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Abstract. Dynamic data race detection techniques usually involve in-
vasive instrumentation that makes it impossible to deploy an executable
with such checking in the field, hence making errors difficult to debug and
reproduce. This paper shows how to detect data races using the COEMS
technology through continuous online monitoring with low-impact in-
strumentation on a novel FPGA-based external platform for embedded
multicore systems. It is used in combination with formal specifications in
the high-level stream-based temporal specification language TeSSLa, in
which we encode a lockset-based algorithm to indicate potential race con-
ditions. We show how to instantiate a TeSSLa template that is based on
the Eraser algorithm, and present a corresponding light-weight instru-
mentation mechanism that emits necessary observations to the FPGA
with low overhead. We illustrate the feasibility of our approach with
experimental results on detection of data races on a sample application.

Keywords: Runtime verification, data race detection, FPGA, lockset algorithm

1 Introduction

Data races occur in multi-threaded programs when two or more threads access
the same memory location concurrently, with at least one write access, and the
threads are not using any exclusive locks to control their accesses to that location.
They are usually difficult to detect using tests as they depend on the interleaving
and scheduling of tasks at runtime. Static analysis techniques frequently suffer
from false positives due to over-abstraction, although precise results for source
code written in a particular style is certainly feasible. We do not want to discount
this field and recent advances, but focus on dynamic techniques for the present
occassion.

Races and other concurrency issues have featured prominently in area of
Runtime Verification (RV), where precise formal specifications are used at run-
time to monitor, and possibly influence, a running system (as opposed to static
verification). Our guest of honor (see [12] for an extensive account of his work)
has been one of the founders of the RV workshop- and conference series, and has



indeed contributed to the study of the dynamic nature of races with a contri-
bution to the very first workshops [13,14], which has since withstood the test of
time [15]. His exploits — which indicate that he is rather aiming for a marathon
than a sprint in the race to formal verification — did not stop there: Together
with Artho and Biere, he lifted the abstract formal concepts into a practical soft-
ware engineering setting, where, although race-free in the original sense of the
definition, they captured patterns that indicate flawed access to data structures
[3]. Source-code instrumentation is one of the go-to solutions to inject RV mech-
anisms into existing software [10]. His further research with Bodden in a similar
direction resulted in the suggestion of a new feature for aspect-orientated pro-
gramming, a technique for manipulating programs on a higher level, that would
facilitate better addressing of concurrency concerns [6].

Although runtime checking only give a limited view on the behaviour of the
concretely executed code, it allows precise reporting of actual occurrences, which
can be used to predict potential erroneous behaviour across different runs [16].
However, this runtime analysis is not enabled in the final product: inline dy-
namic data race detection techniques come with invasive instrumentation for
each memory access that makes it prohibitive to deploy an executable with such
checking in the field [22]. This also makes reproducing errors challenging.

In this article, we take earlier RV attempts for race analysis further and
present a non-intrusive approach to monitoring applications on embedded system-
on-chips (SoCs) for data races using the COEMS platform [8] which aims to
eliminate the overhead of dynamic checking by offloading it to external hard-
ware.3,The platform offers control-flow reconstruction from processor-traces (here:
the Arm CoreSight control-flow trace), and data-traces through explicit instru-
mentation [26]. Race checking is executed on an FPGA on a separate hardware-
platform to minimize impact on the system under observation. Our experimental
results show that the necessary instrumentation in the target application incurs
the expected fixed, predictable overhead, and is not affected by the time required
for race checking. Our use of the high-level stream-based temporal specification
language, TeSSLa [21], means that the reconfiguration of the monitor is sub-
stantially faster than synthesising VHDL (few seconds vs. dozens of minutes),
and allows end-users to customize the race checker specification to their needs
without being FPGA-experts.

This is not possible with other specification-based approaches that directly
aim to use the integrated FPGA of a SoC. These approaches do not offer the
quick reconfiguration possible with the COEMS platform but require full time-
consuming reconfiguration, and do not support the use of control-flow tracing
due to the limited capacity of the SoC.

The approach proposed in this paper is more flexible than a dedicated race
checker implemented on the FPGA: to the best of our knowledge, such a general
solution does not exist, though it is of course in principle possible. It would
not offer the end-user flexibility in terms of fast reconfiguration that we gain

3 The EU Horizon 2020 project “COEMS–Continuous Observation of Embedded Mul-
ticore Systems”, https://www.coems.eu.
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through TeSSLa, and, again due to the space restrictions on SoCs, would not be
able to benefit from control-flow tracing features that are important for future
optimisations and integration with our analyses.

Our hardware-based approach can be used in safety-critical systems such as
the aerospace and railway-domains where certification is necessary. In these do-
mains, using a software inline race-checker such as ThreadSanitizer [28] is not
possible as the tooling for instrumentation and online race-checking is not certi-
fied for those systems, if it even exists. For example, ThreadSanitizer support for
Arm32 SoCs is not part of the LLVM toolchain [23]. In contrast to software-based
approaches, our instrumentation for the application under test has straightfor-
ward complexity and gives predictable performance overhead independant from
whether or not race checking is enabled. This is especially important for software
development in these safety-critical domains, as again for certification purposes,
it is not permissible to, e.g., deploy a separate version for debugging or trouble-
shooting on demand in the field. Any debugging and trace support must be
already integrated in the final product.

The COEMS FPGA requires a compiled monitor-configuration. As this con-
figuration needs to be generated for a specific binary under test, we present
in this paper our approach where we instantiate a template that monitors a
fixed number of memory locations for consistent access through a fixed num-
ber of locks. Although these numbers need to be determined before starting the
monitoring, the flexibility of TeSSLa allows us to also deal with an unbounded
number of threads, and limited monitoring of dynamically allocated memory and
locks. Additionally, our instrumentation supports recording traces in files, and
offline analysis of execution traces with the TeSSLa interpreter only. This aids
in quick prototyping of new specifications on vanilla developer machines without
replicating a full setup of SoC and COEMS hardware.

The paper is structured as follows. After this introduction, Section 2 ex-
plains the related work. Section 3 details the data race detection in the COEMS
framework. Section 4 illustrates the feasibility of our approach and presents per-
formance data on detecting data race errors in a Linux pthreads-based case
study. Experimental results and software are published in public repositories.
Finally, Section 5 gathers the conclusions and future work.

2 Our Approach and Related Work

Traditionally, data races have been approached from two sides: static anal-
yses check the source code and report potential errors. To that end, over-
approximations of program behaviours are used (e.g., in terms of variable ac-
cesses and lock operations), which may lead to uncertainties on whether a par-
ticular behaviour will actually occur during runtime due to general issues on
decidability. This frequently generates too many warnings of potential problems
for developers to be useful. These uncertainties can be minimised if decisions such
as the number of threads to spawn are fixed at compile time. Static analysers
may also have limited support for particular language features.



In contrast to checking the code before it runs, dynamic analyses look at in-
dividual executions of a program. Although this can only analyse the behaviour
of the concretely executed code, it can accurately identify the actual occurrences
of defects. These can then be traced back to the buggy code that resulted in the
potentially erroneous behaviour. Both techniques in general rely on the avail-
ability of the source code, and, in the case of dynamic analyses, the possibility
of recompilation with additional instrumentation.

As dynamic analyses for data race detection need to record historic behaviour
during execution, they often interfere in terms of computation time and mem-
ory consumption. For example, the popular dynamic ThreadSanitizer integrated
with the LLVM compiler toolchain slows down executions by a factor of 10 to
100, depending on the workload [28,30]. This is one reason why dynamic anal-
ysers are traditionally only employed during development and testing, but not
included on the production system [29].

The COEMS project developed a hardware-based solution, in which a field-
programmable gate array (FPGA) checks the execution trace in parallel to the
running system with minimal interference. The hardware is adapted for analysing
events described in the stream-based specification language TeSSLa [21]. Using
an intermediate specification language that is executable on the FPGA can avoid
the time-consuming re-synthesisation of the FPGA when changing specifications.

We have ported the gist of the Eraser algorithm [27] to the subset of the
TeSSLa language that is supported on the hardware. An alternative approach
already used the TeSSLa-interpreter, but was not suitable for compilation onto
an FPGA due to the dynamic data structures (sets and maps) that only the
interpreter offers [19].

Firstly, we adapt the software-based analysis, which relied on dynamic data
structures such as sets and maps in the TeSSLa interpreter, to the hardware-
specific implementation of the COEMS trace box (see Section 3 for details).
As the complete specification does not fit onto the FPGA, we then split the
specification into two parts: the performance-relevant portion of the TeSSLa
specification is processed on the FPGA (filtering accesses), and the final tracking
of which lock protects which memory is done in the interpreter which receives
the intermediate output from the FPGA. Additionally, we also allow monitoring
of dynamically allocated memory and locks.

The Eraser algorithm is certainly no longer the state of the art in dynamic
race detection (or rather, checking locking discipline), but has the advantage that
it can be captured in a state machine that is instantiated per memory location
and set of locks. Even though it conceptually uses sets, assuming that the number
of used memory locations and locks is statically known, we can statically derive
the necessary streams.

Such a static encoding should be possible also for the more modern FastTrack-
algorithm by Flanagan and Freund [11], which uses lightweight vector clocks
and the happens-before relation to avoid false positives. Their article includes a
detailed description of the necessary data structures, and uses thread-ids as offset
into arrays. Our approach here requires focusing on a fixed number of memory



locations and locks, but can deal with an arbitrary number of threads. We leave
an encoding into TeSSLa of FastTrack to future work — for a statically decidable
set of threads it should certainly be possible, with the necessary vector-clocks
also being maintained on the FPGA-side.

An observation-based race checker that tracks memory accesses and lock
operations can also be implemented through the help of virtualisation. Gem5
[5,17] is such a framework. Virtualisation means on the one hand that observation
cannot be done on a deployed system in the field but only in the lab and with a
limited number of supported peripherals. On the other hand, control-flow events
can easily be explicitly generated, no expensive reconstruction is necessary: in full
virtualisation, we can directly match on any assembly instruction, and not only
branches like with the COEMS hardware. In fact, in such a scenario, it would
be straightforward to use Gem5 as event source, where the virtualisation sends
events on to a TeSSLa interpreter checking the trace against our specification.
Gem5 does not directly offer a high-level specification language for monitoring.
Given the high event rate of observations on memory accesses, we expect a
similar performance impact like the one reported for ThreadSanitizer.

Another prominent example where a high-level specification is synthesised
into an FPGA is RTLola [4]. This differs from our approach in the following:
the specification language puts a stronger emphasis on periodic data than we do
with our discrete TeSSLa events. Furthermore, RTLola is synthesized via VHDL
onto the FPGA, and hence has a high turn-around time for reconfiguration.
Communication between the system-under-test and the verification logic is left
open to the user and requires knowledge of VHDL, though of course in principle
data events can then be emitted through instrumentation. In contrast to our
solution, an RTLola specification cannot benefit from control-flow tracing, since
control-flow reconstruction is not available as specification and hence cannot be
compiled onto the FPGA, and furthermore would exceed the capacity of current
SoCs both in terms of space and execution speed [26]. We leave performance
evaluation of RTLola execution for race checking purposes on the FPGA to
future work, but note that providing an API for the instrumentation to the
monitor requires VHLD-knowledge.

A similar direct approach via hardware-synthesis has been taken for Sig-
nal Temporal Logic (STL) [18]. It would certainly be feasible to encode a race
checker in STL, but that would not be playing to STL’s strength in terms of
timing properties (which are not relevant for race checking) and observing sig-
nals on a wire (as opposed to a programmable interface to send values from the
instrumented code to the monitor).

The R2U2 [25] monitoring system for unmanned aerial vehicles provides a
generic observation component on an SoC. Again, events must be explicitly
emitted, and no control-flow reconstruction is available. Similar to our approach,
and unlike in RTLola, this component is generic and is parametrised by compiled
specifications. R2U2 uses Metric Temporal Logic specifications (MTL), which are
very suitable to describe, e.g. timing properties. While it is certainly possible to
specify our race checker in MTL, we leave it to future experimental evaluation



Fig. 1.1: COEMS Trace Box containing FPGA (left) and SoC (right)

how many instances of the race pattern (in terms of memory location/protecting
lock) would be feasible, and how the communication bus would uphold under
varying event rates.

3 Data race detection with COEMS

In the following, we first briefly introduce COEMS infrastructure. Then, we
describe the workflow of data race detection with the COEMS tools. After that,
we explain the idea of the lockset-based Eraser algorithm and our translation
into TeSSLa.

3.1 COEMS Infrastructure

The COEMS project provides a novel observer platform for online monitoring
of multicore systems. It offers a non-intrusive way to gain insights of the system
behaviour, which are crucial for detecting non-deterministic failures caused by,
for example, accessing inconsistent data as a result of race conditions.

To observe SoCs, the platform uses the tracing capabilities that are available
on many modern multicore processors. Such capabilities provide highly com-
pressed tracing information over a separate tracing port. This information allows
the COEMS system to reconstruct the sequence of instructions executed by the
processor [26]. The instruction sequence- and data trace can then be analysed
online by a reconfigurable monitoring unit. Figure 1.1 shows the COEMS FPGA
enclosure, the Arm-based Enclustra SoC that serves as system under test, and
the AURORA interface connecting both.

As soon as the program starts running on the Enclustra board, control flow
messages are generated via the Arm CoreSight module and transmitted, together
with user-specified data trace messages from any instrumentation, through the
AURORA interface to the COEMS trace box. Internally, the Instruction Recon-
struction (IR) module reconstructs an accurate execution trace of both cores
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Fig. 1.2: Lock instrumentation and race monitoring using the COEMS technology

from the platform-specific compressed format into a stream-based format suit-
able for analysing properties defined in the TeSSLa language. The flexibility
of the TeSSLa language allows expressing different kinds of analyses for func-
tional or timing properties in terms of stream events. A TeSSLa specification
is then compiled to a configuration of the Event Processing Units (EPUs) [7]
of the monitoring unit, which are specialised units on the FPGA implementing
low-level TeSSLa stream operations. The events of the TeSSLa streams are ef-
ficiently processed by the EPUs in the trace box. To cope with the potentially
massive amount of tracing data generated by the processors, the COEMS system
is implemented in hardware using an FPGA-based event processing system. The
current COEMS prototype implements eight parallel EPUs.

Compared to existing monitoring approaches, COEMS provides several ad-
vantages, most notably is its non-intrusive method to observe and verify the
actual behaviour of the observed system, i.e., the system behaviour will not be
affected by the monitoring. As no trace data has to be stored, systems can be
monitored autonomously for extended periods of time. Furthermore, the trace
box reports results of a TeSSLa analysis almost immediately as the processing
delay introduced by the trace box is negligible. In contrast to other hardware-
based runtime verification techniques [9,29], changing the specification does not
require circuit synthesis, but only a TeSSLa compilation. Hence, the focus of
observation can be changed during runtime by reconfiguring the EPUs quickly.

3.2 Instrumentation and Data Race Monitoring

The current COEMS framework supports data race detection for pthread pro-
grams that can be recompiled using LLVM. We illustrate the workflow of instru-
mentation and data race monitoring in Figure 1.2.



We first instrument the application under test during compilation, so that the
executable emits information to the COEMS trace box at runtime. We insert calls
to instrumentation (i) after taking a lock, (ii) before releasing a lock, and (iii) on
shared memory accesses with the help of LLVM, which will send the thread-id
and observed action. As an optimisation, we use the LLVM analysis framework to
only instrument memory accesses to potentially shared memory: through escape-
analysis, this can already eliminate instrumentation e.g. on iteration variables
of tight loops. Then, we compile and link the instrumented LLVM intermediate
code (.bc) into a binary file (a.out). The instrumentation should hence be easy
to integrate into existing build-setups.

Secondly, we copy the binary to the system under observation (enclustra)
where we will later run it. The mkDR-script instantiates a TeSSLa specification
template with the memory addresses and mutexes to be observed, based on
the names of global variables. Expert users have the option of more fine-grained
control on the instantiation, e.g., to monitor dynamically allocated memory. The
specification is tailored to each program; thus, it should be regenerated from the
template every time the application is recompiled. The instantiated specification
is then split into two halves, as its size exceeds the currently available number of
eight EPUs on the prototype hardware. The first half hw.tessla filters the high
event rate stream of observations on the FPGA. It is translated by the epu-
compiler into a configuration file (epu_cfg.txt), and then uploaded to the FPGA
by cedar_config. The second half sw.tessla receives the output of the first stage,
and does the final processing on a stream that now has a lower event rate in the
TeSSLa interpreter.

Then, we run the binary file, which will automatically start sending trace data
to the FPGA. The epu-output tool decodes the FPGA output into a TeSSLa event
stream. Note that the behaviour of the application is independent of whether
the COEMS FPGA is actually connected or not. If not, trace data is silently
discarded, but does not affect the timing of the application.

Finally, we analyse this trace with the second part of the TeSSLa specifica-
tion (sw.tessla) with the TeSSLa interpreter, which will emit race warnings if
necessary. Our data race specification uses mostly data trace events, since we
require the addresses of memory and locks, except for a control flow event when
pthread_create is called and to signal termination of program under test.

In addition to the online (hardware-based) monitoring analysis with the
COEMS trace box, the COEMS framework also supports offline (software-based)
analysis of execution traces in a personal computer. In the case of software-based
analysis, the user only needs the TeSSLa interpreter and the COEMS lock in-
strumentation tool. Most of the initial steps in Figure 1.2 such as the LLVM
instrumentation or the instantiation of the TeSSLa template are similar for the
software-trace analysis. Instead of compiling the TeSSLa specification for the
EPUs, the software TeSSLa interpreter will now run the entire TeSSLa specifi-
cation for detecting data races on a locally generated software trace-file. Writing
the trace data into a file first or piping them into the TeSSLa interpreter has a
higher overhead than transmitting them via the AURORA interface.



3.3 Lockset-based Algorithm in TeSSLa

Conceptually, the algorithm tracks which set of locks is held at every memory
access. The current set is intersected with the previous set on a read or write
(for simplicity of presentation, we do not distinguish between read- and write
accesses, although only read/write and write/write-conflicts are relevant). This
defines the alphabet of observations of the algorithm: pairs of reads or writes with
a memory address and thread-identifier, and locking or unlocking operations with
lock- and thread-identifier. The algorithm initialises the lockset for each memory
address with the set containing all locks, and should the intersection ever yield
the empty set, then we can conclude that an inconsistent locking discipline has
been used. This means that one part of the execution uses no or disjoint locks
from another part of the execution when accessing this memory, which hence
gives rise to a potential data race if those executions are assumed to be possible
concurrently.

As we do not have dynamic memory available to maintain potentially un-
bounded sets in the TeSSLa-specification on the FPGA, we need to find a static
encoding. To achieve this, for each pair of memory location X and lock identifier
(also an address) L, we create a boolean stream protecting_X_with_L that is
initialised to true. The set of all these streams for a given X hence models the
lockset as a bit-vector. Note that updates are monotone, i.e., once a stream takes
the value false, it can no longer revert to true. If all these streams for a given X
carry false, we know that no common lock is protecting the current access, and
we emit a race warning on the error_X stream for that memory location. This
encoding means that we need to know the set of all memory locations and all
lock identifiers before we configure the FPGA, as we cannot declare new streams
dynamically.

On every memory access to X, we check if L is being held by the current
thread and update the current value if necessary. We track this through the
streams holding_L, which carry the identity of the thread currently holding this
lock, if any. Again, updating the value on these streams is trivial upon each
locking or unlocking operation.

1 in threadid: Events[Int]

2 in readaddr: Events[Int]

3 in writeaddr: Events[Int]

4 in mutexlockaddr: Events[Int]

5 in mutexunlockaddr: Events[Int]

6 @FunctionCall("__pthread_create_2_1")

7 in pcreateid: Events[Unit]

8 in line: Events[Int]

9 in dyn_base: Events[Int]

10 in dyn_lock: Events[Int]

Figure 1.3: Header of the TeSSLa specification, including all the incoming events from
the instrumented code.



1 def lock_0 := filter(mutexlockaddr ==1, mutexlockaddr ==1)
2 def unlock_0 := filter(mutexunlockaddr ==1, mutexunlockaddr ==1)
3 def lock_1 := filter(mutexlockaddr ==24808, mutexlockaddr

==24808)
4 def unlock_1 := filter(mutexunlockaddr ==24808, mutexunlockaddr

==24808)
5 def dyn_temp := 4 * (((dyn_lock >> 1) >> 1))
6 def slot := dyn_lock - dyn_temp
7 def dyn_lock_0 = filter(dyn_temp, slot == 0)
8 def lock_4 := filter(mutexlockaddr == dyn_lock_0, mutexlockaddr

== dyn_lock_0)
9 def unlock_4 := filter(mutexunlockaddr == dyn_lock_0,

mutexunlockaddr == dyn_lock_0)
10 def read_0 := filter(readaddr ==24532, readaddr ==24532)
11 def write_0 := filter(writeaddr ==24532, writeaddr ==24532)
12 def access_0 := merge(read_0,write_0)
13 def access_after_pc_0 := on(last(pcreateid,access_0),line)
14 def thread_accessing_0 := last(threadid*32768 + line,

access_after_pc_0)
15 def holding_0 := default(merge(last(threadid, lock_0), last(-1,

unlock_0)), -1)

16 def protecting_0_with_0 := detect_change(default(
thread_accessing_0/32768 == last(holding_0,
thread_accessing_0), true))

17 def error_0 := on(thread_accessing_0,!(protecting_0_with_0 ||
protecting_0_with_1 || protecting_0_with_2 ||
protecting_0_with_3 || protecting_0_with_4))

Figure 1.4: TeSSLa fragment, where lines 1–15 are from the hardware stage, while
lines 16–17 are from the software stage.

Figures 1.3–1.4 show an excerpt of the resulting TeSSLa specification. It has
been created for one dynamic lock and three static locks, and tracks accesses
to memory address 24532. Static locks are stored at memory addresses 24808,
24528 and 24560 (only lock 24808 is shown in Figure 1.4), while the memory
address of the dynamic lock is emitted at runtime. The static lock at address
1 is artificial and is used for the main-thread only. TeSSLa built-in stream op-
erations are emphasised. As input streams, we receive instrumented events on
mutexlockaddr, mutexunlockaddr, readaddr, writeaddr, threadid, dyn_base
and dyn_lock. The pcreateid event reduces false-positives by signalling to only
start observing memory accesses after additional threads have actually been cre-
ated. The annotation @FunctionCall indicates that this is a control flow-event
which is triggered by a function call, and not through instrumentation. The
symbol name corresponds to the function pthread_create from Linux’ system
library. To aid in debugging, the instrumentation also emits the current source
code line number with each event.

Currently, due to the limited availability of EPUs on the prototype FPGA,
the specification is actually split into two halves, with the fast address-filtering
done on hardware, and only processing the derived information in the coloured
lines 16–17 as a post-processing stage in the interpreter. The multiplication and



division are binary left- and right-shifts that reduce the amount of events emitted
from the hardware stage to the software stage by encoding the line number of an
instruction with its event in the unused lower 16 bits, and encoding dynamically
allocated locks (see below).

4 Case study

In this section, we illustrate our approach with a case study, where we simulate
a set of bankers sending random amounts of money from one bank account
to another [20]. The bankers lock the source and target bank accounts before
committing a transaction, so that transfers are protected against data races
and deadlocks. We introduce a special case where one banker (id 0) forgets one
lock operation and hence, data may get corrupted. Figure 1.5 shows the core of
the example with locks and memory accesses. The complete example, including
source code, execution traces and TeSSLa reports, is available at [1].

1 /* get an exclusive lock on both balances before
2 updating (there’s a problem with this, see below) */
3 pthread_mutex_lock(transaction_mtx);
4 if( !DATA_RACE || (DATA_RACE & (id != 0)) ){
5 /* In case of DATA_RACE flag is ’on’, the thread_id 0
6 forgets to lock the accts[from].mtx mutex */
7 pthread_mutex_lock(&accts[from].mtx);
8 }
9 pthread_mutex_lock(&accts[to].mtx);

10 pthread_mutex_unlock(transaction_mtx);
11 /* Do the actual transfer. */
12 if (accts[from].balance > 0) {
13 payment = 1 + rand_range(accts[from].balance);
14 accts[from].balance -= payment;
15

16 pthread_mutex_unlock(&accts[to].mtx);
17 if( !DATA_RACE || (DATA_RACE & (id != 0)) ){
18 /* For symmetry -- don’t unlock if racy: */
19 pthread_mutex_unlock(&accts[from].mtx);
20 }

Figure 1.5: Example of incorrect locking

TeSSLa specification. We instantiate the corresponding COEMS data race
template (see [2] for all files used here) using the mkDR-script and the instru-
mented binary, and the names of all mutexes (accts[0].mtx, . . . ) and shared
variables (accts[0].balance, . . . ) as parameters.

The size of the TeSSLa specification for the Eraser algorithm is proportional
to the number of locks and shared memory addresses to monitor, and indepen-



dant from the number of threads. More precisely, the first half hw.tessla grows
linearly with respect to both variables.

For each lock L, the TeSSLa specification includes the lock/unlock pairs and
holding_L (plus an additional stream in the case of dynamic locks). For each
memory address X, the TeSSLa specification includes a block of five streams
(i.e., read_X . . . thread_accessing_X). Hence, 3L + 5X streams are generated
for the first half, where L is the number of locks and X the number of memory
addresses. Regarding the second half, the sw.tessla file, the number of streams
grows proportionally to (X+1)*L (i.e., protecting_X_with_L plus error_X).

As the TeSSLa specification is a text file and the size is constrained by the
previous parameters, the instantiation of the TeSSLa template for the data race
checking is done almost instantaneously, and compilation of the largest specifi-
cation for the hardware stage into the FPGA completes in around 5 minutes (see
below for detailed measurements) including uploading the configuration to the
FPGA, hence a big advantage over approaches that need to translate via VHDL.

Working with dynamic allocations. As we have noted above, the addresses
of memory locations and locks need to be available at compile-time of the spec-
ification. This limits our approach to statically declared resources in a program.
However, it fits our application domain in embedded systems for these SoCs,
where development may follow the MISRA guidelines [24], which strongly rec-
ommends against using e.g., malloc. For more flexibility, we have developed
an extension where developers can at runtime send the location of dynamically
allocated memory or locks through additional instrumentation.

Conceptually, we parametrise the specification with a placeholder for the
argument of the comparison operations above. A write to a particular stream
will make the specification use that value in addition to any hard-coded values.
A programmer can use the instrumentation to send the address of a (potentially
dynamically allocated) lock to the monitor using the function
emit_dynamic_lock_event(const short slot,

const pthread_mutex_t* addr).
We can encode potentially multiple “slots” into the lower four bits, since these

pointers are suitably aligned (see lines 5–8 in Figure 1.4). Similarly, the devel-
oper can register the base address of dynamically allocated storage for monitor-
ing through emit_dynamic_addr_event(const uintptr_t base). The range of
bytes to monitor is given when instantiating the specification.

Due to the size limitation on the FPGA, we currently can only provide this
filter for a limited number additional memory addresses or locks. As the number
of possible EPUs on the external FPGA increases, these numbers for dynamic al-
locations should also go up. Note that the number of statically encoded resources
underlies different resource constraints, and we report the general numbers below
in the performance characteristics.

Running the experiment. The epu-compiler translates the first part (hw.tessla)
into a configuration file (epu_cfg.txt), and then uploads it via USB to the FPGA
through cedar_config. The compilation time depends on the number of streams



Fig. 1.6: EPU compilation time for hw.tessla

in the TeSSLa specification and, hence, the number of locks and shared memory
addresses in the C code. Figure 1.6 shows the time required for compiling the
TeSSLa specification into the binary configuration format for different scenarios
of the bankers example in terms of the number of locks and memory locations.
As this involves allocating streams and their operations to the available on-board
resources of the FPGA, the following outcomes are possible: (i) successful config-
uration, (ii) aborted because FPGA-resources have been exceeded, (iii) timeout.
Due to the combinatorial growth of the specification, we see that compilation
times go up towards the timeout that we have chosen (300 seconds) for grow-
ing numbers of locks/memory locations. After that we reach ranges where it
is quickly obvious for the compiler that a configuration cannot be fit onto the
FPGA. As compilation is a resource-allocation problem that involves constraint-
solving, this slope for compilation time is to be expected: the closer a specification
gets to the available resource limits, the harder the constraint-solver has to try
searching for a suitable allocation.

After compilation, uploading a new binary configuration into the FPGA after
compilation is done in between 3 to 7 seconds.

The second half of the specification, sw.tessla, receives the output of the first
stage, and does the final processing on a stream that now has a lower event rate
in the TeSSLa interpreter. Naturally, the interpreter has some startup-cost that
also scales with the size of the specification due to parsing and type-checking.
Figure 1.7 shows a similar slope as for the EPU compilation, where startup-time
goes up towards the upper right corner, where we also reach up to 300 seconds.

Since compilation and start-up of the interpreter can be done in parallel and
hence lead to the envisioned advantage of quick reconfiguration over approaches
going via VHDL.

The COEMS trace box currently supports TeSSLa specifications in the range
of hundreds to a few thousands of streams depending on the complexity in the
logic of the TeSSLa streams. For our race checker this translates into checking



Fig. 1.7: TeSSLa interpreter startup time for sw.tessla

between around 40 memory locations with 100 locks and 90 memory locations
with 20 locks.

105923234788: holding_1 = 21653
105923846011: holding_3 = 21653
105923949854: holding_1 = -1
105924265689: holding_1 = 21525
105924621853: thread_accessing_1 = 709525559
105924716727: thread_accessing_1 = 709525559
105924764106: holding_2 = 21525
105924822656: holding_3 = -1
105924872330: holding_1 = -1
105925531285: thread_accessing_0 = 705331255
105925621081: thread_accessing_0 = 705331255
105925674037: holding_1 = 21653
105925731366: holding_2 = -1
105926266497: holding_2 = 21653

Figure 1.8: Events emitted by the COEMS trace box after processing the hardware
half of the TeSSLa specification

105847960743: error_0_in_line = 52
105847960743: error_0 = true
105848052196: error_0_in_line = 53
105848052196: error_0 = true
105848316093: error_0_in_line = 54
105848316093: error_0 = true

Figure 1.9: Race report obtained by processing Figure 1.8 including debug information

When we run our C code with the DATA_RACE flag on, the first stage
produces the output stream shown in Figure 1.8. This stream contains summaries
on which thread is holding which lock and accessing any of the selected memory



Fig. 1.11: Overhead introduced by the instrumentation.

addresses. We then pipe those events into the TeSSLa interpreter with the other
half of the specification.

1 for (i = 0; i < N_THREADS; i++)
2 pthread_join(ts[i], NULL);
3 for (total = 0, i = 0; i < N_ACCOUNTS; i++)
4 total += accts[i].balance;
5 printf("Total money in system: %ld\n", total);

Figure 1.10: Example of false positive after threads have terminated

The TeSSLa interpreter correctly reports (Figure 1.9) the data race errors
on the error_X_in_line streams, triggered by the accesses in lines 12–15 in
Figure 1.5 (corresponding to lines 52, 53 and 54 in the source code). These
data race errors are caused by the missing lock of mutex accts[from].mtx by
thread id_0. Our tool also detects a false positive in line 4 in Figure 1.10. that
happens when the main() thread accesses the balance in each account once
all banker-threads have terminated. The barrier introduced by pthread_join()
cannot be detected by our lockset-based approach, as it does not actually keep
track of the threads in use by the program.

Performance. We have so far only obtained partial performance measure-
ments, as currently our instrumentation needs a global lock to serialize trans-
mission of three events per observation to the FPGA. We transmit the thread-id,
the address of the relevant datum, and the line number in the source code to aid
in debugging. The lock guards against interleaving between the two cores and
context-switches on the same core. This leads to a penalty factor of about 20
in execution time over the original uninstrumented code. At least 50% of that
overhead can be attributed to the lock, effectively linearising the above example.

Figure 1.11 shows the overhead in percent of the instrumented version against
the original code. To simulate other workloads with less contention (i.e., larger
regions where no race checking is required), we have introduced a configurable
usleep() instruction between both accesses to the bank accounts. The graph



shows that the high overhead is due to the tight loop accessing the accounts,
and naturally becomes less prominent as contention goes down.

Another factor affecting overhead is that our instrumentation has not yet
been optimised and shares code with the software-tracing for prototyping, which
among other things means that even when doing hardware-tracing, additional
arguments are passed on the stack that the hardware-tracing does not actually
consume. Future improvements in the low level runtime support for data trace
events may also bring better performance by allowing larger payloads in a single
message, which would allow our instrumentation to avoid the explicit global lock.

We have not yet devised a setup that can measure the performance of eval-
uating the specification, apart from considerations based purely on the use of
EPUs and clock rate of the FPGA: our measurements are currently completely
dominated by the USB-interface overhead of polling the output events from the
FPGA, and do not allow to precisely factor out the processing time. Addition-
ally, intermediate output from the FPGA to the interpreter is transferred in a
verbose ASCII-format.

As for memory consumption, our instrumentation does not need to maintain
any data structures, and only passes primitive values such as pointer addresses
that are already computed and presumably available in registers anyway.

5 Conclusion

In this paper, we followed the path initiated by our guest of honor in the direction
of practical approaches for runtime verification. More in detail, we have shown
how to use the COEMS technology, a novel platform for online monitoring of
multicore systems, and contextualized it to check for potential data races in
applications that use locks for synchronisation, one of our guest’s research areas.

Through the COEMS platform, developers can observe the control-flow in
a digital twin of their application under test on an embedded systems without
affecting the behaviour. Additional instrumentation of the application can send
more detailed data at negligible cost.

We presented an outline on how the lockset-based Eraser algorithm can be
encoded in the TeSSLa-specification language for a given application. This spec-
ification is then compiled onto the external COEMS FPGA and uses the data-
and control flow trace emitted from the system under test to observe a specified
set of locks and memory locations. As the full specification exceeds the capabil-
ities (in terms of size) of the available prototype, we combine a hardware- and a
software stage to report on potential races.

Races may still hide in parts of the code that have not been executed, and
our checker may report false positives, which is also a general limitation of tools
based on the Eraser algorithm. On the positive side, the COEMS hardware race
checker does not negatively affect the performance of the application, so potential
users need to carefully assess this tradeoff and structure their code to minimize
warnings.



The data race analysis uses the LLVM compiler framework, and currently
works with threads using pthread_mutex_lock/unlock operations for pro-
tecting the shared variables. For other ways of synchronization, e.g., through
compare-and-swap instructions, or baremetal execution, we do not provide in-
strumentation and a template yet, but they can easily be adapted from our code.

A practical limitation of the data trace is the currently restricted value-
range of the trace messages to 16 bits, which complicates e.g. the use of pointers
in the trace. As currently we need multiple messages per event to transmit
additional data such as debugging information (the current line number) and
the thread identifier, we need to serialize use of the trace bus. This additional
locking that is introduced through the instrumentation affects the performance
of the application under test, whereas transmitting a single datum in principle
has negligible execution overhead.

Our unoptimised performance measurements already puts us in a competitive
range with other approaches such as ThreadSanitizer, and we have the advantage
that COEMS-based tracing can remain enabled in production. Future develop-
ments of the COEMS platform beyond its current prototype will make splitting
the specification and post-processing in the interpreter superfluous: 18 (instead
of the currently 8) available EPUs will already allow for setups without dynamic
values to be handled completely in hardware. In the meantime, we are improv-
ing the instrumentation to produce effect summaries for basic blocks of code
instead of instrumenting single instructions, which should decrease the overhead
especially for tight loops.

We are also preparing additional concurrency patterns that monitor actual
deadlocks and so-called lock-order-reversal.
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