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Abstract—Environmental protection is an important issue in1

recent decades, and renewable energy is an ideal solution for2

eco-friendly power generation. Solar-power generation is a pop-3

ular renewable energy with low cost and small environmental4

footprint, which leads to exponential growth and high industrial5

investment. A mature solar business model has been established,6

but some uncertainties hinder the development, especially when7

focusing on the lack of solar-radiation. To address these issues,8

in this paper we propose a hedging system to hedge the low-9

radiation risk for solar-investors through the designed IoT-based10

data, edge-based models for predicting solar-radiation as well as11

hedging options. Our experimental results show that the edge-12

based predictive models can obtain an R-squared value of 0.84113

and a correlation coefficient of 0.917. For binary options designed14

in the hedging system, the broker can obtain stable payoffs with15

the highest Sharpe ratio of 3.354, and the investors can obtain16

large payoffs during low-radiation. Our simulation results show17

the effectiveness of the proposed hedging system for investors18

(buyer-side), simultaneously, present the motivation of the broker19

(seller-side) to join the designed hedging system utilized in solar-20

power generation.21

Index Terms—Solar-power generation, hedging, IoT-based22

model, edge computing, machine learning23

I. INTRODUCTION24

ENVIRONMENTAL protection is an important and25

thought-provoking issue for researchers and industry26

alike in recent decades. Due to global warming and climate27

change, the means to generate electricity has become a major28

topic of research and development in recent years. Currently,29

most electricity comes from thermal power which produces30

large amounts of carbon dioxide (CO2, greenhouse gases) and31

other harmful gases. These pollutants are the prime culprits32

for global warming [1]. Furthermore, pollutants from thermal33

energy have residual effects on the body including harming34

the lungs [2]. Renewable green energy is an ideal solution for35

environmentally friendly (eco-friendly) power generation [3],36
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which can include wind-power, hydropower, and solar-power 37

[4], [5]. Wind, as well as hydropower, utilize kinetic energy 38

and water respectively to drive power generators. However, 39

they are location-dependent, require high cost, and need ample 40

space to operate. Conversely, solar-power generation has low 41

cost and small footprint characteristics, and only a few square 42

feet of power generation panels are needed to collect solar 43

energy and generate a usable amount of electricity. These 44

advantages make solar-power generation a viable option for 45

green energy which has seen an increase in investment interest 46

for companies and investors. 47

Simultaneously, many governments encourage investment 48

and the construction of solar power generation, as well as 49

provide substantial subsidies and guarantees to maintain a 50

stable purchase price for green energy [6]. Lei et al. showed 51

that 40% of global electricity growth comes from renewable 52

energy sources, mainly from solar-power (40.7%), and wind- 53

power (58.2%) [6]. This shows that solar-power generation 54

is an emerging topic. With the unremitting efforts of both 55

government and entrepreneurs, numerous people may invest in 56

solar-power generation, and a mature solar business model has 57

been established, as shown in Fig. 1. Companies that run solar- 58

power plants are known to construct power generation infras- 59

tructure, which divides the power plant into shares to investors. 60

Then, the generated electricity is sold to the government 61

at a guaranteed stable price. For solar-power investors, they 62

provide funds (investments) to build power plants and obtain 63

shares. A share represents several units of power panels, and 64

the electricity (profit) generated by these panels are distributed 65

to investors with shares. 66

Fig. 1: The existing business model of solar-power generation

With a tremendous amount of information in various regions 67

and interaction between parties, techniques for the Internet of 68

Things (IoT) [7], data mining, and edge computing are suitable 69

technologies to utilize in these circumstances. One of the main 70

concepts behind IoT is to exchange virtual information and in- 71

teract with physical objects and smart devices [8], [9] through 72

sensing, control, mining [10], and the concern of security [11], 73

[12]. Data mining and machine learning are usually adopted 74

in IoT systems to analyze information. Data mining aims to 75

discover structures, patterns, as well as information within 76
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datasets [13], [14] through data- and demand-driven models77

[15]. In contrast, machine learning aims to build algorithms78

for classification and regression through sampled data and past79

experiences to predict and assist decision-making [16], [17].80

Since IoT-based data is usually located in various regions, edge81

computing can be implemented to distribute computational82

efforts to the edges of IoT systems [18], while attempting83

to address known concerns at the edge of networks such84

as response time, data privacy [19], throughput, and energy85

efficiency [20], [21]. Through ubiquitous embedded and edge86

systems and data mining techniques, IoT systems can make at87

to the ease with which we live today [22], [19] by establishing88

smart cities [23], smart healthcare [24], smart agriculture [25],89

and many other technologically advanced infrastructures.90

Although the above business model can give some level of91

guarantee for earned profits from the government, there are92

still some uncertainties including natural disasters and lack of93

solar-radiation. Damages caused by natural disasters can be94

compensated through insurance (property insurance has been95

well-developed [26]). The only uncertainty and uncontrollable96

factor in the solar business model is solar-radiation, which97

completely dominates the electricity generated by solar panels.98

Less solar-radiation will produce less electricity and profits,99

which may not be able to cover the depreciation and result in100

investment losses. To address these issues, we propose a novel101

hedging system utilized in the solar-power business, which102

adopts the edge-based predictive models with IoT data for103

solar radiation, and the hedging binary option. IoT-based data104

contains information from solar panels and weather sensors.105

The designed two edge-based predictive models are con-106

structed with four well-developed machine learning techniques107

to achieve distributed computing with low hesitation and less108

computation. The binary options act as an intermediary for the109

hedging service.110

In the developed hedging system, binary options act as111

an intermediary to hedge against low solar-radiation risk.112

Investors can purchase options in our hedging system (for113

example, bet that the radiation is less than 20 J/m2, joule per114

square meter) to hedge low-radiation risk. If solar-radiation is115

less than 20 J/m2, the investors may have losses in a solar-116

power investment but can earn a payoff from the options. If the117

radiation is greater than 20 J/m2, investors only need to spend118

a small number of finances for hedging and obtain more profits119

from their solar-power generation. The broker (seller-side of120

the option) must accurately determine the odds of each option,121

which is determined by predictive solar-radiation and the122

probability of binary outcomes. Therefore, a precise prediction123

is required in the proposed system to accurately predict solar-124

radiation, which is called the precise predictive model (PPM).125

To further process real-time information and solve low-latency126

issues on our edge-based model, a light predictive model127

(LPM) is developed that to speed up the runtime performance128

with fewer features on the edge-computing model.129

Our in-depth experimental results show that the prediction130

algorithm of random forest regression has the best perfor-131

mance, which obtains an R-squared of 0.841 (0.828) and132

correlation coefficient of 0.917 (0.910) within PPM (LPM).133

Robustness results on different datasets and comparing with134

state-of-art works also present the outstanding performance of 135

the predictive models (PPM and LPM). Besides, the experi- 136

mental results of hedging options show stable payoffs (with 137

the highest Sharpe ratio of 3.354) for the broker and effective 138

hedging services for investors. These results demonstrate the 139

effectiveness of the proposed hedging system. Thus, the major 140

contributions of this paper are then summarized as: 141

1) Developed an IoT-based data-driven system utilized in 142

solar-power generation and prediction. 143

2) Adopted four machine learning algorithms into the two 144

edge-computing models (PPM and LPM) to respectively 145

predict solar-radiation accurately, and with low-latency 146

and less computation. 147

3) Showed that the designed PPM and LPM obtained better 148

performance in terms of mean square error and R- 149

squared compare to the existing models. 150

4) Proposed hedging system provides hedging services for 151

solar-power investors and generates fix-income for the 152

broker in the simulation. 153

We organize this paper as follows. Section II reviews 154

the literature on solar-power generation prediction, machine 155

learning algorithms, and binary option. Section III presents 156

the design of IoT-based data, predictive models for solar- 157

radiation, and designed hedging option. Section IV first states 158

the use of datasets, demonstrates the prediction results with 159

robustness test, and evaluates the effectiveness of hedging 160

options. Section V discusses the findings and summarizes the 161

results of the developed models. 162

II. LITERATURE REVIEW 163

In this section, the background of solar-power generation 164

and prediction are first introduced. Then, we survey the 165

literature and machine learning algorithms used in this paper. 166

Furthermore, the binary option is stated and discussed. 167

A. Solar-Power Generation and Prediction 168

Solar-power generation converts solar-radiation into elec- 169

tricity through the photovoltaic effect [27]. A single pho- 170

tovoltaic cell generates only a few watts of energy. By 171

connecting an array of photovoltaic cells, the photovoltaic 172

system (solar panel) can generate about 150 to 180 Watts 173

per square meter [28]. The commonly photovoltaic system 174

is the flat solar panel deployed in our daily lives (rooftop or 175

bus station). Large solar-power plants may be implemented by 176

solar trackers and concentrated solar power, which can rotate 177

panels or concentrate sunlight to improve efficiency [29]. 178

Partain et al. [30] illustrated that the cumulative capacity of 179

solar power could be doubled every two years. Swanson’s law 180

stated that the price per watt of solar photovoltaic modules 181

drops by half for every 10 times the capacity increases [31]. 182

These pieces of evidence show that solar-power generation is 183

the fast-growing renewable energy and is cost-competitive to 184

the other thermal powers (e.g., coal, crude oil, and natural 185

gas). 186

Zeng and Qiao [32] adopted a least-square support vec- 187

tor machine model (SVM) for predicting solar-power, which 188

utilized features of historical atmospheric transmissivity and 189
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Fig. 2: The proposed hedging system utilized in solar-power generation

meteorological variables (e.g., sky cover, relative humid-190

ity, and wind speed). Compared with the models based on191

auto-regressive and neural networks, the SVM-based model192

achieved better results. Jang et al. [33] designed a model to193

predict the solar-power by atmospheric motion vectors from194

satellite images, which can be used to determine the motion195

vectors of clouds and affected the solar-radiation. They also196

adopted SVM as the prediction model and defeated the models197

with non-linear autoregressive and artificial neural networks.198

Long et al. [34] developed daily solar-power prediction mod-199

els using data-driven approaches, and the artificial neural200

network-based model had the highest accuracy when pre-201

dicting present, and multivariate linear regression-based and202

k-nearest neighbor-based models outperformed other models203

when predicting multi-steps.204

TABLE I: Description and characteristics of the observations
Observation Abbreviation Description Unit
Observation month Month the month of observation Dummy, 1,...,12
Observation time Hour the time (which hour) of observation Dummy, 1,...,24
Solar-radiation SRad the radiant energy of sunshine MJ/m2

Sun duration SDur the length of sunshine hour
Temperature Temp average temperature during the observation ◦C
Relative humidity RH relative humidity during the observation %
Wind speed WS average speed of wind during the observation m/s
Cloud amount CA the amount (region) of cloud cover the sky 0,...,10

B. Machine Learning205

Machine learning is a group of powerful computational206

methods that can make accurate predictions through exper-207

iments [16], [35], [36]. To meet the requirements of the208

proposed edge system, we survey several efficient and light-209

computing algorithms, including multiple linear regression,210

support vector machine, and random forest regression.211

1) Multiple Linear Regression: Multiple Linear Regression212

(MLR) is a linear method to estimate the relationship between213

a dependent variable and multiple dependent variables, which214

is also known as the level of correlation [37]. MLR is a215

linear model, and generally fitted by least-squares approach216

[38]. MLR is the most commonly used regression model for217

data analysis with the characteristics of easy-to-use and inter-218

pretable. Each independent variable is related to the dependent219

variable through its regression coefficient, which makes users 220

explore relationships intuitively. 221

2) Support Vector Regression: Support Vector Machine 222

(SVM) is a supervised learning algorithm, proposed by Cortes 223

and Vapnik in late 1995, which is originally developed for two- 224

type classification problems [39]. SVM aims to find a hyper- 225

plane with the largest margin to separate different categories of 226

data through the features. The data on the margins provide the 227

most information, which is called the support vector. Besides, 228

techniques of nonlinear mapping can enhance the classification 229

ability by separating data in high-dimensional spaces, and the 230

mapping can be achieved through different kernel functions, 231

which control the mapping and boundary shape. SVM is 232

also extended to regression problems, especially nonlinear 233

regression, called Support Vector Regression (SVR) [40]. Note 234

that the computational complexity of SVR is approximately 235

O(N2) due to the computation of quadratic programming, 236

where N is the number of training data. 237

3) Random Forest Regression: Random forest regression is 238

a supervised learning algorithm developed by Leo Breiman 239

in 2001 [41], which can be regarded as the expansion and 240

aggregation of the decision tree by randomly sampling data 241

and features with replacement. Each decision tree is a weak 242

classifier, and multiple subsets of decision trees constitute a 243

strong classifier, called the random forest. Through bagging 244

and bootstrap techniques, random forests can achieve accurate 245

and stable performance than the generic decision trees [42]. 246

The advantage of the random forest is that it has a stronger 247

generalization and classification ability to handle a large num- 248

ber of input features. Besides, feature selection is not necessary 249

for random forests while dealing with high-dimensional data, 250

which can seriously reduce the computational cost [43]. 251

4) Multilayer Perceptron: Multilayer perceptron (MLP) is 252

the basic method of feedforward artificial neural networks, 253

which attempts to simulate the function of the human brain 254

and the interaction between neurons [44]. MLP with multiple 255

hidden layers is also known as deep learning [45]. MLP can 256

be divided into three kinds of layers, including input, hidden, 257

and output layers. The input and output layer controls the 258

shape and type of input and output. As for the hidden layer, it 259
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is composed of perceptrons to perform calculations (through260

input values, trainable weights, and activation functions) and261

transfer the values to subsequent layers. With a high degree of262

freedom (layers, neurons, and activation functions), MLP is a263

powerful, flexible, and widely-used model for solving various264

problems [44].265

C. Binary Options266

Binary options are a common financial product, also known267

as a binary bet or fixed odds bet [46], [47]. This option regu-268

lates the underlying target, expiration time, binary condition,269

and the odds. At expiration time, if the status of the underlying270

target meets the binary condition of the binary option, the271

option holder can receive the face value (the amount he/she272

bet) multiplied by the odds. For example, binary option bet273

on whether team A defeats team B (binary condition) in274

the basketball game on September 15 (underlying target and275

expiration time), and the odds of the option is 2.85. Suppose276

a fan of team A buys this binary option for 100 and if team A277

defeats team B (the winning condition), they will be awarded278

285 dollars (face value of 100 times odds of 2.85); otherwise,279

the fan will lose all of the 100 dollars.280

Several positive characteristics of binary options make it281

a widely and heavily used financial product and sports bets,282

including flexibility, limited risk, and easy access [47]. Various283

underlying targets and binary conditions lead to the flexibility284

of binary options. Simple and controllable mechanisms (face285

value and odds) make it easy access and hedge risk and286

become the main reason for investor interest [46].287

III. PROPOSED IOT-BASED DATA-DRIVEN HEDGE SYSTEM288

The flowchart of the proposed hedging system is shown289

clearly in Fig. 2. Solar-power plants build solar panels and290

weather sensors to provide IoT-based information. The IoT-291

based data is then transmitted to the predictive edge-computing292

models to real-time predict the solar-radiation with distributed293

computation and achieving low-hesitation and less compu-294

tation cost. Precise and light predictive models (PPM and295

LPM) are designed using machine learning algorithms to make296

accurate and efficient predictions. The predicted solar radiation297

is then transmitted to hedging binary options to calculate the298

odds of each option. Then, investors can purchase the hedging299

service of binary options according to the given odds to hedge300

against low solar-radiation risks. Three major modules in the301

proposed system include IoT-based data, edge-based predictive302

models, and hedging binary options, and are introduced in the303

following subsection.304

A. IoT-based Data Collection305

The IoT-based data collected from solar-power plants play306

an important role in the proposed hedging system. In the307

designed IoT-based data collection, each solar-power plant-308

equipped sensor on a given solar panel is used to collect in-309

formation on generated electricity and received solar-radiation.310

Furthermore, meteorological information collected by self-311

built weather sensors in solar power plants (or external weather312

TABLE II: Features usage for predicting solar-radiation at h
o’clock on date d (SRadd,h)

Date (d) d− 5, d− 4, d− 3, d− 2 d− 1 d
SRad SRadd−5,h, . . . , SRadd−2,h SRadd−1,h

SDur SDurd−1,h

Temp Tempd−1,h
RH RHd−1,h

WS WSd−1,h

CA CAd−1,h

Month Monthd,h
Hour Hourd,h

stations) is also collected. This information is physically 313

collected via sensor networks, which will be aggregated to- 314

gether as the IoT-based data and transferred to the edge-based 315

predictive models. 316

A simple example of the formed IoT-based data is shown 317

in Table I. In each solar-power plant, received solar-radiation 318

(SRad) is collected from sensors on solar panels, which is the 319

prediction and hedging target of the proposed system. Then, 320

collect weather information as prediction features, including 321

temperature (Temp), humidity (RH), and wind as prediction 322

features (CA). In summary, the IoT-based data is formed with 323

the features of meteorological information and labels of solar- 324

radiation. 325

B. Edge-based Predictive Models 326

The proposed hedging system would predict the amount of 327

solar-radiation of each period (hour or day). Even if the final 328

implementation of the system is on the binary options; how- 329

ever, there would be multiple thresholds to define the binary 330

condition (low-radiation) of the options. If the classification 331

models are applied, the system will have to fix the threshold 332

of the option (less flexibility for investors) or have to train 333

and predict on multiple models for multiple thresholds (more 334

working-load and computation). Therefore, in this paper, we 335

utilize the regression model to predict a continuous value of 336

solar radiation, and simple transformations are used to obtain 337

the probabilities under different thresholds. 338

The predictive models on edge systems aim to predict solar- 339

radiation through machine learning algorithms with IoT-based 340

data. The physical location of the predicting edge system is 341

designed in the solar-power plant itself. Through distributed 342

edge computing, lower response time and a higher privacy 343

level can be achieved. Moreover, only an encrypted predicted 344

value needs to be transmitted, which greatly reduces both 345

transmission size and time. Using the received IoT informa- 346

tion, the pre-trained machine learning algorithms embedded 347

in the edge system can predict the solar-radiation in real-time. 348

Then, the predicted solar-radiation will be used to calculate the 349

odds of the binary options in the further modules of hedging 350

binary options. 351

To obtain good prediction results, four classic machine 352

learning algorithms are adopted which include multiple linear 353

regression (MLR), random forest regression (RFR), support 354

vector regression (SVR), and multilayer perceptron (MLP). 355

Since these models are designed to predict the hourly or daily 356

solar-radiation, several hourly observations are adopted as the 357

prediction features, including observation month and time, sun 358
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duration, temperature, relative humidity, wind speed (reference359

from [32], [33]). The description and characteristics of the360

observations are shown in Table I.361

To precisely predict solar-radiation, the precise predictive362

models called PPM is proposed, which utilizes 12 features363

on MLR, RFR, SVR, and MLP algorithms. 12 features in-364

clude Month and Hour of the prediction time, and SDur,365

Temp, RH, WS, CA in the previous day, and SRad in366

past five days. For example, to predict the solar-radiation367

at h o’clock on date d (SRadd,h), we utilize SRadd−1,h,368

SRadd−2,h, SRadd−3,h, SRadd−4,h, SRadd−5,h, Monthd,h,369

Hourd,h, SDurd−1,h, Tempd−1,h, RHd−1,h, WSd−1,h, and370

CAd−1,h as 12 features in PPM and shown in Table II. Note371

that the blank cells mean that we do not use the corresponding372

feature (at that time) in the designed PPM model. To satisfy373

low hesitation and less computation for the edge computing374

environment overall, the light prediction model (LPM) is pro-375

posed, which utilizes only 5 features on MLR, RFR, SVR, and376

MLP algorithms. 5 features are the historical solar-radiation377

in the past five days. Briefly, to predict the solar-radiation378

at h o’clock on date d (SRadd,h); we utilize (SRadd−1,h,379

SRadd−2,h, SRadd−3,h, SRadd−4,h, SRadd−5,h) as 5 features380

for LPM and shown in the first row (SRad) of Table II.381

C. Designed Hedging Binary Options382

For the designed hedging services of binary options, two383

main specifications are stipulated, respectively named the win-384

ning conditions and the odds (ODDS). The winning conditions385

determine the underlying target, expiration time, and binary386

conditions. In the design binary option, the underlying target387

is the cumulative solar-radiation of the station (within one hour388

or one day), the expiration time is the end of the hour or the389

day, and the binary condition is whether the cumulative solar-390

radiation is less than the threshold T . If the solar-radiation391

is less than T (the winning condition), the investor can get392

a payoff of the purchase value multiplied by the ODDS. For393

example, an investor purchases 1, 000 dollars of option that394

bets the cumulative solar-radiation on July 1, 2020 with a395

threshold of 10 MJ
m2 and an odds of 2 (T = 10 MJ

m2 , ODDS396

= 2). If the cumulative solar-radiation on July 1, 2020 is397

less than 10 MJ
m2 , the investor can get 1, 000 × 2 = 2, 000398

dollars, otherwise, investors lose 1,000 dollars. In the design399

hedging option, the broker provides hedging options for daily400

cumulative solar-radiation with T = 10, 15, 20 MJ
m2 . The401

investors can find the ODDS of hedging options with different402

T , and determine the type (T ) and amount of options they403

should buy (hedge). For a simple implementation, we stipulate404

that the only broker can sell binary options and only investors405

can buy options.406

Furthermore, the OODS of each option is provided by the407

broker, who uses the proposed predictive models to predict408

the solar-radiation (Pre) and converts it into the fair odds. We409

assume that solar-radiation comes from a normal distribution410

with a mean of Pre and a standard deviation of σ, where σ is411

the historical standard deviation of historical solar-radiation.412

With the predicted normal distribution, we can calculate the413

probability of solar-radiation bellows T (winning condition),414

which is also the win rate (WR) for option holders (investors). 415

Note that there may be negative values in the normal distribu- 416

tion, and we will ignore the probability in the negative region, 417

and normalize probability in the positive region to 1. Let F (X) 418

be the cumulative distribution function of a normal distribution 419

with a mean of Pre and standard deviation of σ, where X is 420

the solar-radiation. The win rate WR is calculated in Equation 421

1. The probability of value less than T and larger than 0 is 422

F (T−Pre
σ )−F ( 0−Pre

σ ), and the probability of value larger than 423

T is 1−F (T−Pre
σ ). Then, we normalize the probability to one, 424

and calculate the win rate as F (T−Pre
σ )−F ( 0−Pre

σ )

1−F ( 0−Pre
σ )

Furthermore, 425

the fair odds and ODDS can be calculated by the win rate as 426

given in Equation 2. 427

WR =
F (T−Pre

σ )− F ( 0−Pre
σ )

(1− F (T−Pre
σ )) + (F (T−Pre

σ )− F ( 0−Pre
σ ))

=
F (T−Pre

σ )− F ( 0−Pre
σ )

1− F ( 0−Pre
σ )

(1)

428

WR · fair odds = (1−WR) · 1
WR · (fair odds + 1) = 1

⇒ fair odds =
1

WR
− 1

⇒ ODDS = fair odds− commission

=
1

WR
− 1− commission

(2)

Fairness means that the expected payoffs of winning and 429

losing conditions should be equal. When an investor buys a 430

dollar of option, the expected losing payoff is the probability 431

of loss multiplied by one dollar, (1 −WR) · 1. The expected 432

winning payoff is the win rate multiplied by the fair odds 433

WR·fair odds. Therefore, (1−WR)·1 = WR·fair odds, and we 434

can get fair odds = 1
WR −1. To increase the willingness of the 435

broker, conventionally, commissions are charged to subsidize 436

the broker’s fees and as a fixed income. Usually, commissions 437

are directly deducted from the odds; therefore, the final odds 438

(ODDS) is fair odds− commission. 439

IV. EXPERIMENTAL RESULTS AND ANALYSIS 440

We first introduce usage datasets in this paper. Afterward, 441

we evaluate the predictive ability of our proposed models and 442

compare the performance between PPM and LPM models. 443

Additionally, the robustness test is implemented by accessing 444

the performance on several other datasets and comparing it 445

with state-of-art researches. Finally, we employ the prediction 446

results to hedging binary options to demonstrate the effective- 447

ness from the perspective of buyers and sellers. 448

In this paper, we utilize the sklearn library in python to im- 449

plement the machine learning algorithms [48], and the default 450

parameter settings are used in this paper. For example, MLR 451

adopts default parameters, and RFR contains 500 estimators 452

with bootstrap and criterion of mean squared error, and SVR 453

is with scaled gamma, the kernel of radial basis function, and 454

maximum iteration of 1, 000, and MLP is three hidden-layers 455
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perceptrons with 12-4-1 neurons (5-4-1 neurons for LPM) with456

a solver of adam, a learning rate of 0.001, and iteration of 200.457

A. Data Usage458

In this paper, we utilize hourly weather data provided by459

the Central Weather Bureau of Taiwan1 as the simulation of460

IoT-based data from solar-power plant and to construct the461

predictive models. The dataset includes weather records of 608462

locations in Taiwan, but only 30 large-scale meteorological463

stations provide the records of solar-radiation. We randomly464

select 5 datasets from 30 large-scale meteorological datasets465

for training and validation, which come from weather stations466

in different cities, covering the wild range of latitude and467

longitude in Taiwan. Those datasets are then listed in Table468

III and called Datasets A in the designed predictive model.469

The first 80% data of Datasets A are used for training, and470

the last 20% data are used for testing.471

Additionally, another 5 datasets are used to verify the472

effectiveness and robustness of the models, which are listed473

as the testing sample shown in Table IV and called Datasets474

B. The first 80% data of Datasets B are used for fine-tune475

(re-train), and the last 20% data are used for testing. In this476

paper, we utilize the data from July 2010 to June 2020, and477

the training period of both Datasets A and B is from July478

2010 to June 2018, and the testing period is from July 2018479

to June 2020.480

TABLE III: Latitude and longitude of the meteorological
stations of Datasets A

Station ID Latitude (N) Longitude (E) City
467480 23◦50’ 120◦43’ Chiayi City
467060 24◦60’ 121◦86’ Yilan County
466900 25◦16’ 121◦45’ New Taipei City
467440 22◦57’ 120◦32’ Kaohsiung City
466940 25◦13’ 121◦74’ Keelung City

TABLE IV: Latitude and longitude of the meteorological
stations of Datasets B

Station ID Latitude (N) Longitude (E) City
467410 22◦99’ 120◦20’ Tainan City
467650 23◦88’ 120◦91’ Nantou County
467540 22◦36’ 120◦90’ Taitung County
466920 25◦04’ 121◦51’ Taipei City
467770 24◦26’ 120◦52’ Taichung City

B. Solar-Radiation Prediction481

In this section, we demonstrate the prediction results of the482

developed PPM and LPM models on Datasets A during the483

testing period, as shown in Table V. Two performance mea-484

sures are utilized, including the R-squared and the correlation485

coefficient (C.C.) between the predicted results and the ground486

truth. Among all the tables in this section, each row represents487

the performance of each utilized machine learning algorithm488

on the five weather stations (five columns). In Table V, the489

values shown in bold are the best performance of the station490

among all machine learning algorithms.491

1Central Weather Bureau Observation Data Inquire System, https://e-
service.cwb.gov.tw/HistoryDataQuery/index.jsp

TABLE V: Testing performance of prediction models on
Datasets A

Station 467480 467060 466900 467440 466940
Indicators R-squared C.C. R-squared C.C. R-squared C.C. R-squared C.C. R-squared C.C.

PPM-MLR 0.809 0.899 0.685 0.827 0.704 0.839 0.820 0.906 0.676 0.823
PPM-RFR 0.827 0.910 0.726 0.852 0.748 0.865 0.841 0.917 0.729 0.854
PPM-SVR 0.824 0.910 0.705 0.843 0.735 0.860 0.829 0.916 0.712 0.846
PPM-MLP 0.817 0.906 0.685 0.828 0.729 0.854 0.830 0.911 0.704 0.840

Station 467480 467060 466900 467440 466940
Indicators R-squared C.C. R-squared C.C. R-squared C.C. R-squared C.C. R-squared C.C.

LPM-MLR 0.806 0.898 0.679 0.824 0.700 0.837 0.817 0.904 0.665 0.816
LPM-RFR 0.810 0.900 0.678 0.824 0.705 0.840 0.828 0.910 0.666 0.816
LPM-SVR 0.809 0.904 0.659 0.817 0.697 0.838 0.817 0.911 0.646 0.807
LPM-MLP 0.816 0.903 0.708 0.843 0.710 0.843 0.829 0.910 0.668 0.818

TABLE VI: Testing performance of prediction models on
Datasets B (robustness test)

Station 467410 467650 467540 466920 467770
Indicators R-squared C.C. R-squared C.C. R-squared C.C. R-squared C.C. R-squared C.C.

PPM-MLR 0.823 0.907 0.706 0.840 0.757 0.870 0.665 0.815 0.808 0.899
PPM-RFR 0.842 0.918 0.746 0.864 0.784 0.885 0.711 0.843 0.831 0.912
PPM-SVR 0.836 0.918 0.733 0.856 0.767 0.880 0.698 0.837 0.823 0.911
PPM-MLP 0.831 0.912 0.734 0.857 0.771 0.878 0.677 0.824 0.821 0.906

Station 467410 467650 467540 466920 467770
Indicators R-squared C.C. R-squared C.C. R-squared C.C. R-squared C.C. R-squared C.C.

LPM-MLR 0.821 0.906 0.703 0.839 0.753 0.868 0.655 0.809 0.806 0.898
LPM-RFR 0.827 0.910 0.713 0.844 0.760 0.872 0.657 0.811 0.814 0.902
LPM-SVR 0.823 0.913 0.710 0.844 0.742 0.869 0.650 0.808 0.806 0.903
PPM-MLP 0.832 0.913 0.720 0.848 0.768 0.876 0.670 0.818 0.817 0.904

The first main row of Table V presents the results of 492

the PPM among four machine learning algorithms. In this 493

experiment, the PPM-RFR models obtain the best performance 494

with the highest R-squared and C.C among all machine 495

learning algorithms in Datasets A. The best performance of 496

PPM can reach an R-squared of 0.841 and C.C of 0.917. The 497

second main row of Table V presents the results of the LPM. 498

Surprisingly, the results of LPM are quite close to the results 499

of PPM with minor weaknesses. Compared with PPM, the 500

R-square of LPM is reduced by about 0.021, and the C.C is 501

reduced by about 0.012, however, less than half of the features 502

are required for LPM to obtain excellent results. Among 503

various machine learning algorithms utilized in LPM, LPM- 504

RFR and LPM-MLP obtain the best performance, especially 505

for LPM-MLP with a minor advantage. It can be concluded 506

that the historical solar-radiation of the past five days is the 507

important and explanatory feature of predation. 508

In addition, Table VII shows the average computation time 509

of LPM utilized in MLR, RFR, SVR, and MLP is respectively 510

47.3%, 54.4%, 41.8%, and 44.7% of the generic PPM. In 511

addition, MLR spends less computational time in all machine 512

learning models, as shown in bold in Table VII. 513

TABLE VII: Comparing the computation time of PPM and
LPM

Model Computation Time (ms)
PPM-MLR 0.484
PPM-RFR 2.081
PPM-SVR 9.946
PPM-MLP 21.409
LPM-MLR 0.229
LPM-RFR 1.132
LPM-SVR 4.160
PPM-MLP 9.580

In summary, the PPM can obtain precise prediction results 514

with much computation time. As for LPM, it uses less than half 515

of the features and computation time of PPM, and its predictive 516

performance is pretty close to PPM with minor weaknesses. 517

Therefore, we suggest that the best model in the proposed 518

system is LPM-RFR, which meets the IoT-based data-driven 519

scenario and achieves outstanding prediction accuracy with 520

relatively lower computation time (then LPM-MLP). 521
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TABLE VIII: Cumulative payoff and Sharpe ratio for the
broker (seller-side)

Station 467410 467650 467540 466920 467770
Indicators Payoff Sharpe Payoff Sharpe Payoff Sharpe Payoff Sharpe Payoff Sharpe
T=10 259.1 3.354 135.4 2.091 83.8 1.050 -12.3 -0.213 92.5 1.216
T=15 147.9 2.667 63.1 1.705 -8.9 -0.174 28.8 0.942 82.2 1.926
T=20 35.3 1.235 8.2 0.473 50.7 1.857 16.2 0.969 47.0 1.988

TABLE IX: Win rate and average odds for the investors (buyer-
side)

Station 467410 467650 467540 466920 467770
Indicators ŴR ˆODDS ŴR ˆODDS ŴR ˆODDS W̄R ˆODDS ŴR ˆODDS
T=10 0.121 5.351 0.245 3.322 0.211 4.196 0.403 2.525 0.223 3.911
T=15 0.327 2.436 0.534 1.710 0.471 2.148 0.645 1.489 0.490 1.810
T=20 0.684 1.392 0.844 1.172 0.685 1.359 0.851 1.149 0.740 1.265

TABLE X: Comparison with the state-of-the-art approaches
Model PPM LPM SVM-SPP SVM-AMVs DDBM
R2 0.827 0.810 - 0.731 -
C.C 0.910 0.900 - - 0.895

MAE 0.189 0.197 0.329 - 0.199

C. Robustness Test of Predictive Models522

We also perform a robustness test for PPM and LPM523

conducted on Datasets B, and the results are shown in524

Table VI. Without adjusting the hyper-parameters of models,525

we only fine-tune (re-train) the machine learning algorithms526

through the training period of the Datasets B, and evaluate527

the machine learning algorithms through the testing period of528

the Datasets B. In Table VI, the values shown in bold are the529

best performance of the station among all machine learning530

algorithms.531

The first main row of Table VI presents the results of the532

PPM. The PPM-RFR models obtain the best performance, that533

receives the highest R-squared and C.C among all machine534

learning algorithms in Datasets B. The best performance of535

PPM can reach an R-squared of 0.842 and C.C of 0.918. The536

second main row of Table VI presents the results of the LPM.537

Similarly, the results of LPM are quite close to the results of538

PPM with minor weaknesses, and the LPM-RFR and LPM-539

MLP obtain the best performance, especially for LPM-MLP540

with a minor advantage. Compared with PPM, the R-square541

of LPM is reduced by about 0.016, and the C.C is reduced by542

about 0.009 in Datasets B. However, for the two compared543

predictive models, less than half of the features are required544

for LPM. Thus, for the developed LPM, LPM-RFR and LPM-545

MLP can still obtain the best performance with 0.832 R-546

squared and 0.913 C.C.547

Several state-of-the-art approaches [32], [33], [34] are then548

compared with the designed two models (PPM and LPM)549

with the RFR algorithm in terms of the prediction results550

on station 467480, which can be observed in Table X. The551

compared approaches include SVM-based short-term solar-552

power prediction (SVM-SPP) [32], SVM-based model with553

real-time atmospheric motion vectors (SVM-AMVs) [33], and554

data-driven-based model (DDBM) [34]. The detail of each555

approach is described in Section II-A. The measurements in-556

clude R-squared (R2), correlation coefficient (C.C.) and mean557

absolute error (MAE). Note that the units of solar-radiation558

are different between the researches (affects MAE), and we559

converted all of them to MJ/m2, which is mega (106) joule560

per square meter. Also note that the values shown in bold are561

the best performance of each indicator among all algorithms.562

In Table X, it is obvious to see that the designed PPM-RFR and 563

LPM-RFR (with simple and few meteorological observations) 564

obtained better performance compared to the other state-of- 565

the-art approaches among all indicators. In summary, the 566

experimental results show the robustness of the two predictive 567

PPM and LPM in terms of various datasets and measurements. 568

D. Effectiveness of Hedging Option 569
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Fig. 3: The win rate and odds for investors with different T

In this section, we evaluate the effectiveness of the proposed 570

hedging options on the Datasets B and from the perspective 571

of the broker and the investors (seller-side and buyer-side). We 572

observe the payoff arisen on the broker, and observe the win 573

rate and average odds on the investor.

0 100 200 300 400 500 600 700
Day

−20

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

Pa
yo

ff

T=10
T=15
T=20

(a) Station 467410

0 100 200 300 400 500 600 700
Day

0

50

100

150

200

250

Cu
m

ul
at

iv
e 

Pa
yo

ff

T=10
T=15
T=20

(b) Station 467650

0 100 200 300 400 500 600 700
Day

0

20

40

60

80

100

120

140

Cu
m

ul
at

iv
e 

Pa
yo

ff

T=10
T=15
T=20

(c) Station 467540

0 100 200 300 400 500 600 700
Day

0

50

100

150
Cu

m
ul

at
iv

e 
Pa

yo
ff

T=10
T=15
T=20

(d) Station 466920

0 100 200 300 400 500 600 700
Day

−25

0

25

50

75

100

125

150

Cu
m

ul
at

iv
e 

Pa
yo

ff

T=10
T=15
T=20

(e) Station 467770
Fig. 4: The cumulative payoff of options for the broker

574

The predicted solar-radiation described in Section III-C are 575

utilized to obtain the win rate (WR) and the odds (ODDS) 576

of each hedging option (under T = 10, 15, 20 MJ
m2 and 577

commission of 5%). To eliminate outliers, we limit the ODDS 578

of hedging options to [1, 10]. The reason to set this interval is 579

that if the ODDS is greater than 10, it will bring great risks 580

to the broker, and the broker is unwilling to offer such an 581

option. If the ODDS is smaller than 1, it always let investors 582

lose money on the hedging option, and the investors are 583

unwilling to buy such an option. To facilitate understanding 584

and implementation, we rule the hedging options to bet on the 585

cumulated solar-radiation within a day (the time unit in this 586
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section), and the predictive models will accumulate the hourly587

predicted solar-radiation of the day as the prediction.588

In this experiment, we simulated the proposed hedging589

system based on the real weather data from July 2018 to590

June 2020, mentioned in IV-A. Suppose an investor spends591

one dollar a day on a hedging option (with the same T )592

without losing generality. The hedging options are provided593

by a broker, who provides the ODDS for each option through594

the proposed system. From the investor’s point of view, he595

spends one dollar a day on a hedging option with a given596

ODDS. We observe the average value of the received ODDS597

and the win rate (WR, probability of low-radiation and that598

he receives payoff) from the weather data, as shown in Table599

IX and Fig. 3. From the broker’s point of view, he provides600

the ODDS for each option through the proposed system and601

historical weather data. We observe his income (one dollar a602

day) and the money he pays under the low-radiation, and his603

total payoff and the simulated payoff curves can be obtained,604

as shown in Table VIII and Fig. 4.605

Table VIII lists the cumulative payoffs and Sharpe ratio606

for the broker, where the Sharpe ratio is a financial indicator607

measuring the trade-off between profitability and risk [49]608

(higher is better). Note that the values shown in bold are the609

best performance among all thresholds (rows). From Table610

VIII, we can observe that the broker can obtain positive611

payoffs in almost all options, except for T=15 in station612

467540 and T = 10 in station 466920. Besides, the payoffs613

can reach a Sharpe ratio of 3.354, which is significantly614

higher than the Sharpe ratio in the stock market. Fig. 4 shows615

the curves of cumulative payoffs in different stations. It can616

be found that the curves usually steadily grow (contributed617

from the commission as fixed income), and there are several618

drawdowns due to the low solar radiation. These results show619

that the profitability for the broker can be obtained, which620

improves the broker’s willingness and motivation to join our621

novel hedging system for earning fixed income.622

We also provide statistical results in the case of low solar-623

radiation, which are the win rate (ŴR) and average odds624

( ˆODDS) for investor (buyer-side), as shown in Table IX and625

Fig. 3. In Fig. 3, it can be found that as the increase of626

the solar-radiation threshold T , ŴR increases while ˆODDS627

decreases, which makes common sense. Overall, investors628

receive hedging services from the designed binary options,629

which requires a certain cost that makes the negative expected630

return for an investor. For example, in Table IX, an investor631

near the station 467410 spends 1 dollar a day for hedging632

option with T of 10 MJ
m2 . The win rate of the investor is633

12.1% with averagely odds of 5.351, and the expected return634

is negative and is 12.1% × 5.351 − 1 = −0.353. However,635

when the solar-radiation is less than 10 MJ/m2, they can636

averagely earn 5.351 dollars to cover the loss from solar-power637

generation, which is the goal of hedging services. The buyer-638

side experimental results in Table IX show the effectiveness of639

the proposed hedging system. The hedging system costs little640

every day and provides a large payoff when the solar-radiation641

is low to make up for the loss of solar-power investment.642

V. CONCLUSIONS 643

With high concern for environmental protection in recent 644

years, a mature solar business model has been established. 645

However, some uncertainties are left without solutions, such as 646

the risk of low solar-radiation which may result in investment 647

losses. To address these issues, we propose a novel hedging 648

system utilized in solar-power business, which adopts the 649

edge-based predictive models with IoT data for solar radiation, 650

and the hedging binary option. The solar panels and weather 651

sensors are collected through IoT-based data in the proposed 652

system, and edge-based models are constructed for predicting 653

solar-radiation. The precise prediction model (PPM) is pro- 654

posed to predict solar-radiation in high precision, and the light 655

predictive model (LPM) is proposed to meet the low latency 656

and less computational cost on the edge-system. 657

Our experimental results indicate that random forest regres- 658

sion achieved the best performance, and PPM and LPM with 659

random forest regression obtain R-squared of 0.841 and 0.828 660

and correlation coefficient of 0.917 and 0.910, respectively. 661

Besides, LPM uses about half of the computation time to 662

obtain accuracy similar to PPM. Compared with state-of-the- 663

art models, our models have achieved better performance in all 664

metrics, which demonstrates the robustness and effectiveness 665

of the proposed models. 666

As for the proposed hedging options, our simulation results 667

show that the broker can obtain stable payoffs with the highest 668

Sharpe ratio of 3.354. Regarding the investor’s point of view, 669

the hedging system costs little financial overhead and provides 670

a large payoff (when low solar-radiation) to make up for the 671

loss of solar-power investment. Our simulation results show 672

the effectiveness of the proposed hedging system for investors 673

(buyer-side), simultaneously, present the motivation of the 674

broker (seller-side) to join our system to earn a fixed income. 675

In the future, we plan to enhance prediction with various 676

features (such as weather forecasts, satellite, and radar im- 677

ages). Besides, the designed hedging options will be extended 678

to both buyer-side and seller-side for investors (investors can 679

also sell options to solar companies and other investors) to 680

increase the flexibility of the hedging system. 681
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