

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

BACHELOR’S THESIS
Live Video

Steffen Lid Gaustad

Nicolas M. Mjøs

Information Technology & Computing
Department of Computer science, Electrical engineering, and
Mathematical sciences
Supervisor Sven-Olai Høyland
04.06.2021

I confirm that the work is self-prepared and that references/source references to all sources used in the work are provided, cf.
Regulation relating to academic studies and examinations at the Western Norway University of Applied Sciences (HVL), § 10.

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

 TITTELSIDE FOR HOVEDPROSJEKT

Rapportens tittel: Dato:

04.06.2021 Live Video

Forfatter(e): Antall sider u/vedlegg: 23

Steffen Lid Gaustad og Nicolas Marchant Mjøs Antall sider vedlegg: 3

Studieretning:

Informasjonsteknologi og Dataingeniør

Github Repository:

https://github.com/vizstory/livevideo

Kontaktperson ved studieretning:

Sven-Olai Høyland

Gradering: Ingen

Merknader:

Oppdragsgiver:

 Vizrt

Oppdragsgivers referanse:

Mikal H Henriksen

Oppdragsgivers kontaktperson:

Simen Nytun

Telefon:

+47 48144275

Sammendrag:

Bachelorprosjektet går ut på å lage en prototype som gjør det enkelt å sende direkte video inn til ett TV studio fra

smartenhet over mobilt bredbånd.

Summary:

The Bachelor project aims to make a prototype that makes it easy to send live video to a TV studio from a smart device over

mobile broadband.

Stikkord:

SRT

Streaming

Media

Høgskulen på Vestlandet, Fakultet for ingeniør- og naturvitskap

Postadresse: Postboks 7030, 5020 BERGEN Besøksadresse: Inndalsveien 28, Bergen

Tlf. 55 58 75 00 Fax 55 58 77 90 E-post: post@hvl.no Hjemmeside: http://www.hvl.no

https://github.com/vizstory/livevideo
http://www.hvl.no/

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

PREFACE

We would like to thank Vizrt for providing an interesting challenge as well as guidance,

software and particularly Simen Nytun our development point of contact.

The rest of the team has also been integral to the development of the project:

Mikal H Henriksen - Project Manager

Øyvind Neuman - Backend development resource until end of March 2021.

Gisle Sælensminde - Transcoding and protocols.

Knut Arvidsson - Coordination and infrastructure.

Roger Rebbestad Sætereng - Legal issues, contracts, and accounting.

We are also grateful for the guidance provided by Sven-Olai Høyland, our HVL

supervisor.

Steffen and Nicolas

 Faculty of engineering and science

 Department of Computer Science, Electrical Engineering

 and Mathematical Sciences

TABLE OF CONTENT

 ... 1

PREFACE ... 3

1 INTRODUCTION .. 1

1.1 MOTIVATION AND GOAL ... 1

1.2 CONTEXT .. 1

1.3 LIMITATIONS .. 1

1.4 RESOURCES .. 2

2 PROJECT DESCRIPTION ... 3

2.1 PRACTICAL BACKGROUND .. 3

2.1.1 Project owner ... 3

2.1.2 Previous work... 3

2.1.3 Initial requirements specification ... 4

2.1.4 Initial solution idea .. 4

3 PROJECT DESIGN ... 5

3.1 POSSIBLE APPROACHES ... 5

3.1.1 Nimble Streamer as a media tunnelling server .. 5

3.1.2 Building our own media tunnelling server with SRT .. 6

3.1.3 Building our own media tunnelling server with NGINX .. 6

3.1.4 Discussion of alternative approaches. ... 6

3.2 SPECIFICATION ... 7

3.3 SELECTION OF TOOLS AND PROGRAMMING LANGUAGES ... 7

3.3.1 Encouraged by project owner .. 7

3.3.2 Chosen due to familiarity on student team ... 8

3.3.3 Project specific tools .. 8

3.4 PROJECT DEVELOPMENT METHOD ... 8

3.4.1 Development method .. 8

3.4.2 Project Plan ... 9

3.4.3 Risk management ... 9

3.5 EVALUATION METHOD .. 10

3.5.1 LIVE VIDEO TEST PROCEDURE .. 10

3.5.1.1 NETWORK TEST PROCEDURE: .. 11

4 DESIGN AND CREATION ... 12

4.1 REDESIGNING THE FRONTEND AND BACKEND ... 12

4.2 PROJECT CONFIGURATION .. 12

4.3 THE BACKEND SERVER .. 13

4.3.1 StreamManager and API .. 13

4.3.2 Handling SLT ... 13

4.3.3 Handling the coder connection .. 14

4.4 FRONTEND: ... 14

5 EVALUATION ... 16

5.1 EVALUATION METHOD .. 16

5.2 EVALUATION RESULTS ... 16

5.2.1 Manual testing .. 16

5.2.2 Unit testing ... 16

5.2.3 Feedback and “ease of use” evaluation ... 17

6 RESULTS .. 18

6.1 SOLVED PROBLEMS ... 18

6.2 UNSOLVED PROBLEMS .. 18

7 DISCUSSION .. 19

7.1 APPROACHES AND CONSEQUENCES .. 19

7.1.1 Streaming protocol ... 19

7.1.2 Development language and environment ... 19

7.1.3 Stream forwarding ... 19

7.1.4 Transcoding.. 19

7.1.5 Design .. 20

8 CONCLUSIONS AND FURTHER WORK ... 21

8.1 GOALS .. 21

8.2 FURTHER WORK ... 21

9 REFERENCES ... 22

10 APPENDIX ... 24

10.1 RISK LIST ... 24

10.2 GANTT DIAGRAM ... 24

10.3 USER MANUAL ... 24

10.3.1 Setup .. 24

10.3.2 Usage ... 24

10.3.3 Configuration .. 25

10.3.4 Using Frontend .. 25

StreamStartPanel .. 25

StreamRow ... 25

10.4 CLASS DIAGRAMS .. 26

10.4.1 Frontend .. 26

10.4.2 Backend ... 26

1

1 INTRODUCTION

1.1 Motivation and goal

The motivation for this project is to make it easier, quicker and cheaper to broadcast

remotely. The desired result is to make content producers more independent and flexible,

as well as reducing the time it takes to release a story. If people had a quick and simple

way to do video streaming from smart devices, they would be able to publish stories

quicker which is a huge advantage in today’s fast-paced social media world.

The goal is to make a product with which customers will be able to start broadcasting live

video from anywhere, with nothing but a smart device like a phone and a 4G internet

connection. The stream will be routed into a production studio where editors can prepare

the content and publish it as quickly as possible.

1.2 Context

In today's media landscape being quick to report on current events is important. Providing

a solution for media institutions to quickly ingest new content, manage it, produce it and

then broadcast to several platforms in an efficient manner can be a game-changer.

Currently, the project owner provides a video software suite that can ingest local content,

produce, manage and broadcast to fit several different workflows. The software suite lacks

a user-friendly way for journalist to provide instant live content from remote locations to

be used in these workflows.

TV studios currently spend a lot of time and resources managing remote broadcasts. In

order to broadcast video from a remote location they require a lot of equipment and

personnel to set it up and operate it. Due to the explosion of social media, often viewed on

small screens like phones and tablets, requirements for production quality are lower than

they used to be. Furthermore, smart devices have better cameras and more powerful

hardware than they used to have. For these reasons, the focus has shifted towards release

time and content rather than quality. This makes streaming an attractive option as it allows

extremely quick release time with acceptable compromises on quality.

1.3 Limitations

The primary limitations of this project are time and knowledge. The technology available

makes a solution possible. However, arriving at a design is not simple. The most important

limiting factors are as follows.

The SRT (Secure Reliable Transport) protocol uses UDP (Haivision, 2021) which means it

is not possible to transmit SRT streams from browsers. This is caused by the fact that

browsers do not allow sending UDP packets (Fiedler, 2017). A consequence of this is that

relying on SRT also means that a native application is required on the client-side.

Another limiting factor is that the video stream will end up on a private network. This has

implications for how the system is built, as it means the data stream cannot be transmitted

directly to its destination. Rather, it needs to go through some sort of gateway into the

2

private network. For this reason, a middleman is required between the public Internet and a

customer’s private network.

Finally, time and knowledge are large factors. There are strict deadlines, meaning it is

important to plan well and be conservative when deciding which features to prioritize. This

matter is made worse by the research requirements, and much time has been spent learning

about tools and testing various solutions.

1.4 Resources

The most important and unique resource for this project is the Project Owner’s research

team. They have invaluable experience with the technology this project revolves around

and are also supplying their own products for use in the project. Vizrt’s transcoder

software is going to be an important part of the project and the team can provide guidance

through a Microsoft Teams channel as well as video meetings.

Beyond this, the Internet is an extremely valuable resource. All tools used in this project

have extensive documentation available online, and this is used frequently during the

research and development phases of the project.

3

2 PROJECT DESCRIPTION

2.1 Practical background

2.1.1 Project owner

The project owner is Vizrt. Vizrt is a large Norwegian company founded in 1997. It has its

headquarters in Bergen and is currently operating 30 offices worldwide with over 700

employees. (Vizrt, 2021) A quote has been selected from their website, to describe what

they do and who their customers are:

“Vizrt is the world’s leading provider of visual storytelling tools for

media content creators in the broadcast, sports, digital and esports

industries

Vizrt offers market-defining software-based solutions for real-time 3D

graphics, video playout, studio automation, sports analysis, media asset

management, and journalist story tools.

Vizrt’s promise is to master complexity and maximise creativity.

More than three billion people watch stories told by Vizrt customers

everyday including from media companies such as CNN, CBS, NBC, Fox,

BBC, BSkyB, Sky Sports, Al Jazeera, NDR, ZDF, Network 18, Tencent,

and many more.

Vizrt is part of the Vizrt Group along with its sister brands, NewTek and

NDI. Vizrt follows the single purpose of this Group; more stories, better

told.”

(Vizrt, 2021)

The project owner has provided the project idea, the transcoder used in the project, the

time of their colleagues and would under normal circumstances have provided office space

as well. However, due to the Covid-19 pandemic it has been necessary to work from home

and use video meetings for communication.

2.1.2 Previous work

Secure Reliable Transport

SRT (Secure Reliable Transport) is a relatively new protocol, developed by Haivision with

the goal of providing Secure and Reliable Transport of data. It is also highly efficient.

SRT Reference Implementation

The Haivision SRT reference implementation (Haivision, 2021) is used for secure and

reliable media streaming over the internet. While it is possible to use the library to develop

entirely custom solutions, it was found that an example tool named srt-live-transmit.cpp

included all the necessary functionality.

4

Web-RTC

Web-RTC (Real-time communication for the web) is a widely supported, open standard

for data transmission in browsers. (Google, 2021)

Coder

Coder is a proprietary transcoding software developed and maintained by Vizrt. It exposes

an API to allow control of its transcoding jobs and contains built-in documentation. This

documentation does not appear to be publicly available and as such is not included as a

source in this report, even though it has been used extensively during the development

phase of the project.

Network Device Interface

NDI (Network Device Interface) is a standard developed by NewTek that allows ultra-low

latency video on existing IP video networks (NewTek, 2021). This is already in use among

the Project Owner’s clients and the reason for using Coder – to transcode video signals

from SRT to NDI.

2.1.3 Initial requirements specification

The primary requirements set forth by the project owner are as follows:

• Secure and reliable high-definition streaming

• Mobile device prioritization

• Acceptable latency and quality on lower bandwidth unstable connection(3G)

The essence of this project is to develop a solution that enables live streaming of video

from a mobile source such as a smartphone to a server on a private network running NDI.

Due to the requirement of connecting to a private network, it is necessary to develop a

“middle-man” server that can serve as a bridge between the internet and the private

network. It is also necessary to transcode the video stream from some other streaming

protocol to NDI because the NDI protocol is not suited for streaming over unreliable

networks. Transcoding will be handled by Coder running on the private network.

2.1.4 Initial solution idea

The chosen solution is to develop a server that can receive and forward SRT data streams.

The server will forward the received streams to a transcoding server on a private network.

A stream can be initiated from any software capable of producing SRT streams, it will then

go via this server to Coder where it is converted to NDI and published on a private NDI

system.

The primary goal of this solution is to serve as a prototype, demonstrating how easy it can

be to stream video from a smartphone. The design of the application will focus on

automating as many steps of the process as possible, with little regard to things like

accessibility or look and feel.

5

3 PROJECT DESIGN

3.1 Possible approaches

Multiple approaches have been considered. One major consideration is which streaming

protocol to use. The two main contenders are Web-RTC and SRT. Web-RTC is somewhat

old, well established and browser-based which is a big benefit for this use case. However,

it is also less reliable and less capable of dealing with bandwidth issues. This is where SRT

shines. It promises better quality, security, and reliability with the caveat that SRT uses the

UDP protocol which is not supported by modern browsers due to security concerns. This

means that in order to use SRT, the user needs to install a native application on the

streaming device, as opposed to streaming through a browser.

One possible solution is to use Web-RTC and have the entire project be browser-based.

The user would log into a website and initiate their stream directly from that website. This

solution seems fairly elegant and simple but would be bound by Web-RTC’s limitations.

Another possible solution is to use SRT along with a native application. This application

could be an existing third-party application, or it could be custom developed as part of the

solution. Due to the time constraints, it seems more realistic to use a third-party

application. For this, Larix Broadcaster (Softvelum, 2021) seems to fit the use case very

well. This means the user needs to have either an Android or iOS device for the prototype.

Since mobile devices are a priority and Android together with iOS have above 95% of the

market share (S. O'Dea, 2021) this was not an issue for the employer.

Finally, the client device needs to have information on where to send the stream. If the

streaming client is running in the browser, this would be simple as the information should

be available. If the client is a native application, the info needs to be passed to it somehow.

Larix broadcaster allows the opening of URI shortcuts and even provides a tool to make

them; Larix Grove (Softvelum, 2021). To provide working URIs, the web application will

have to generate them on the fly.

3.1.1 Nimble Streamer as a media tunnelling server

Nimble Streamer (Softvelum, 2021) advertises as a freeware media server supporting SRT

among a large number of streaming protocols. Configurable by WMSPanel, a control web

panel sold by Softvelum, the capability of the software seems to align with the needs of the

solution. Using the WMSPanel API (Softvelum, 2021) most of the video streaming

capabilities of the solution could be handled. However, since it is a paid service, this is not

a good solution for the project owner.

Softvelum also provides what they call a native API for Nimble Streamer (Softvelum,

2021) which seems like it should be sufficient. This API unfortunately does not have full

Nimble Streamer functionality the way the WMSPanel API has. It is possible to reload the

config files (Softvelum, 2021) through the API. A possible solution would then be to write

to the config files with a local application and reload them with the API call. This would

require reverse engineering of the config files which are not documented and as such has

not been considered a viable option.

6

3.1.2 Building our own media tunnelling server with SRT

Multiple approaches to using the SRT library indirectly have been explored. There is a

Node.js library named @eyevinn/srt (Eyevinn, 2021) by a Swedish company named

Eyevinn which looked promising but proved challenging to install.

Another library that was considered is SrtSharp (Cinegy GmbH, 2021) by Cinegy GmbH.

This library was eliminated due to being incomplete and very poorly documented.

The last solution is to use the SRT library directly. For this solution, there are two possible

approaches: Create a C++ program that uses the library or create a binding to allow usage

of the C++ library from a different language such as C#. There are also example programs

provided in the library which may be suitable to use directly or modify. A working proof

of concept using one of these example programs has been successfully tested, making this

seem like a promising approach.

3.1.3 Building our own media tunnelling server with NGINX

“NGINX is open-source software for web serving, reverse proxying, caching, load

balancing, media streaming, and more” (NGINX, 2021)

Using NGINX gives access to RTMP (NGINX, 2021) a module and a lot of

documentation to build a capable media server. It even features an API module (NGINX,

2021) which would make building the web application faster. Unfortunately, NGINX does

not yet support SRT which is the preferred protocol. Developing a custom SRT

implementation in NGINX is possible. However, until the SRT portion is solved becoming

familiarized with NGINX is a big task.

3.1.4 Discussion of alternative approaches.

Considering that this product is intended for the media, video quality and reliability are

important factors. Security is also a high priority, and for these reasons, the SRT streaming

protocol is preferred. Being able to support other protocols could also be beneficial, but

this would take more time and complicate the project as well as the user experience.

A lot of time was spent exploring the option of using Nimble Streamer. In the end, it was

decided that it does not provide sufficient alternatives for control without the added cost of

WMSPanel and it is not desirable to be reliant on a paid third-party program so Nimble is

no longer an option.

The option of using Node.js with the @eyevinn/srt library could prove beneficial. It would

allow usage of the vast number of Node.js modules available, allowing quick and

convenient development. Research on this was stopped due to technical issues but it may

be explored further in the future.

A proof of concept was constructed using Larix Broadcaster on a smartphone, the srt-live-

transmit.cpp app included in the SRT library, Vizrt’s transcoder and NDI. Video streaming

was successfully performed from a smartphone to the NDI system. This leaves the option

of using the SRT library directly with an advantage, as it is proven to work. Another

option has also been considered – using the srt-live-transmit.cpp application directly

through a command line is possible and may be the most ideal solution for the prototype.

This seems like a fairly good solution as it keeps the responsibilities separate, allowing the

7

project owner or someone else to easily implement their own SRT module or otherwise

modify the application.

3.2 Specification

Figure 1: Initial design

The above diagram illustrates the initial plan for the project. There will be a web

application managing the system. When a user wants to start a stream, they will visit the

web application and perform some guided actions to initiate streaming. The web

application will provide the necessary data such as URI and possibly authentication for the

client application (Larix). It will contact the backend server to set up a tunnel, and

simultaneously contact Vizrt Coder to start a transcoding job. The user can now start

streaming and the stream will be made available through the NDI system.

3.3 Selection of tools and programming languages

This section contains an overview of some of the more important tools used for this project

as well as a brief explanation of what they are used for.

3.3.1 Encouraged by project owner

These tools were chosen in part because Vizrt already uses them in their workflow.

• Git/GitHub for version control and sharing.

• Microsoft Teams for communication.

• NDI for testing.

• Viz One Coder for transcoding.

8

3.3.2 Chosen due to familiarity on student team

These tools were chosen due to a mix of previous experience, advice, and a desire to work

with them.

• Postman for network diagnostics and testing.

• TypeScript as the primary programming language.

• Node.js with express.js for the backend.

• React for the frontend, with Material-UI to provide premade components.

3.3.3 Project specific tools

These tools are an integral part of the solution.

• LibSRT for the srt-live-transmit application.

A universal data transport tool intended to transport data from SRT to other mediums as

well as SRT to another SRT. This is described as a sample tool, but it is enough for our

solution.

• Larix Broadcaster for client streaming.

Client for iOS or Android with support for many streaming protocols and recording

simultaneously.

3.4 Project development method

3.4.1 Development method

The chosen development method for this project is AGILE. The AGILE method consists

of working relatively short sprints with a perpetually working product and working closely

with the customer or in this case project owner. Small incremental goals are set frequently,

and the focus is on adding small bits of functionality without large sweeping changes.

In the beginning, focus is on the key bits of functionality that the solution needs, with the

hope of adding stretch goal functionality later in the development cycle. Since only two

students working on the solution, it is important to manage expectations and plan

conservatively. Planning too many features may make it difficult to prioritize.

It also seems unnecessary to make a very detailed plan. There are a lot of unknown factors,

so it is important to have backup ideas, but for a prototype it is difficult to plan well as the

team has little experience with most of the tools used. For this reason, the approach is a

relaxed AGILE-like workflow where a working copy of the product is maintained in the

main branch while features are added in new branches and only merged once they have

been thoroughly tested. This ensures that the project is kept in working order while it is

under development.

9

3.4.2 Project Plan

Figure 2: Gantt Diagram

Planning with project owner

Fleshing out the project itself and discussing various approaches etc.

Research

Finding potential new approaches and learning more about chosen approaches.

Prototyping

Testing various approaches and evaluating which ones to pursue further.

Development

Picking a solution and making it work.

Testing and collaboration with project owner

Testing the product and making sure the project owner is happy with it.

Wrap-up

Taking some time to finish everything up so that the project is well documented and

potentially useful to the project owner or someone else in the future.

3.4.3 Risk management

Some of the initial values were adjusted as we gained more knowledge about streaming

and Vizrt’s Coder.

10

Risk

Likelihood

(1-5)

Severity

(1-5)

Risk

Level

(1-25)

Management

Not enough knowledge

about streaming protocols.

4→2 5 20→10 Use resource channels, public forums, Vizrt

advisors, School advisors.

Streaming solution is not

stable enough.

4 3 12 Further testing of different resolutions,

framerates, audio bitrates etc.

The solution does not

integrate well with Vizrt’s

workflow.

4→2 3 12→6 Keep up communication with Vizrt, early

prototypes will help visualize solution between

team members.

Solution does not handle

firewalls and port traversal

well.

3→2 4 12→8 Use resource channels, public forums, Vizrt

advisors, School advisors.

Tools used in solution are

revealed to not be sufficient.

4→2 5 20→10 Re-evaluate with team alternate tools we can

use, discuss with Vizrt.

Team is affected by illness

(Covid-19)

2 4 8 Follow health protocols from state/school.

Manage time well to prepare.

(Table 1: Initial Risk 12.03.2021, Adjusted Risk 18.04.2021, the lower the number the better)

3.5 Evaluation method

Project owner has specified that internal testing of functionality is sufficient for the

prototype. Any further testing is out of the scope of the project. Internal testing will

include testing with the project owner, as well as a test procedure intended to ensure that

testing remains consistent and covers all functionality.

3.5.1 LIVE VIDEO TEST PROCEDURE

In order to ensure that all implemented features are working and continue working

properly through various changes, a formalized test procedure has been developed. This

procedure details the steps necessary for testing, both from the perspective of the dev team

and from the perspective of the tester. The intention is to document the steps required for

preparing a test, as well as the steps required to sufficiently test all features. This is to

11

ensure that all features are sufficiently tested after changes have been implemented, and

safeguards against human error and similar issues.

PREPARATION DEV TEAM:

Start application

Create a few streams

PREPARATION TESTER:

Install Larix

PROCEDURE:

1: Open website

Assertion: Existing streams should load quickly

2: Create new stream

Assertion: New stream should appear in streams list

3: Click QR-Code

Assertion: Code should enlarge on first click and shrink on second click.

4: Start streaming by clicking the Larix button, scanning the QR code or manually copying

the link into Larix and making sure the settings are correct.

Assertion: Stream should appear in Studio Monitor.

5: Stop streaming, edit the stream name, start streaming again

Assertion: Stream should appear again in Studio Monitor under an edited name.

3.5.1.1 NETWORK TEST PROCEDURE:

Check that changes made on one client is reflected across other clients.

12

4 DESIGN AND CREATION

4.1 Redesigning the frontend and backend

In the initial specification, the plan was to have the frontend communicate directly

with Coder. However, as the configuration was set up with a node express backend

and a node react frontend it was decided to change this approach. The initial idea

was that the SRT Transmit component should be as cleanly built as possible, only

being responsible for a single task. However, React runs in the client’s browser,

having a direct connection to Coder could present security concerns. Therefore, the

new specification has the SRT Transmit part only as a component of the backend

server with the rest of the network hidden from the frontend.

Figure 3: Final Solution design

4.2 Project configuration

The backend and frontend are both Node.js projects configured within the same repository

with a common proxy. Node also makes dependency easy as after the install command is

run anyone else using the repo simply must run “npm ci” to install them. The configuration

contains scripts allowing them to run separately or concurrently depending on which

features currently under testing.

13

4.3 The Backend Server

This section describes the component referred to as “the backend”. The backend is a

Node.js application that is responsible for all the actual functionality of the application.

Upon receiving messages from the frontend, it can start new instances of srt-live-transmit

and new jobs in Coder. It is also responsible for keeping track of active transmissions,

updating the frontend if there are changes in a transmission’s status either on the srt-live-

transmit side or the Coder side.

4.3.1 StreamManager and API

The Backend server consists of an express app which through URL paths, the

backend API, communicates with an instance of our StreamManager class. The

StreamManager is responsible for holding the state of the app, keeping a list of

StreamHandler instances which handle individual streams. The StreamManager uses

the config to give each Stream a public input port and a private coder port and

subscribes to eventdispatchers in the Streamhandler classes. Each StreamHandler

also holds an instance of SLTHandler and CoderHandler, the former handling the

precompiled SLT process and the latter handling communication with the Coder

server through the API.

Figure 4: Sequence diagram, starting a transmission.

4.3.2 Handling SLT

The SLTHandler class holds info on how to spawn the process and on

StartTransmission() creates the child process. To control the precompiled SRT-Live-

Transmit program we run an instance using Node’s “spawn” from “child_process”.

To monitor exceptions, crashes, or stream info we parse a combination of readable

streams on the spawned child process. For example, to monitor connection status we

use a readline interface on “stdout” to read line by line and look for relevant lines

like “SRT target connected”. Changing settings is done by killing the process and

14

running it again with the relevant parameters. Normally to run it in windows CMD

you would do something like:

path/srt-live-transmit -v
"srt://10.0.0.55:6754?mode=listener&latency=800&maxbw=200000"
srt://10.0.0.55:6756?mode=caller

Using node this becomes:

let slt = spawn(“path/srt-live-transmit”, ["-v",
“srt://10.0.0.55:6754?mode=listener&latency=800&maxbw=200000"
,”srt://10.0.0.55:6756?mode=caller”]);

As seen, spawn takes a path argument to the program being executed, then an array

of strings which are the arguments. The search parameters, everything behind the

question marks, are added to the URI’s to specify SRT settings. These settings are

specified in the SRT Live transmit documentation (Haivision, 2021).

Running an external program using user defined parameters could be considered a

security risk. Therefore, we chose to use Node’s “spawn” instead of something like

“Exec”. “Spawn” is not executed in a shell and is therefore not as vulnerable to

exploits and not susceptible to command injection. At most the chosen program will

run with unexpected behaviour.

4.3.3 Handling the coder connection

Coder has a rest API that uses XML, Atom syndication and their own specification

VCOS. Deciding to keep things simple we do not use the full Atom syndication

feed, only making specific GET request, lightly parameterized POST request and

parsing specific entries in the response using an XML utility. The parameters are

received from the frontend and must match profiles in Coder to work properly.

Coder jobs are created on Stream start and deleted on Stream stop, this may change

further down the line but for now, it keeps things simpler and avoids some Coder

quirks.

4.4 Frontend

The Frontend is built with React using Materials UI (Material-UI, 2021) as an asset

library. The focus of the UI was simplicity, as it is made for non-technical users.

Starting a stream requires one to simply enter a preferred stream name, and if needed

a specific streaming profile. Creating the stream automatically starts it and it can be

easily connected by tapping the Larix shortcut button if on a mobile phone, or by

scanning a QR code from an external device.

15

Another focus was responsiveness which is achieved by connecting a web socket so

that the backend sends Server-Side-Events whenever a change happens to any of the

streams. Any client device which has the website running with Javascript enabled

will be listening to “/SLTUpdate” as a “text/event-stream” and Event emitters are

setup up on the backend to send the list of updated streams in JSON form whenever

stream CRUD updates happen or the status changes.

16

5 EVALUATION

5.1 Evaluation method

The results of the project are evaluated through manual testing and meetings with the

project owner. For making sure the product is functional there is a procedure intended to

serve as a checklist. It outlines the actions administrators need to perform as preparation

for the test and the actions and assertions that the tester will perform in order to verify that

the application is working as intended. This procedure is detailed in section 3.5.

In addition to the manual test procedure, the plan was to include limited unit test coverage.

Some features can be difficult to unit test and due to the strict development time

constraints caused by the long research process, this has not been a priority. Unit testing

has seen some very limited use in this project, but functions that require mocking and other

more complicated test methods are only tested through the manual test procedure.

Finally, and perhaps most importantly, the product is evaluated based on feedback from

the project owner. It would be ideal to perform real user testing, but this is difficult to

organize and does not seem important for a prototype. The primary concerns in this case

are that the application does what it is supposed to do, and how easy it makes it for the

user. The former is easy to test, the latter would benefit from user testing.

However, it is also possible to quantify in terms of how many actions the user needs to

perform. This has been chosen as a measure of how successful the project is – the fewer

steps it takes to start streaming, the more successful the project is. This will be referred to

as the “ease of use” evaluation.

5.2 Evaluation results

This section will go over the various ways in which results are acquired, as well as the

collected results and their implications.

5.2.1 Manual testing

Manual testing has been performed primarily by the student team, but the application has

also been tested at larger scales with the project owner. The primary evaluation method

between iterations of the project, as explained in Section 3.5, is a formalized test

procedure. The intention of this procedure is that it will serve as a series of actions and

assertions a tester should make, in order to verify that all existing functionality is working.

As new functionality is added, the procedure is updated in order to make sure it continues

to cover all functionality.

This has not been utilized in large-scale testing due to lack of time, however it has been

used to verify the functionality of the project whenever a new version was ready.

5.2.2 Unit testing

Unit tests were planned but have not been implemented. This is primarily due to the

difficulty of designing good tests for such a complicated system, and time constraints. It

would be possible to implement unit test coverage of most functions, but there has not

been enough time to do the necessary research and planning on top of the extra work.

17

5.2.3 Feedback and “ease of use” evaluation

The project has been developed in close cooperation with the Project Owner. Most features

and plans have been discussed during meetings before implementation, then demonstrated

and discussed after they are implemented. This ensures that the Project Owner has a good

overview of how the project is developing and what it is becoming, allowing them to

interject early and often in case anything does not align with their vision. This, in turn,

ensures that the product being built aligns with the initial goal of the Project Owner.

In addition to ensuring that the product being built is the correct product, a quantitative

measure of “ease of use” has been suggested by the project owner. This is a number,

representing how many steps a user needs to perform to start a stream, after going to the

website. The goal for this metric is 2 – One click to start the stream on the website, and

one tap on your phone to start the actual streaming from Larix. It does not appear to be

possible to automate the step of starting the stream in Larix. This could be solved by using

another application for streaming – possibly developing a custom solution.

At present, the application requires that a user writes a name before they can start a stream.

This means we currently have a “ease of use” metric of 3, however it is trivial to

implement a name generator or other naming system which can eliminate this one step.

This has not been implemented, because there are many solutions and all of them are

simple. For example, if a login- or authentication system was implemented, the default

stream name could simply be the user’s name. For these reasons, the goal of minimizing

actions is considered achieved, even though it has not been directly implemented.

18

6 RESULTS

6.1 Solved problems

The result of the project is a prototype of an application which satisfies the goal of

enabling quick and easy video streaming from mobile devices into a closed NDI

system. The application automates almost every step involved in creating a new

video streaming pipeline from a user’s perspective. A user only needs to visit the

website, enter a name for their stream, submit it and then start streaming video by

pressing a button or scanning a QR code. This satisfies the primary goal of the

project.

6.2 Unsolved problems

The most significant unsolved problem for this project is that the transcoder appears to be

struggling with dropped frames. The way this issue manifests when the application is in

use is that the video stream (as viewed on the receiving end) stops for a few seconds, and

then starts again. This can happen as frequently as multiple times per minute. The issue has

been explored and found to be caused by Viz One Coder. The problem has been submitted

as a bug report and has been forwarded to them team assigned to Coder.

Beyond the issues with the transcoder, all major problems are solved, and all features built

into the application are working correctly as detailed in Section 5.

19

7 DISCUSSION

7.1 Approaches and consequences

This section will discuss the different approaches to various problems as explained in

Section 4, and the consequences those choices have had on the result.

7.1.1 Streaming protocol

It was decided early on to use SRT since it was determined to handle bad streaming

conditions better than any other protocol but as outlined in 6.1 this was not working during

the development. This meant we had difficulties determining which bugs were coming

from the backend and which came from the transcoder. The application is also quite

limited in customizing a transmission as this was not sufficiently testable.

The chosen protocol is less documented and offered less flexibility in the use of existing

platforms than an older specification would have. Additionally, it locked the client

application away from being run in a browser. Choosing a different protocol may have

directed more time at developing a browser streaming client and the backend may have

been built with a more team-familiar environment.

7.1.2 Development language and environment

React was chosen as the framework for the front-end as it is a very powerful and

convenient way to quickly develop responsive web applications. In order to avoid

problems associated with working with different languages, Node.js was chosen as a

platform for the backend, and express.js was used to develop the backend API.

Given these tools, there are two primary candidates for a programming language:

JavaScript and TypeScript. TypeScript was chosen for this project due to its excellent type

system, which while providing some challenges in having to learn it, also solves many

problems related to code quality and maintainability.

7.1.3 Stream forwarding

The application uses a small C++ application named srt-live-transmit.cpp to forward

streams. Being able to receive an SRT data stream and forwarding it to another location is

a key feature in the application. This feature was the subject of most research done in the

early phases of the project and solving it marked the beginning of the development phase.

Many alternatives were explored and are explained in Section 3.

7.1.4 Transcoding

For transcoding, the data stream to the NDI format, the project owner has provided their

own proprietary software, known as Viz One Coder – often referred to as “Coder”. Coder

exposes a REST (Representational State Transfer) API which can be used to control it in

various ways, such as setting up, starting, stopping, monitoring and editing transcoding

jobs. The application communicates with Coder through the API and automatically creates

and manages jobs as necessary – the user does not even need to know that Coder exists.

One consequence of this choice is that, as discussed in Section 6, Coder’s support for SRT

20

is a fairly new feature and as such it still has some problems. The good news is that it is

still in active development, and we can talk to the developers about these issues.

7.1.5 Design

The overarching design of the application is also a matter of importance. One example of

how the design has changed in order to satisfy the requirements of the project is that the

original plan was to have the front-end communicate with Coder. This would not have

worked because Coder will be behind a firewall on a private network, whereas the front-

end runs in the user’s browser. As such, Coder is not accessible from the internet and has

to be accessed from the back-end which serves as a bridge between the public internet and

a hypothetical customer’s private network. This has caused us to move as much

functionality as possible to the back-end, which in retrospect would have been the better

decision either way.

21

8 CONCLUSIONS AND FURTHER WORK

8.1 Goals

The goal of this project as outlined in the project description given by the project owner is:

Exploring the possibilities of streaming video directly from a web application on a smart

device, into Viz Story in a simple and user-friendly way so that the content can be

processed and published as quickly as possible.

8.2 Further Work

For the solution to be production-ready further work must go into user management, login,

preferred profiles, stream security etc. Stream security could be easily configured using

SRT encryption capabilities and was simply not introduced as it did not make sense

without the other security measures in place.

Installation of the solution is not as streamlined as it would need to be for a full release.

Currently the repository requires a pre-compiled platform specific SRT-live-transmit

component to be available and path setup trough the config files. It is also necessary to

install Coder separately. Some work could be done to make these steps more automatic

and not require the user’s input.

Long term it is possible to use the Larix Broadcaster SDK (Softvelum, 2021) to provide a

customized client for Android and IOS. As this SDK is provided as a one-time purchase

the project owner has shown some interest to not rely on any third-party applications.

Creating a custom client could also allow for better use of the simultaneous recording

feature provided within the SDK. The live stream could be backed up while recording so

that a full quality upload could be made later when stable internet connection is available.

Finally, the SRTLiveTransmit tool used is not recommended for production-ready

applications and some work could go into using the NPM package explored or making a

custom extension to the SRT protocol. At the moment there doesn’t seem to be a huge

benefit to this, but it may be required for some more advanced SRT setups.

Feedback from the project owner indicates that they do not have any concrete plans for the

project to continue, they are comparing this solution to other projects worked on internally

and need to assess the marked situation and need for the tool. The project might lay still

for a year or more. They communicated an overall satisfaction with the project and the

concrete alternative it provided.

22

9 References

Cinegy GmbH, 2021. Nuget. [Online]

Available at: https://www.nuget.org/packages/SrtSharp/1.4.1.207-beta

[Accessed 03 06 2021].

Eyevinn, 2021. npmjs. [Online]

Available at: https://www.npmjs.com/package/@eyevinn/srt

[Accessed 03 06 2021].

Fiedler, G., 2017. https://gafferongames.com/. [Online]

Available at:

https://gafferongames.com/post/why_cant_i_send_udp_packets_from_a_browser/

[Accessed 03 06 2021].

Google, 2021. https://webrtc.org/. [Online]

Available at: https://webrtc.org/

[Accessed 27 05 2021].

Haivision, 2021. GitHub. [Online]

Available at: https://github.com/Haivision/srt

Haivision, 2021. https://www.haivision.com/. [Online]

Available at: https://www.haivision.com/resources/white-paper/srt-protocol-technical-

overview/

[Accessed 03 06 2021].

Haivision, 2021. SRT-Live-Transmit. [Online]

Available at: https://github.com/Haivision/srt/blob/master/docs/apps/srt-live-transmit.md

[Accessed 27 05 2021].

Material-UI, 2021. Material-UI. [Online]

Available at: https://material-ui.com/

[Accessed 03 06 2021].

NewTek, 2021. https://www.ndi.tv/about-ndi/. [Online]

Available at: https://www.ndi.tv/about-ndi/

[Accessed 27 05 2021].

NGINX, 2021. nginx.com. [Online]

Available at: https://www.nginx.com/resources/glossary/nginx/

[Accessed 03 06 2021].

NGINX, 2021. NGINX.com. [Online]

Available at: https://www.nginx.com/resources/wiki/extending/api/

[Accessed 03 06 2021].

NGINX, 2021. RTMP-NGINX. [Online]

Available at: https://www.nginx.com/products/nginx/modules/rtmp-media-streaming/

[Accessed 27 05 2021].

S. O'Dea, 2021. Mobile operating systems' market share worldwide from January 2012 to

January 2021. [Online]

23

Available at: https://www.statista.com/statistics/272698/global-market-share-held-by-

mobile-operating-systems-since-2009/

[Accessed 03 06 2021].

Softvelum, 2021. Larix Broadcaster SDK. [Online]

Available at: https://softvelum.com/larix/

[Accessed 02 06 2021].

Softvelum, 2021. Nimble Streamer API. [Online]

Available at: https://wmspanel.com/nimble/api

[Accessed 03 06 2021].

Softvelum, 2021. Softvelum. [Online]

Available at: https://softvelum.com/larix/grove/

[Accessed 03 06 2021].

Softvelum, 2021. Softvelum. [Online]

Available at: https://wmspanel.com/nimble

[Accessed 03 06 2021].

Softvelum, 2021. WMSPanel API. [Online]

Available at: https://wmspanel.com/api_info

[Accessed 03 06 2021].

Vizrt, 2021. https://www.vizrtgroup.com/. [Online]

Available at: https://www.vizrtgroup.com/about/

[Accessed 03 06 2021].

24

10 APPENDIX

10.1 Risk list

See risk management.

10.2 GANTT diagram

Figure 2: Gantt Diagram

10.3 User manual

10.3.1 Setup

git clone https://github.com/vizstory/livevideo
cd livevideo
npm ci
cd frontend
npm ci

Clone repository and use npm ci to install dependencies.

10.3.2 Usage

Command Parameter Description

npm run backend Runs the Express server

 frontend Runs the React frontend

 dev Runs both

 test Runs tests

25

10.3.3 Configuration

Use Config files located at “backend\config.json” and “frontend\src\config.json” to

configure connection between frontend,backend and coder.

CoderProfiles, LarixProfiles and Srt Connection parameters can be configured in

“frontend\src\utils\profiles.ts”

(Additional profiles require setup through Coder UI)

10.3.4 Using Frontend

StreamStartPanel

Figure 5: Frontend StreamStartPanel

Start a stream by pressing green arrow, default profile and startbehaviour are configurable

in frontend config.

StreamRow

Figure 6: Frontend StreamRow

• Click to copy Name (NDI output) or Connection (SRT uri with params, mode is

missing -> caller:default)

• First indicator: whether stream is started or not

• Second indicator: backend SLT connection to source and target

• Start

• Stop

• Edit (currently only NDI output name)

• Delete

• Open Larix shortcut for smartphones (needs Larix Broadcaster installed)

• QRCode: Click to enlarge or shrink (needs Larix Broadcaster installed)

(Mouseover or longtap on mobile to see button explanation)

26

10.4 Class Diagrams

10.4.1 Frontend

Figure 7: Class Diagram Frontend

10.4.2 Backend

Figure 8: Class Diagram Backend

