/2)*((V - L*w)^2/H^2 + 1)^(1/2));

154 dzdv=L/EA - (H*((2*V - 2*L*w)/(2*H^2*((V - L*w)^2/H^2 + 1)^(1/2)) - ...
V/(H^2*(V^2/H^2 + 1)^(1/2))))/w;

155 Jacobi=[dxdh,dxdv;dzdh,dzdv];
156

157 end
158

159 function [xf,zf,Jacobi] = lineOnSeabed(H,V,data)
160 w = data.Wsea; %weight in fluid
161 L = data.L; %Length of cable
162 EA= data.EA; %Extensional stiffness
163 Cb = data.Cb; %Coefficient for the part of the line on the seabed
164 %Split up the terms
165 xf1 = L-V/w + (H / w) * (log(V/H + sqrt(1 + (V/H)^2))) + H*L/EA;
166 xf2 = (Cb * w / (2 * EA)) * (-(L - V / w)^2) + (L - V / w - H / (Cb * ...

81

O.M.R. Grindheim

w))*max(L - V/w - H/(Cb*w),0);
167 xf = xf1 + xf2;
168 zf = (H / w) * (sqrt(1 + (V/H)^2) - sqrt(1 + ((V-w*L)/H)^2)) + 1/EA * (...

V*L-(w*L^2)/2);
169

170 %The partial derivative of the max function will always be 0, therefore
171 %the entire xf2 term vanishes in the partial derivatives
172 dxdh=L/EA + log(V/H + (V^2/H^2 + 1)^(1/2))/w - (H*(V/H^2 + ...

V^2/(H^3*(V^2/H^2 + 1)^(1/2))))/(w*(V/H + (V^2/H^2 + 1)^(1/2)));
173 dxdv=(H*(1/H + V/(H^2*(V^2/H^2 + 1)^(1/2))))/(w*(V/H + (V^2/H^2 + ...

1)^(1/2))) - 1/w;
174

175 dzdh=-((V^2/H^2 + 1)^(1/2) - ((V - L*w)^2/H^2 + 1)^(1/2))/(w*(V^2/H^2 + ...
1)^(1/2)*((V - L*w)^2/H^2 + 1)^(1/2));

176 dzdv=L/EA - (H*((2*V - 2*L*w)/(2*H^2*((V - L*w)^2/H^2 + 1)^(1/2)) - ...
V/(H^2*(V^2/H^2 + 1)^(1/2))))/w;

177 Jacobi=[dxdh,dxdv;dzdh,dzdv];
178 end

82

Dynamic analysis of a multi-body floating wind turbine

Appendix K: Irregular wave

1 function [Fexct, PSD, zeta, A, t] = ...
jonswapSpec(Hs,Tp,gamma,w,timeend,X,dt,plotflag)

2 %Calculate the ratio between the period and mean wave
3 k = Tp / sqrt(Hs);
4 sigma = 0; %Declare sigma will be set further down
5 Tpi= Tp/(2*pi);
6 PSD=[];
7 PMPSD=[];
8 N=length(w);
9 sided = 1;

10 %Check gamma and assign new value
11 if gamma<1 || gamma>7
12 if k > 5
13 gamma = 1;
14 elseif k > 3.6
15 gamma = exp(5.75-1.15 * Tp / sqrt(Hs));
16 else
17 gamma = 5;
18 end
19 end
20

21

22

23 %% two sided
24 sigma1=0.07;
25 sigma2=0.09;
26 sigma = (w>(2*pi)/Tp)*sigma2+(w<=(2*pi/Tp))*sigma1;
27

28 x1=(5/(32 * pi)) * Hs^2 * Tp * (w*Tpi).^(-5);
29 x2 = exp(-(5/4) * (w*Tpi).^-4);
30 x3 = gamma.^(exp(-0.5 * ((w*Tpi - 1)./sigma).^(2)));
31 PSD = x1 .* x2 .* x3 .* (1 - 0.287*log(gamma));
32 PMPSD=x1.*x2;
33

34 %Time to do an inverse fourier transform to find the wave elevation
35 %timeseries
36 n = 1:N;
37 df=w(2)-w(1);
38 test = ones(N,1);
39 test = test * df;
40

41 t=0:dt:timeend;
42 phase = (2*pi).*(rand(1,N)-.5);
43

44 %% Box Muller
45 u = rand(2,N);
46 r = sqrt(-2*log(u(1,:)));
47 phi = 2*pi*u(2,:);
48

49 %Amplitude
50 A=((2*pi).*PSD.*test').^(.5);
51

52 %Compute the wave elevation
53

54 zeta = (1/(2*pi)).*sum(2.*r(n)'.*A(n)' .*cos(w(n)'.*t + phi(n)' + phase(n)'));
55

56 %Calculate the magnitude and the phase angle from X(w,beta)

83

O.M.R. Grindheim

57 Fext = zeros(6, length(X(1,:,1)));
58 Fph = zeros(6, length(X(1,:,1)));
59 for k=1:6
60 for i=1:length(X(1,:,1))
61 %Store it in rows
62 z = X(k,i,1); %%%%%% Prev: X(1,i,1)
63 Fext(k,i)= abs(z);
64 Fph(k,i) = angle(z);
65 end
66 end
67 %Excitation load time realized
68 Fexct = zeros(6, length(t));
69 Fexct(1,:) = (1/(2*pi)).* sum(2*r'.*A' .* Fext(1,:)' .* cos((w' .*t + phi' + ...

phase'+ Fph(1,:)')));
70 Fexct(2,:) = (1/(2*pi)).* sum(2*r'.*A' .* Fext(2,:)' .* cos((w' .*t + phi' + ...

phase'+ Fph(2,:)')));
71 Fexct(3,:) = (1/(2*pi)).* sum(2*r'.*A' .* Fext(3,:)' .* cos((w' .*t + phi' + ...

phase'+ Fph(3,:)')));
72 Fexct(4,:) = (1/(2*pi)).* sum(2*r'.*A' .* Fext(4,:)' .* cos((w' .*t + phi' + ...

phase'+ Fph(4,:)')));
73 Fexct(5,:) = (1/(2*pi)).* sum(2*r'.*A' .* Fext(5,:)' .* cos((w' .*t + phi' + ...

phase'+ Fph(5,:)')));
74 Fexct(6,:) = (1/(2*pi)).* sum(2*r'.*A' .* Fext(6,:)' .* cos((w' .*t + phi' + ...

phase'+ Fph(6,:)')));
75

76 %% 1 Sided
77 S = wavespec(7,[Hs 2*pi/Tp gamma],w',0);
78 SPM = wavespec(7,[Hs 2*pi/Tp 1],w',0);
79 A1 = sqrt(2.*S.*test);
80 zeta1 = sum(A1(n) .* cos(w(n)'.*t + phase(n)'));
81 %Fexct(1,:) = sum(A1 .* Fext(1,:)' .* cos((w' .*t + phase'+ Fph(1,:)')));
82 %Fexct(2,:) = sum(A1 .* Fext(2,:)' .* cos((w' .*t + phase'+ Fph(2,:)')));
83 %Fexct(3,:) = sum(A1 .* Fext(3,:)' .* cos((w' .*t + phase'+ Fph(3,:)')));
84 %Fexct(4,:) = sum(A1 .* Fext(4,:)' .* cos((w' .*t + phase'+ Fph(4,:)')));
85 %Fexct(5,:) = sum(A1 .* Fext(5,:)' .* cos((w' .*t + phase'+ Fph(5,:)')));
86 %Fexct(6,:) = sum(A1 .* Fext(6,:)' .* cos((w' .*t + phase'+ Fph(6,:)')));
87

88

89 close all
90 if plotflag
91

92 figure()
93 plot(w,PSD,'g'),hold on
94 plot(w,PMPSD,'r')
95 title('PSD')
96 legendstr = ['Jonswap: gamma =', num2str(gamma), ' Hs =', num2str(Hs), ' ...

Tp =', num2str(Tp)];
97 legendstr2 = ['Piersion-Moskowitz:',' Hs =', num2str(Hs), ' Tp =', ...

num2str(Tp)];
98 legend(legendstr,legendstr2)
99 xlabel('rad/s')

100 ylabel('m^2s/rad')
101 figure()
102 plot(w,A,'b')
103 grid on
104

105

106 figure()
107 plot(t,zeta)
108 title('Time-realization of wave height')

84

Dynamic analysis of a multi-body floating wind turbine

109

110 figure()
111 plot(t,Fexct(3,:))
112 title('Force in heave direction')
113 end
114

115 end

85

O.M.R. Grindheim

Appendix L: Regular wave

1 function regForces = regWaveF(H,T,X,w,timeend,dt)
2

3 %This function will return the excitation loads on the platform as function
4 %of time, from regular sinosoidal waves
5

6 angW = 2*pi/T; %Angular frequency of the waves
7 t=0:dt:timeend;
8

9 %Time realization of the wave elevation
10 zeta = H/2 .* cos(angW*t);
11

12 %Calculate the magnitude and the phase angle from X(w,beta)
13 Fext.F1 = zeros(length(X(1,:,1)),2);
14 Fext.F2 = zeros(length(X(1,:,1)),2);
15 Fext.F3 = zeros(length(X(1,:,1)),2);
16 Fext.F4 = zeros(length(X(1,:,1)),2);
17 Fext.F5 = zeros(length(X(1,:,1)),2);
18 Fext.F6 = zeros(length(X(1,:,1)),2);
19

20 for i=1:length(X(1,:,1))
21 %Store it in rows
22 z1 = X(1,i,1);
23 z2 = X(2,i,1);
24 z3 = X(3,i,1);
25 z4 = X(4,i,1);
26 z5 = X(5,i,1);
27 z6 = X(6,i,1);
28 Fext.F1(i,1)= abs(z1);
29 Fext.F1(i,2) = angle(z1);
30 Fext.F2(i,1)= abs(z2);
31 Fext.F2(i,2) = angle(z2);
32 Fext.F3(i,1)= abs(z3);
33 Fext.F3(i,2) = angle(z3);
34 Fext.F4(i,1)= abs(z4);
35 Fext.F4(i,2) = angle(z4);
36 Fext.F5(i,1)= abs(z5);
37 Fext.F5(i,2) = angle(z5);
38 Fext.F6(i,1)= abs(z6);
39 Fext.F6(i,2) = angle(z6);
40

41 end
42

43 %Get the excitation loads normalized by wave amplitude for the given wave
44 %frequency
45 Fext1 = interp1(w,Fext.F1,angW);
46 Fext2 = interp1(w,Fext.F2,angW);
47 Fext3 = interp1(w,Fext.F3,angW);
48 Fext4 = interp1(w,Fext.F4,angW);
49 Fext5 = interp1(w,Fext.F5,angW);
50 Fext6 = interp1(w,Fext.F6,angW);
51

52 regForces = zeros(6,length(t));
53 regForces(1,:) = H/2 * Fext1(1) .* cos(angW*t + Fext1(2));
54 regForces(2,:) = H/2 * Fext2(1) .* cos(angW*t + Fext2(2));
55 regForces(3,:) = H/2 * Fext3(1) .* cos(angW*t + Fext3(2));
56 regForces(4,:) = H/2 * Fext4(1) .* cos(angW*t + Fext4(2));
57 regForces(5,:) = H/2 * Fext5(1) .* cos(angW*t + Fext5(2));

86

Dynamic analysis of a multi-body floating wind turbine

58 regForces(6,:) = H/2 * Fext6(1) .* cos(angW*t + Fext6(2));
59

60 figure()
61 plot(t,zeta)

87

