Western Norway
University of

Applied Sciences

BACHELOR’S

ASSIGNMENT
HTML graphics for video editor

Brage Sekse Aarset
Jorgen Ullebg Hjartoy
Marensius Bae Pettersen

Computing

Faculty of Engineering and Science
Atle Birger Geitung

04.06.2021

I confirm that the work is self-prepared and that references/source references to all sources
used in the work are provided, cf. Regulation relating to academic studies and examina-
tions at the Western Norway University of Applied Sciences (HVL), § 10.

https://lovdata.no/dokument/SF/forskrift/2016-12-21-1851#KAPITTEL_10
https://lovdata.no/dokument/SF/forskrift/2016-12-21-1851#KAPITTEL_10

Tittelside for hovedprosjekt

Rapportens tittel:
HTML-grafikk for videoredigeringsverktoy

Dato:
June 3, 2021

Forfatter(e):
Brage Sekse Aarset, Jorgen Ullebg Hjartey, Marensius

Bae Pettersen

Antall sider u/ vedlegg: 31

Antall sider m/ vedlegg: 31

Vizrt, ved Mikal Henriksen

Studieretning: Antall disketter /| CD-er:
Dataingenior 0

Kontaktperson ved studieretning: Gradering:

Atle Birger Geitung Ingen

Merknader:

Oppdragsgiver: Oppdragsgivers referanse:

Oppdragsgivers kontaktperson:

Knut Arvidsson

Telefon:

Sammendrag:

Summary:

finished work.

Rapporten omhandler prosessen ved 4 lage et program som fasiliterer bruken av HTML-grafikk i

Viz Story. Rapporten tar for seg forberedelsene, selve prosessen og evalueringen av utfert arbeid.

This report concerns the process of creating a program that facilitates the use of HTML graphics

in Viz Story. It explores the preparations, the process of development and the evaluation of

Stikkord:
Grafikk Media Video
Webapplikasjon Viz Story Vizrt
Vektorgrafikk Agile Scrumban

Heogskulen pa Vestlandet, Fakultet for ingenier- og naturvitskap

Postadresse: Postboks 7030, 5020 BERGEN
TIf. 5558 75 00 Fax 55 58 77 90

E-post: post@hvl.no

Besgksadresse: Inndalsveien 28, Bergen

Hjemmeside:

http://www.hvl.no

Preface

The source code for the project will not be publicly available, as it is property of Vizrt. Besides,

testing the application requires access to some internal test environments.

We would like to thank the stack overflow community for providing boundless knowledge and

troubleshooting assistance.

We would also like to extend our thanks to the people advising us on the development of the pro-

gram and the writing of this report:
* Atle Birger Geitung
* Knut Arvidsson and the Vizrt Story team

Finally we would like to thank the Node.js open source community, who carry the modern web on

their shoulders.

Contents
Preface

1 Introduction
1.1 Motivation and goal . . .
12 Context
1.3 Limitations
1.4 Resources

1.5 Organization of the report

2 Project Description
2.1 Practical background . . .
2.1.1 Project owner . . .

2.1.2 Previous work . . .

2.1.3 Initial requirements specification L oL

2.1.4 Initial Solution idea

3 Project design
3.1 Possible approaches . . .

3.1.1 Alternative approach 1: Build aneditor

3.1.2 Alternative approach 2: Find and implement an editor

3.1.3 Alternative approach 3: Import assets from third party editors

3.1.4 Discussion of alternative approaches

3.2 Specification

3.3 Selection of tools and programming languages L.

33.1Tools

3.3.2 Programming Languages,

3.3.3 Frameworks
3.3.4 Additional software

3.4 Project developmentmethod

3.4.1 Initial project plan
3.4.2 Risk management .

3.5 Evaluation method

4 Detailed design
4.1 The architecture
4.1.1 Processing graphics

4.1.2 Component communication L L L L

4.2 Implementation
4.2.1 Importing the SVG

ii

422 Renderingthe SVG
4.2.3 Selecting dynamicelements Lo L L oL
4.2.4 Selecting dynamic attributes o oo oo 0oL
425 Generating VDF-model
4.2.6 General methods for editing theimage.
42.7 Building thepayload L oo
4.2.8 Building static HTML

5 Evaluations

5.1 Evaluationmethod e
5.2 Evaluationresults e
5.2.1 Internal evaluation

5.2.2 Evaluation from Vizrt e

6 Discussion

6.1 Chosenframeworks. L
6.1.1 Storybook
6. 1.2 Vue e
6.2 What could have been done differently
6.2.1 Time management
6.22 Communication L

6.2.3 Research and decisionmaking

7 Conclusions and further work

7.1 Conclusions e e e e e e e e
72 Otheruses e e e e e e e
721 Theprogram
722 Experiences
7.3 Furtherwork
7.3.1 Security and errorhandling 000 0oL
7.3.2 Support for more attributes o oo oo o
733 Automation e

7.3.4 Other major featuresets

8 References

1 Introduction

When producing video content media companies nearly always use some sort of graphical over-
lays. They can be as simple as a logo in the corner of the screen or more complex graphics with
animations. These graphics are used in both live broadcasting and prerecorded videos. Most media

companies use third party software for the production of these graphics.

Vizrt is a company based in Bergen that provides such software. They offer a suite of software
that facilitates the creation of sophisticated graphic templates that allow the user to quickly edit a
video, populate the templates with data and publish to different platforms and formats through
an automated process. In order to shorten render times for the graphics, this software uses GPU
hardware acceleration and runs on powerful servers. These templates, used in the video editing
suite Viz Story, are created in the asset creation tool Viz Artist and configured for production in Viz

Story Admin.

1.1 Motivation and goal

The goal of this project was to create a less hardware demanding alternative to the existing software
for creating graphics templates. A solution utilizing HTML graphics would mean less powerful and

cheaper servers could be utilized, which in turn makes the software more scalable.

1.2 Context

The current solution for creating graphics is to use powerful and expensive dedicated render farms.
This is necessary for live broadcasting where every second counts, and is also necessary for 3D
graphics where a lot of processing power is needed to render the graphics. However, when editing

prerecorded videos this can be an unnecessarily powerful and expensive approach.

Vizrt’s push towards HTML based graphics has produced software components that allow for the
usage of HTML graphics in Viz Story. However, the only method for creating the HTML graphics
templates is through programming in JavaScript and CSS. This is a time-consuming and difficult
process for designers, who usually work with graphical tools like Adobe Photoshop. Vizrt therefore
desired a GUI based workflow that could create and edit the HTML graphics assets. The software
had to work with the existing software from Vizrt and be able to communicate with components in

Viz Story and Viz Story Admin.

1.3 Limitations

The greatest limiting factor for this project was the time frame. The project was limited to a time-
frame of three months, where alongside the development of the application a lengthy report was

to be written and numerous other tasks were to be completed.

It was difficult to predict how much the team would be able to do during the time frame, and
therefore the team decided to get a basic functioning demo working and add additional features
after that, if time allowed. The visuals of the user interface, as in making it appear visually like a

Vizrt program, was not a priority.

Handling secure user logins, secure storage, insertion attack countermeasures and other such issues
would not take priority in the project. The focus was on making a functional prototype with a core

feature set that could be refactored and expanded by Vizrt’s development team later on.

The team did not intend to test the application with its intended end users, which are Vizrt’s cus-

tomers.

1.4 Resources

Vizrt was an important resource to the team. Their team of developers working on Viz Story were

made available to the team and they showed great willingness to aid in any way they could.

The team was guided by Atle Briger Geitung on issues related to the composition of this report and

other formal tasks related to this project.

Due to the pandemiclockdown, the team worked from home and communicated internally through
Microsoft Teams and Canvas. Communication with Vizrt was done through Microsoft Teams, and
with Atle through Canvas and Zoom. If the situation around the pandemic had changed, Vizrt

provided the option of working from their offices in Media City Bergen.

As there were no other practical options, the team decided to utilize their own personal comput-
ers for the programming, communication and documentation that the project entailed. The team
decided to use Visual Studio Code as the development environment, due to its familiarity to the
team. Vizrt provided a GitHub repository with some code from previous projects and various doc-
umentation. The team decided to actively use GitHub for source code management as well as work
coordination, through a project board connected to the repository. In order to make future inte-
gration and further development as easy as possible the team chose to utilize Vue, which is the

frontend web framework used by Vizrt in existing products.

1.5 Organization of the report

Chapter one introduces the project, it describes the goals of the project as well as its limitations.
The chapter gives insight to the motivation for the project and gives an introduction to the company

behind the project.

Chapter two goes more in-depth about the project, it states the initial requirements of the project
as well as the initial thoughts about a solution. Furthermore, the chapter enlightens the reader as

to existing solutions, previous works and the used reference literature. The project owner and their

2

role in the project is also be described in the chapter.

Chapter three explores the different approaches for solving the project goal. Without going into
great detail it confirms the chosen path, and describes the necessary tools. The planed process for
development is explained in the chapter, along with an assessment of possible risks. Lastly the

manor in which the project is to be evaluated is described.

Chapter four describes the overall architecture of the application, and the communication pipeline.

It then dives deeper and provides a rundown of the implementation of the program.

Chapter five evaluates the project and its result, it contains the internal evaluation and the feedback

from the project owner.

Chapter six discusses the processes of the project. It looks through the decisions made and their

impact on the project. It expresses what was done well and what could have been done better.

Chapter seven is the conclusion of the project, whether or not the team achieved the goals of the
project. Other uses for the program and the experiences had through the project is discussed, along

with the teams suggestions for future work.

Chapter eight is the literature list.

2 Project Description

This bachelor project is comprised of the development of an application at the behest of Vizrt. The

application aimed to ease the production of HTML-graphics for use in Viz Story.

2.1 Practical background

The project team and Vizrt had not previously collaborated, but the team had experience with
JavaScript and various web application principles. The initial project briefing was quite open, but

through meetings and discussions the team and Vizrt found a more concrete goal.

2.1.1 Project owner

The company behind the project is Vizrt. For more than 20 years they have supplied digital graphics
to the media industry. They employ more than 700 people, with 30 offices worldwide. (Vizrt, 2021a)

This project was organised by the Story team at Vizrt. The project owner of this branch was Mikal
Henriksen. The main contact for this project was Knut Arvidsson, who is the team lead of the Story
team. Others involved with the project were Arne Bjorsvik Krdkenes, principal developer of Story,

Even Normann, senior UX designer, and Roger Rebbestad Seetereng, R&D manager.

2.1.2 Previous work

In the development of any product it is important to gain knowledge of previous works or similar
solutions that can improve the development or the result. This project was built as an addition to

an existing prototype solution for creating and using HTML graphics in Viz Story.

The existing process involved programming graphics by hand, which is not ideal for the end user,
namely designers in media organizations. Designers likely prefer working in a graphical user in-
terface that allows for a responsive and visual process. This project would use parts of the existing
solution, such as a JavaScript API called "Payload Hosting" that is served alongside an HTML file to
allow Viz Story to use the template in a dynamic fashion (updating text, colours, etc. in real time).
Viz Story, including Viz Story Admin was made available to the team through a locally runnable

test version of the program, which would be used for testing.

Vizrt provided the team with both examples of hand written animated HTML-graphics and SVG
example files created in Photoshop. The example files were useful as guides for how the output of

the program ought to look and what to expect as input, respectively.

Existing solutions

Vizrt has a large software ecosystem with multiple components, and naturally there was no perfect

existing solution that would slot perfectly into the existing architecture. However, some similar

software that offered a lot of the required functionality was found. During online research, the
team came upon an application called Ease Live Studio. It is an editor where you can create HTML
based graphics to use as overlays for video. The team viewed this editor as a possible starting point
for the project. Unfortunately the company behind Ease Live was recently acquired by one of Vizrt’s
competitors, and it was thus deemed to be undesirable avenue for the project to pursue (Ease Live,
2020).

Several solutions were discovered that could perform parts of the desired functionality. There were
many available editors that could create assets to use as graphics in HTML. Bitmap images could
naturally be included in HTML files, but are less flexible than resolution independent and easy
to manipulate vector graphics. The SVG format (Scalable Vector Graphics) is supported in mod-
ern web browsers and can be manipulated as a DOM (Document Object Model), and is a natural
choice for HTML based dynamic graphics (Mozilla Developer Network, 2021). Among the most
popular tools for creating such graphics is Inkscape, which is an open source vector graphics editor.
Inkscape is usable on Windows, Mac OS and Linux and uses SVG as its main format (Inkscape
Website Developers, 2021).

Adobe Photoshop is a popular editing software that allows exporting of images to SVG format.

Adobe [llustrator is a natively vector-based graphics software, similar to Inkscape.

When it comes to animating graphics in HTML/JavaScript/CSS, which is a desired functionality,
solutions exist such as SVGator, Keyshape and Haiku Animator. Which are existing editor that lets

the end user add animation to SVG’s.

2.1.3 Initial requirements specification

The initial requirements were to find and integrate or create an application that could make HTML-

graphics compatible with Viz Story.

The team was given loose reins as to how the solution would look, but with three main demands:
* Find or create an editor that can export simple graphics to an HTML format.
* Improve the process of graphic design compared to the current hand-programmed process.
* Integrate with template system used in Viz Story

2.1.4 |Initial Solution idea

The initial solution idea was to make a fully fledged editor that allowed the user to create and edit

HTML-graphics in a template format, to then export them to Viz Story.

3 Project design

Throughout this chapter the different development approaches will be laid out and the one which
offered the highest chance of success will be highlighted. The different tools and software needed
for the selected approach will be introduced, and the work plan for the project will be shown as

well as the risk assessment.

3.1 Possible approaches

Vizrt provided the team with details around the currently extant manual process that this project
was to replace, but no specifications or requirements regarding the implementation itself was pro-
vided. This made it possible for the team to approach implementation from different angles using

a modern technology stack.

3.1.1 Alternative approach 1: Build an editor

The first approach the team envisioned was to create a fully fledged standalone editor to comple-
ment Viz Story where designers could create vector assets then add text and motion, before export-

ing it as a template to Viz story.

3.1.2 Alternative approach 2: Find and implement an editor

Another considered approach was to find an existing editor with the desired features as described

in the first approach, and integrate it into the template generating process in Viz Story.

3.1.3 Alternative approach 3: Import assets from third party editors

The final potential approach was to create a simple editor where designers could import assets
created in vector graphic editors of their choice as an SVG file. This editor would allow limited

editing and integrate into the Viz Story pipeline leveraging the Payload hosting API.

3.1.4 Discussion of alternative approaches

The first approach was formulated as the team delved into the issue and tried to come up with the
best possible solution. An HTML-based equivalent to Viz Artist would intuitively achieve all of the
goals. Viz Artist has been developed and maintained by Vizrt for years and its feature set reflects
the requirements of their customers. Certain features could be excluded for the initial version of

the editor, and some features would probably be cut altogether (such as 3D modelling).

The biggest perks of this approach would be to have an environment where Vizrt could provide
a streamlined user experience and the most effortless way to create templates for designers. The
biggest drawback of this approach is that it is very large in scope. Creating a graphics editing

software suite is a vast undertaking that usually takes years and requires a lot of experience (X,

2019). Given the limited time frame the team concluded that it would be unrealistic to attempt to

create an alternative to Viz Artist in this fashion.

Therefore, the team started to look at integrating an existing vector graphics editor, as described in
the second alternate approach. The team had a hard time finding an existing editor that had all the
desired core features and that seemed realistic to integrate into Viz Story. Due to most solutions
not being open-source software, modifying an existing editor to fit the needs of this project would
be hard to achieve. Licensing software for modification is potentially an expensive approach, and

not feasible for a no-budget bachelor project.

Given the time constraints, the team concluded that the best approach was to reduce the scope of the
project and create a simplified editor, where the user could import SVG files created in their graphics
editor of choice (Inkscape, Photoshop, Illustrator, etc.). The user would get the most intuitive and
efficient workflow by creating assets in a familiar environment. The software created through this
project, HTMLGEFEX, would act as middleware and prepare the graphics for use as a template in
Viz Story. In HTMLGEFX the designers could oversee some template logic such as overseeing auto-

detected dynamic fields (text fields, colour values, etc).

Additional features to add to the template, such as animation, would be a part of a proprietary editor
in HTMLGEFX. All the resulting metadata would be included in the exported template, which would
be seamlessly exported into Viz Story and used through the Payload Hosting API. The API requires
that the graphics are accompanied by a script defining a set of methods for how the graphics are to
be dynamically manipulated during video editing and rendering. This is called a VDF model, and

should be automatically generated so that the designer does not have to write code.

This approach seemed to be viable based on tinkering with some SVG files created by designers at
Vizrt using Adobe Photoshop. The structure of an SVG file varies slightly from editor to editor, but
any valid SVG file will be parsable as an SVG DOM. Some interpretation logic would be required
to make sense of the hierarchy of elements in the SVG, as different editors were not consistent in

the hierarchical organisation of the graphical elements of the exported SVG.
3.2 Specification
HTMLGFX Feature list

* Import SVG

* Parse SVG into an Object retaining all tags and data

* GUI components that can modify SVG properties

* Support for different height and width (Aspect Ratios)

* Auto generate VDF models based on templates

* Support for multi format template

* Support for layouts (Drag and drop for moving SVG elements)
* Add motion to SVG elements

* Add GUI for grouping and organizing SVG elements

* Support for Google fonts for a consistent end user experience

* Support for custom fonts

* Integration into Viz Story

3.3 Selection of tools and programming languages
3.3.1 Tools
Visual Studio Code

Visual Studio code is a freeware integrated development environment (IDE) from Microsoft, with
support for multiple programming languages and was chosen due to an extensive library of plugins
to make it easier to develop software. E.g. GitHub integration and linters for TypeScript & Vue
(Microsoft, 2021c).

GitHub

GitHub is a service based on Git that hosts & versions the codebase in the cloud. As Vizrt provided
the development team with their sample in GitHub, and GitHub has some nice extra features as Ac-
tions and Project Board, the development team decided to keep using GitHub (GitHub Inc., 2021).
Microsoft Teams

Microsoft Teams was the preferred platform of communication for Vizrt, and as such the develop-
ment team decided to use Teams internally as well (Microsoft, 2021b).

3.3.2 Programming Languages

TypeScript

As the development team were familiar with working with strongly typed languages such as Java,
Typescript was chosen over JavaScript. Which is basically a superset of JavaScript with a strongly

typed syntax (Microsoft, 2021a).

3.3.3 Frameworks
Vue

Vue is a frontend framework which provides the developer a scaffold and a toolbox to build a web
application. Vue was chosen with consistency and support in mind, as Vizrt was using this frame-

work in their existing products (Vue, 2021).

Express.js

A minimal and flexible Node.js web application framework was chosen to serve static files due to

it’s easy setup, configuration and TypeScript support (Express, 2019).

Storybook

Storybook is a tool that can be implemented with Vue to create an environment where developers
can create isolated frontend components (Storybook, 2021). The team opted to try out the frontend

development experience of Storybook.

3.3.4 Additional software
Viz Story

A web-based video editing suite created by Vizrt. It uses templated 3D animated graphics and
allows the user to quickly edit and publish video content to multiple platforms (Vizrt, 2021c).

SVGson

An open source library to parse SVG into JSON and serialize it back to SVG (elrumordelaluz, 2021).

3.4 Project development method

The team consists of three developers. Given the small size of the team and that the product needs
continuous feedback from the project owner, an agile approach was chosen in order to have a flex-
ible goal and the ability to readjust the process according to new information and developments
along the way (Beck et al., 2001).

The development of the HTMLGFX was broken down into incremental stages or iterations with
each iteration bringing a new set of features. Implementation of these stages was done in stages or

sprints where larger features were broken down to sprint sized tasks.

Progress was tracked using a Kanban board (GitHub Project Board). This allowed the team to

visually prioritize features, assign tasks and keep track of the sprint progress.

Sprint reviews with Vizrt were held in order to get feedback, improve continuously and prioritize
the backlog.

Scrum was held for developers in order to update each other and delegate tasks, and discuss any

obstacles that might arise.

The development method approach can be summarized as Scrumban, leveraging the best tools

from Agile, Scrum and Kanban. (ProjectPlan, 2021)

3.4.1 Initial project plan

20/03/21 30/0321 09/04/21 19/04/21 29/04/21 09/05/21 19/05/21
SPRINT 1

ay/
SPRINT 3 |
Add meticn te SVG
Add animation presets
SPRINT 4 | [|
Add motion to SVG elements individually |

Add support for grouping and organization of layers

SPRINT 5
Add support for Google Fonts

Add support fer custom fonts
SPRINT 6

Integration into Viz Story

Figure 3.4.1-1: The original GANTT chart.

As seen in the initial project plan (figure 3.4.1-1), various iterations were planned before develop-

ment started, each containing a new set of desired features.

3.4.2 Risk management

The most significant risk was deemed to be that the project scope could be too big. The team had
little basis for determining a realistic estimate of its own output over time, which could lead to
the scope being larger than the time frame and resources would allow. This could have lead to an

inability to deliver the core features.

Development was done in a transparent way through GitHub and regular meetings with the project
owner and stakeholders, thus exposing risks early and handling them as they arise. By having the
sprint reviews with Vizrt the knowledge of all parties involved was harnessed, enabling detection
of more risks that the development team internally could not find. Another perk of involving the
project owner through the whole development process was to agree on customer needs and re-
duce the risk of delivering the wrong product. Additionally risks were exposed internally in the

development team during daily scrum.

10

3.5 Evaluation method

The HTML Graphics software is designed to be used by graphic designers and video production
staff, but it was unlikely that the product would reach a state within the project period where user
testing would be appropriate. Therefore it was more realistic that Vizrt’s Viz Story team would do
the testing and evaluation of the program. Since Vizrt hopefully would use the code as a basis for a
mature product, it was important that the code was readable and extensible. Therefore a technical

evaluation from Vizrt’s developers would be central to the evaluation.

In this project the linter ESLint is used, which gives direct feedback about different code quality
issues, such as TypeScript typing and other issues. This instant feedback was used throughout the

project to maintain code quality, but would also be used to inform the final evaluation.

Additionally, in this report, the team will give its on evaluation of the results, as well as provide an
extended discussion about the experiences made during the project period. This report could be a
useful resource for Vizrt, but an evaluation of the report itself cannot exist within the report, as this

would be a circular paradox.

11

4 Detailed design

4.1 The architecture
4.1.1 Processing graphics

The main purpose of the application with the chosen approach, is to allow a user to import SVG
graphics, specify which parts of the graphics are dynamic, and export it to Viz Story. A pipeline
architecture lends itself to this approach. In a pipeline architecture, data is sent through a linear
sequence of steps, each performing their own actions on the data in chronological order (Data
Pipelines, 2021). There is an input (an SVG file) that is to be processed in various ways through
a linear process where the resulting output must conform to the specifications of Viz Story. Thus,
there will be tight coupling between each step of the pipeline. Steps along the pipeline may have
non-linear actions the user can take, but the output of those steps must nonetheless match the

specifications of the succeeding part of the pipeline.

The pipeline is visualised in figure 4.1.1-1. The "File import and parse" process is explained in
section 4.2.1. The rendering of the SVG is merely a visualisation for the convenience of the user
and doesn’t do anything with the data therefore not a part of the data pipeline itself. See section
4.2.2. This graphic is not intended to show which components perform which tasks. This is merely
a visualisation of the data processing pipeline. In htmlgfx-editor there is an editor component
that is the parent of all other components and owns the state of the application. The component
hierarchy is considered unnecessary to reach a sufficient understanding of the application design

and is not outlined in this report.

The "User input" process consists of the user selecting which elements of the graphics are supposed
to be dynamic. See section 4.2.3 and section 4.2.4. The "Payload preparation" process consists of
multiple steps and is explained in section 4.2.5, section 4.2.6 and section 4.2.7. The communication
with the API is detailed in section 4.1.2. On the API side, the HTML page building process is

explained in section 4.2.8.

12

External SVG editor

HTMLGFX-EDITOR | SVG file

File import and parse SVG DOM Render

SVG DOM

User input

SVG DOM and metadata

Payload preparation

HTTP Request with JSON Payload
HTMLGFX-API

Build static HTML page

HTML page with scripts

Viz Story Admin

Graphic template ready for use in editing

Viz Story

Figure 4.1.1-1: The data pipeline of the project.

4.1.2 Component communication

htmlgfx-editor and htmlgfx-api share some of the codebase in order to reduce development time
and to keep things simple. The library vdfModelMethods.js is used both in the editor and the api
to manipulate the SVG.

13

HTMLGFX-editor | HTMLGFX-api ! Viz StoFy

Figure 4.1.2-1: Component Communication

The communication consists of three components, htmlgfx-editor, htmlgfx-api and Viz Story.

The htmlgfx-editor communicates with the htmlgfx-api using the HTTP standard, with a sim-
ple POST request containing the SVG + metadata. The htmlgfx-api takes the POST request from
htmlgfx-editor and creates a static website that can be served to Viz Story for consumption, based

on the SVG and metadata it receives from the htmlgfx-editor.

htmlgfx-api provides Viz Story the payload by serving static files, which the user enters with a
URL. It uses the VDF model (see section 4.2.5) in the metadata to call callback methods (see section

4.2.6) in the static website, thus allowing the end user to manipulate the graphics in real time.

4.2 Implementation
4.2.1 Importing the SVG

An SVG file, unlike raster images, is simply a text document (XML-based structure) describing
the vector image. SVG can be read and written just as though it were HTML markup, and, also
like HTML, has a DOM. It is therefore a well suited format for working with vector graphics in
web applications, and is widely supported by web browsers, languages and frameworks (Mozilla
Developer Network, 2021).

In order to import an SVG file, the team opted for the simplest method that would involve the least
additional dependencies, namely to use HTML's built-in <input> element with the type set to "file".
This prompts the user to upload a file from their file system, which is then handled by JavaScript
through an event handler using the built-in file API to read the text content of the uploaded file.
After the text content is imported, the DOMParser interface parses the text into a DOM Document

so that the SVG can be manipulated in various ways.

4.2.2 Rendering the SVG

In order to show the user a preview of the SVG before exporting to Viz Story Admin, the team had
to look at what Vue has to offer when it comes to rendering DOM content from an imported file.
Vue can render raw HTML content using the v-html directive but this is considered a bad practice

due to the potential for cross-site scripting attacks (Lee, 2017).

The alternate approach is using Vue’s render () function. Normally when creating a Vue compo-
nent, the visuals are written in a HTML-like template syntax that is styled with CSS and made
dynamic through data binding. For this specific purpose, however, the DOM itself needs to be

14

Upload SVGs

Figure 4.2.1-1: The upload button in the editor.

constructed from the data, and the render function is the way to achieve that.

Without going into too much detail, the SVG render component takes in an SVG DOM, traverses it
recursively and renders every element and its children to the Vue DOM. Attributes are carried over
(id, style attributes, etc.), and so is innerHTML content. The result is a perfect recreation of the
original SVG file. Due to how Vue works with object props passed to components, the component
will not automatically update when the SVG DOM is updated. As it is desirable to have a "live"
view of the SVG that updates as changes come in, the parent component that owns the SVG DOM

forces the render component to re-render whenever changes are made, using a key attribute.

4.2.3 Selecting dynamic elements

After import, the user has the option to select elements of the graphics the user intends to be dy-
namic. A dynamic element is a part of the graphics where attributes of their choice such as fill
colour, text content, position etc. can be changed in the video editing suite. A typical example in
the broadcasting industry is a "lower third", which is a graphical element in the lower part of the

screen displaying information such as the name of a person on screen (StudioBinder, 2020).

The selection of which elements to mark as dynamic consists of selecting the element from a list

and then selecting which attributes of that element are to be dynamic.

15

» gibackground
o image#hg-flagline
o Imagesbg-darkline
o image#bg-whiteline
« gHimage

height
o imageftbg-D3image

o Image#controlimage-03image-Portrait

" S
S
e
e
S

"an
2
"an
"an
"an
"an
"an
"an
"an
"an
"an
"an
"an
"an
"an
"an
"an
2
"an
"an
"an
"an
"an

« textfrontroltext-02designation-Designation Checked: ["text”, "width"]

Chris Black

"
=
"
"
"
"
"
"

» text#controltext-01name-Name

i
e
e
e
e
e
e
e
e
e
e
e
e
e
SR
2on
e
e
e
e
e
e
e
e
e
e
e
e

S a e e
Sroiney
i a e

e
e e,

s ssEEEEEEEEEEEEEEEEEEEEEEEEN

e
R

Figure 4.2.2-1: The editor with an imported SVG graphic rendered on the screen. The list of
elements in the SVG is shown on the left side, and the attributes of the currently selected element
on the right side.

16

This list is created by a recursive component that traverses the hierarchy of the SVG DOM and
creates a hierarchical list of tagnames with their ids. This list can be see in figure 4.2.2-1. When
clicking an element in this list, an event is transmitted to its parent component, and the event is
propagated throughout the hierarchy in the list until it reaches the main editor component. This
is an example of a perhaps needlessly complex event propagation system that could warrant the

usage of a state management solution in the future.

4.2.4 Selecting dynamic attributes

The selection of dynamic attributes is dealt with by the component VdfCheckboxes. Once the user
has selected an element from the list described in section 4.2.3, it becomes visible and active. The Vd-
fCheckboxes component contains a checkbox for each attribute, and a list of the selected attributes.
Using the checkboxes the user select the attributes they would like to be dynamic. Currently, the

type of element or the existing attributes of the selected element is not taken into account.

text

height

ﬁnl —Iﬁ —Ii —Ii—l

Checked: ["text”, "width"]
Figure 4.2.4-1: VdfCheckboxes component in the editor

The list of selected attributes is bound to a variable in the main program. When the user checks
a checkbox, the VdfCheckboxes component emits the change to the main program, and the list

storing the selected attributes is updated.

The currently selected SVG element and the list of chosen attributes is stored in a list in the main
program. This list is only updated when the user hits the export button, or clicks on an element in

the element list described in section 4.2.3.

As the list containing selected elements and attributes is stored in the main program, a way of

communicating with the component is a necessity. The parent component owns the state of the

17

program, and the child component must retrieve the state information as it is needed to relay that
information to the user. This is achieved through using the Vue option watch to update in response

to changes of the state.

4.2.5 Generating VDF-model

Viz Story Admin needs something called a VDF-model to be able to interact with the HTML graph-

ics. Vizrt states:

"The Vizrt Data Format is a specification used internally at Vizrt that standardizes how
our data is shaped. For our purpose of making HTML Graphics it is used primarily for
sending data back and forth between a host application and the graphic for the purposes
of playing the animations and / or setting values." (Vizrt, 2021b)

Generating the VDF-model uses specialized methods for each editable attribute. The current method
for selecting elements and attributes is described in section 4.2.3 and 4.2.4. The user repeats this

process until all desired elements and attributes has been selected.

import * as methodModel from '../vdfModelMethods';
const vdfModel = document.implementation.createDocument (null, "model");

/*x
Generates a vdf model XML element for a text field.
O@param tag - the element having its vdf generated
7
export function newTextField(tag: SVGSVGElement): HTMLElement {
const field = vdfModel.createElement("fielddef");
const valueElem = vdfModel.createElement ("value");
valueElem.textContent = tag.innerHTML;
field.setAttribute("name", ~${tag.id}-${methodModel.updateText.namel}) ;
field.setAttribute("label", tag.id);
field.setAttribute("mediatype", "text/plain");
field.setAttribute("xsdtype", "string");
field.appendChild(valueElem) ;
return field;

Figure 4.2.5-1: Code example for generating VDF

Once the list, containing elements and attributes described in section 4.2.4, is submitted, a method
in the program generates the VDF as an XML element. The XML can be viewed as having two parts,
the user selected parts and the base parts. The user selected parts are child elements of the base
parts, therefore the method generating the VDF-model first generates the base parts before using a

for-loop and a switch case to call the specialized methods for each editable attribute.

The team discussed three different ways of generating the VDF-model, making a string, using

18

HTML and using XML. Although the method in the payload hosting API that sets up the VDEF-
model takes a string this approach was quickly discarded as it was the least structured alternative.
The difference in structure between using HTML and XML is minimal, but their uses differ. XML is
used for describing data and HTML is used for displaying data (GeeksforGeeks, 2020). This, along-
side the fact that the payload hosting API sets up an XML model, made the team choose generating
XML.

4.2.6 General methods for editing the image.

The payload hosting API uses callback methods to change the HTML graphic when the user makes
changes to the graphic in Viz Story, such as updating text content. In the examples supplied by
Vizrt the methods were manually written for each graphic. These methods were used as a guide to

make the general methods.

The general methods need the id of the element (referred to as object in the source code) being
changed, it then finds the element in the document and updates its attribute with the provided

value.

VA
* Updates the color for the object with the given d
* Oparam newColor - The color to be used
* @param objectlId - The id of the object that is being changed
*/
export function updateColor(newColor, objectId) {
if (!'newColor) return;
document . getElementById(objectId) .style.fill = newColor;
b

methods [updateColor.name] = updateColor;

Figure 4.2.6-1: Method for updating color

The callback methods used by the payload hosting API only allows for the passing of one variable,
this is an issue when using the general methods. In order to solve this the team implemented
anonymous functions that take the parameter from the callback and add its id to the function call

of the correct general method.
The team only managed to implement functioning methods for modifying text and color.

The general methods are used on the API to set up the scripts required by Viz Story. In order to
communicate to the API which methods are to be used for a given VDF model field, the methods are
mapped to unique string identifiers that are passed in the payload, and mapped back to methods
on the API by indexing the string identifiers in an object.

19

4.2.7 Building the payload
htmlgfx-editor creates a payload to be processed in htmlgfx-api based on user inputs.

interface JsonPayload {
list: FieldValues[];
vdfModel: string;
svg: INode;

Figure 4.2.7-1: Structure of JsonPayload

The payload contains three elements:

1. list: Contains information about which SVG elements can be manipulated, and which call-

back method they map to.
2. vdfModel: A base64 encoded representation of the VDF Model.

3. svg: A json representation of SVG.

4.2.8 Building static HTML

htmlgfx-api has a library that generates a HTML document based on the payload received in the
htmlgfx-editor POST request. It uses the third party library jsdom to create a HTML document
with the SVG from the editor embedded. htmlgfx-api also generates the necessary JavaScript files

using the metadata from htmlgfx-editor.

Viz Story Admin supports importing HTML graphics when provided with a link to a static HTML
page that contains certain JavaScript code. The payload hosting API is one of the JavaScript files
served with the HTML page.

In figure 4.2.8-1, the Viz Story Admin template editor is shown, with a lower third imported from
an SVG file through HTMLGFX. Two text elements are dynamic; the text content can be changed

to reflect the name and location of the person in question.

20

Figure 4.2.8-1: HTML graphics loaded to Viz Story Admin

21

5 Evaluations

5.1 Evaluation method

The group will evaluate the work by assessing how many goals were achieved, the quality of the

code, the quality of documentation and general readability and re-usability of the code.

Vizrt's Viz Story team will evaluate the project by looking at the code and by using the program

itself to test its capabilities.

They will assess the success level of the product through metrics similar to those the team will use
to evaluate the project. Essentially, the product ought to be something Vizrt can use as a proof of
concept and a starting point for further development. The viability of this hinges on the code being
understandable and that the project takes a clear and conscious approach to solving the goals of
the program. It may be the case that the chosen approach is laden with bugs or is not sufficiently
extensible such that major rewrites of the code will be necessary. In that case, the project would not
necessarily be a failure if there are valuable takeaways that will improve the second version. The
Wright brothers made hundreds of failed prototype flying machines before their first successful
powered flight, after all (Library of Congress, 2021).

5.2 Evaluation results
5.2.1 Internal evaluation

The result of the work is a working prototype in accordance with the feature set of the first iteration.
The most important technical goal has thereby been reached. The goals of each subsequent iteration

were not met. There are a few particular issues with the application that ought to be highlighted.

Naming

There are several components and other files that could have benefitted from some refactoring.
Naming conventions were not always central to the development process, and this shows in some
cases. There is particularly one component that has a misleading name due to intended functional-

ity that was scrapped to save time.

Duplicated code

There is a JavaScript file that is used by both the htmlgfx-editor and the htmlgfx-api, and cur-
rently this file is duplicated in each repository so that any changes made have to be manually per-

formed twice. This is obviously a bad practice, and there are many different ways to solve this.

22

JavaScript vs. TypeScript

The aforementioned JavaScript file has no business being written in JavaScript when the related
code is mostly comprised of TypeScript. Converting the file to TypeScript would have made typing

more consistent and would have resolved some complaints from the linter.

Linter warnings

The latest linter run resulted in 22 warnings, mostly relating to unexpected uses of the any type. The
cases where any has been used were deemed unavoidable, which typically arise from frameworks
not providing types, such as in the case of Vue’s render method. Same warnings are due to known
ESLint bugs.

Documentation

Almost all methods, interface, types and classes in the code have inline documentation written for
them in doc comments. Some less involved methods lack doc comments as it can be unnecessary

in cases such as getters and setters. The team is satisfied with the documentation.

Project plan compliance

Throughout the project, it became obvious that the project scope needed a re-evaluation. Most tasks
took longer than excepted. The project scope was quickly readjusted and the focus became solely

on the core functionality.

20/03/21 30/03/21 09/04/21 19/04/21 29/04/21 09/05/21 19/05/21

SPRINT 1

Import SVG

Parse SVG

Modify Parsed SVG
SPRINT 2

Fevloat hosting _

SPRINT 3

_
Il
Figure 5.2.1-1: The revised GANTT chart.

The revised plan almost came to fruition (organising and grouping of layers was never imple-

mented). See figure 5.2.1-1.

5.2.2 Evaluation from Vizrt

After the end of the development period (mid May), the program was demonstrated to Vizrt. The

team also presented some information about the architecture and the development process.

23

Vizrt’s feedback was overall positive. They were satisfied with seeing a working proof of concept
which will inform their future research and development in this area. They did not expect more

than a basic prototype within such a short time frame.

The source code itself was restructured, cleaned up, documented and finalized the same week, but
the Vizrt team did not have time to provide feedback on the source code itself within the report

deadline.

24

6 Discussion

6.1 Chosen frameworks
6.1.1 Storybook

The initial idea with Storybook was to have a systematic approach to creating decoupled Vue com-

ponents using the Atomic design methodology.

Atomic design methodology is the idea of breaking down a "view" / "screen" into a system of com-

ponents.
* Pages - E.g. Webpage with content
* Templates - E.g. Structure / Layout of Webpage
* Organisms - E.g. Header
* Molecules - E.g. Search section of header
* Atom - E.g. Search button

Storybook allows the developer to write "stories" which is in short different states, in order to isolate
components, and opens up for working on one component at a time. This was the main motivation

behind using Storybook. Allowing the team to work on different components simultaneously.

The team believes that initial intentions were good, but due to not prioritizing the visual design of
the editor and the fact that the team was creating a system that was so coupled that few components
could be tested in Storybook on their own, the team did not leverage Storybook as intended. It was
a good learning experience, but in hindsight the team added overhead without reaping the benefits

in this case.

Although the team felt that Storybook was ultimately not needed for the project at this stage, Vizrt
had considered using Storybook in their projects and took interest in seeing a demonstration of
it in use with Vue. By coincidence, the project ended up being useful to Vizrt as an example of

Storybook being used alongside Vue.

6.1.2 Vue

The team was mostly inexperienced with frontend frameworks and the concept of lifecycles and
state management. This led to a slow start in development and the team experienced a steep learn-

ing curve.

One of the main challenges for the team was handling communication between components, and

dealing with propagation of events throughout the component hierarchy to send state information

25

to relevant components. A state management framework such as Vuex would probably have been

useful, and will probably be more and more relevant the bigger the application grows in the future.

Throughout the project the team experienced that using a frontend framework was the correct
choice, as it made it easier to work systematically and focus on creating the editor. Building ev-

erything from scratch would have been tedious and time consuming.

6.2 What could have been done differently
6.2.1 Time management

As this was the first time the team worked together and on a project of this magnitude, a big risk
was not having historical throughput to base time estimates on. This led to the scope of the project
growing too big and a significant readjustment of the scope taking place mid-project. This could

be improved next time by identifying the core features more precisely and focusing solely on those.

Being inexperienced developers working in separate locations and with two of the three team mem-
bers working a job on the side, sometimes a steady rhythm in the work was not easy to maintain.
Scheduling conflicts posed a challenge to our daily meetings, which in turn induced a loss of pro-
ductivity. The experimental nature of the project also made it difficult to assess the time needed to

complete specific tasks.

Furthermore, the amount of tasks not related to the actual development of the product proved to
be greater and more time consuming than first assumed. Being more efficient in completing and
more aware of these tasks would at the very least mean a better estimate of available time for the

project.

6.2.2 Communication

Vizrt was accommodating since day one, yet the team hesitated to ask technical questions to Vizrt
when it could be avoided by doing research on the web, which was often time consuming. In
the final meeting with Vizrt they expressed that this is a common issue with junior developers,
where they would rather "bang their heads against the wall" for a while than ask for help. The
team believes that by leveraging Vizrt’s expertise more, the development process could have been

accelerated.

Regrettably, the team was unable to work physically at Vizrt’s offices due to the pandemic. If the
team had worked at Vizrt’s offices, some of the issues in communication may have been lessened.
The threshold for asking for help may have been lower and Vizrt may have initiated more commu-

nication, such as asking how it’s going during lunch.

This could have been solved by having more frequent communication in Teams, and by having

weekly sync meetings as planned. Due to poor time management and schedules that did not line

26

up, these meetings were dropped.

6.2.3 Research and decision making

The team’s development philosophy was quite exploratory, and decisions were made based on if
this decision would present an issue or limitations in the future as the scope of the project grew or
not. Some limitations posed by the choices made in this period may become apparent years down
the line, and some might have become obvious had the team continued the work for a few more
weeks. Allin all, the project has quite few external dependencies and the scope of the project makes
it quite feasible to remove dependencies such as Storybook.

Greater exploration of possibilities at each step

The team worked in a Scrumban fashion which led the team to handle abnormalities as they came
up. But in hindsight the team should have implemented the concept of "Jidoka" more, which con-

sists of:

1. Discover an abnormality

2. Stop the process

3. Fix the immediate problem

4. Investigate and solve the root cause
(Kanbanize, 2021)

The team should have had more focus on the last step, and reconsider each time if the team was

moving in the right direction.

27

7 Conclusions and further work

7.1 Conclusions

To summarize the team'’s achievements, the team was able to develop a proof of concept where the
team proved it possible to implement the process Vizrt was researching. With the workflow being

as follows:
1. Designer creates a graphical asset in a software of their own choosing.
2. They export the graphical asset as a SVG.
3. Imports the SVG into the HTMLGFX editor, which exports to HTML wrapped SVG with VDF.
4. Imports the processed SVG into Viz Story Admin.

This means that the original goal was achieved, although many of the sub goals were not reached.
As mentioned earlier in this report, due to the limited time frame and lack of historical output
data the scope grew too big. Thus the team are not surprised the team was not able to implement

additional features, outside what was needed to prove that the process was possible.

7.2 Other uses
7.2.1 The program

The program developed through this project is very proprietary to Vizrt’s systems, as the core
functionality is to create a Vizrt Data Format (VDF) XML file and callback methods to manipulate
the graphics in VizStory. Therefore the team does not believe the result would be of use to others.
However, the experiences gained through this project are something anyone could learn from or at

least recognise from their own projects.

7.2.2 Experiences

This project gave the team much experience in project and time management. The team fell in
many of the known pitfalls of development, such as underestimating the time a feature needs to be
implemented. Although the team does not believe the program could be useful outside Vizrt, the

lessons learned can be of use to others.

7.3 Further work

As discussed in section 5.1, the future development of this program does not necessarily need to
build on the actual code in this project, but can reuse specific code fragments or utilise some of the
same concepts. Vizrt could also use the experiences from this project us make a more educated

choice of a a completely different approach.

28

If this program is to be further developed the team has some thoughts and suggestions as to what

could be done.

7.3.1 Security and error handling

As stated in the limitations of the project the security issues and error handling surrounding im-
porting an SVG has not been addressed in the project. This is something that would need solving
if the program is to be a commercially viable product. Another limitation to the project that would
need attention in future works is the user interface. As Vizrt is an established company they have

their own design language, which the user interface would need to comply with.

7.3.2 Support for more attributes

The team only managed to implement working functions for editing text content and fill color. Any
further development would need to expand on this and add functions for all relevant attributes,

such as images, positioning and stroke color.

7.3.3 Automation

As explained in section 4.2.4, the selection of VDF-tags is currently done manually and without
respect to the type of the selected element. Since few types of editable tags were available in this
prototype this is not an issue. However, once the program supports many editable attributes it is
likely this will become a cumbersome process that should be streamlined and partially automated.
Therefore it would be good to find a way to automatically select the editable attributes, with the
ability for the user to change the selection if it does not comply with their needs, and perhaps find

seldom used attributes in a separate menu.

7.3.4 Other major feature sets

Many desirable features such as support for multiple aspect ratios and support for animations need
to be added in the future.

29

8 References

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,
J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Schwaber, K.,
Sutherland, J., & Thomas, D. (2001). Manifesto for agile software development. Retrieved
June 2, 2021, from https://agilemanifesto.org/

Data Pipelines. (2021, February 24). What is a data pipeline? [Data pipelines | go beyond integration].
Retrieved May 27, 2021, from https://www.datapipelines.com/blog/what-is-a-data-pipeline/

Ease Live. (2020, October 30). Sixty announces sale of ease live interactive graphics platform to
evertz [Ease live]. Retrieved May 26, 2021, from https://www.easelive.tv/evertz/index.html

elrumordelaluz. (2021, April 1). Svgson [Npm]. Retrieved June 2, 2021, from https://www.npmjs.
com/package/svgson

Express. (2019, May 25). Express - node.js web application framework. Retrieved June 2, 2021,
from https://expressjs.com/

GeeksforGeeks. (2020, October 29). HTML vs XML - GeeksforGeeks. Retrieved May 26, 2021,
from https://www.geeksforgeeks.org/html-vs-xml/

GitHub Inc. (2021). Build software better, together [GitHub]. Retrieved June 2, 2021, from https:
/[github.com

Inkscape Website Developers. (2021, May 27). About | inkscape. Retrieved May 28, 2021, from
https://inkscape.org/about/

Kanbanize. (2021). What is jidoka? [Kanban software for agile project management]. Retrieved May
28, 2021, from https://kanbanize.com/continuous-flow/jidoka

Lee, E. (2017, January 7). Template syntax — vue.js. Retrieved May 26, 2021, from https://vuejs.
org/v2/guide/syntax.htmli#Raw-HTML

Library of Congress. (2021). Wilbur and orville wright papers at the library of congress [Library of
congress, washington, d.c. 20540 USA]. Retrieved May 28, 2021, from https://www.loc.gov/
collections/wilbur-and-orville-wright-papers/articles-and-essays/the-wilbur-and-orville-
wright-timeline-1846-t0-1948/1901-to-1910/

Microsoft. (2021a). Typed JavaScript at any scale. Retrieved June 2, 2021, from https://www.
typescriptlang.org/

Microsoft. (2021b). Videokonferanser, moter og anrop | Microsoft Teams. Retrieved June 2, 2021,
from https://www.microsoft.com/nb-no/microsoft-teams/group-chat-software

Microsoft. (2021c). Visual studio code - code editing. redefined. Retrieved June 2, 2021, from
https://code.visualstudio.com/

Mozilla Developer Network. (2021, March 15). SVG: Scalable vector graphics | MDN. Retrieved May
25, 2021, from https://developer.mozilla.org/en-US/docs/Web/SVG

ProjectPlan. (2021). What is scrumban? | definition, overview, and examples. Retrieved June 2,
2021, from https://www.productplan.com/glossary/scrumban/

30

https://agilemanifesto.org/
https://www.datapipelines.com/blog/what-is-a-data-pipeline/
https://www.easelive.tv/evertz/index.html
https://www.npmjs.com/package/svgson
https://www.npmjs.com/package/svgson
https://expressjs.com/
https://www.geeksforgeeks.org/html-vs-xml/
https://github.com
https://github.com
https://inkscape.org/about/
https://kanbanize.com/continuous-flow/jidoka
https://vuejs.org/v2/guide/syntax.html#Raw-HTML
https://vuejs.org/v2/guide/syntax.html#Raw-HTML
https://www.loc.gov/collections/wilbur-and-orville-wright-papers/articles-and-essays/the-wilbur-and-orville-wright-timeline-1846-to-1948/1901-to-1910/
https://www.loc.gov/collections/wilbur-and-orville-wright-papers/articles-and-essays/the-wilbur-and-orville-wright-timeline-1846-to-1948/1901-to-1910/
https://www.loc.gov/collections/wilbur-and-orville-wright-papers/articles-and-essays/the-wilbur-and-orville-wright-timeline-1846-to-1948/1901-to-1910/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.microsoft.com/nb-no/microsoft-teams/group-chat-software
https://code.visualstudio.com/
https://developer.mozilla.org/en-US/docs/Web/SVG
https://www.productplan.com/glossary/scrumban/

Storybook. (2021). Storybook: Ul component explorer for frontend developers. Retrieved June 2,
2021, from https://storybook.js.org

StudioBinder. (2020, November 15). What is a lower third? definition and design strategies [Stu-
dioBinder]. Retrieved May 31, 2021, from https://www.studiobinder.com/blog/what-is-a-
lower-third/

Vizrt. (2021a). About vizrt. Retrieved May 28, 2021, from https://www.vizrt.com/vizrt

Vizrt. (2021b, February 3). Htmlgfx/concepts.md at main - vizstory/htmigfx. Retrieved May 26, 2021,
from https://github.com/vizstory/htmligfx/blob/main/HTMLGraphicsDocumentation/docs/
concepts-vocabulary/concepts.md

Vizrt. (2021c). Improve your social media branding with vizrt. Retrieved June 2, 2021, from https:
/lwww.vizrt.com/products/viz-story

Vue. (2021). Vue.js. Retrieved June 2, 2021, from https://vuejs.org/

X, A. (2019, July 2). Building a web-based motion graphics editor [Medium]. Retrieved June 2, 2021,
from https://medium.com/women-make/building-a-web-based-motion-graphics-editor-
bd070f8db795

31

https://storybook.js.org
https://www.studiobinder.com/blog/what-is-a-lower-third/
https://www.studiobinder.com/blog/what-is-a-lower-third/
https://www.vizrt.com/vizrt
https://github.com/vizstory/htmlgfx/blob/main/HTMLGraphicsDocumentation/docs/concepts-vocabulary/concepts.md
https://github.com/vizstory/htmlgfx/blob/main/HTMLGraphicsDocumentation/docs/concepts-vocabulary/concepts.md
https://www.vizrt.com/products/viz-story
https://www.vizrt.com/products/viz-story
https://vuejs.org/
https://medium.com/women-make/building-a-web-based-motion-graphics-editor-bd070f8db795
https://medium.com/women-make/building-a-web-based-motion-graphics-editor-bd070f8db795

	Preface
	Introduction
	Motivation and goal
	Context
	Limitations
	Resources
	Organization of the report

	Project Description
	Practical background
	Project owner
	Previous work
	Initial requirements specification
	Initial Solution idea

	Project design
	Possible approaches
	Alternative approach 1: Build an editor
	Alternative approach 2: Find and implement an editor
	Alternative approach 3: Import assets from third party editors
	Discussion of alternative approaches

	Specification
	Selection of tools and programming languages
	Tools
	Programming Languages
	Frameworks
	Additional software

	Project development method
	Initial project plan
	Risk management

	Evaluation method

	Detailed design
	The architecture
	Processing graphics
	Component communication

	Implementation
	Importing the SVG
	Rendering the SVG
	Selecting dynamic elements
	Selecting dynamic attributes
	Generating VDF-model
	General methods for editing the image.
	Building the payload
	Building static HTML

	Evaluations
	Evaluation method
	Evaluation results
	Internal evaluation
	Evaluation from Vizrt

	Discussion
	Chosen frameworks
	Storybook
	Vue

	What could have been done differently
	Time management
	Communication
	Research and decision making

	Conclusions and further work
	Conclusions
	Other uses
	The program
	Experiences

	Further work
	Security and error handling
	Support for more attributes
	Automation
	Other major feature sets

	References

