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a b s t r a c t 

To process data like text and speech, Natural Language Processing (NLP) is a valuable tool. As on of NLP’s 

upstream tasks, sequence labeling is a vital part of NLP through techniques like text classification, ma- 

chine translation, and sentiment analysis. In this paper, our focus is on sequence labeling where we as- 

sign semantic labels within input sequences. We present two novel frameworks, namely SA-CRFLV-I and 

SA-CRFLV-II, that use latent variables within random fields. These frameworks make use of an encod- 

ing schema in the form of a latent variable to be able to capture the latent structure in the observed 

data. SA-CRFLV-I shows the best performance at the sentence level whereas SA-CRFLV-II works best at 

the word level. In our in-depth experimental results, we compare our frameworks with 4 well-known se- 

quence prediction methodologies which include NER, reference parsing, chunking as well as POS tagging. 

The proposed frameworks are shown to have better performance in terms of many well-known metrics. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The first step in text processing (i.e., Natural Language Pro- 

essing, NLP) is most often sequence labeling (SL). As defined, se- 

uence labeling is the task by which semantic labels are identified 

nd assigned to each unit within input sequences [1] . SL is also 

idely applied in visual question answering (VQA) [2] that con- 

iders the visual context vector and semantic information of the 

entences by predicting the labels of sequence. Commonly seen la- 

els include chunk labels, named-entity labels, part-of-speed la- 

els. Such labels can help the model understand the semantic 

tructure of the questions, and generate a smooth and coherent 

nswer in VQA. Through reliance on downstream tasks, sequence 

abeling methods have become very popular recently in both aca- 
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emic research and industry. Most existing models combine CNN- 

ased architectures and conditional random fields (CRF) with la- 

ent variables to analyze the image content to obtain the solutions 

n VQA. Furthermore, SL can help give components context to bet- 

er understand its meaning and has been also considered a major 

esearch issue in VQA. 

Historically, SL is usually achieved using entity recognition 

hrough: 

1. Extractions of entity names (person names, companies, etc) 

2. Chunking to find parts of sentences (verbs, nouns, adjectives) 

3. Reference parsing that can extract information (author, journal, 

title) 

Conditional random fields (CRF), as well as maximum entropy 

odel (MEM), are types of conventional sequence labeling mod- 

ls that study conditional probability over input sequences. In con- 

rast, segmentation models like semi-Markov random fields (semi- 

RF) are used to represent the span of text for input sequences. 

atinov et al. showed that most encoding schemas are strongly af- 
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Fig. 1. The BIO and BILOU encoding schemas. 
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ected by model performance [3] . Different encoding scheme are 

resented in Fig. 1 . Here, one can see how the different parts of

ILOU are chosen. 

The performance of conventional sequence labeling models 

argely depends on the encoding schema and feature engineering 

4] . A difference in encoding schemas and feature engineering will 

n turn lead to different performance on different sequence label- 

ng tasks as well as datasets. It is time-exhausting to find the best 

ettings for every sequence labeling task and datasets. In this work, 

e present 2 end-to-end self-attention-based CRFs with latent 

ariables(respectively named SA-CRFLV-1 and SA-CRFLV-2), which 

an automatically extract features and choose the best encoding 

chema for a set input on different natural language tasks and 

atasets. The proposed model utilizes self-attention based neural 

etworks to extract neural features for the input sentence [5,6] . 

he extracted neural features are combined with hand-craft fea- 

ures and computed in CRFs. The CRFs take encoding schema as 

 latent variable and tuning during training. The first presented 

odel known as SA-CRFLV-I can label the input using 2 encod- 

ng schemes at the same time while still optimizing parameters. 

n the second designed SA-CRFLV-II model, it can choose encoding 

chema on the word level as opposed to the sentence level which 

ybrids across 2 encoding schemas. Our contributions are summa- 

ized as follows: 

• The designed SA-CRFLV-I and SA-CRFLV-II are the end-to-end 

frameworks for sequence labeling. 
• Encoding schema is administered in the form of latent variables 

to be able to capture structures of the hidden variables as well 

as the observed data. 
• Self-attention based models are utilized to automatically extract 

features for the state-of-the-art CRFLV-I and CRFLV-II in differ- 

ent scenarios. 
• Our experimental results showed that our schemas hold 

strongly performance against BIO or BILOU encoding schema. 

. Literature review 

We summarize what are known as “traditional” models to in- 

lude (HMM - Hidden Markov Model) [7–9] , conditional random 

eld model (CRF) [10] , semi-Markov random field model (semi- 

RF) [11] , as well as max-entropy model (MEM) [12] . All of the

bove-mentioned models are linear that are known to capture the 

orrelations between labels that neighbour each other to create the 

est chain of labels. 

CRF models [10] are the most commonly used models for se- 

uence labeling. These well-known models exemplify a well-used 

lass of statistical methods for modeling which have been of- 

en shown to apply for solving sequence prediction problems. 

n the models, there are several advantages over using just run 

f the mill HMM as well as stochastic grammars which include 

he ability for the relaxation of strong independent assumptions 

hat are made on these models. Tseng [13] defined a Chinese- 

ord-segmentation (CWS) system that is based solely on Con- 
158 
itional random field models. Zhao [14] considered the Chinese- 

ord-segmentation problem and simplified it to a character tag- 

ing problem under strict use of the conditional random field. The 

uthors combined feature-template with tag-set selection to en- 

ance model performance. Cuong et al. [15] proposed efficient in- 

erence algorithms to handle high-order dependencies between la- 

els or segments. They demonstrate that exploiting high-order de- 

endencies can effectively enhance model performance. 

Muis et al. [16] designed a weak semi-Markov CRF for use in 

oun-phrase based chunking. In classic semi-CRF, the model is 

nown to intuitively decide both lengths as well as the type of 

ext segments at the same time. However, in weak semi-CRF, the 

odel attempts to give a weaker variant that can make these 2 

ecisions separate through restriction of every node which con- 

ects to other nodes only or nodes with the same label in the 

ext segment, or every node within the next word. The weak 

emi-CRF model was shown to yield similar performance to clas- 

ical semi-CRFs, however, runtimes were significantly better. Lin 

t al. [17] propose LVCRF-I and LVCRF-II which utilize encod- 

ng schema as latent variables to capture the latent structure of 

he hidden variables and the observed data. The performance of 

hese two models largely depends on hand-craft features which re- 

ult in poor robustness over different sequence labeling tasks and 

atasets. 

When focusing on deep learning-based models, there have been 

dvantages shown when considering sequence labeling tasks [18] . 

hang et al. [19] provided a review on applying multimodal fu- 

ion into clinical diagnosis and neuroscience research. Neuroimag- 

ng fusion can achieve higher temporal and spatial resolution, 

nhance contrast, correct imaging distortions, and bridge phys- 

ological and cognitive information. Wang and Zhang [20] pro- 

osed a new transfer-learning-based approach to identify multi- 

le sclerosis more accurately. They used composite learning fac- 

or (CLF) to assign different learning factor to three types of lay- 

rs. Four transfer learning settings were further tested and com- 

ared. A precomputation method was utilized to reduce the stor- 

ge burden and accelerate the program. In a preliminary work 

y Huang [21] , the authors collected long short-term memory 

LSTM)-based models that can be used for sequence labeling, in- 

luding LSTM, bidirectional LSTM, LSTM with a CRF layer, bidi- 

ectional LSTM respectively with a CRF layer, L STM, Bi-L STM, 

STM-CRF, and Bi-LSTM-CRF. These neural-based models (espe- 

ially Bi-LSTM-CRF) achieved good robustness over conventional 

odels. Carbonell et al. [22] proposed an end-to-end object de- 

ection network with branches to perform the handwritten text 

etection, transcription and named entity recognition at page 

evel with a single feed-forward step. The proposed network can 

hare features between different tasks. The results show that the 

odel is capable of benefiting from shared features by simulta- 

eously solving interdependent tasks. Kwob et al. [23] used the 

yllable bi-gram vector representation for Korean syllable-level 

amed-entity recognition. They also proposed a novel model to 

ake the joint vector representation of syllable bi-gram and Ko- 

ean Eojeols positional information. The experiments showed that 

yllable-level named-entity recognition achieves not only good 

obustness but also faster than traditional morphological-level 

amed-entity recognition by eliminating the morphological anal- 

sis process. Lee et al. [24] then proposed an integrated neural 

etwork model that consists of two layers of bidirectional gated 

ecurrent unit models with conditional random field layers to per- 

orm morphological analysis and named entity recognition simul- 

aneously. They used a two-phase training schema to train the en- 

ire framework. The proposed model can effectively alleviate the 

rror propagation problem that frequently occurs in the pipeline 

rchitecture. 
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Fig. 2. The BIO encoding schema. 
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Fig. 3. The BILOU encoding schema. 
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. Preliminaries and problem statement 

In this section, we give a brief overview of some background in- 

ormation as well as give a problem statement related to the work 

n this paper. 

.1. Conditional random fields with latent variables 

Let us first consider a given sequence of what are known as 

bservations x = (x 1 , . . . , x n ) . In CRF when dealing with variables

latent), our model first determines the method by which to as- 

ign sequence of labels y = (y 1 , . . . , y n ) that come from a single fi-

ite set of labels Y . In place of modeling P (y | x ) in a direct manner,

onventional conditional random fields sets latent variables h as 

n “inserted” set that is between both x and y making use of the 

ell-known probabilistic chain rule as expressed in Eq. (1) : 

 (y | x ) = 

1 

Z(x ) 

∑ 

h 

P (y | h, x ) P (h | x ) , (1)

here Z(x ) can be used to denote normalization factor, h can be 

sed to denote variable (latent), x can be used to denote sequence 

f the observations, and finally y can be used to represent se- 

uence of the labels [25] . While we see that this model will al-

ow the capturing of latent structure that exists between observa- 

ions/labels, it is also better in other ways. Our models can find 

trong applications within the field of computer vision, taking into 

ccount gesture recognition from both sequence labeling as well as 

udio/video streams [26] . 

.2. Encoding schema 

Both the BIO as well as the BILOU encodings can represent 

learly encoding schemas that are the mos tpopular in use today. 

IO is clearly shown in Fig. 2 , where B is beginning, I is inside,

nd finally O represents a given word that is not part of any seg- 

ent. In Fig. 2 , we describe that ‘Michel’ represents beginning of 

erson, marked as B-P . ‘Jordan’ is inside of person marked as I-P . 

ext, the word ‘would’ is not part of any entity, as such marked 

ith O . Furthermore, we show a much more complex scheme, 

nown as BILOU , as shown through Fig. 3 . 

Through Fig. 3 , we can denote B as the beginning, I as inside

egment, which excludes the end word, L is the last word, and 

nally, O is any word that does not belong to any of the seg- 

ents. As our example, we see that ‘Michel’ denotes the beginning 

f a person, marked as B-P . ‘Jordan’ is the last word of a person,

arked then as L-P . Furthermore, ‘would’ does not belong to any 

ntities, so it is marked with an O . Finally, ‘Bush’ is shown as the

erson entity with unit length, as such marked with U-P for a unit 

erson. If we compare the sequence model not using an encoding 

chema, we see that many more features can be captured using 

ncoding schemas, so clearly can have a defined positive impact 

n the performance of models. 
159 
.3. Problem statement 

Our problem statement can be formally defined as first taking 

nto, consideration a given input sequence x = ( x 1 , . . . , x k ) which

s of length k , as well as label of x which can be defined as tuple

 u, y ). This is defined as u th input word as associated with label y .

 given label sequence then of x can be defined as in Eq. (2) : 

 = (s 1 , . . . , sk ) (2) 

here we see that s j = ( u j , y j ). We note here distinctly that the

nput sequence x as well as the label sequence s are of the same 

ength. Therefore, if we are noting an input sequence x , then we 

an define the sequence labeling problem as that of finding label 

equence s of x of the highest probability. 

. Proposed self-attention based conditional random fields 

ith latent variables models 

In this section, we introduce the neural CRF models dealing 

ith latent variables. Sequence labeling models are commonly 

rained with supervised learning. Sequence labeling datasets are 

sually small. Thus, it is important to study how to enhance model 

erformance without extra hand-crafted data and labels. In this 

aper, we take encoding schema as a latent variable for model 

raining. To ensure a clear explanation, we introduce briefly con- 

entional CRF, as well as present our proposed neural latent vari- 

ble CRF. Finally, we explain the key differences between the mod- 

ls. Our first model as indicated earlier is SA-CRFLV-I, which can 

e defined as a sentence-level schema that can determine auto- 

atically the best encoding for use in sequence labeling. Secondly, 

ur SA-CRFLV-II model which can be defined as a model at the 

ord level hybrids both BIO and BILOU encoding schemes which 

ere presented earlier. The hybrid nature of the second schema 

nhances prediction accuracy which will be shown later in our ex- 

erimental work. 

.1. Conventional CRF 

CRF is a popular model for sequence labeling. When directly 

ompared with other well-known models, like MEM, CRF can in- 

orporate many flexible features and be able to handle label bias- 

ng within the MEM model with strong results. When looking at 

he structure of conventional CRF free of any encoding schema, we 

ee what is presented in Fig. 4 . Here, P node is used to denote the

erson name of the entity node as well as O node is used to de-

ote the non-entity node. From Fig. 4 , we use dashed lines to en- 

ode every and every possible labeled path of any given input se- 

uences. Through supervised training within the designed model, 

e see a labeled path (red line) in the CRF model. This red line 
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Fig. 4. Conventional CRF. 

Fig. 5. The designed SA-CRFLV-I model. 
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orresponds to a distinct label. During training, model parameters 

re further optimized for the maximization of the probability of 

abeled paths. CRF model can provide a conditional probability of 

 potential output sequence s for input sequence given by x, as 

hown in Eq. (3) : 

p(s | x ) = 

1 

Z(x ) 
exp{ W · G (x, s ) } , (3)

where G (x, s ) is used to denote feature function, W is used to

enote weight vector, and finally Z(x ) is used to denote normaliza- 

ion factor. To be able to find best label sequence in CRF, we can 

et σ j be used to denote best label sequence ends of j th input, de- 

oted as ( m, n, y ) the label sequence starting at m th position, while

nding at n th position, which is labeled as y . From this, σ j is cal-

ulated recursively using Eq. (4) . 

j = max �( j − 1 , j, y ) + σ j−1 , (4) 

here �( j − 1 , j, y ) is defined as feature value which can be de-

ned over any label sequence denoted as s = ( j − l, j, y ) . 

.2. SA-CRFLV-I 

When we compare LVCRF-I with classical CRF, it is observed 

hat our proposed model can incorporate hidden variables which 

n turn allows the exploration of more information from input se- 

uences. The performance of LVCRF-I largely depends on the hand- 

raft features, which is similar to the classical CRF model. Thus, we 

ncorporated a self-attention mechanism to automatically extract 

eatures. We introduce this model in two parts, we first introduce 

he SA-CRFLV-I and then the self-attention network. We show our 

esigned CRF with the latent variable model clearly in Fig. 5 . 

As can be seen from Fig. 5 , the model as proposed consists of

xactly 2 parts. In the upper part, we include CRF alongside BIO 

chema, which was introduced earlier in Section 3.2 . We define the 

onnection relation as follows. Node B will be connected clearly 

o I , which indicates there exists an entity which can start at the 

urrent position and then continue to the next token, or in other 

ords to O and then B nodes which indicates there exists an en- 

ity o which is of unit length at the current position. Node I can 
160 
hen be directly connected to I , which means there exists an en- 

ity that continues to the next token, or in other words to O and 

hen on to B nodes, which means there exists at least one entity 

hich ends at that node. Node O then can be directly connected 

n to nodes B and O respectively, which suggests clearly that no 

ntity exists at current position. Since node O is not able to con- 

ect directly to node I due to the previously mentioned begging 

roblem it must be labeled alongside B . We can see in the bottom 

ortion of Fig. 5 , there is corresponding imagery to CRF alongside 

ILOU schema. We describe the relationships as follows. Starting 

ith node B which can be directly connected on to both nodes I 

nd L respectively, which suggests there exists at least one entity 

hich may start at the current position, on the other hand, nodes 

ay not be directly connected to any of the nodes O, B , as well

s U , due to that fact that any segment that has unit length must

e labeled as U . Furthermore, node I may be connected as well to 

odes L and I respectively because it denotes the inside of seg- 

ent, therefore, it may not be directly connected to nodes U, B , as 

ell as O which denote starting point of a new segment. We also 

ee that node L may be connected to nodes U, B , and O , which

eans that the entity in question will end at the current position, 

owever, may not be connected to nodes I and L respectively due 

o it denoting the end of a segment. The nodes U may not be di-

ectly connected to nodes U, O , and B , which suggests that there 

xists some entity that has a unit length which is at the current 

osition and may not be able to directly connect to nodes L and I 

espectively because there should exist node B which denotes the 

tart of the segment before them. It is suggested that there does 

ot exist an entity at current position because node O may be con- 

ected on to nodes U, O , and B , however can not connect to nodes

 and I due to node B being before them. We also show the leaf

ode which is in the left portion of Fig. 5 which denotes the start 

f a given sentence, as well as the root node in the right portion 

hich represents the ending of the sentence. 

In Fig. 5 we give an input sequence and show how our graph 

odel will provide 2 separate labeled paths. In other words, a path 

hich corresponds to BIO schema as well as a path which corre- 

ponds to BILOU schema, respectively. 

The performance of the conventional CRF based models largely 

epends on the hand-craft features. For different natural language 

rocessing tasks and datasets, it thus requires different feature en- 

ineering, which is time-consuming. Thus, we combined the pro- 

osed models with neural networks to automatically extract fea- 

ures for LVCRF-I models. This neural network utilizes the Bi-LSTM 

o compute the vector representation for each word. Then we con- 

atenate the forward and backward direction of the Bi-LSTM to 

orm the vector representation of each token. This permits the to- 

ens to be sensitive to the contexts where they occur and is typical 

f neural network sequence prediction models. The self-attention 

echanism is similar to as [27] to further compute the vector rep- 

esentation of each time-step, and the formulation is defined as 

ollows: 

t tent ion (Q, K, V ) = sof tmax ( 
QK 

T 

√ 

d k 
) V, (5)

here Q, K and V are input vector representations. A fully con- 

ected neural network is utilized as the projection layer to com- 

ute the neural feature scores. The formulation is defined as fol- 

ows: 

f eatures neural (i ) = sof tmax (θx i + β) , (6) 

here x i is the vector representation of the i -th timestep, θ and 

is the learnable parameters. Different from LVCRF models, SA- 

RFLV-I utilizes self-attention neural networks to compute features 

or the CRF layer. As described before, there are N + 4 edges con- 

ected to a B node, N + 5 edges connected to a I node, 3 N + 1
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Fig. 6. The designed SA-CRFLV-II. 
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dges connected to a O node, 2 N + 1 edges connected to a L node

nd 2 N + 1 nodes connected to a U node. Thus, the output of the

elf-attention network of each timestep is a 6 N + 8 dimension vec- 

or. For every existing edge in the CRF model, the self-attention 

etwork outputs a score (i.e., neural features) which will be com- 

uted together with hand-craft features in CRF models. Thus the 

esigned model achieves good robustness over different datasets 

nd sequence labeling tasks since the neural features are based on 

he specific datasets and tasks. The LVCRF model only depends on 

he hand-craft features, which is hard to be generalized for differ- 

nt datasets and tasks. Compared with conventional LSTM models, 

he attention mechanism can accelerate the model training since 

ll timesteps can be processed in parallel. The attention mecha- 

ism also achieves good robustness when it is utilized in AI mod- 

ls since it can automatically generate weights for each timestep. 

he disadvantages of the attention mechanism are that it requires 

ore computing resources to perform the training progress espe- 

ially when a sequence is very long. 

.3. SA-CRFLV-II 

SA-CRFLV-I is shown to be and designed to be a model at the 

entence level because it chooses encoding schema directly for 

ach sentence. When we compare this fact of SA-CRFLV-I with SA- 

RFLV-II, we see that the latter represents a model at the word- 

evel because it chooses encoding schema automatically for every 

ord. We give a detailed account of SA-CRFLV-II in Fig. 6 , where 

he two parts of the model are shown. 

SA-CRFLV-II is shown to have a similar structure when com- 

ared with SA-CRFLV-I. The main difference is edges that connect 

pper CRF and bottom CRF. As an example, upper node B c may be

onnected on to bottom node I , which means that there is at least 

ne entity using BIO schema that has current starting position then 

ontinues to next token using BILOU schema, or in other words on 

o node L which is in bottom CRF. This denotes that there is at 

east one entity that is of unit length at the current position us- 

ng the BILOU schema. The main difference that exists when com- 

aring SA-CRFLV-I to SA-CRFLV-II is the latter will allow the trans- 
161 
ormation of encoding schema when given a certain sentence of 

nput. 

Considering an example through Fig. 6 , for a given sequence 

f input, we can say that there are 2 n potential labeled paths, 

nd let n denote the sentence length. Through the set theory, we 

an say that all paths have equal probability. In other words, they 

ay be able to label as “George Bush” as well as “Jack” which 

re both named entities and then showed that “votes for” is not 

 named entity, or also called a non-named entity. Through decod- 

ng progress, our proposed model can provide red lines as a subset, 

here we say that the lines are connected end-to-end to one an- 

ther. Through this, the resulting part is that every word may be 

abeled with the use of different schemas for encoding. In other 

ords, “George” may be labeled with nodes B-P making use of the 

IO schema, whereas “Bush” may be labeled with nodes L-P using 

ILOU schema. 

.4. Training, inference, and decoding 

Making use of CRF, a log-linear approach is adopted for our ob- 

ective function, which can be expressed as in Eq. (7) . 

 (w ) = 

∑ 

i 

log 
∑ 

y ′ 
exp(w 

T f (x i , y 
′ )) −

∑ 

i 

w 

T f (x i , y ) + λw 

T w, (7)

here we can define (x i , y i ) as sentence x i as well as labeled path

 i as the correct one,. Furthermore, last term is used to represent a 

 2 regularization term using a λ value of 0.01. The objective func- 

ion may be optimized using standard gradient-based methods. 

More importantly, for any given input sentence x, the proba- 

ility of predicting some potential output sequence y can be ex- 

ressed as in Eq. (8) . 

p(y | x ) = 

exp(w 

T f (x, y )) ∑ 

y ′ 
exp(w 

T f (x, y ′ )) 
, (8) 

here here we let f (x, y ) denote the feature vector which is de- 

ned over input-output pair (x, y ) as well as the weight vector w 

hich provides model parameters. 
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Table 1 

Corpora Statistics of the used datasets. 

Name Task # train # labels # dev # test 

CoNLL2003 NER 14,987 8 3466 3684 

BC2GM NER 12,500 3 2500 5000 

CoNLL2000 Chunking 8936 22 N/A 2012 

Cora Ref parsing 500 13 N/A N/A 

PTB POS Pos tagging 39,831 45 1699 2415 

Table 2 

Performance for different algorithms in ConLL2003 for 

the NER task. 

Compared models Recall Precision F1 

CRF-BIO 83.59 84.10 83.84 

CRF-BILOU 84.36 83.82 84.09 

LSTM-CRF 91.38 90.21 90.79 

LVCRF-I 84.71 84.19 84.46 

LVCRF-II 85.05 84.15 84.59 

SA-CRFLV-I 93.01 90.78 91.88 

SA-CRFLV-II 92.88 91.32 92.09 
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1 The developing tool StatNLP can be found in https://statnlp-research.github.io/ 
We make use of what is known as an inside-outside algorithm 

hich is similar to what is given in Muis and Lu [16] for the in-

erence process. First, the inference algorithm is used to calculate 

he inside score for every node from leaf to root. Next, the out- 

ide score is calculated from root to leaf. Furthermore, the inter- 

al score can be calculated just by summing features scores that 

re associated with edge linking of the current node as well as 

ts child nodes, at the same time we let the internal score be cal- 

ulated using the bottom-up (left-2-right) dynamic programming 

rocess. We define path score as the product of inside score which 

s stored at the child node as well as feature score which is defined

ver a given edge that is allowing them to connect. For the com- 

utation of outside score we use a similar methodology but from 

ight-2-left this time. 

Both inside as well as the outside score for any given step may 

e calculated with known time complexity of O(N 

2 ) , where we let 

 denote # of entity types. This is because every node may be con- 

ected to a maximum of 2 N total nodes (2/encoding schema total 

schemas). Furthermore, there are 2 N nodes given at every time 

tep as defined by 2 N ∗ 2 N = O (N 

2 ) . Therefore, for any given input

entence that has length T as well as N entity types, we can say 

hat the time complexity for our model is O(T N 

2 ) . This time com-

lexity is similar to conventional CRF models. Using the Viterbi de- 

oding algorithm which using dynamic programming, we can ob- 

ain an output path of high probability. Our training model is very 

imilar to what would be considered in the conventional graphic 

odel, known as forward-backward algorithms. We show this al- 

orithm in Algorithm 1 . 

lgorithm 1 forward-backward algorithm. 

1: for each epoch do 

2: for each batch do 

3: 1) Self-attention based model forward pass thus calculate 

the features 

4: 2) LVCRF-I/II forward and backward pass thus calculate 

the inside and outside score 

5: 3) Self-attention based model backward pass thus calcu- 

late gradient 

6: 4) Perform the updating model for parameters 

7: end for 

8: end for 

.5. Features 

In this section, CRF features that are used to compute G(x,s) as 

hown through Eq. (3) is shown. More specifically, input features 

s follows are used. 

• Word features: the window size is set as 3 for the words ap- 

pearing around the current position. 
• POS tag features (if available): the window size is set as 3 for 

the POS tags appearing around the current position. 
• Word n -gram features: the n -gram size is respectively set as 2, 

3, and 4 of the current position. 
• POS n -gram features (if available): the settings are the same 

as Word n -gram features. 

. Experimental evaluation 

We test our proposed two models named SA-CRFLV-I and SA- 

RFLV-II on four tasks regarding natural language processing (NLP) 

uch as NER, chunking, reference parsing, and tagging task in POS. 

he experimental results of the developed two models are then 

ompared to the conventional CRF with two different schemas for 
162 
ncoding. As the input of the SA-CRFLV-I/II, a task-specific pre- 

rained word embedding (64 dimensions) is used. The CRF-BIO is 

he traditional CRF with the BIO encoding scheme while the CRF- 

ILOU is the traditional CRF with the BILOU encoding scheme. In 

omparison, the models use the same functionality as described in 

.5 section. 1 

.1. Datasets 

In the experiments, five standard databases regarding four dif- 

erent tasks such as NER, chunking, ref parsing, and POS tagging 

re conducted for evaluation to show the results of the compared 

odels. The corporate statistics of the four different tasks in five 

atasets are thus illustrated in Table 1 . 

Here, the ConLL2003 [28] is to verify the NER task having four 

arious name entities as Person, Location, Organization, and Misc. 

he BC2GM is also the NER task that is the BioCreative II Gene 

ention corpus having 20,0 0 0 sentences extracted from the ab- 

tract part of the published articles in biomedical fields. It was an- 

otated using a single NE class for the names of genes, proteins, 

nd related entities. ConLL20 0 0 [29] belongs to the chunking task, 

nd Sections 15–18 from the Penn Treebank of the Wall Street Jour- 

al are then considered as the training data, and section 20 is then 

sed as the testing validation. Cora [30] is a reference parsing task 

ith 13 labeled fields having 500 reference strings (i.e., author, 

itle, journal title, vol., page, date, among others). Penn TreeBank 

PTB) POS is also the reference parsing task with 45 labeled fields 

aving 30,0 0 0 sentences. Results for different tasks are then given 

elow. 

.2. NER tasks 

Tables 2 and 3 shows the experimental results for two NER task 

egarding CoNLL2003 and BC2GM datasets. The best results are 

hen marked with an underline. As previously stated, the LVCRF- 

 can be seen as a mixture of the CRF-BIO and CRF-BILOU, which is 

hy its performance was robust and outperformed both the CRF- 

IO and the CRF-BILOU. This result proved that the CRFLV-I could 

utomatically identify the best encoding scheme by the input sen- 

ence. The proposed SA-CRFLV-I and SA-CRFLV-II have better per- 

ormance than that of LVCRF-I and LVCRF-II. For example, the SA- 

RFLV-II achieved the best results among all compared algorithms. 

https://statnlp-research.github.io/
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Table 3 

Performance for different algorithms in BC2GM for the 

NER task. 

Compared models Recall Precision F1 

CRF-BIO 87.88 86.5 87.18 

CRF-BILOU 88.05 86.88 87.46 

LSTM-CRF 90.36 89.45 89.90 

LVCRF-I 89.25 86.81 88.01 

LVCRF-II 89.39 86.78 88.06 

SA-CRFLV-I 91.20 90.71 90.95 

SA-CRFLV-II 91.62 90.87 91.24 

Table 4 

Performance for different algorithms in CoNLL20 0 0 for 

the chunking task. 

Compared models Recall Precision F1 

CRF-BIO 89.89 90.15 90.01 

CRF-BILOU 89.88 90.05 89.96 

LSTM-CRF 90.78 92.34 91.55 

LVCRF-I 90.23 90.12 90.17 

LVCRF-II 90.41 90.08 90.24 

SA-CRFLV-I 91.78 93.11 92.44 

SA-CRFLV-II 92.32 93.01 92.66 
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Table 5 

Performance for different algorithms in Cora for the 

reference parsing task. 

Compared models Recall Precision F1 

CRF-BIO 80.61 77.92 79.24 

CRF-BILOU 81.21 78.35 79.75 

LSTM-CRF 82.01 78.99 80.47 

LVCRF-I 81.56 78.15 79.81 

LVCRF-II 81.89 78.25 80.02 

SA-CRFLV-I 81.94 79.62 80.76 

SA-CRFLV-II 82.23 79.41 80.79 

Table 6 

Performance for different algorithms in PTB POS for 

the pos tagging task. 

Compared models Recall Precision F1 

CRF-BIO 95.99 93.41 94.68 

CRF-BILOU 95.27 93.45 94.35 

LSTM-CRF 95.37 96.10 95.73 

LVCRF-I 95.51 94.22 94.86 

LVCRF-II 95.19 94.71 94.95 

SA-CRFLV-I 96.32 96.20 96.25 

SA-CRFLV-II 96.24 96.33 96.28 
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or different datasets, SA-CRFLV-I and SA-CRFLV-II achieve better 

obustness than that of LVCRF-I and LVCRF-II since the attention- 

ased networks can extract dataset-specific features, while LVCRF- 

 and LVCRF-III can only use hand-craft features. Throughout this 

tudy, we are proposing a CRF system which uses the encoding 

cheme as a latent variable. The result showed that in a neural- 

ased model, the proposed structure could easily outperform the 

RF model, as both an independent variable and an embedded 

ayer. As predicted the SA-CRFLV-II performance was marginally 

etter than the SA-CRFLV-I performance. The CRF-BIO and CRF- 

ILOU showed low results, so is the CRF’s output with different 

ncoding schemas. 

.3. Chunking 

In the chunking task on the CoNLL20 0 0 dataset [29] , Table 4

ompares the results of different algorithms. As shown in Table 4 , 

he proposed models exceeded the baseline CRF-BIO, CRF-BILOU, 

nd LVCRF models. The developed SA-CRFLV-I and SA-CRFLV-II 

ave achieved a similar performance in this task. The CRF with 

he BIO encoding scheme performed better on the chunking task, 

hile the CRF with the BILOU encoding scheme was better on the 

ER task. This is reasonable since none of the encoding schemes 

as the best for all cases and applications, so it was necessary to 

se different encoding schemes for the different input sentences 

hat we proposed in this paper. The SA-CRFLV-II also achieved the 

est performance among all models on the CoNLL20 0 0 dataset. 

.4. Reference parsing 

In comparison with chunking and NER tasks, the reference 

arsing gives more segmental information. Table 5 shows the com- 

ared results of different models in reference parsing task of the 

ora dataset [30] . From the results, it can be seen that the CRF-

ILOU exceeds the CRF-BIO for two comparable basic models, i.e., 

he CRF-BIOU and the CRF-BILOU. The reason could be possibly re- 

erred to as that the CRF-BILOU was able to capture more segmen- 

al information. Thus, boundary words are considered an important 

erm in this task. The two proposed models achieve great robust- 

ess since their performance was superior to the CRF-BILOU and 

VCRF models. 
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.5. POS tagging 

POS Tagging is the task of assigning each word with a syntac- 

ic tag to an input sentence. Compared to the three above tasks 

uch as NER, chunking, and reference parsing, the POS label has 

ess information on the segment level. However, the performance 

f the two proposed models was still higher than that of the CRF 

nd LVCRF models, which can be seen in Table 6 . For example, 

he designed SA-CRFLV-II achieves the best results in terms of F1 

ompared to the other models. Thus, we can conclude that the de- 

igned two models outperform any of the existing models in dif- 

erent tasks and applications. 

. Conclusion 

In this paper, we study the problem of sequence labeling which 

ay often be used as a step of pre-processing for NLP. Sequence 

abeling can help many computers and machines get a better un- 

erstanding of a sequence of text. Our in-depth evaluation using 

ifferent schemas for encoding led to the design and introduction 

f 2 novel neural CRFs with latent variables which are shown to 

mprove the performance of sequence labeling. At the sentence 

evel and the word level respectively, CRFLV-I, as well as CRFLV- 

I, showed strong performance through experimental evaluation. In 

his work, two encoding schemas are considered and combined as 

 latent variable. In future works, another encoding schema can 

e further explored such as BILO encoding schema. Taking more 

ncoding schemas as latent variables can be a feasible way to en- 

ance model performance. Different neural network structures and 

ttention mechanisms should also be further explored. 
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