
A MULTILEVEL MODELLING
INFRASTRUCTURE FOR THE DEFINITION,

EXECUTION AND COMPOSITION OF
DOMAIN-SPECIFIC MODELLING

LANGUAGES

Doctoral Dissertation by

Alejandro Rodríguez Tena

Thesis submitted for
the degree of Philosophiae Doctor (PhD)

in
Computer Science:

Software Engineering, Sensor Networks and Engineering Computing

Department of Computer Science,
Electrical Engineering and Mathematical Sciences

Faculty of Engineering and Science

Western Norway University of Applied Sciences

August 16, 2021

©Alejandro Rodríguez Tena, 2021

The material in this report is covered by copyright law.

Series of dissertation submitted to
the Faculty of Engineering and Science,
Western Norway University of Applied Sciences.

ISSN: 2535-8146
ISBN: 978-82-93677-57-4

Author: Alejandro Rodríguez Tena
Title: AMultilevelModelling Infrastructure for theDefinition, Execution
and Composition of Domain-Specific Modelling Languages

Printed production:
Molvik Grafisk / Western Norway University of Applied Sciences

Bergen, Norway, 2021

TO THEM,
because I cannot express how grateful

I am for their unconditional
and endless love

PREFACE

The author of this thesis has been employed as a Ph.D. research fellow in the software
engineering research group at the Department of Computer Science, Electrical Engi-
neering and Mathematical Science at Western Norway University of Applied Sciences.
The author has been enrolled into the PhD programme in Computer Science: Software
Engineering, Sensor Networks and Engineering Computing.

The research presented in this thesis has been accomplished in cooperation with the
Western Norway University of Applied Sciences and the University of Málaga, Spain.

This thesis is organized in two parts. Part I is an overview article organised into
chapters that motivates the need of this thesis and discuss the state of the art and
related work. It also introduces the foundational aspects and elements of this work, and
serves as introduction to what is detailed in the collection of articles. Part II consists of
a collection of published and peer-reviewed research articles and submitted papers.

Paper A A. Rodríguez, L. M. Kristensen and A. Rutle. Formal Modelling and Incremental
Verification of the MQTT IoT Protocol. In Transactions on Petri Nets and Other
Models of Concurrency XIV, volume 11790 of Lecture Notes in Computer Science,
pages 126-145, Springer International Publishing, 2019.

Paper B A. Rodríguez, L. M. Kristensen and A. Rutle. Verification of the MQTT IoT
Protocol Using Property-Specific CTL Sweep-Line Algorithms. In Transactions
on Petri Nets and Other Models of Concurrency XV, volume 12530 of Lecture
Notes in Computer Science, pages 165-183, Springer International Publishing,
2021.

Paper C A. Rodríguez, F. Durán, A. Rutle and L. M. Kristensen. Executing Multilevel
Domain-Specific Models in Maude. In Journal of Object Technology, Volume 18,
no. 2, pages 4:1-21. 2019.

Paper D A. Rodríguez, F. Macías, F. Durán, A. Rutle and U. Wolter. Composition of
Multilevel Domain-Specific Modelling Languages. Submitted to the Journal of
Logical and Algebraic Methods in Programming, Elsevier Ltd, 2020.

Paper E A. Rodríguez, F. Durán and L. M. Kristensen. Execution and Analysis of
MultEcore Multilevel Modelling Languages using Maude. Submitted to the
International Journal on Software and Systems Modeling, Springer International
Publishing, 2021.

Paper F A. Rodríguez and F. Macías. Multilevel Modelling with MultEcore: A contribu-
tion to the Multi-Level Process Challenge. Submitted to Enterprise Modelling
and Information Systems Architectures, 2021.

ACKNOWLEDGMENTS

I have to start by thanking my supervisors, Adrian, Lars and Paco. Without their
absolute support, commitment and help, this thesis would not be possible. I still
find it difficult to imagine the amount of time they have dedicated to me and to my
work, even when they had several other duties but still managed to be there when I
needed it. To Adrian, who was always there to advise, guide and support from the
very beginning, especially during the application time before starting the PhD and
until the end of it. He went beyond the professional matter and treated me as part of
his family, inviting me to his place innumerable times. To Lars, who always had his
door open and was willing to help me no matter his countless obligations. He had the
ability to reduce, even the most stressful tasks, to the minimum, no matter what the
problem was. To Paco for his unconditional dedication. Even though he joined later,
he was fully committed from the first moment and he always found the time to talk,
meet and discuss. He was behind my research stay in Málaga, where I felt as being at
home for their hospitality and kindness. I cannot thank enough the amount of time he
has dedicated to me, in spite of the tremendous amount of responsibilities he always
had to deal with. To the three of you, again, thank you so much.

I want to dedicate this thesis to the Spilab team, especially to Juanma, Javi and Jose.
They welcomed me from the first time I wanted to explore beyond the regular bachelor
and master duties in Cáceres. To Juanma, who is one of the kindest persons I know.
He was always smiling, willing to accept challenges, and treated me as one more of
the department family. Furthermore, he helped me to achieve one of my personal
goals at that time, which was to leave Spain and work in a different country. To Javi
for being such a nice and smart person. He was always spreading a nice atmosphere
and making sure that I was fine and comfortable with them. And to Jose, who was not
only an amazing person but also a perfect mentor in my first job at Viable. We worked
together, travelled together and he made me feel serene even in the tensest moments. I
also want to thank Jaime Parodi, who gave me the opportunity to work at Viable and
from whom I learnt a lot, in different aspects. They all made it possible for me to start
my adventure in Norway.

To my PhD colleagues who created such a nice working environment and helped
me both in the personal and academic aspects. Special mention to Rui, Patrick, Håkon,
Suresh, Simon, Lucas, Faustin, Anton and Salah who were always willing to go to
drink some beers, go to the cinema or have dinner. I want to hugely thank Frikk, for
being such a special person. He is responsible for making our working room a fun and
enjoyable place. His spontaneity, insanity and hospitality make him a unique person
and a true friend. To the members of the Software Engineering, Sensor Networks and
Engineering Computing department. They gave me this opportunity and I will always
be thankful for everything this PhD journey has given to me. Thank you Volker and
Violet for being so kind and even welcoming me to your place. Also, thank you, Kristin,
Pål and Håvard, for being always reachable and help me in numerous situations.

To Fernando. I do not have enough words to express what an incredible person
you are. It is pointless to enumerate how many times you have helped me, in every

aspect. I admire you and consider you one of the best persons I have ever met. I truly
appreciate this journey for giving me the opportunity to meet you and I am looking
forward to seeing what you achieve in the future.

To my friends in Spain, who were always supporting and encouraging me to
continue this adventure. To Papy and Noemí, for being so supportive and even coming
to visit us in Norway. I cannot wait to gather with you again and share our moments
and experiences. To my friends in Villanueva—The GD Crew—for making me feel
so good every time I came back from Norway, even if it was a short period of time. I
would like to greatly thank Conchita for being there all these years (and because she
would be upset if I say nothing here about her!). No, but seriously, you are a gift and I
am truly happy of keeping our friendship after everything we have lived together. You
deserve the best and I am sure we will always have each other to rely on.

I want to especially dedicate this to the True Staff. To my cousin Alfonso for taking
everything so easy and gluing the group together. I simply cannot wait to see what
the future is holding for us, but it will surely be together. To Manu for your ironic
intelligence and the fruitful discussions that only a few people can give nowadays. To
Edu for the dynamism and freshness you give to our little family. I wish we could
see each other more often. To Sergio, because you are always there to talk and be
supportive about personal matters. And to Pedrito. You are my cousin but I consider
you my little brother. I am so happy of seeing you grow and accomplish your goals.
I am sure that you will always achieve what you set your mind to and I hope to be
always there to see it. Just go ahead and fight for it.

To my family, because you are my fundamental pillar and you have always believed
in me. Especially to Adela, who is one of the strongest persons I know, this thesis is
dedicated to you. To Angelito, for all those moments we share talking about music,
movies, etc. It is so pleasant to be able to spend an entire day talking and still enjoying
so much each little detail.

To my parents. Mom, dad, this thesis would not be possible without your endless
love and support. You have taught me everything I know and you have been the best
guides anyone could wish for. Thank you for encouragingme to initiate this Norwegian
adventure. I am so proud of being your son and share every aspect of my life with you.
I am truly thankful for everything you have done for me and still do.

And finally, to you, Ángela. I admire you for achieving everything you propose,
you are a treasure and an extraordinary person. While I could spend pages describing
how wonderful you are, I cannot find the words to express how much you mean to
me. You have always been there, especially in the difficult times, staying positive and
transmitting that feeling to me. We started this journey together and we are about to
finish it together. I am completely sure that I could not have gotten so far without your
support, encouragement and love. We have lived a lot together, but the best is yet to
come; let’s just do it.

ABSTRACT

Nowadays software has scaled to a point where it is present in every aspect of our
lives. It is paramount to explore techniques that speed up the construction of software
and desirably increase the reliability and quality of the final products. In particular,
the adoption of software systems to support almost all kinds of tasks for the society
has enforced the needs to explore the development of Domain-Specific Modelling
Languages (DSMLs) to bridge the gap between clients, domain experts and software
engineers. Moreover, the pervasive and concurrent nature of today’s software has
increased the interest in the behavioural aspects of modelling languages, facilitating the
simulation, execution and verification of models prior to their actual implementation
to reveal errors and potential misbehaviours.

One of the most prominent fields of Model-Driven Software Engineering (MDSE)
is the design and implementation of DSMLs. The creation of DSMLs involves the
specification of different abstraction levels to distribute the concepts of the domain
appropriately. Limitations in MDSE, especially regarding a strict number of available
abstraction levels, have motivated the research and application of Multilevel Modelling
(MLM). While the original motivations for MLM were mainly focused on eliminating
such a strictness, in recent years the proliferation of MLM approaches has allowed to
expand its practical applications in many areas, for instance, in complex and distributed
systems. The complexity of these systems has promoted the specification of different
modelling artefacts and sublanguages to handle different parts of the systems. This
need for reusing system parts and reasoning about global properties has led to the
invention of a multitude of approaches for language composition. In order to utilise
MLM in such complex systems, one of the novel research paths for MLM has focused
on applying language composition techniques in the MLM setting.

In this thesis, we further develop MultEcore which was originally developed as an
approach and a tool for the specification of multilevel modelling languages. We have
also extended the underlying formalisation and the practical implementation for the
execution and analysis of MLM hierarchies and the composition thereof. The execution
is described using Multilevel Coupled Model Transformations (MCMTs), while the
analysis is performed by utilising Maude. For the composition, we have employed an
amalgamation technique for MLM hierarchies and MCMTs which has its foundation
from graph transformation and category theory. In particular, MLM hierarchies are
composed using multi-typing and the concept of supplementary hierarchies, while
MCMTs from the component hierarchies are merged together—taking into account
various merge-strategies—to multi-typed rules which are applicable on the composed
MLM hierarchy. The results of the thesis are evaluated with a case study in the
Coloured Petri nets (CPNs) domain.

SAMMENDRAG

Programvare spiller en viktig rolle i alle aspekter av våre liv. Det er derfor viktig å
forske på teknikker som effektiviserer konstruksjonen av programvare og samtidig øker
påliteligheten og kvaliteten på sluttproduktene. Samtidig har bruk av programvaresys-
temer som støtter nesten alle slags samfunnsoppgaver økt behovet for å forskning
på utviklingen av domenespesifikke modelleringsspråk (DSML—Domain-Specific
Modelling Languages) for å bygge bro mellom klienter, domeneeksperter og pro-
gramvareingeniører. Videre har interessen for å studere oppførselsaspektene ved
modelleringsspråk økt i takt med utbredelsen av komplekse og samtidise programvare,
noe som åpner for avdekking av feil og mangler ved hjelp av simulering og verifikasjon
av modeller før de faktisk blir implementert.

Et av de mest fremtredende feltene innen modelldrevet programvareutvikling
(MDSE—Model-Driven Software Engineering) er utforming og implementasjon av
DSML-er. Konstruksjon av DSML-er innebærer spesifikasjon av forskjellige abstrak-
sjonsnivåer for å representere domenekonsepter der de hører til. Begrensninger i
MDSE, spesielt når det gjelder restriksjon i antall abstraksjonsnivåer som er tilgjen-
gelige for å definere DSML-er, har gitt opphav til forskningsfeltet multinivåmodellering
(MLM—Multilevel Modelling). Den opprinnelige motivasjonen for MLM var hoved-
sakelig å redusere disse begrensingene, men nå har utbredelsen av MLM-tilnærminger
de siste årene ført til en utvidelse av dens praktiske anvendelser.

For å håndtere kompleksiteten av dagens programvaresystemer brukes det ulike
modelleringsspråk og -artefakter for spesifikasjonen av systemenes mangfoldige
aspekter. Dette har også økt behovet for tilnærminger for gjenbruk og sammensetting av
systemer samt for resonnering over globale egenskaper for de sammensatte systemene.

I denne avhandlingen videreutvikler vi MultEcore—et rammeverk som opprinnelig
ble utviklet som en tilnærming og et verktøy for spesifikasjon av multinivå modeller-
ingsspråk. Vi har også utvidet den underliggende formaliseringen og den praktiske
implementeringen for eksekvering og analyse av MLM-hierarkier og sammensetting
av disse. Eksekveringen er beskrevet ved hjelp av multinivå og sammensatte modell-
transformasjoer (MCMT—Multilevel Coupled Model Transformations), mens analysen
utføres ved å benytte Maude. For sammensetting av DSML-er har vi utviklet en teknikk
for MLM-hierarkier og MCMT-er, som har sitt fundament fra graftransformasjon og
kategoriteori. MLM-hierarkier blir sammensatt ved bruk av fler-typede modellele-
menter og supplerende hierarkier, mens MCMT fra komponenthierarkiene blir slått
sammen—med anvendelse av ulike sammenslåingsstrategier— til fler-typede regler
som kan anvendes på sammensatte MLM-hierarkier. Resultatene av avhandlingen er
evaluert via studier i domenet Coloured Petri nets.

Contents

Preface i

Acknowledgments iii

Abstract v

Sammendrag vii

I OVERVIEW 1

1 Introduction 3

1.1 Modelling . 3
1.2 Model-Driven Software Engineering . 4
1.3 Multilevel modelling . 5
1.4 Composition . 5
1.5 Execution and verification . 5
1.6 Coloured Petri nets . 6
1.7 Research questions . 6
1.8 Research method . 7
1.9 Summary of papers . 9

1.9.1 Paper A: Formal Modelling and Incremental Verification of the
MQTT IoT Protocol . 10

1.9.2 Paper B: Verification of the MQTT IoT Protocol Using Property-
Specific CTL Sweep-Line Algorithms 10

1.9.3 Paper C: Executing Multilevel Domain-Specific Models in Maude 10
1.9.4 Paper D: Composition of Multilevel Domain-Specific Modelling

Languages . 11
1.9.5 Paper E: Execution and Analysis of MultEcore Multilevel Mod-

elling Languages using Maude . 11
1.9.6 Paper F: Multilevel Modelling with MultEcore: A contribution to

the Multi-Level Process Challenge 11
1.10 Contributions . 12
1.11 Outline . 13
1.12 Supplementary material . 14

2 Multilevel Modelling 17

2.1 The MOF Architecture . 17

2.2 The beginning of Multilevel Modelling . 18
2.3 Aspects of Multilevel Modelling . 21

2.3.1 Levels . 21
2.3.2 Instance characterisation . 22

2.4 Multilevel Modelling approaches . 24
2.4.1 Multilevel Modelling languages . 24
2.4.2 Multilevel Modelling tools . 27
2.4.3 Classifying Multilevel Modelling approaches 29

2.5 Multilevel Modelling in MultEcore . 30
2.5.1 Structure . 30
2.5.2 Semantics . 33

3 Language Composition 37

3.1 Composition in MDSE . 37
3.2 Structure composition . 38

3.2.1 Merge operator . 38
3.2.2 Weaving operator . 39
3.2.3 Inheritance operator . 39
3.2.4 Linguistic extension . 40

3.3 Behaviour composition . 40
3.3.1 Acting on model transformations . 40
3.3.2 Acting on behavioural models . 41

3.4 Composition in MultEcore . 41
3.4.1 Composition of Multilevel Hierarchies 41
3.4.2 Amalgamation of MCMTs . 44

4 Execution and verification 47

4.1 Model transformations . 47
4.2 Execution semantics . 47

4.2.1 Denotational and Translational semantics 48
4.2.2 Operational semantics . 48
4.2.3 Axiomatic semantics . 49

4.3 Model execution . 49
4.4 Model verification . 49
4.5 Execution and Verification in MultEcore . 50

5 The Coloured Petri nets case study 53

5.1 Coloured Petri nets . 53
5.2 The CPN modelling language . 54
5.3 Coloured Petri nets in MultEcore . 56

5.3.1 Petri nets concepts . 57
5.3.2 Regular Petri nets . 59
5.3.3 Coloured Petri nets . 59

5.4 Behaviour of Coloured Petri nets . 60
5.5 Composition of Petri net languages . 63

6 Related work, conclusions and future Work 67

6.1 Related work . 67
6.1.1 Multilevel Modelling . 67
6.1.2 Composition . 68
6.1.3 Execution and verification . 69

6.2 Research Questions revisited . 70
6.3 Summary of contributions . 71

6.3.1 Contributions to Coloured Petri nets 72
6.3.2 Contributions to Multilevel Modelling 72
6.3.3 Case studies . 74

6.4 Future work . 75
6.4.1 Coloured Petri nets . 75
6.4.2 Multilevel Modelling . 75

6.5 Conclusions . 78

Bibliography 79

II ARTICLES 101

Paper A: Formal modelling and incremental verification of the MQTT IoT

protocol 103

Paper B: Verification of theMQTT IoT Protocol Using Property-Specific CTL

Sweep-Line Algorithms 125

Paper C: Executing Multilevel Domain-Specific Models in Maude 147

Paper D: Composition of Multilevel Domain-Specific Modelling Languages 171

Paper E: Execution and Analysis of MultEcore Multilevel Modelling Lan-

guages using Maude 231

Paper F: Multilevel Modelling withMultEcore: A contribution to theMulti-

Level Process Challenge 259

Part I

OVERVIEW

Not all those who wander are lost.
—J.R.R. Tolkien

CHAPTER 1
INTRODUCTION

Software has been an important driving factor for innovations in our society in the
past 25 years. It has changed almost every aspect of our daily life as well as redefined
many industrial sectors and created new ways of transportation, production and
communication. Society is more and more dependent on software and data, which in
turn is playing a decisive role in most engineering areas.

The increasing complexity of software requirements to satisfy the needs of our
society has enforced the usage of higher levels of abstraction, making the solutions
closer to lay person’s understanding, and further away from the binary instructions
that computers process. One of the paths towards handling complexity and providing
more accessible solutions and implementations—which is an obvious ingredient in all
other engineering disciplines—is software modelling.

1.1 Modelling

Although there exist several definitions of a model, we can define a model as “a
simplified representation of certain reality that focuses on one particular aspect of a
system” [34]. Throughout history, the human mind has constantly interpreted reality
by applying cognitive processes that adjust its subjective perception. Modelling is
a process deducted from the idea of abstraction which consists of the capability of
finding the commonality in many different observations and thus generating a mental
representation of reality. Informally, a model is a simplified representation of some
real aspect and therefore it can never describe reality in its entirety [45].

Models have especially become crucial in technical and engineering fields such as
mechanical and civil engineering, and ultimately in computer science and software
engineering. In production processes, modelling allows investigating, verifying,
documenting and discussing the properties of products before they are actually
produced [101].

Originally, modelling was adopted with the purpose of sketching, designing and
abstracting a system that would later be implemented following well-defined steps
in the software engineering life-cycle. Within software engineering, models play
an essential role and are the fundamental elements in the Model-Driven Software
Engineering.

Introduction

1.2 Model-Driven Software Engineering

Model-Driven Software Engineering (MDSE) [45, 219] emerged from the goal of tackling
the continually increasing complexity of software. In other words, using models not
only as a documentation artefacts but also to generate code as well as analyse, verify
and test the system prior to its actual implementation. In recent years, the research
community has argued that MDSE is a successful approach in terms of quality and
effectiveness gains [168, 242] as well as increasing the productivity and flexibility in
developing software [1, 213].

As models play a pervasive role in MDSE, models can also be represented as
“instances” of some more abstract models. Hence, exactly in the same way we define a
model as an abstraction of phenomena in the real world, we can define a metamodel as
yet another abstraction, highlighting the properties of the model itself. In a practical
sense, metamodels constitute the definition of a modelling language, since they
provide a way of describing the whole class of models that can be represented by
that language [45]. Most traditional MDSE approaches, such as the Eclipse Modelling
Framework (EMF) [221] and the Unified Modelling Language (UML) [235], are based
on the Meta-Object Facility (MOF) [166] standard of the Object Management Group
(OMG). While this standard defines a 4-level architecture, in practice, designers find
only two abstraction levels available, i. e., (meta)models that describe the language, and
their instances representing concretisations of it. We provide a detailed description of
this architecture in Chapter 2.

The increasing complexity of software systems demands substantial knowledge in
the domain for which the system is developed. To accomplish an optimal, functional
and correct product, the domain experts and the software system engineers have to find
a common ground of understanding [93]. Furthermore, the knowledge gap between
the clients (experts in their problem domain) and the software engineers (experts in
one or more solution domains) might lead to misunderstandings and misspecified
requirements which ultimately would result in project overruns w.r.t time, budget,
project failure, or even software malfunctioning which may threaten health and life. In
MDSE, the construction of Domain-Specific Modelling Languages (DSMLs) is utilised
to overcome these challenges [168]. DSMLs are modelling languages that are tailored
to a concrete application area [127], bridging the knowledge gap between software
engineers and domain experts. At the same time, they contribute to model quality,
since the concepts that are provided by a DSML are usually the result of a thorough
development process.

Traditional MDSE approaches present a limitation in the number of abstraction
levels that one can use to specify a modelling language. A two-level architecture,
such as EMF, restricts the description of a domain within one metalevel using the
natively available metamodelling facilities like type definition, inheritance and data
types. However, these resources are not available at the model level, which forces
the modeller to explicitly model them at the metamodel level, resulting in accidental
complexity [145]. This, and other limitations such as model convolution or the fact that
the modeller has to mix concepts that belong to different domains, have been widely
discussed in the literature (see e. g., [18, 22, 23, 71, 145]).

4 Chapter 1

1.3 Multilevel modelling

1.3 Multilevel modelling

Multilevel modelling (MLM) is a research area that can bring solutions to several
challenges regarding model convolution, accidental complexity and mixing of concepts
belonging to different domains that are present in traditional two-level approaches [15,
17, 20, 22, 23, 66, 71, 103, 145]. MLM represents a significant extension to the traditional
two-level object-oriented paradigm with the potential to effectively improve upon the
utility, reliability, and maintainability of models. MLM is fundamentally based on the
idea of expanding the type-instance relation between the level of metamodels and the
level of their instances to more than these two levels.

The MLM community has shown that MLM is a favourable approach in several
domains, including process modelling, software architecture [22, 24] and gamification
mechanisms [48]. Currently, there exist a plethora of MLM approaches [12, 65, 122,
140, 141, 174, 225, 228, 239], but they all have in common the idea of not limiting the
number of abstraction levels. Thus, MLM techniques are excellent for the creation of
DSMLs which intuitively require at least three abstraction levels to be available. This is
because domain-specific variants are usually built on top of a more generic metamodel
and, moreover, the domain-specific metamodels are further instantiated to represent
concrete configurations of such domains [66, 155]. We explore MLM, its state of the art
and our approach to MLM in Chapter 2.

1.4 Composition

Modularisation, extendibility and reusability have been widely explored by the mod-
elling and language engineering communities [160]. The complexity of software
systems has promoted the construction of modelling languages by building different
modular artefacts that describe different aspects of software systems. However, it is
common to achieve global integrity in large systems to reason about global properties
that check the correctness of the entire system. Indeed, someDSMLsmight provide sim-
ilar language constructs that could be composed and reused across further DSMLs [251].
To provide modularisation and composition of modular artefacts, various composition
techniques have been explored in the literature [75, 81, 124, 129, 157, 160, 171]. When it
comes to MLM, these modularisation and composition techniques are not completely
exploited. We explore the existing composition techniques and present our approach
in Chapter 3.

1.5 Execution and verification

One of the key advantages of MDSE is the ability to detect errors prior to the imple-
mentation of the system. While the definition of the structural aspect of the modelling
language can reveal syntactic errors, the most important aspect is to define the se-
mantics of such a language. Providing behavioural descriptions, often employing
in-place model transformation rules [161], allows executing a system (a model instance)
by repeatedly applying such rules that lead from one system state to the next one.
Further steps, for instance, calculating all the possible executions (generating a state
space), opens the door for verification and model checking [28] that allow modellers to

Chapter 1 5

Introduction

check whether certain behavioural properties are satisfied. Even though various ap-
proaches have been proposed for the definition and simulation of behavioural models
based on reusable model transformations, these rely on traditional two-level mod-
elling [43, 126, 223]. Only a few approacheswithin theMLM community facemodelling
the behaviour of multilevel systems through model transformations, e. g., [14, 65], and
apply them for execution/simulation. However, to the best of our knowledge, none of
them handle any form of verification. We further explore various execution techniques
and detail our infrastructure in Chapter 4.

1.6 Coloured Petri nets

To illustrate the abovementioned limitations and evaluate our contributions to theMLM
domain, we consider one of the industrial domains in which MDSE has successfully
been applied, namely, distributed systems. Coloured Petri Nets (CPNs) [116, 118] is a
modelling framework in the distributed systems domain that facilitates, among others,
the specification of communication protocols [77], data networks [38] and distributed
algorithms [188]. CPNs belong to the family of high-level Petri nets (PNs) [119],
which are characterised by combining classical Petri nets [187] with a programming
language [234].

CPN Tools [136] is a software tool that supports the construction, execution, state
space analysis, and performance analysis of CPN models. Even though (C)PNs is a
general-purpose language, several recent applications ofCPNshave shown that itwould
be beneficial to facilitate the development of domain-specific CPN-variants [217]. While
a major advantage of CPNs is that they contain few but powerful modelling constructs,
CPN Tools lacks mechanisms to define domain-specific concepts. Furthermore, it
lacks support for basic modelling concepts such as modularisation and separation of
data type declaration from behaviour definition, thus hampering its extensibility and
adaptability to new domains. We describe and illustrate these CPN-related challenges
in Chapter 5.

1.7 Research questions

Our starting premise for this thesis was that some fundamental ideas such as com-
position and execution were barely explored by the existing MLM approaches. This
motivated us to further develop the MultEcore MLM framework to support the defi-
nition, composition, execution, and verification of multilevel DSMLs. As one of the
successful modelling frameworks in MDSE, we chose CPNs and its de facto tool (CPN
Tools) to evaluate parts of our contributions to the multilevel DSMLs domain. While
studying CPN Tools, we also identified several challenges related to its modularity,
reusability, and ability to define domain-specific concepts which our MLM approach
could handle.

Based on this we have defined therefore four research questions to be answered in
this thesis:

RQ1: Research question 1—How canMLM be used to alleviate the shortcomings of Coloured
Petri nets and the CPN Tools?

6 Chapter 1

1.8 Research method

This question concerns the study of the CPN language and the CPN Tools, the
understanding of the missing features, and how they may be improved using MLM
techniques. It is also to study the MLM state of the art to understand different
approaches and their features with the goal to alleviate current CPN challenges.

RQ2: Research question 2 — How can reuse across related multilevel DSMLs be facilitated?

This question concerns the study of reusing mechanisms and how they can be success-
fully implemented in the MLM domain. This requires investigations into the definition
of both MLM hierarchies and their corresponding MCMTs, especially in cases where
several related DSMLs belong to a language family. This question is closely related to
the CPNs case in which a family of PNs-based languages, and domain-specific variants
of them, could share a common structure and behaviour.

RQ3: Research question 3 — How can the underlying theory be adapted to achieve the compo-
sition of MLM hierarchies and amalgamation of their respective MCMT rules?

This question concerns the study of the underlying theory behind MLM hierarchies
and their corresponding MCMTs. As the MultEcore approach is founded upon graph
transformations and category theory, we have to investigate how MLM hierarchies
can be composed and how MCMTs are combined and applied to the composed MLM
hierarchies.

RQ4: Research question 4 — How can a term-rewriting engine like Maude be used as an
execution engine for MCMTs with the goal to simulate and verify multilevel DSMLs?

The last question concerns the incorporation of execution and verification into our
approach. It involves the development and evaluation of an infrastructure for the
execution of multilevel models which are defined in multilevel DSMLs by applying
MCMTs and the verification of certain behavioural properties. Answering the question
requires investigating the Maude system [54], the seamless integration of Maude and
MultEcore, and means to interpret and transfer execution and verification results from
Maude to MultEcore. Since the CPN Tools has a proven strength in state space analysis
and model checking, the results of this question would showcase that applying an
MLM approach to the CPN case would not lose this strength.

1.8 Research method

The researchmethod followedalong the course of this thesis isConstructiveResearch [179].
The constructive research method can be phenomenon-driven, theory-driven or the
combination of the two. In our case, we employ a combination of both. This
methodology begins with a strong grounding in identifying a practical problem
complemented by related literature. The identified research problems are used to
propose research questions that address the problem. The questions are solved by

Chapter 1 7

Introduction

developing or constructing a solution (e. g., a framework or a tool) that has to be
implemented to determine its feasibility, practicality and usability (often tested through
case studies and feasibility studies). In constructive research, the goal is to define and
solve problems, as well as to improve an existing system or its performance, with the
overall implication of adding to the existing body of knowledge. The construction
proceeds through design thinking that makes projection into the future envisaged
solution (theory that is required and artefacts that will be constructed) and fills
conceptual and other knowledge gaps by purposefully building tailored blocks to
support the whole construction [78].

A common starting point in many research activities is the specification of research
questions that scope the goals of the research activities. The research questions outlined
in Section 1.7 were formulated based on the study of the shortcomings present in
traditional MDSE approaches and in the CPNs case—which is used as a witness of a
successful MDSE framework. These questions, especially RQ1, possess an exploratory
nature and are classified as knowledge questions [82], where we attempt to understand
the phenomena and identify useful distinctions that clarify our understanding. In our
case, this concerns howCPNs and other modelling languages work andwhat flaws they
present. Essentially, in the early phases of our work, we were on an exploratory and
theoretical phase, where we aimed at understanding the current state of the art onMLM
and CPNs. The remaining research questions, specially RQ4, which is the most focused
on practical contributions, can be classified as design questions within non-empirical
research where the goal is to design better procedures and tools for carrying out some
activity [82]. These kinds of questions assume that the associated knowledge questions
have already been addressed (which was our case, as the infrastructure was constructed
upon the developed theory) so that we have enough information about the nature of
the design problem to be solved.

Theoretical Knowledge Relevant Problem

Problem
Solution

Theoretical Contribution Practical Contribution

practical
experience

theory
based

understanding
of the topics

-MultEcore theoretical foundation

-MultEcore tool initial state

-CPNs challenges

-Lack of research in
 fundamental ideas in

current MLM approaches

-Composition of multilevel hierarchies

-Amalgamation of MCMTs

-MultEcore-Maude infrastructure:
· Bidirectional transformation
· Execution and verification
· Automatic results interpretation

Fig. 1.1: Constructive research method

Figure 1.1 represents the constructive research method. Theoretical Knowledge

can be associated with the current state of the art on MLM that served as a starting

8 Chapter 1

1.9 Summary of papers

point of this thesis and is detailed in Chapter 2. We took the MultEcore approach as a
starting point due to its extendibility potential and the already developed theory and
tooling. The Relevant problem is about the already discussed scarcities that MLM,
CPNs and the CPN Tools currently have. These mostly concern a lack of research in
composition, execution and verification techniques applied to MLM. Composition is
discussed in Chapter 3 and execution and verification in Chapter 4. We explore the
modelling of CPNs and our solution applying the developed MLM techniques using
MultEcore in Chapter 5.

The study of the theoretical knowledge and the relevant problem enhances the un-
derstanding of the problem and the real needs as well as helps to connect the existing
theory to potential solutions. The Problem Solution is our proposal that aims at build-
ing an infrastructure where one can define, compose, execute and verify multilevel
DSMLs. This solution is proposed based on the studied underlying theory and the
practical experience of the problems. Then, the outcome is twofold. First, providing a
Theoretical contribution on top of the theoretical foundation of MultEcore, to handle
the composition of structure and behaviour of MLM hierarchies. Our composition
approach is detailed in Chapter 3. Second, providing a Practical contribution that
corresponds to the developed infrastructure to handle the specification, execution and
verification of MLM hierarchies as presented in Chapter 4. The constructed infrastruc-
ture that connects MultEcore with the Maude system allows the modeller to interact
with Maude tools that facilitate execution strategies and verification mechanisms as
well as the automatic interpretation of the produced results back into MultEcore graph-
ical models. The MultEcore-Maude infrastructure is explored in Chapter 4 and its
application to the CPNs case in Chapter 5. To further evaluate our infrastructure, we
submitted a solution to the MULTI Process Modelling Challenge [5] (see Paper F for
the details).

1.9 Summary of papers

This section lists the six papers that form the basis of this thesis and that are included
in Part II. Then it summarises the content of each paper.

[196] A. Rodríguez, L. M. Kristensen and A. Rutle. Formal Modelling and Incremental
Verification of the MQTT IoT Protocol. In Transactions on Petri Nets and Other
Models of Concurrency XIV, volume 11790 of Lecture Notes in Computer Science,
pages 126-145, Springer International Publishing, 2019.

[198] A. Rodríguez, L. M. Kristensen and A. Rutle. Verification of the MQTT IoT
Protocol Using Property-Specific CTL Sweep-Line Algorithms. In Transactions
on Petri Nets and Other Models of Concurrency XV, volume 12530 of Lecture
Notes in Computer Science, pages 165-183, Springer International Publishing,
2021.

[193] A. Rodríguez, F. Durán, A. Rutle and L. M. Kristensen. Executing Multilevel
Domain-Specific Models in Maude. In Journal of Object Technology, Volume 18,
no. 2, pages 4:1-21. 2019.

Chapter 1 9

Introduction

[201] A. Rodríguez, F. Macías, F. Durán, A. Rutle and U. Wolter. Composition of
Multilevel Domain-Specific Modelling Languages. Submitted to the Journal of
Logical and Algebraic Methods in Programming, Elsevier Ltd, 2020.

[194] A. Rodríguez, F.Durán andL.M.Kristensen. Execution andAnalysis ofMultEcore
Multilevel Modelling Languages using Maude. Submitted to the International
Journal on Software and Systems Modeling, Springer International Publishing,
2021.

[200] A. Rodríguez andF.Macías. MultilevelModellingwithMultEcore: A contribution
to the Multi-Level Process Challenge. Submitted to Enterprise Modelling and
Information Systems Architectures, 2021.

1.9.1 Paper A: Formal Modelling and Incremental Verification of the
MQTT IoT Protocol

This paper [196] was accepted for the Transactions on Petri Nets and Other Models of
Concurrency in 2019. In this paper, we present a formal specification of the Message
Queuing Telemetry Transport Protocol (MQTT) [30] in the form of a CPN model. The
model covers the three quality of service levels defined by the MQTT specification.
This model can be simulated to inspect the exchange of messages between clients (who
can subscribe to topics) and the broker. We also present in this paper an incremental
model checking approach for the verification of properties that can be used to reduce
the effect of the state explosion problem. This incremental approach is based on the fact
that the MQTT protocol operates in phases comprised of connect, subscribe, publish,
unsubscribe and disconnect. To verify the model we conduct model checking of several
behavioural properties.

1.9.2 Paper B: Verification of the MQTT IoT Protocol Using Property-
Specific CTL Sweep-Line Algorithms

This paper [198] was accepted for the Transactions on Petri Nets and Other Models of
Concurrency in 2021 and is based upon the work presented in Paper A. In this paper, we
investigate how to alleviate the effect of the state space explosion problem. Specifically,
we implement the sweep-linemethod in StandardML (SML) and integrate it in the CPN
Tools. The sweep-line method allows us to carry out model checking while deleting
states from memory during state space exploration. The behavioural properties are
formulated using property-specific Computation Tree Logic (CTL) model checking
algorithms that we implement to make verification of certain properties compatible
with the sweep-line method. As a result, there is a substantial reduction in memory
usage at the expense of a modest increase in execution time.

1.9.3 Paper C: Executing Multilevel Domain-Specific Models in Maude
This paper [193]was accepted for the Journal of Object Technology in 2019. In this paper,
we propose an approach to define multilevel hierarchies and specify its behaviour
in a flexible way. We make use of an improved version of the Multilevel Coupled

10 Chapter 1

1.9 Summary of papers

Model Transformations (MCMTs) to enhance horizontal and vertical flexibility which
make them reusable across different domains. Furthermore, we present a preliminary
version of an infrastructure that connects MultEcore with Maude which allows us to
execute models. We use a Product Line system as case study to demonstrate that the
specified MCMT rules can be used in models belonging to different branches of the
hierarchy and that these models are executed to observe their evolution.

1.9.4 Paper D: Composition of Multilevel Domain-Specific Modelling
Languages

This paper [201] is currently under review at the Journal of Logical and Algebraic
Methods in Programming. In this paper, we extend our MLM approach to support
composition. We propose a composition mechanism for structure and behaviour of
multilevel modelling hierarchies based on the concept of supplementary hierarchy.
Our approach facilitates the inclusion of additional typing chains (allowing elements
to have more than one type) while keeping a clear separation of concerns which
enhances modularity. We also show how MCMT rules can be amalgamated to create
composed transformation rules. Furthermore, we apply our proposal to a case study
and illustrate how we have developed a semi-automatic amalgamation mechanism to
produce amalgamated MCMT rules.

1.9.5 Paper E: Execution and Analysis of MultEcore Multilevel Mod-
elling Languages using Maude

This paper [194] is currently under a second round of review for a theme issue on
multilevel modelling in the International Journal on Software and Systems Modelling.
In this paper, we built upon the preliminary infrastructure presented in Paper C. First,
we improve the expressivity and applicability of MCMTs by incorporating support
for attributes, for conditional rules and for nested boxes to handle submodel patterns.
Second, we give a rewrite logic semantics to MLM, on which we have based our
automated transformation fromMultEcore to Maude. Furthermore, we highly improve
our infrastructure including support for the Object Constraint Language (OCL) [51],
with a user-friendly interface that hides Maude as a background process in MultEcore,
and that provides tools for the execution, reachability analysis and model checking of
models. Different forms of execution are made available. Even though the analysis
performed is limited, it already allows the analysis of infinite state spaces through
non-trivial forms of abstraction.

1.9.6 Paper F: Multilevel Modelling with MultEcore: A contribution to
the Multi-Level Process Challenge

This paper [200] is currently under review for the EnterpriseModelling and Information
Systems Architectures Journal. This paper is a contribution to the MULTI Challenge
series [5] that is intended to encourage the MLM research community to submit
solutions to the same, well-described problem. In this work, we present our solution in
the context of process management where we discuss howwe handle each requirement

Chapter 1 11

Introduction

and explain how MultEcore supports the construction of the proposed case study. We
not only focus on the structural dimension of themandatory and optional requirements,
but also explore the specification of constraints and behaviour using MCMTs. We
make use of the infrastructure presented in Paper E to execute the instance models that
belong to the constructed multilevel hierarchy.

1.10 Contributions

Our approach for MLM, formally specified in [149] and Paper D, and reflected in
the MultEcore tool [150, 199], rests on the premise that one must be able to specify
multilevel models which are both generic and precise [155]. Since amultilevel hierarchy
captures the structural aspect of a modelling language, we use our own multilevel
transformation language that allows coping with the specification of the semantics,
so-called Multilevel Coupled Model Transformations [149, 155]. MCMTs are flexible
with respect to the multilevel hierarchy within their two dimensions. They are vertically
flexible since new models can be introduced in the constructed multilevel hierarchy
without affecting the application of the existing MCMT rules. They are also horizontally
flexible since new branches might be integrated into the hierarchy and yet the existing
MCMT rules would be automatically applicable to such new branches. Note that in
cases where some branch defines its own specific MCMT rules, these are prioritised to
override the more generic rules.

To copewithmodularisation and composition in anMLM context, we have extended
our underlying theory based on graph transformations and category theory, and
developed an alternative composition technique. Specifically, multilevel hierarchies
and MCMT rules are composed using multi-typing and the concept of supplementary
hierarchies. The evaluation of the results related to composition (RQ3, Section 1.7)
was done in the context of a case that was proposed by the MULTI Process Modelling
Challenge [5]. Hence, these results are not validated in the CPN case.

To manage execution and analysis, we have developed an infrastructure that
connects our MultEcore MLM tool with the Maude system [54], which implements a
rewriting logic engine. In a nutshell, this infrastructure supports (i) the specification
of multilevel DSMLs as multilevel hierarchies; (ii) the specification of the model
transformation rules that describe their behaviour (via the MCMTs); (iii) the translation
of this setting intoMaudewhich we use for execution, analysis and verification; (iv) and
finally the interpretation of the results from Maude into MultEcore. Note that every
Maude-related aspect is hidden to the user, who directly interacts with the MultEcore
interface.

Some of the aforementioned contributions have been evaluated by the CPNs
case study and is documented in Chapter 5. The ideas integrated into MultEcore
facilitate the definition of language families, e. g., PNs, CPNs as a refinement of
PNs, domain-specific CPNs, and potentially further concretisations, providing the
modeller with capabilities to treat each level as an instantiatable modelling language.
This way, the specification of multilevel hierarchies enhances modularisation and
facilitates extendibility [193, 204]. We have also evaluated our framework by providing
a solution to the MULTI Challenge [5], where we model a multilevel hierarchy for
process management, making use of the supplementary dimension and perform

12 Chapter 1

1.11 Outline

execution using the MultEcore-Maude infrastructure. A more detailed description
of the contributions of this thesis can be found in Chapter 6. MultEcore and the
MultEcore-Maude infrastructure are documented in [151] and [192], respectively.

1.11 Outline

This thesis is organised into two main parts. Part I starts with the present Chapter 1 giv-
ing an introduction to the essential aspects that motivates the research work underlying
this thesis. Then, it details the state of the art and our solution to the following fields:
(i) MLM, (ii) composition, (iii) execution and (iv) verification of multilevel DSMLs and
CPNs. Finally, it discusses the contributions we have made and the results obtained.
The reminder of Part I is comprised of:

Chapter 2: Multilevel Modelling.

This chapter gives first a roadmap to the evolution of MLM, emphasising its origins
and the original aspects that motivated the research into MLM. Then, it revisits the
key aspects that characterise the current MLM solutions and explores different MLM
approaches and tools. Finally, it examines our approach and positions it with respect
to the state of the art in MLM.

Chapter 3: Language Composition.

This chapter elaborates on motivational aspects that gave rise to the research into the
composition of languages. Then, it explores existing techniques that handle composi-
tion and discusses relevant approaches and tools that currently support some of these
composition techniques. Furthermore, it details our approach to handle the composi-
tion of multilevel modelling hierarchies and amalgamation of behavioural rules, and
positions it with respect to the surveyed techniques.

Chapter 4: Execution and Verification.

In this chapter, we introduce execution and verification in the context of MDSE. We
first classify methodologies that handle the execution of behaviour and analyse several
existing tools that implement execution engines based on some of these methodologies.
We also explore verification, especially model checking, and relevant approaches that
incorporate mechanisms to verify the modelled systems. Finally, we describe our de-
veloped infrastructure and detail how we achieve execution and verification.

Chapter 5: The Coloured Petri nets Case Study.

In this chapter we provide the CPNs background that is necessary to understand the
contributions made to the CPNs field and which has been used as a case study of our
infrastructure. Also, we detail how and what MLM techniques have been successfully
applied to build the multilevel hierarchy for executable CPNs.

Chapter 6: Related work, conclusions and future Work.

In this chapter, we discuss related work, revisit the research questions, summarise our
contributions and outline directions for future work.

Chapter 1 13

Introduction

Part II consists of a collection of six journal articles, where three of them have been
peer-reviewed and published [193, 196, 198] and the other three are currently under
review [194, 200, 201]. We have summarised these six papers in Section 1.9. The three
under-review papers are extensions of already published articles in workshops and
conferences (see Section 1.12).

1.12 Supplementary material

In addition to the articles included in Part II (listed in Section 1.11), seven workshop
articles have been published presenting initial research results obtained during the
work for this thesis:

[227] A. Rodríguez, F. Macias, L. M. Kristensen and A. Rutle. Towards Domain-Specific
CPN Modelling Languages. In Proceedings of the 29th Nordic Workshop on
Programming Theory (NWPT’17).

[195] A. Rodríguez, L. M. Kristensen and A. Rutle. On Modelling and Validation of the
MQTT IoT Protocol for M2M Communication. In the International Workshop on
Petri Nets and Software Engineering (PNSE’18) (pages 99-118). CEUR Workshop
Proceedings 2138.

[202] A. Rodríguez, A. Rutle, F. Durán, L. M. Kristensen and F. Macias. Multilevel
Modelling of Coloured Petri Nets. In the 5th International Workshop on Multi-
Level Modelling (MULTI’18) co-located withMoDELS conference (pages 663-672).
CEURWorkshop Proceedings 2245.

[197] A. Rodríguez, L. M. Kristensen and A. Rutle. On CTL Model Checking of the
MQTT IoT Protocol using the Sweep-Line Method. In the International Workshop
onPetriNets and Software Engineering (PNSE’19) (pages 57-72). CEURWorkshop
Proceedings 2424.

[204] A. Rodríguez, A. Rutle, L. M. Kristensen and F. Durán. A Foundation for
the Composition of Multilevel Domain-Specific Languages. 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages and
Systems Companion (MODELS-C), Munich, Germany, 2019, pp. 88-97, doi:
10.1109/MODELS-C.2019.00018.

[199] A. Rodríguez and F. Macías. Multilevel Modelling with MultEcore: A Contri-
bution to the MULTI Process Challenge. 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), Munich, Germany, 2019, pp. 152-163, doi: 10.1109/MODELS-
C.2019.00026.

[203] A. Rodríguez, A. Rutle, F. Durán, L.M. Kristensen, F. Macías and U. Wolter.
Composition of Multilevel Modelling Hierarchies. In Proceedings of the 31st
Nordic Workshop on Programming Theory NWPT 2019 (NWPT’19).

14 Chapter 1

1.12 Supplementary material

The work presented in the above listed workshop articles ([195, 197, 199, 202–
204, 227]) have been extended and improved within the six journal articles included
in Part II. Therefore, none of the listed workshop articles are formally included in this
thesis.

Chapter 1 15

CHAPTER 2
MULTILEVEL MODELLING

In this chapter, we introduce the original motivations that promoted the formulation
of Multilevel Modelling (MLM) solutions and discuss the key concepts that define the
core ideas of MLM and that have influenced the MLM community until today. Then,
we explore existing MLM approaches and finally position our MLM solution with
respect to the state of the art.

2.1 The MOF Architecture

The traditional two-level approaches such as the Unified Modelling Language
(UML) [41] and the Eclipse Modelling Framework (EMF) [221], which are based
on the OMG’s 4-level Meta-Object Facility (MOF) [166] (see Figure 2.1), present some
shortcomings that MLM aims to solve. In the MOF architecture, the topmost level
MetaMetaModel (M3) is reserved for MOF and is the core from which the descrip-
tions of specific modelling languages (i. e., specific language metamodels) are created.
The dashed arrows in the figure between levels indicate instance-of relationships. Below,
Metamodel (M2) defines one of the OMGmetamodels, e. g., the UML class diagram
and the UML object diagram. It is in the Models level (M1) where the modeller can
define user models. Here, inM1, one uses the concrete language constructs to define
specific model instances which represent concrete systems. Finally, the User Data level
(M0) associates elements of a UML object diagram or a class diagram to real-world

M3
MetaMetaModel

M2
Metamodel

M1
Models

M0
User Data

Fig. 2.1: OMG’s 4-level architecture

Multilevel Modelling

objects. While it is described as a 4-level architecture, it is two-level in practical terms,
as the modeller can only useM1 andM0 to specify the software systems.

In the MDSE community, there exist different schools of thought regarding the
classification of theUserData level. While some consider thatM0 should be included in
the 4-layer architecture, others argue for the separation ofM0 as it might just represent
the modelled system [20, 21]. Although in the OMG hierarchy the relationship between
M0 andM1 in Figure 2.1 is characterised as an instance-of relationship, those that do
not considerM0 as part of the modelling stack call it a representation relationship and
consider it as a representation of real-world objects. This separation of the bottommost
level w.r.t. the rest of the architecture is called “The 3 + 1 MDA organisation” (see [34]
for discussion on this topic).

EMF is based on a variant of the architecture shown in Figure 2.1 that consists of
only three levels. It has Ecore at the top which is EMF’s metamodel. Below it, we find
user models defined by the modellers to describe the software systems. At the bottom,
we have instance models which contain individuals and concrete configurations. These
can be understood as formal object diagrams which are class diagram instantiations. In
practical terms, the architecture in Figure 2.1 and EMF’s architecture allow customising
only the two bottommost levels to specify software systems. In the case of creating
DSMLs, both the OMG and EMF modelling architectures allow users to only modify
two levels: M1, for defining the modelling constructs, andM0 for the definition of
concrete instances of these languages.

2.2 The beginning of Multilevel Modelling

MLM is a prominent research area where models and their specifications can be
organised into several levels of abstraction [17, 20, 103]. MLM recognises that some
model elements may have a bifold type/instance nature, and hence it makes some
metamodelling facilities available at every metalevel. In some situations, this may
result in simpler models as the engineer does not need to explicitly model and give
semantics to those metamodelling facilities or resort to artificial workarounds [22].

More than two decades ago, Atkinson and Kühne were already exploring, studying
and analysing the scarcities of traditional MDSE approaches, especially UML, and how
the identified flaws of these approaches could be addressed [11, 15–19]. While UML
has been improved over the years, it still lacks some mechanisms to provide solutions
to the construction of DSMLs in a natural way, as will be discussed throughout this
section. In the late 1990s and the early 2000s, several frameworks, such as UML [41]
and the Open Modeling Language (OML) [218] used to mix the instances and the types
from which they are created at the same level (e. g., class and object, and association
and link) [15]. One of the initial fundamental shortcomings was that even though
the UML was based on a 4-level architecture, there was no precise definition of the
“instance-of” relationship. In other words, the dashed lines in Figure 2.1 may have
different flavours depending on which levels (M3-M0) they connect. This was called
loose metamodelling [11] where a model placed at levelMn is an instance-of a model
residing in levelMn+1.

An early attempt to introduce some rigour into the use and organisation of the level
hierarchywas the formulation of the strict metamodelling principle. Strict metamodelling

18 Chapter 2

2.2 The beginning of Multilevel Modelling

is based on the premise that if a model placed at levelMn is an instance of another
model in level Mn+1, then every element of the model at Mn must be an instance
of some element in the model at Mn+1 [16]. Basically, it interprets the instance-of
relationship not only in general between models, but at the granularity of individual
model elements. Strict metamodelling mandates that levels have strict boundaries and
are formed purely by instance-of relationships and not by any other unstated criteria.
An important consequence of the strict metamodelling approach is that every model
element has an instance facet and a type facet, both of which are equally valid [15].
This gave rise to one of the key concepts in the multilevel modelling community,
the so-called Clabject, which states that every class appearing at any level within a
metamodelling framework is not merely a class, but actually a class and an object. Note
that this could not apply to the bottommost level as it might not act as metalevel in
levels below.

Among others, a main goal of MLM is to reduce the accidental complexity, i. e.,
complexity added by introducing model elements only to express their multilevel
nature [22, 145]. An example is the so-called Type-Object pattern [158] (also known as
the Item Descriptor [58] pattern) to describe multiple domain levels in object-oriented
languages. In such a pattern, objects play the role of classes, and as such, type-
related information can be encoded in them. This means that classification is replaced
by association, which—along with objects representing class information—leads to
accidental complexity [22, 145].

Another shortcoming regarding the lack of an unlimited number of levels is the
need to specify a family of languages where we usually have a topmost metamodel
capturing the generic and common parts of the language family, which might then
branch into different domains and potential subdomains (see [199, 247] and Paper F for
some examples). These hierarchical constructions require well-defined infrastructures
to handle the separation of abstraction levels. Therefore, the limitation in the number
of levels of traditional MDSE approaches can, even more, affect the specification of
reusable DSMLs. Having to rely, for instance, on generalisation inside one metamodel
would lead to a single big metamodel where elements that belong to different domains
have to be put together, making more difficult the tasks of maintaining, extending or
updating the language.

There exist some alternative techniques within the two-level approaches to alleviate
the problems described above to encode more information within two levels. The use
of the Type-Object pattern itself as well as the Metamodel extension [145], Ad-hoc
promotion transformations [145], tagged values, and representing domain metatypes
as stereotypes [20, 22, 26] or powertypes [22, 178] are some examples. Still, they remain
more as “workarounds” or “tricks”. As pointed out by Atkinson and Kühne [19]: “The
application of the Type-Object pattern is a symptom of the lack of logical metaclasses”
(see [19] for an example of this problem). Hence, the aforementioned workarounds
tend to increase the accidental complexity of domain models by polluting them with
(inherently unnecessary for the domain itself) extra elements, making it a less accurate
representation of the domain [22].

Although traditional instantiation is sufficient when dealing with only two levels
(e. g., classes and objects), it should ideally be enhanced for a multilevel instantiation
hierarchy. However, the problem with traditional instantiation (e. g., in UML) is that

Chapter 2 19

Multilevel Modelling

a type may only specify properties of its direct instances but has no bearing on, e. g.,
the instances of its instances. This is called shallow instantiation and introduces two
problems: multiple or ambiguous classification and replication of concepts. In a nutshell,
ambiguous classification refers to the ambiguity that arises when one has to reason,
from a certain level (e. g.,M2), about how elements are defined and connected at the
instance level (M0), but it has to go through the intermediate level (M1). In other
words, the ambiguous classification problem appears because the traditional semantics
of instantiation prohibits a model element from influencing anything other than its
immediate instances. This forces the modeller to bypass the information through
M1 giving rise to a potential ambiguity where elements at M0 are (or have to be)
potentially classified byM1 andM2 which is vague and inconclusive. Replication of
concepts is a consequence of the ambiguous classification: The strictness promoted by
shallow instantiation that fails to carry information across more than one instantiation
link makes it necessary to duplicate information at multiple levels just to carry the
necessary information. We refer the reader to [18] for more details on these problems
and how they are solved by the notions of deep instantiation or deep characterisationwhich
are described by so-called deep modelling. Deep characterisation relaxes the strictness
present in shallow instantiation. It is an instantiation mechanism where the features of
an element’s class can be acquired automatically by the instantiation step rather than
always having to be defined explicitly. Deep instantiation and the key aspects that
characterise it are explored in Section 2.3.

Instance-of relationships present another shortcoming regarding the impossibility
of distinguishing different interpretations of them. This vagueness causes it not to
scale up well for all requirements of what a model-driven development supporting
infrastructure should fulfil (see [20, Section 2]). Álvarez et al. [6] presented one of the
first works that introduced the Meta-Modeling Language (MML) which distinguished
different forms of instance-of relations by abandoning the idea of linear framework
organising the levels in a nested way. In that sense, an object atM0 would have a type
coming from its domain dimension (logical classification) and another type coming from
its physical dimension (physical classification). However, there are other implications
in the MML proposition such as that logical instantiation might be viewed as the
same mechanism as physical instantiation, clearly blurring the differences between
them. To overcome that, Atkinson and Kühne [19, 20] proposed to identify two
separate orthogonal dimensions of metamodelling, giving rise to two distinct forms of
instantiation:

• Linguistic (physical) Dimension. It is the dominant classification dimension
from the viewpoint of tool builders. This essentially adopts the “UMLas language”
philosophy described above, and views the Metamodel (M2) as defining the
physical classifiers (abstract syntax) from which models are constructed (e. g.,
Class and Object).

• Ontological (logical) Dimension. It is the dominant classification dimension
from the viewpoint of modellers. It focuses on classification within a concrete
domain, and it does not involve the representation of concepts (i. e., the physical
classification). It is in this dimension where there exists a clear need for an
unrestricted number of classification levels (rather than relying, for instance, on

20 Chapter 2

2.3 Aspects of Multilevel Modelling

generalisation in the same model) to express the needs of the domain. In this
regard, Odell [178] demonstrates the practicality of associating the information
with types so that they can be viewed as being instances themselves. Mili and
Pachet [167] also provide some examples, for instance, showing how to express
commonalities amongmodels, which cannot be well capturedwith generalisation.

This organisational architecture is called Orthogonal Classification Architecture
(OCA) [21] which is primordially based on level-compaction [20]. The OCA has been
influencing the MLM community until today and it is currently the most widely used
architecture for the specification of multilevel frameworks. It provides a genuine
MLM platform, typically in the context of a single linguistic format definition, while
enhancing the use of an unlimited number of ontological levels.

The shortcomings that MLM aims to alleviate have been widely discussed by the
MLM community over the past two decades. Especially, de Lara and Guerra [25, 66–
71, 106, 145] have studied the nature of these problems in detail and identified not only
those patterns that would benefit from MLM solutions, but also cases where MLM
might not be a suitable approach. Furthermore, they have explored other alternative
solutions and carried on thorough research activities to classify and identify which
solution suits best to handle each problem. Also, they have been involved in research
works that compare MLM approaches and classify them [13, 46, 100, 113] (see also
Section 2.4.3).

2.3 Aspects of Multilevel Modelling

In recent years, there has been a proliferation of MLM solutions. In the following,
we introduce key concepts whose interpretation promotes a variety of different MLM
approaches and tools.

2.3.1 Levels
Atkinson and Kühne introduced the terminology Level-agnostic [13] to approaches that
do not make the treatment of an element dependent on its level in the ontological
classificationhierarchy. The idea of level-agnosticism for amodelling languageproposes
to treat all elements using a uniform notation, independently of which level they belong
to, e. g., whether they are objects or classes [13]. In this context, a language can achieve
level-agnosticism either by only recognising a single level (level-blind) or by explicitly
using levels to structure the modelling elements (level-adjuvant).

Level-adjuvant approaches [13, 138]. Most of the current MLM approaches follow
this doctrine. A level-adjuvant language is a level-agnostic language that recognises
the utility of levels. In level-adjuvant approaches, a level is a numeric attribute defined
for all elements in a multilevel model, which enables layering elements based on their
level value. Most MLM approaches use the instantiation relation (with classification
semantics) to relate levels. This has the advantage of enabling the use of mechanisms
for deep characterisation that work across instantiation relations, like potency (we
further discuss potency in Section 2.3.2).

Chapter 2 21

Multilevel Modelling

In [138], Kühne explores a more fundamental research line to discern what “level”
means, how to systematically organise elements into levels in a standard way, and
other fundamental aspects regarding this concept. Frameworks such as the DPF
Workbench [141], OMLM [112], Metadepth [65], Melanee [12], MultEcore [149], Dual
Deep Modelling (DDM) [176] and FMMLx [50, 94] can be classified as level-adjuvant
approaches.

Level-blind approaches [109]. A level-blind approach is one where a single level
may contain arbitrary structures of ontological classification relations. Even though
level is not explicitlymodelled, it is often possible to intuitively derive them by analysing
the solution implementation. Most of the level-blind approaches are based on the
powertype pattern [49, 178] and form sequences of powertype relations between certain
classes to implicitly establish levels. A level-blind approach has the advantage of
allowing all elements to be treated in the same way since membership to ontological
levels is abstracted away. Another advantage of having everything comprised in a
single level is that cross-level relationships can be formed, a feature that most of the
level-adjuvant approaches do not support as they only allow the “instance-of” relation
between levels. Approaches such as DeepTelos [123], ML2 [64, 90] (which is built
upon MLT* [3]), DMLA [228] and the programming languages DeepRuby [175] and
DeepJava [140] are level-blind approaches.

2.3.2 Instance characterisation

Most of the MLM approaches can characterise instances at lower metalevels and
not only the immediate one as in standard two-level modelling that follows shallow
classification. As mentioned earlier, this is called deep characterisation [18]. In
level-adjuvant approaches, the mechanism used to have some control on how deep
to instantiate is called Potency [18, 19]. The first concept of potency was introduced
more than 20 years ago and, since then, the proliferation of MLM approaches has also
propitiated several alternative potency interpretations and proposals. In the following,
we classify each of the existing potency variants.

• Classic potency. Its intuition is that one can assign potency values to model
elements and their fields, indicating how many times they can be instantiated.
Originally, the potency of a model element was an integer that defines the depth
to which a model element can be instantiated [18]. Instantiating a model element
amounts to reducing the level of the instances by one and also reducing its potency
and the potencies of all its fields by one. Once potency reaches 0, it cannot be
further instantiated. The classic potency notion demands the instantiation of
every intermediate model element between level n and 0. In other words, the
classic potency is aligned with strict metamodelling, where each element is an
instance of exactly one element in the upper metalevel. Note that this could be too
restrictive as one might sometimes be interested only in instances with potency
0. This would force to create clabjects at each intermediate metalevel –– with
a so-called identity instantiation [70] that does not introduce new information
–– but is required to instantiate clabjects at potency 0. In [137], Kühne first

22 Chapter 2

2.3 Aspects of Multilevel Modelling

contextualises and identifies the limitations of classic potency. Then, he provides
four different categories of potency interpretations as result of analysing existing
MLM approaches based on how they align to the concepts of order and level [137,
Section 5]. Finally, he proposes the notion of characterization-potency as an evolution
of classic potency that rests on a new foundation that distinguishes between
characterisation and classification.

• Leap potency. To alleviate the strictness of the classic potency and the need
of using identity instantiation, de Lara et al. [70] introduced the so-called leap
potency where instantiation is not mediated. Mediation occurs when an element
must strictly be instantiated from the level right above it. Elements with a leap
potency of n can be instantiated exactly nmetalevels below, but not at intermediate
levels, which remains as a way to “skip” the instantiation at the intermediate
levels.

• Multi-potency. This was proposed by Rossini et al. [206] and is similar to classic
potency where a node or a relation with a multi-potency p must be instantiated p
times, on every level below. Rossini et al. also define a different kind of potency,
so-called single-potency. A single-potency p on an element at metalevel i denotes
that such an element can be instantiated (i. e., can be assigned a value) at metalevel
i+p only. In this regard, single-potency works similar to leap potency.

• Star-potency. It aims at introducing uncertainty and increasing the flexibility of
the language [99]. If a value of “∗” is given to an element, an unlimited number
of instances can be created and a feature can be passed over an unlimited number
of instantiation levels. The star-potency is a requirement for unbounded models
as the number of ontological levels is left open.

• Range potency. Thiswas proposed byMacías et al. [154] and originally employed
an interval that allows for a higher degree of expressiveness, using the notation
min–max. The notation specifies the range of levels below, relative to the current
level, where the element can be directly instantiated. Note that the approach
allows the secondvalue to be “∗”whichpermits to leave unbounded themaximum
level at where the element can be instantiated. While this range is sufficient for
attributes, a lack of expressiveness for nodes and relations detected in several
scenarios forced them to add a third value [149, 150, 155] to express the depth.
Thus, the current version of the range potency that is also used in the work
presented in this thesis contains three values for nodes and relations (min–max–
depth), and the first two for attributes (min–max). The depth value (which can be
also specified with “∗”) is used to control the maximum number of times that
the element can be transitively instantiated, or re-instantiated, regardless of the
levels where this occurs. This three-valued potency proposal provides control on
how much flexibility or strictness one wants to incorporate in a language and
allow elements to be controlled in a sensible manner, being able to simulate the
different aforementioned realisations of potency.

• Join potency. This was proposed by Theisz et al. [229]. While the previous
potency specifications provide support to specify a MLM hierarchy within its

Chapter 2 23

Multilevel Modelling

vertical nature, there are not such mechanisms for horizontal integrity. The
authors reason that horizontal integrity may be needed in cases where different
models describe different facets of a system that one might want to compose or
relate orwhen there exist domains that could share commonalities. In this context,
join potency operates in an inter-domain way combining multilevel models of
separate technical domains. Join potency essentially defines the specification of
the context in which the clabjects from separated multilevel models are combined.
Join potency is built upon the basic ideas from both leap and star potencies.

• Dual deep potency. This was introduced as part of the Dual Deep Modelling
(DDM) approach [176]. It is based on the definition of parallel hierarchies, with
different depths, where relations from one to the other can be established. Thus,
dual deep potency differentiates between source potency and target potency of a
property or association. It allows connecting clabjects from different abstraction
levels simulating cross-level relationships.

Non-potency approaches only support defining features for instances exactly one
level below, i. e., they support shallow characterisation. For example, multilevel
approaches purely based on powertypes [49, 178] do not support deep characterisation.

2.4 Multilevel Modelling approaches

Over the past years, there has been a proliferation of MLM approaches. In this section,
we survey the most prominent ones and classify them according to the MLM features
introduced in previous sections.

2.4.1 Multilevel Modelling languages
There exist a plethora of MLM languages with different scopes such as modelling,
knowledge representation, and programming. In the following, we explore the most
prominent ones.

DeepJava [140] DeepJava is an extension (i. e., superset) of Java that incorporates
the concept of potency which can be added to attributes, methods and classes. The
fact that it is embedded in Java constrains each element to have exactly one type. It
provides methods with potency, but has to use special keywords to navigate up the
type hierarchy to find attribute values. Internally, a compiler transforms the DeepJava
code into plain Java. Thus, each DeepJava class is translated into a set of Java classes,
one for each element with a clabject facet. The compiler also generates code for clabject
instantiation at runtime, which is realised using Java’s reflective functions.

Nivel [10] Nivel is a metamodelling language capable of defining models spanning
an arbitrary number of levels. A formal semantics is given for Nivel by translation to the
weight constraint rule language (WCRL) [216] which is a general-purpose knowledge
representation language used to create models and constraints. It implements the
concept of potency and it adheres to the OCA. It is based on a core set of conceptual

24 Chapter 2

2.4 Multilevel Modelling approaches

modelling concepts: class, generalisation, instantiation, attribute, value and association.
Nivel adheres to a form of strict metamodelling and supports deep instantiation of
classes, associations and attributes. Its potency definition can be aligned with the
classic potency [18].

Gmodel [33] Gmodel is a metalanguage designed to enable the specification and
instantiation of modelling languages. The primary goal of Gmodel is to address
modularity and extensibility for the specification of DSMLs. It is based on a small
number of language elements that have their origin in model theory and denotational
semantics. The extensibility allows the approach to be used in a multilevel-based
nature and it offers support for an unlimited number of instantiation levels. Moreover,
it has interoperability with the EMF.

Dual Deep Modelling (DDM) [176] It is a general-purpose approach to MLM that
is oriented especially to conceptual data modelling. It allows specifying modelling
hierarchies with a different number of instantiation levels. This approach achieves
deep characterisation through dual deep potency. The structure and semantics of DDM
constructs are formalised in the Flora-2 variant of F-Logic [248], a mature modelling
language with concise syntax as well as metamodelling capabilities. Dual potencies
extend deep instantiation with the possibility to indicate the depth of characterisation
separately for the source and the target of a property. DDM substantially extends on
Dual Deep Instantiation (DDI) [174] which was formalised in F-logic and implemented
on top of ConceptBase [114, 115] which is a metamodelling system based on Datalog
and the Telos data model [173].

DeepTelos [120, 121, 123] It is a level-blind approach (as it does not explicitly express
the notion of level) that extends Telos and allows defining hierarchies of objects
via so-called most-general instances (MGI). Even though it is level-blind, DeepTelos
incorporates a mechanism to simulate levels. DeepTelos is defined by just 6 formulas (5
rules and 1 constraint) and is enabled by creating the DeepTelos objects with additional
rules/constraints in ConceptBase [114]. Its customisable power through MGI allows
implementing the OCA albeit it is not strictly an OCA-based approach. In fact, there
does not exist a dependency on a linguistic metamodel, although DeepTelos does
require it to manage potencies, which need a custom set of elements specifically
specified to represent the allowed instantiations.

DeepRuby [175] It is an implementation of DDI achieved through an extension of
the Ruby language. DeepRuby makes use of Ruby’s dynamic programming and
metaprogramming facilities [184]. For instance, they take advantage of the so-called
eigenclasswhich can be understood as a singleton class. The DeepRuby implementation
does not support the notion of level and it can therefore be classified as a level-blind
approach.

Flexible Meta-Modeling and Execution Language (FMML
x
) [94] FMMLx is a

modelling language that extends XCore [50]. A model created with this language may
not only include objects in different levels but also intrinsic operations, associations

Chapter 2 25

Multilevel Modelling

and attributes. FMMLx is enriched by a metamodelling environment that extends
Xmodeler [52] which is a metamodelling framework that supplements XMF. XMF is a
programming language for language-oriented programming, and that is implemented
within the EMF. FMMLx is composed of two main components. First, a generic
modelling editor gives access to the creation of metamodels based on a generic notation
similar to UML. Second, a concrete syntax editor supports the design of symbols and
widgets which are connected through correspondence to the respective elements in the
metamodel.

The approach also supports the definition of executable constraints that are specified
in XOCL [185], a variant of OCL. FMMLx does not stick to the OCA but it is based
on the Golden Braid architecture (a concept originally raised by Hofstadter [111] as a
recursion metaphor) where a topmost level defines itself, which can be transitively
instantiated as many times as required to create a multilevel hierarchy. For potency,
they allow marking features as intrinsic, which requires the specification of the level
where that feature can be instantiated.

UFO-MLT [3, 64] The Multi-Level conceptual modeling Theory (MLT) is founded
on a basic instantiation relation and characterises the concepts of individuals and
types, with types organised in levels related by instantiation. The basic entities in
the theory and the proposed relations between entities are formally defined through
axiomatisation in first-order logic. MLT is conceived to focus on conceptual modelling
and the authors account only for the ontological nature (and not for the linguistic one).
They define their cross-level structural relations as power types of relations. In [3] they
discuss the two powertype definitions given by Odell [178] and Cardelli [49] (based on
the power set concept) and clarify that they adopt the latter for their interpretation of
powertype.

To overcome some limitations of the MLT approach in [3], such as MLT not
being capable of dealing with several general notions underlying conceptual models
(including the notions used in its own definition), they extended MLT with MLT* [64].
To improve MLT’s generality, MLT* combines a strictly stratified theory of levels with
the flexibility required to model abstract notions that defy stratification into levels such
as a universal “Type” or, even more, abstract notions such as “Entity” and “Thing”.

ML2 [90, 91] ML2 is a textual modelling language for multilevel conceptual models,
i.e., those in which classes can also be subject to categorisation, extending beyond
the two-level division between classes and their instances. ML2 is developed based
on the MLT* theoretical foundation. It incorporates the definitions from MLT* in its
constructs, allowing the specification of MLT* based models and includes a UML
profile for visualisation. SinceML2 is based onMLT*, it combines the approaches based
on powertypes and clabjects. It does not support deep characterisation of instances and
positions itself between the level-blind and the level-adjuvant approaches as it does not
contain an explicit notion of level, even though it can be inferred through type orders.

MLT-Telos [122] MLT-Telos is an implementation of MLT* that allows identifying
modelling errors via integrity constraint violations. MLT-Telos constitutes a collabora-
tive work between the two MLT* and DeepTelos approaches, where the authors aim for

26 Chapter 2

2.4 Multilevel Modelling approaches

a combination that leverages the best of both worlds in the MLT-Telos implementation:
a rich set of multilevel mechanisms and run-time deduction. They first identify the
differences between MLT* and DeepTelos and how they are related, to later unify the
two approaches to reduce unnecessary diversity in this research domain.

2.4.2 Multilevel Modelling tools
In recent years, various MLM tools have been developed to allow experts across several
disciplines to apply the theoretical concepts, work with MLM techniques and provide
solutions. In the following, we explore the most prominent MLM tools and classify
them according to the aspects discussed in Section 2.3.

DPF Workbench [141] This tool applies MLM employing graph theory and category
theory. The DPFWorkbench is based on the Diagram Predicate Framework (DPF) [209].
It supports an arbitrary number of levels, but it does not implement an explicit potency.
An interesting aspect is that constraints are not specified in a textual language, such as
OCL [51], but using graphical annotations into the actual model with formal semantics.

Modelverse [239] It is a MLM framework based on AtoMPM [225] (a framework
highly focused on offering cloud and web tools). The tool is developed following the
OCA principles and, therefore, it offers MLM functionalities by implementing the
concept of clabject and building a linguistic metamodel that includes a synthetic typing
relation. Its potency implementation aligns with the classic potency by Atkinson and
Kühne [18].

MetaDepth [65, 71] MetaDepth is one of the most established tools for MLM that
supports an arbitrary number of ontological metalevels. The framework is integrated
with the Epsilon languages [87] for model manipulation. This integration permits using
the Epsilon Object Language (EOL) [131] as an action language to specify the behaviour
for metamodels, and the Epsilon Validation Language (EVL) for expressing constraints.
Both EOL and EVL are extensions of OCL. The authors implement the interface
of the connectivity layer in a way to make EOL aware of the multiple ontological
levels. Through the integration of the Epsilon languages into MetaDepth, one can
take advantage of model transformation techniques, code generation, and multilevel
refactoring [68].

Guerra and de Lara also discuss the need to investigate ways to make modelling
more flexible in [106]. In this work, they propose techniques to lift the inconsistency
tolerance (to be more flexible when, for instance, several iterations over a (meta)model
might introduce further changes), information extension, a configurable classification
relation and some other aspects (see [106] for the complete list). They implement these
ideas in a prototype tool called Kite as an Eclipse plugin based on EMF and Xtext. Also,
they discuss how MLMmight benefit from some ideas of flexible modelling and they
envisage a framework that takes the best of MLM and flexible modelling.

Cross-Layer Modeler (XLM) [76] XLM is a modelling tool that supports MLM by
reassemblingmultiple UML notations and views to create models at different levels and

Chapter 2 27

Multilevel Modelling

describe their classification relationships. It focuses on the automatic co-evolution of
constraints and provides instant feedback about model consistency. Thus, XLM allows
the user to modify metamodels and models at the same time, and provides consistency
checking that automatically updates constraints to keep them valid after metamodel
changes. However, the tool does not support advanced instantiation mechanisms such
as potency or inheritance. The semantics of model elements or connections in XLM
must be given via constraints, otherwise, they do not have meanings.

Melanee [12, 143] Melanee is a well-known OCA-based tool for deep modelling
which supports modelling through deep, multi-format, multi-notation user-defined
languages. The tool supports a variant of OCL with deep semantics and has been
integrated with the Atlas Transformation Language (ATL) for model transformations.
Using this OCL variant (so-called deepOCL [142]), users can check constraints spanning
multiple classification levels which can be defined and executed. Although Melanee
itself is not supporting natively tools for simulation/execution through the specification
of the behavioural semantics, e. g., through in-place model transformation rules [161],
there are some works on top of it that aim to achieve this. The work presented in [23] is
an example of this, where the model execution mechanism is done through a service
API and a plug-in mechanism. The communication between the modelling and the
execution environments can be realised using socket-based communication.

Lange and Atkinson also proposed in [144] the notion of deep substitutability which
expresses that during specialisationof elements (through inheritance) not only attributes
andmethods should be taken into account for substitutability (as in traditional two-level
approaches) but also potency and endurance properties (the latter is called vitality
in [144]). Deep substitutability is described in the Level-agnostic Modeling Language
(LML) [144] supported by Melanee. In that work, Lange and Atkinson discuss the
well-formedness rules that need to be applied to the vitality properties of clabjects to
ensure deep substitutability in inheritance relationships.

Dynamic Multi-Level Algebra (DMLA) [228, 236] DMLA is a self-validating meta-
modelling formalism relying on gradual model constraining through its interpretation
of the classical instantiation relation. DMLA is self-described, and it also provides the
so-called fluid metamodelling, which means that it is not required to instantiate every
entity of a model at once. Models in DMLA are stored in tuples, referencing each
other, and thus, forming an entity graph. As mentioned in Section 2.2, DMLA is not an
OCA-based approach but implements a self-describing so-called Bootstrap. At the root
of the instantiation chain, they have an element called Base and all entities are direct or
indirect instances of it.

MLM Rearchitecter [150, 153] This tool facilitates the migration of standard meta-
models into a multilevel setting. To give automatic support for the rearchitecture
process, Macias et al. [150] establish a workflow where first, original metamodels
are annotated to highlight occurrences of multilevel modelling smells. Secondly, the
metamodel is automatically transformed into a multilevel neutral representation that
can be later accommodated into some of the MLM approaches [150].

28 Chapter 2

2.4 Multilevel Modelling approaches

In [153],Macias et al. buildupon theworkpresented in [150], where they improve the
tool-agnostic metamodel to represent neutral multilevel hierarchies and enhances the
bidirectional transformation between such representations and some of the well-known
MLM frameworks. The three tools considered in [153] are MultEcore, Melanee and
MetaDepth. With such a bidirectional transformation, comparison and interoperability
between the involved tools are possible and experimental evaluations can be carried
out.

Open Metamodeling Environment (OMME) [241] The OMME is an OCA-based
approach that implements dual ontological/linguistic typing and consists of a set
of plugins for the EMF. It focuses on the specification of DSMLs and allows for
creating models with an arbitrary number of meta layers. It interprets concepts such
as (extended) powertypes, deep instantiation, materialisation and clabjects. These
concepts are defined in the so-called Linguistic Meta Model (LMM) that aims at
reducing redundancies and increase the expressiveness of models and modelling
languages.

Open integrated framework for MultiLevel Modelling (OMLM) [112] OMLM
is anOCA-basedMLM framework that focuses on the field of knowledge representation
and on addressing multilevel modelling semantics, implementing and verifying them
in Flora-2. It implements single- and multi-potency. An interesting aspect is the
incorporation of a new dimension called the realization dimension to capture the
mapping of the multilevel metamodel to an existing programming language. This
provides multiple advantages such as decoupling the multilevel framework from
the implementation language, comparing implementations in different programming
languages, and automating code generation. OMLM also contains a verification
framework called MULti-LEvel Reasoner (MULLER) that aims to verify the correctness
of MLM properties using verification rules. Another feature it integrates is the
possibility to transform two-level models into multilevel models.

TOTEM [113] This tool aims to bridge the gap between the two-level and the MLM
areas. It is an Eclipse-based implementation that employs a multilevel metamodel
that is capable of annotating a two-level metamodel with multilevel constructs. The
two main components of the tool are the multilevel annotation tool and the MLM tool.
The tool implements two mechanisms to create a full multilevel hierarchy. In the first
one, an existing EMF metamodel is annotated with multilevel annotations and then
instantiated using the MLM tool. This mechanism enhances compatibility with EMF
and facilitates migration into a multilevel architecture. The second mechanism consists
of a language designer. It does not start from an existing EMF metamodel but directly
uses the MLM tool to create the top-level model of the language.

2.4.3 Classifying Multilevel Modelling approaches
In the past years, there have been published several research works that aim at
comparing MLM approaches. This comparison is not a trivial task, since there exist
a lot of different aspects that are particular to each approach, and finding a common

Chapter 2 29

Multilevel Modelling

framework for comparison is a complex task, especially for quantitative measures or
advanced qualitative metrics, such as reusability or flexibility. Indeed, Atkinson and
Kühne stress in [13] that first, a key matter is to define what features an MLM approach
needs to possess in order to be considered as a multilevel approach. In their article, they
also describe some fundamental aspects that should serve to classify the different MLM
approaches. Gerbit et al. carried out a comparison work in [100] between Melanee
and Metadepth which were the most MLM mature tools. In their work, they made
the comparison based on features, i. e., based on how each approach handles e. g.,
potency, attributes, and classification semantics. The work presented by Jácome and
de Lara [113] compares and classifies several MLM approaches using a feature model
to present the different alternatives. They use several classification criteria (some of
them are also described in [13]) and they seek to identify gaps and opportunities for
improving the current state of the art. Macias [149] also made a comparison of different
approaches based on their support of some of the potency variants described in 2.3.2.

Still, there is a lack of quantitative and qualitative comparison works in the MLM
community. The fact that most of the approaches are quite different between them
makes it difficult to find a common ground to evaluate qualitative metrics, such as
performance, efficiency, reusability or flexibility, and even more difficult to carry out
quantitative comparisons. However, the MLM community is undoubtedly moving
forward, and events such as the MULTI Challenge that have taken place for several
years [4, 5, 60] are encouraging the different MLM proposals to work towards the
same goals. This is helping to compare approaches where the proposed case study is
common while analysing the solutions becomes easier. Furthermore, other works have
emerged with the aim to establish different measures for comparison. For example,
Kühne and Lange [139] present so-called deep metrics as an approach to quantitatively
measure high-level model concerns of multilevel models, such as understandability
and maintainability. While their proposal is still theoretical, it is clear that future work
in this direction is going to be key to objectively compare MLM approaches.

2.5 Multilevel Modelling in MultEcore

MultEcore is a set of Eclipse plugins which aims at combining the best from the
traditional two-level modelling andMLM: the mature tool ecosystem and familiarity of
the former, and the expressiveness and flexibility of the latter. In addition to conceptual
modelling, MultEcore also facilitates the definition of multilevel DSMLs. That is, each
level is interpreted as the metamodel of a DSML, and in this way providing support
for reusability and modularity and the capability of creating related languages on
demand. In the following sections, we explore MultEcore by describing how it handles
the structure and semantics of multilevel DSMLs. We refer the reader to [149, 152] for
additional details on MultEcore.

2.5.1 Structure
The structure of a MLM language in MultEcore is described by a multilevel modelling
hierarchy. By a MLM hierarchy, we understand a tree-shaped hierarchy of models with
a single root one typically depicted at the top of the hierarchy tree. This root model

30 Chapter 2

2.5 Multilevel Modelling in MultEcore

is fixed and self-defined, as MultEcore is not an OCA-based approach but uses the
golden braid architecture instead. For implementation reasons, we use Ecore [221] as
root model at level 0 in all example hierarchies, since Ecore is based on the concept of
graph which makes it powerful enough to represent the structure of software models.
Thus, hierarchies enclose a set of models which are connected via typing relations.
A hierarchy has n + 1 abstraction levels, where n is the maximal path length in the
hierarchy tree. Levels are indexed with increasing natural numbers starting from the
uppermost one, having index 0. Each model in the hierarchy is placed at some level i,
where i is the length of the path from that model to the topmost one.

Figure 2.2 shows a simple multilevel hierarchy containing four levels of abstraction
with Ecore at the top of it (Figure 2.2 (a)). At Level 1, we branch into two paths. The
models generic-model-1 and generic-model-2 (Figures 2.2 (b) and 2.2 (c), respectively)
contain three nodes and one relation each. As shown in the figure, the type of a node
is indicated in an ellipse at its top left side, e. g., EClass is the type of A, B, and C in
model generic-model-1, as well as ofD, E, and F in model generic-model-2. The type of an
arrow is written near the arrow in an italic font, e. g., EReference under G in model
generic-model-1, and underH in model generic-model-2. The dashed arrows in the figure
between levels indicate typing relationships and are formalised as the concept typing

A
EClass 1-1-2

B
EClass 1-1-2

C
EClass 1-1-2

G@1-1-2

EReference

EReference

A1
A 1-1-1

B1
B

EClass

1-1-1
C1

C 1-1-1

B2
B 1-1-1

A2
A 1-1-1

G1@1-1-1

G

G2@1-1-1

G

(a) Ecore

a1
A1 0-0-0

b1
B1 0-0-0

g1@0-0-0

G1

(f) configuration-1

F
EClass 1-1-2

D
EClass 1-1-2

E
EClass 1-1-2

H@1-1-2
EReference

D1
D 1-1-1

E1
E 1-1-1

F1
F 1-1-1

H1@1-1-1

H

Level 0

Level 1

Level 2

Level 3 - Instance

(b) generic-model-1

(d) specific-model-1 (e) specific-model-2

(c) generic-model-2

Fig. 2.2: Multilevel hierarchy for a conceptual example

Chapter 2 31

Multilevel Modelling

chain in the MLM hierarchy (see [149, 155, 245] for the formal treatment of typing
chains).

The potency implementation of MultEcore combines range and start potencies
which are specified via three numbers for nodes and relations and two numbers for
attributes. In Figure 2.2, potency is displayed in a red box at the top right of every node
and concatenated to the name after “@” for every reference. This potency specification
allows to precisely define the degree of flexibility and restrictiveness of the elements
within the multilevel hierarchy. The first two values, start and end, specify the range of
levels below, relative to the current one, where the element can be directly instantiated.
The third value, depth, is used to control themaximum number of times that the element
can be transitively instantiated, regardless of the levels where this happens. That is,
the number of times an instance of that element can be re-instantiated. In the hierarchy
example in Figure 2.2, these two values are always 1 (except the model at level 3),
meaning that the element can only be instantiated in the level right below. A potency
value of, for instance, 2− 4− 2, would mean that an element can be directly instantiated
two, three and four levels below the one where the element is defined and it can be
re-instantiated, at most, two times. Since attributes can be instantiated only once, it
does not make sense to create an instance of such instance. The depth on attributes is
therefore always 1 and it is not modifiable. In practical terms, only the first two values
(start and end) of the potency are available to the user.

We use levels as an organisational tool, where the main rationale for locating
elements in a particular model is based on how they could potentially define an inde-
pendent modular artefact. In this regard, we encourage the level cohesion principle [138],
that is, we recommend organising elements that are semantically close (employing
potency and level organisation). On the contrary, we do not promote the level segrega-
tion principle [138], which establishes that level organisational semantics should be
unique, i. e., aligned to one particular organisational scheme, such as classification or
generalisation. Still, we generally use typing relations with classification semantics, and
the typing relation implies that a node defines which attributes its instances can instan-
tiate and which relations it can have to other nodes. Furthermore, the MultEcore tool
checks correct potency and typing safeness. Typing safeness is checked via internal
constraints that forbid typing relations to be circular, reversed or inconsistent either
vertically (i. e., within the same hierarchy) or horizontally (i. e., if we consider more
than one hierarchy). Further details on how we achieve these two kinds of flexibility
are given in Paper C.

The rest of the models in Figure 2.2 are straightforward, but notice for the elements
at the bottommost model (level 3), a1, g1 and b1 in configuration-1 (Figure 2.2(f)) which
is an instance model of specific-model-1 (Figure 2.2 (d)), the potency is set as 0 − 0 − 0.
This is used to enforce that elements at the bottom level are used purely as instances,
which cannot be refined further at lower levels.

Supplementary Hierarchies The use of more than one dimension to describe a
system or language either because the system is complex and we need several facets to
fully describe it or because it might benefit from additional orthogonal aspects has been
widely explored in the literature from different perspectives, e. g., [35, 72, 81, 92, 249]
(we further analyse this in Chapter 3). Motivated by these ideas, we have extended

32 Chapter 2

2.5 Multilevel Modelling in MultEcore

the notion of multilevel hierarchy in such a way that multilevel hierarchies can be
supplemented by other multilevel hierarchies. Frequently, we denote a multilevel
hierarchy as themain or default one and call it the application hierarchy, since it represents
the main language being designed. An application hierarchy can include an arbitrary
number of supplementary hierarchieswhich add new aspects to the application hierarchy.
Indeed, supplementary and application are simply names, i. e., a hierarchy can act as
application in a context and be supplementary of another one in a different context.

Supplementary hierarchies can actually represent proper languages rather than
additional features that are incorporated into the main language. Adding or removing
supplementary hierarchies is made possible by the incorporation or extraction of
additional typing chains (see [245] and [201] for the formal details of typing chains).
For instance, we might have different hierarchies (physically separated, e. g., different
projects in the MultEcore tool) that we want to compose. This can be achieved by
assigning the role of application hierarchy to one of them and adding the rest as
supplementary ones.

In our approach, it is not only convenient to use supplementary hierarchies to
achieve composition but it is also practical and useful. Note that the notion of multi-
typing is well-known, for instance, in OCA-based approaches where elements are
often given one linguistic type and one ontological type. In MultEcore, supplementary
hierarchies can be used to multiple-type elements with external Data Types [202] and
to boost the characteristics of certain elements that require additional types [204]. We
show in Paper F how we can provide every element that belongs to the main hierarchy
with supplementary information in a flexible and reusable way. We further explore
composition in Chapter 3.

2.5.2 Semantics

The semantics of amodelling language assigns a precisemeaning to each of its language
constructs. As Méndez-Acuña et al. [160] analyse, the static semantics reason for the
correctness of the structure of a modelling language (typically employing constraints),
while the dynamic semantics specify the behavioural descriptions. Among the existing
methods to specify the behavioural descriptions (which are detailed in Chapter 4), we
are interested in operational semantics, whose executions change the instance model
states.

Transformation rules can be used to represent actions thatmay happen in the system.
There exist many applications of model transformations (e. g., to transform models
from one modelling language to another via exogenous model transformations [83],
to automatically generate code (model-to-text), and some others [63]). To express
behaviour, a well-known mechanism is the use of (endogenous) in-place model
transformations (MTs) [161]. These are rule-based modifications of a source model
specified in the left-hand side of the rule resulting in a new state of such a model
determined by the right-hand side of the rule.

Multilevel CoupledModel Transformations (MCMTs) is a multilevel transformation
language that exploits the multilevel capabilities of MultEcore. They overcome the
issues of both traditional two-level transformation rules and the multilevel model
transformations. While the former lacks the ability to capture generalities, the latter

Chapter 2 33

Multilevel Modelling

is too loose to be precise enough (see [149] for details). MCMTs can be used either to
express the static semantics of a hierarchy as constraints (see Paper F for an example
of an MCMT rule that checks structural correctness) and the dynamic semantics to
describe the behaviour (see Paper C and Paper E).

In MultEcore, an MCMT rule has the form of LHS⇒ RHS if C, where LHS and RHS
are multilevel modelling patterns and C is a an application condition which constraints
the cases the rule may be applied. Given amodelM that represents a state of the system,
if there is a match of the rule’s LHS in the model M, and its condition C is satisfied,
then this match is replaced by the rule’s RHS. All the formal details on MCMTs can be
found in Paper D and [245].

Figure 2.3 shows a simple MCMT rule (called Add and Connect) that models the
creation of a new node and a relation between the existing node and the new one.
We discuss at the end of this section other advanced features that MCMTs support.
The FROM and TO blocks describe the left pattern and the right pattern of the rule,
respectively. The META block depicts a multilevel pattern allowing us to locate types
at any level that can be used as individual types for the items in the FROM and TO

blocks, respectively. Notice that theMETA block facilitates the definition of an entire
multilevel pattern, and therefore, we can specify severalMETA levels within such a
block. This leads to a more natural way of defining that a type is defined at some level
above, without explicitly stating in which level. In fact, this also promotes flexibility in
case of future modifications to the number of branches (horizontal dimension) and the
depth (vertical dimension) of hierarchies. Details on how we achieve flexibility in both
dimensions are given in Paper C and Paper F.

At the top level of Figure 2.3, we mirror parts of generic-model-1 (Figure 2.2 (b)),
defining elements like A, B and G as constants. We differentiate constants as their
names are underlined and their types are not specified via the ellipse above (for nodes)
or the italic text (for references). A constant node in an MCMT rule can only match a
node in the hierarchy with the same name in the matched level. For a constant edge to
match an edge in the model, its name and the names of its source and target nodes
must match the corresponding names in the model. The use of constants constrains the

a

VarG
GVarA VarB

G
A B

VarA

A B

FROM TO

g
VarGa

VarA
b

VarB

META

Fig. 2.3: Rule Add and Connect: The execution of this rule gives a new state on the
model where a new node is created and connected to the existing one

34 Chapter 2

2.5 Multilevel Modelling in MultEcore

matching process, significantly reducing the number of matches. When the element is a
variable, the match is based only on finding the right structure in the model. This opens
for the definition of generic rules which are applicable to various structurally similar
hierarchies in which the elements have different names. The rule depicted in Figure 2.3
can be applied to models (instances) typed by the left-hand branch Figure 2.2 (i. e.,
specific-model-1, generic-model-1, Ecore). Note, that the horizontal lines do not enforce
consecutiveness between the levels specified in the rule with respect to the hierarchy.
For instance, VarA (placed at the second level of theMETA), and typed by the variable
A, would match any node which indirectly has A as type, or ultimately will match
to A if no indirect one is found. A correct match of the rule comes when an element,
coupled together with its type, fits an instance of VarA (e. g., a, located in the FROM

part). Given the current state of the hierarchy in Figure 2.2, any instances of elements
matching the pattern VarAwould be candidates to perform the transformation. This
in turn makes it possible to apply the rule to either instance of A1 or to instances of A2

(these elements are defined in the model specific-model-1 in Figure 2.2 (d)).
The MCMT rule shown in Figure 2.3 is rather basic and do not exhibit many of

the available features. The current version of the MCMTs allows the specification
and manipulation of attributes, application conditions, submodel patterns and the
possibility to add language functionalities such as OCL and SML. Submodel patterns
are handled with a nested parametric boxing mechanism. Specifying boxes allows us
to define model patterns where its expansion would result in a collection of elements.
There exist similar approaches to this, such as the collection operator [104] and the
star operator [148]. Some applications of the features listed above can be found in
Paper C, Paper E and Paper F. Also, an example of how boxes are used can be found in
Chapter 5. More details on the available functionalities are given in Chapter 6. For the
detailed documentation of MultEcore, we refer the reader to [151, 192].

Chapter 2 35

CHAPTER 3
LANGUAGE COMPOSITION

In this chapter, we discuss several composition techniques that are described in the
literature. First, we analyse the structural dimension, then we describe how different
approaches handle the composition of behaviour, and finally, we present our approach.

3.1 Composition in MDSE

MDSE promotes the use of separate models to tackle the different concerns in the
development of complex software systems [213]. Building large systems involves
constructing several modules that describe each of the systems’ parts. However, these
modules often have to be composed in order to reason about the global properties of
the entire system [129]. Composition has been widely studied in the literature and there
exist several definitions of composition or composability. As stated by Mussbacher et al.
[171], for some, composition is an operation that is performed on larger modelling
units but not at finer levels of granularity. Others may view composition as establishing
relationships between modelling elements. Some researchers define composition as
the act of creating new first-class entities of the modelling approach from existing
ones, e. g., by putting together several units of encapsulation [171]. A composition
specification can be unfolded either as a composition rule or a composition operator, but
any of them are applied to some input model elements and describe some output. A
composition rule gives the specification of the composition but does not perform any
composition procedure on the actual models. A composition operator, on the other
hand, results in a composed model, e. g., a merge operator actually merges the two
model elements into one [171].

Another fundamental aspect that has encouraged the development of composition
mechanisms is the fact that, although each existing DSML is unique and has been
developed for a specific purpose, not all of these are completely orthogonal. Recent
research efforts have shown the existence of DSMLs providing similar language
constructs [251]. In this direction, the research community in software language
engineering has proposed the notion of Language Product Lines Engineering (LPLE) to
construct software product lines where the products are languages [160]. The key
aspect of these approaches is the definition of language features that can be interpreted as
modular pieces that encapsulate a set of language constructs representing certain DSML
functionalities. Usually, one can detect that some DSMLs share certain commonalities
coming from similar modelling patterns and that these can be abstracted and reused

Language Composition

across several other languages. The concept of feature is, therefore, directly related to
the idea of modularisation. Indeed, the constructed frameworks that aim to enhance
reusability and extendibility should naturally handle modularisation and composition
techniques. A framework with such characteristics would allow to easily separate
concerns by organising the description of the system in a modular way (e. g., features),
which could be further composed.

Modularisation is a property that is naturally favoured in Aspect-oriented pro-
gramming (AOP) techniques [128]. Indeed, many standard modelling notations have
been extended with aspect-oriented mechanisms to support an advanced separa-
tion of concerns (e. g., Kompose [92], HiLA [249] and AoUCM [172]). This is called
Aspect-oriented modelling (AOM) where the structure of the modelled system is de-
scribed through a primary model and one or more aspect models that complement the
primary one with additional features [92].

3.2 Structure composition

In general, model composition unfolds along two dimensions, structure and behaviour.
We describe in this section different techniques and approaches that handle structure
composition and discuss the behavioural aspect in Section 3.3. Méndez-Acuña et al.
[160] distinguish between twomodularisation techniques to support structuralmodular
language designs:

• Endogenous modularity. The bindings between language modules are defined
internally in the modules themselves, i. e., the information regarding how the
modules are related is encapsulated in one of them. While this internal way of
describing the modularisation components enhances maintainability, there is no
need to keep up additional software pieces that describe the composition details.
Hence, it may pollute the model with redundant information.

• Exogenous modularity. The bindings between the different modelling modules
are defined externally. In this case, the language modules do not contain any
information regarding composition with other components but an external arte-
fact instead holds the information. As there are no direct references between
language modules and the corresponding model is not polluted with referencing
information, the bindings can be changed in the external artefact without modi-
fying the modules themselves. While this promotes modularity and separation
of concerns, the modeller has to maintain such an additional artefact together
with the rest of the involved modules.

In the next subsections, we explore the most relevant composition operators and
classify them according to the two modularisation techniques discussed above.

3.2.1 Merge operator
One of the most used techniques for structure composition is through the implementa-
tion of merging operations. Merging is a symmetric operation, i. e., the result of the
merge does not depend on the order of the input models. Due to the capability of

38 Chapter 3

3.2 Structure composition

merging to integrate independent artefacts, it is generally used by approaches based
on exogenous modularisation. Intuitively, merging refers to the operation in which
“the common elements are included only once, while the rest are preserved”. Formally,
a merge combination operator takes two metamodels, Metamodel 1 and Metamodel 2 as
inputs, as well as a set of correspondence tuples C = {⟨ex, ey⟩, . . .} with ex ∈Metamodel
1 and ey ∈Metamodel 2 (being ex and ey elements, i. e., nodes or relations). The merge
combination operator produces a new output Merged Metamodel that contains, for each
tuple ⟨ex, ey⟩ ∈ C, a single metamodel element. All metamodel elements in Metamodel
1 and Metamodel 2 that are not given a correspondence in C are simply copied into the
Merged Metamodel. Note that composition can be defined at different levels of granu-
larity. The definition given above considers a low level of granularity that takes into
account each model element. In other approaches, it is at a higher level, as in [129],
where the scope level is “at the composition of structural and behavioural models that
represent broader concerns of interest to stakeholders”. Some approaches that use the
merge operator are Melange [75] and Gromp [159].

3.2.2 Weaving operator

Another alternative for composition is the use of weaving operations. Weaving is
an asymmetric procedure as it involves two different actors: an aspect and a base
model [157]. The aspect is made of two parts, a pointcut, which is the pattern to match
in the base model, and an advice, which represents the modification made to the base
model during the weaving. The parts of the base model that match the pointcut are
called joinpoints. During the weaving, each joinpoint is replaced by the advice. The
definition of weaving allows it to be applicable in both endogenous and exogenous
modularisation, as the binding between the aspect and the base module can be defined
either in the aspect itself or in an external artefact.

Many approaches that formally specify their composition implementation make
use of category theory and graph transformations (which can be applied both to
merging and weaving). An example of the weaving technique is formally described
and implemented in [81]. Other approaches that implement a weaving operator are
GeKo [135], MATA [243] and the Atlas Model Weaver (AMW) [35].

In the field of Multimodelling, Stünkel et al. [224] uses exogenous weaving and
linguistic extensions (see Section 3.2.4). Multimodelling is addressed by a construction
that yields a comprehensive model which contains correspondences between the
involvedmodels. To define the relations between the differentmodels in themultimodel,
a linguistic metamodel is used.

3.2.3 Inheritance operator

Inheritance is a mechanism coming from object-oriented programming to enhance
reusability. Approaches that use inheritance as a composition operator are based on
endogenous modularity. This is because the nature of the inheritance relationship
intrinsically relates elements defined in or accessible from the samemodel project. Thus,
through inheritance one can reuse the specificationprovided in concrete implementation
artefacts for which direct linking results useful. Note that in direct linking, all the

Chapter 3 39

Language Composition

content of the referenced artefact is included as part of the referencing one which allows
seeing the complete resulting language as a unique specification. LISA [162, 163] and
MontiCore [133, 134] are some approaches that integrate the inheritance operator.

3.2.4 Linguistic extension
In the context of flexible modelling, linguistic (dynamic) extension [72] is influenced by
role-based modelling [27, 220] where objects can acquire and drop roles dynamically.
It however comes with some shortcomings implying that role-based approaches have
to introduce additional mechanisms to describe how roles are assigned or related and
that everything must be done a priori using further constructs that pollute the model.

Linguistic extension or facet-oriented modelling [72] is a similar approach to AOM
that allows slots, constraints and types to be added or removed fromobjects dynamically
using facets. Facets that are defined in an existing metamodel can be added or removed
from already existing objects. Facet-oriented modelling is supported and implemented
on top of Metadepth [65]. We further discuss this approach and compare it with ours
in Section 3.4 as there exist several similarities.

3.3 Behaviour composition

In this thesis, we only consider behaviour definition usingmodel transformations (MTs)
(see Chapter 4 for details on MTs). We describe some techniques and approaches that
focus on the composition of MT rules in Section 3.3.1. Then, in Section 3.3.2, we explore
other techniques that have been used to achieve composition acting at the behavioural
model level.

3.3.1 Acting on model transformations
One of the common ways to achieve the composition of MT rules is the construction of
amalgamated versions of the rules. Usually, each model system (or each multilevel
hierarchy, in an MLM context) holds certain MT rules that specify its behaviour.
Then, composing the MT rules means to create amalgamated versions of the MT rules
that capture each individual intention. Informally, an amalgamated rule contains
the common action and, additionally, all actions from the elementary rules that do
not overlap [74]. Amalgamation can act between symmetric systems (i. e., different
functional modelling systems in which all components are treated as first-class)
or between asymmetric systems in which “aspects” are woven into “components”
that implement a base model analogously as in the weaving operator for structure
composition (see Section 3.2.2). Someapproaches that support the amalgamationofMTs,
which are founded on graph transformation are: GROOVE [190, 191], AToM3 [73, 74],
the GReAT tool [29], the Amalgamation Theorem [39], Taentzer’s work on parallel
graph transformations [226], the Multi-Amalgamation approach [37] and the DPF
Workbench [141].

Another alternative to achieve the composition of MT rules is via composite MTs
using, for instance, distributed graph transformations [125]. Jurack and Taentzer [125]
consider composite transformations as partial mappings of composite models (i. e., a

40 Chapter 3

3.4 Composition in MultEcore

set of component models which are interconnected) that can describe the major effects
of model transformations. Such effects can be the creation, deletion or update of model
elements and their references. There exist different composite MT classes, such as
component MTs, synchronised MTs and model reconfiguration (see [125] for details).
Composite MTs are characterised by so-called “synchronisation points”, i. e., time
points where all component transformations have finished. Starting at some composite
model, several component transformations may take place in parallel [125]. Some
approaches that support composite MTs by using distributed graph transformations
are [102, 125, 130, 186].

3.3.2 Acting on behavioural models
One can also achieve behavioural composition by acting directly on the behavioural
input models. One way to achieve this is by creating a new behavioural model that
specifies a particular interleaving of the input models’ behaviours, as described by
Kienzle et al. [129]. They describe their behavioural weaver approach to achieve the
composition of behavioural models through the asymmetric event scheduling operator.
In concrete, they apply their event schedule operator to compose sequence diagrams,
state diagrams, and Aspect-Oriented Use Case Maps (AoUCM) [172].

Coordination has also been widely used in the literature to synchronise behavioural
models or components [7]. One way to achieve coordination is by establishing some
form of communication mechanism, such as shared memory or message passing.
Coordination can be conducted endogenously, or exogenously [181]. In endogenous
coordination models, the primitives that cause and affect the coordination of an entity
with others can reside only inside such an entity (e. g., Linda [98]). For instance, this is
the case for models based on object-oriented message passing paradigms. In exogenous
coordination models, the primitives that cause and affect the coordination of an entity
with other entities are encapsulated externally (e. g., Reo [8] and MANIFOLD [40]).
Exogenous coordination models allow third parties to orchestrate the interactions. An
underlying exogenous coordination model is essential a component model in which
components are building blocks that are (dynamically) composed together by other
entities. Other approaches that support exogenous coordination are CoorMaude [211]
and BCOoL [146].

3.4 Composition in MultEcore

In MultEcore, we also unfold composition along structure (via multilevel hierarchies)
and behaviour (via MCMT rules). We explore both aspects in the next sections.

3.4.1 Composition of Multilevel Hierarchies
To compose multilevel hierarchies, we use the supplementary hierarchies technique
(introduced in Section 2.5.1) that allows model elements to acquire multiple types.
The supplementary hierarchy mechanism can be classified as endogenous modularity
(see Section 3.2) since the information is encapsulated within the application hierarchy.
However, MultEcore facilitates the incorporation and deletion of supplementary

Chapter 3 41

Language Composition

hierarchies enhancing modularisation, reusability and maintainability. This provides
the advantages which are usually associated with exogenous modularity. The process
is automatic, and the modeller does not need to worry about the internal information
that is kept in the application hierarchy, as it is hidden from the user. Supplementary
hierarchies represent an alternative approach to those exposed in Sections 3.2.1- 3.2.4
and share similarities to the merge, weaving and linguistic extension operators.

A crucial shortcoming present, for instance, in the merge composition approach
is the loss of the original elements that have been merged (see also [224] for further
shortcomings related to constraint checking). This capability might be useful in several
situations, specially when the elements that are being merged are not identical, but
powering up each other. For example, we might have two nodes,Worker and Human
with some attributes specifying characteristics of each domain, such as profit and
stamina, respectively. MergingWorker andHumanwould create a new single node, with
the cost of losing the two separate nodes and the possibility to use them in isolation in
other parts of the model.

With the supplementary hierarchies technique, we can use the individual elements
as well as use the composed one, increasing the number of resources available for the
modeller. Supplementary hierarchies can then be used to compose different languages,
or as a way to add additional features not strictly related to the main language. This is
similar tomodel weavingwhere the supplementary aspects can be seen as complements
of the main language. Then, elements at the instance level can have as many types
as hierarchies are being composed where each type can be seen as an aspect. We
say that we achieve a virtual composition, rather than a physical composition (as the
techniques described in Section 3.2). Virtuality refers to the capability of dynamically
adding and removing new types to elements in a non-intrusive way. This can be seen
as an aspect-like mechanism that we can use on-demand, being able to use aspects
independently or in combination.

As mentioned above, the supplementary hierarchies idea presents some advantages
w.r.t the merge and weaving operators and shares similarities with the linguistic
extension approach. We have observed that our approach can answer the motivational
points given by de Lara et al. [72]. They highlight why other approaches (e. g., merge)
do not support such modularity and reusability. Indeed, we have corroborated that
the supplementary hierarchies approach fulfils the four requirements defined by de
Lara et al. [72]:

• R1: Be modular and non-intrusive, so that there is no need to create or change existing
models or metamodels. In our approach, we support this by automating the process
of incorporating and removing typing chains. In other words, we can directly
extend the original language without polluting the models or without being
forced to create additional artefacts.

• R2: Allow objects to acquire new types, slots and constraints, likely specified in other
metamodels, and which become transparently accessible. Incorporating a supplemen-
tary hierarchy automatically allows using the elements defined on it. For instance,
elements in the application hierarchy can use the newly available types. Also,
the attributes that belong to the nodes that are defined in the included supple-
mentary hierarchy are automatically available to be instantiated in the elements

42 Chapter 3

3.4 Composition in MultEcore

of the application hierarchy. We refer the reader to Section 4.3.3 of Paper F for
illustrations of this process.

• R3: Support bothmanual and automatic acquisition and loss of types, slots and constraints.
In our approach, one can remove the additional types of elements manually one
by one, or remove the entire supplementary hierarchy, automatically getting rid
of all the supplementary types and attributes that come from such a dimension.
Also, MCMT rules can be written to add or remove these types as part of a model
transformation (see [204] and Paper D for more details on this).

• R4: Specification and automatic maintenance of relations (e. g., equality) between owned
and acquired slots. In [72], the authors includemechanisms to establish, for instance,
equality between attributes, to avoid repeating attributes representing the same
information, but, for instance, we can decide whether an attribute is instantiated
or not. This allows us to solve problems such as attributes representing the same
information being duplicated, by just instantiating one of them.

We also see similarities at the MT level, as de Lara et al. [72] have a domain-specific
transformation language to manipulate facets, which is very similar to one of the

A
EClass 1-1-2

B
EClass 1-1-2

C
EClass 1-1-2

G@1-1-2

EReference

EReference

A1
A 1-1-1

B1
B

EClass

1-1-1
C1

C 1-1-1

B2
B 1-1-1

A2
A 1-1-1

G1@1-1-1

G

G2@1-1-1

G

(b) generic-model-1

(d) specific-model-1

(a) Ecore

a1
A1 0-0-0

b1
B1 0-0-0

g1@0-0-0

F
EClass 1-1-2

D
EClass 1-1-2

E
EClass 1-1-2

H@1-1-2
EReference

D1
D 1-1-1

E1
E 1-1-1

F1
F 1-1-1

H1@1-1-1

H

G1,H1

Level 0

Level 1

Level 2

Level 3 - Instance

D1 E1

(e) specific-model-2

(c) generic-model-2

(f) configuration-1

Fig. 3.1: Multilevel hierarchy with two typing chains

Chapter 3 43

Language Composition

applications of the MCMTs in this regard. In conclusion, the facet-oriented modelling
approach shares several similarities with our approach based on multiple typing and
addresses similar problems from a different perspective.

InMultEcore, when composing different modelling languages, we can consider both
working with several hierarchies and with several branches within the same hierarchy.
Figure 3.1 displays the hierarchy shown in Figure 2.2 where we now distinguish two
different typing chains for the model at Level 3. In this case, we specify one typing
chain for each branch in the hierarchy: the left-hand branch where typing relations are
shown as blue dashed arrows and the right-hand branch where typing relations are
shown as green dashed arrows. Once the new typing chain is incorporated, all the
elements of the model configuration-1will be (in addition to the original blue typing
chain) also part of the green typing chain. The modeller may then use types from
both the green and the blue typing chains in the model configuration-1. Details of this
multi-typing procedure including the resolution of potency conflicts arising when
adding supplementary hierarchies are given in Paper D.

The model configuration-1 in Figure 3.1(f) shows an example of how elements
may be multi-typed. One can see that node a1 has two types associated, A1 from
the left-hand typing chain, and D1 from the right-hand typing chain, which adds
additional information to the node. We have a similar situation with reference g1 and
its two types G1 and H1.

3.4.2 Amalgamation of MCMTs

When composing two or more modelling languages, we have to also to take into
account the behavioural descriptions of each of the languages. A priori, each multilevel
hierarchy would have an associated set of MCMT rules that describe the behaviour
of each language. If such hierarchies are composed, it is also natural that their rules
are amalgamated as well. Our approach makes use of the amalgamation of MT rules
(as described in Section 3.3) to achieve behaviour composition. We focus on creating
amalgamated versions of the MCMTs that describe entire execution steps taking into
account each individual behavioural aspect. In other words, the application of the
amalgamated MCMT rule on the multi-typed instance model creates a new state of the
model where the behaviour of each MCMT rule of the composed hierarchies has been
taken into account.

Since we use graphs to formalise models, we employ graph transformation rules to
express the operational semantics of multilevel models. A graph transformation rule is
defined by a left L (described by the META + FROM blocks in MCMTs) and a right R
patterns (described by the META + TO blocks in MCMTs). In graph transformations,
there exists a third component I that can be used to collect the whole context between
L and R (i. e., the union of L and R) for those approaches that are based on the co-span
version of graph transformation rules [84]. We refer the reader to Paper D for the
formal details of MCMTs, which makes uses of the co-span version.

An essential step to achieve amalgamation (or, in general, composition) is the
identification process, which is captured by the I component, where the elements that
correspond to each other have to be identified.

We assume that the user provides the correspondences between elements in the

44 Chapter 3

3.4 Composition in MultEcore

a

VarG

G
VarA VarB

G

A B

VarA

A B

FROM TO

g

VarG
a

VarA
b

VarB

META

d

VarH

H
VarD VarE

H

D E

VarD

D E

FROM TO

h

VarH
d

VarD
e

VarE

META

(b) - Rule B (TRB)(a) - Rule A (TRA)(a) - Rule A (TRA)

Fig. 3.2: MCMT rules candidates for amalgamation

ad

VarG
GVarA VarB

VarA

A B

FROM TO

gh
VarG,
VarH

ad
VarA

be
VarB

META

VarH
HVarD VarE

D E

VarD VarD VarE

G
A B

H
D E

Fig. 3.3: Rule M: Amalgamated MCMT rule as result of composing Rule A and Rule B

rules which are to be amalgamated. We illustrate in Figure 3.2 two simple MCMT
rules, namely Rule A and Rule B, that describe the behaviour of the right- and left-hand
branches of Figure 3.1, respectively. In this example, we identify a of type VarA with d

of type VarD, g of type VarGwith h of type VarH and b of type VarBwith e of type
VarE. Elements a, g and b belong to Rule A (Figure 3.2 (a)) and d, h and e belong to Rule
B (Figure 3.2 (b)), respectively. Once this identifications have been established, we can
create the amalgamated version of the rules. In the amalgamated rule each element
has two types, as shown in Figure 3.3. We identify in the META block both multilevel
hierarchies (note they are separated by a vertical dotted line) involved in the two typing
chains present in the FROM and TO blocks, as product of the amalgamation process.
We have a single element in the FROM block called ad which types are VarA and
VarD. In the TO block, we find gh typed by VarG and VarH, which connects be typed
by VarB and VarE with ad. Employing the amalgamated rule on a multi-typed model,
as the one shown in Figure 3.1, would produce a new state of the model where the
amalgamated behaviour is applied.

The rule shown in Figure 3.3 represents a simple amalgamation scenario. There exist
several cases depending on how elements are identified. These cases are summarised
in Table 1 of Paper D. Some of these cases might present conflict situations which

Chapter 3 45

Language Composition

happen when, for instance, one identifies two elements, a and d, and while in the first
rule a is being connected to a new element in the TO block, d is being deleted in the
second rule.

The composition of the multilevel hierarchy and the amalgamation of the MCMT
rules happen in MultEcore, and this composed setting is transferred to Maude to carry
out the execution. Maude is agnostic to whether the multilevel setting that is received
is a composed system or not. We have developed a guided procedure that the modeller
follows to obtain a set of amalgamated rules. This procedure is defined within an
EMF wizard that guides the user through the amalgamation process. The wizard
takes four steps to complete, and at the end, the amalgamations of the selected MCMT
rules are automatically calculated and produced. For conflicting cases, which are
automatically detected, the user has to select what rule has to be prioritised in order to
get an amalgamated MCMT rule. The details on how amalgamation is formally carried
out, the description of each wizard step, and some illustrative screenshots taken from
MultEcore can be found in Paper D.

46 Chapter 3

CHAPTER 4
EXECUTION AND VERIFICATION

In this chapter, we describe techniques for model execution and verification that are
based on MTs. Then, we introduce our infrastructure for the execution and verification
of multilevel hierarchies using MCMTs and Maude.

4.1 Model transformations

We can find in the literature several approaches for the specification of the behavioural
semantics of systems based on MTs. MTs can be used for diverse tasks in MDSE, e. g.,
for modifying, creating, adapting or merging models. In general, MTs [36, 214] are
proposed to systematically manipulate models.

MTs can be classified according to different criteria, as detailed in [63]. For instance,
they can be classified based on the target type. The transformation can be model-to-
model (M2M), where the target model is incrementally built by finding patterns in the
source model and by applying the appropriate actions to the target model. Also, the
transformation can be model-to-text (M2T) where elements in the source model are
mapped to fragments of text that are produced as outputs.

Another relevant classification is based on analysing the natures of the source
and the target metamodels [161]. If the source and target metamodels are the same,
the transformation is called endogenous. On the other hand, exogenous transformations
map concepts between different metamodels. Exogenous transformations are often
called translation transformations and are strongly related to translational semantics (see
Section 4.2.1).

In the context of one-to-one MTs, the target model is created by modifying specific
parts in the existing source model. In this case, the transformation is called in-
place transformation. On the other hand, if a new model is freshly created with the
corresponding changes, it is an out-place transformation.

4.2 Execution semantics

In the last decades, different attempts have been made to support the execution of
models. In this thesis we focus on those techniques that engineer the execution
of models by specifying their semantics. In this context, execution not only means
specifying the execution semantics of themodelling language, but also the development
or use of verification techniques that are tailored for them. To support the execution of

Execution and verification

models, an executable modelling language must provide execution semantics. There are
several approaches for defining the execution semantics: denotational, translational,
operational and axiomatic [47, 212]. These approaches are not necessarily mutually
exclusive. Gupta and Pontelli [107] show that a complete language should offer all of
the aforementioned kinds of semantics since each of them provides better support for
different types of user.

4.2.1 Denotational and Translational semantics

The denotational semantics, also known as mathematical semantics, describes the
semantics of a language by defining algebraic/mathematical terms [222]. This method
maps a program directly to its meaning, called its denotation. The denotation is usually
a mathematical object, such as a number or a function. In other words, it expresses
the meaning of a DSML through functions that map its constructs to a formal target
language where the semantics is well-defined.

In some situations, the specification of denotational semantics is the easiest mech-
anism in the context of DSMLs, allowing DSMLs to be mapped to more general
modelling languages, for which the semantics is defined. With denotational mapping,
we can reuse operations defined in the target language. For example, Petri nets (PNs)
can both be simulated and analysed, and therefore mapping to PNs for simulation auto-
matically provides analysis functionality to the DSML. Examples of approaches which
use denotational semantics are Keywords-based modularisation [55] and MontiCore
[133, 134].

In the case where the target language is not formal, the term translational semantics
is favoured. The implementation of the translational semantics typically takes the form
of a compiler. In this approach, themodel is translated into another executable language.
This can be done through exogenous MTs or code generation if the target language
possesses a grammar. Existing work that uses translational semantics does it mainly to
take advantage of the facilities and tools available in the target technical space (e. g.,
code generators, model-checkers, visualisation tools and simulators). Translational
semantics are used, for example, by Cleenewerck et al. [56].

4.2.2 Operational semantics

Operational semantics (also called constructive or imperative [161]), provides a formal
description of the behaviour ofmodels. It is often defined in terms of atomic, elementary
transitions, describing local behaviour [233]. One way to interpret the operational
semantics is by implementing endogenous MTs that can be realised using an MT
language (e. g., [31]). The interpreter first constructs a representation of a model
execution state and then modifies this representation by executing the model through a
series of model transitions from one state to the next one (e. g., [42]). These transitions
are realised as applications of in-place (or out-place) MT rules.

Another alternative for operational semantics is to use ametaprogramming language
to express directly the behavioural semantics as a set of operations for each concept.
In contrast to translational approaches, operational approaches directly express the
semantics in the same technical space and the concepts are naturally well-known

48 Chapter 4

4.3 Model execution

by the expert. Some examples which are based on this alternative are the MOF
action language [180] and Kermeta [124, 169]. The MOF action language [180] is an
extension of MOF 2.0 that facilitates the specification of the behaviour of the modelled
languages. In addition to capturing the behavioural aspect of the language, the MOF
action semantics can also enhance automated model manipulation and intra-model
transformations. Metadepth [65] and Melanee [12] (as discussed in Section 2.4.2) are
some of the few MLM approaches that support model execution.

4.2.3 Axiomatic semantics
In the axiomatic semantics approach, the meaning of a program is not explicitly given.
Instead, it represents a mechanism for checking whether the programs written in
a DSML satisfy certain properties or not. These properties are typically expressed
with axioms and inference rules from symbolic logic. Examples of such properties
are equivalence between programs or functional correctness (e. g., checking whether
the program is correct w.r.t. its specification in terms of pre- and post-conditions).
Axiomatic semantics have been used mainly within the programming language [110]
field and not that much in the MDSE context. This is mainly because it is not easy
to fully specify the behaviour of the model [244] through pre- and post-conditions.
Furthermore, axiomatic semantics cannot be made automatically or easily executable.

4.3 Model execution

We based the execution of our models on the definition of a set of endogenous, in-place
MTs. The subsequent application of these rules produces traceswhich are sequences
of models that have been obtained by such applications. The computed traces can
be manually analysed. They may reveal inconsistencies, unexpected behaviours or
undesired scenarios, which can then be fixed by the modeller. The absence of such
inconsistencies increases the confidence level in the correctness of the model. A step
towards the automatic analysis of the model regarding certain behavioural properties
is the calculation of the so-called state space. While the full state space represents all
possible executions of the model, i. e., all reachable states and all state changes of the
model, simulation is used to examine a finite number of executions.

4.4 Model verification

Verification techniques are being used to establish that the design or product under
consideration satisfies certain properties. The properties to be validated can be rather
elementary, e. g., a system should never be able to reach a situation inwhich no progress
can be made (a deadlock scenario). The system is considered to be “correct” whenever
it satisfies all properties obtained from the model’s specification. Thus, correctness is
always relative to a specification and is not an absolute property of the system.

Formal methods [246] offer a large potential for the integration of verification tech-
niques in the design process, to provide more effective verification techniques, and to
reduce the verification time. In summary, formal methods refer to the application of
mathematics for the modelling and analysis of systems. They aim to establish system

Chapter 4 49

Execution and verification

correctness with mathematical rigour. There exist many and diverse formalisms for
the specification of properties distributed in different categories:

• Automata-based formalisms such as finite-state automata [57] and timed and
hybrid automata [231].

• Logic-based formalisms such as modal and temporal logic [85] (e. g., LTL [95]
and CTL [86]) and rewriting logic [147] (e. g., the Maude system [54]).

• Process algebra [89] such as CSS [210] and process calculus [182], e. g., π-
calculus [183].

• Visual formalisms such as Petri nets [170].

From these formalisms and approaches, we use temporal logic (both LTL and CTL)
and rewriting logic (Maude), as we show in Papers A, B, C and E.

There exist a plethora of techniques that systematically explore all states of the
system model, which provide the basis for a whole range of verification techniques.
Some of these techniques are: (i) abstract interpretation [61], (ii) deductive verification
(e. g., PVS [215] and STeP [156]), (iii) formal testing [177] and (iv) algorithmic verification,
such as model checking. Model checking [28] is a verification technique that explores
all possible system states (state space) in an exhaustive manner. In this way, it can be
shown that a given system model satisfies a certain property. The research community
is continuously working on techniques to alleviate the effect of the state explosion
problem [237]. In Paper B [198], we use the sweep-line method [117] to reduce the
memory usage during state space exploration. We use model checking as verification
technique in MultEcore (see Paper E, where we also apply abstraction to reduce the
size of the state space).

There exist some tools that handle the execution and verification of models based
on MTs. Some examples are Henshin [9, 223], the GRaph-based Object-Oriented
VErification (GROOVE) [126, 190], the GEMOC Studio [43, 59] and e-Motions [232].

4.5 Execution and Verification in MultEcore

To cope with the execution of models within the MLM context using MultEcore, the
MCMTs were first formally introduced in [155] and has been extended in Papers C, E
and F for the execution of MLM hierarchies. MCMTs are reusable, multilevel, in-place,
endogenous MTs, which have several applications in addition to the specification of
behaviour, for instance, to specify multilevel constraints (see Paper F for an example).
The semantics of MultEcore is given by a transformation of MLM hierarchies and
MCMT rules into rewriting logic in the form of Maude specifications [54, 79].

Maude [53] is a specification language based on rewriting logic [164, 165], a
logic of change that can naturally deal with states and non-deterministic concurrent
computations. A rewrite logic theory is a tuple (Σ;E;R), where (Σ;E) is an equational
theory that specifies the system states as elements of the initial algebra T(Σ;E), and R is
a set of rewrite rules that describe the one-step possible concurrent transitions in the
system. Σ is a signature that specifies the type structure (e. g., sorts and subsorts) and
operations, and E is a collection of equations and memberships. Rewrite specifications

50 Chapter 4

4.5 Execution and Verification in MultEcore

thus described are executable if they satisfy restrictions such as termination and
confluence of the equational subspecification, and coherence of equations and rules.
Maudeprovides support for rewritingmodulo associativity, commutativity and identity,
which captures the evolution of models made up of objects linked by references.

The syntactical facilities of Maude have allowed us to use a representation of MLM
hierarchies and MCMT rules very close to that of MultEcore. Indeed, this minimal
representation distance has eased the automation of the bidirectional transformation
between them. These transformations give MultEcore users access to the Maude
execution engine, which is themost efficient engine for rewritingmodulo (combinations
of) associativity, commutativity, and identity [80, 97]. In addition, it also gives access to
Maude’s formal tool environment, which includes, e. g., tools for reachability analysis,
model checking, and confluence and termination analysis.

Maude is used as a backend tool, hidden to the user so that the interaction is entirely
done through MultEcore, making the modeller unaware of Maude details. The overall
MultEcore-Maude infrastructure is sketched in Figure 4.1. The left-hand side shows
the MultEcore part, where we specify multilevel DSMLs by providing a Multilevel

Hierarchy and a set of MCMT rules. The Transformer MultEcore ←→ Maude has
been developed as a transformation that takes MultEcore specifications (the MLM
hierarchies and the associated MCMTs) and automatically generates the corresponding
Maude specifications. The outputs produced as XML files by Maude, as the result
of performing execution, analysis and verification operations, are then automatically
translated back into MultEcore models that are directly displayed graphically. As a

MLM Structure
(Functional module)

MLM
Hierarchy

(Functional module)

MCMT
Rules

(System module)

Transformer

MultEcore

Maude

MultEcore Maude process

System

execution

(rewrite engine)

Safety/Liveness

analysis

(reachability

analysis)

Guided

simulation

(rewrite engine

controlled by

strategies)

LTL property

verification

(model checking)

...

MCMT
Rule
1

MCMT
Rule
2

M
u
lt
ile

ve
l
h
ie

ra
rc

h
y

M
C
M

T
 r

u
le

s

FROM

META-1

META-2

TO

CONDITIONS

FROM

META-1

TO

CONDITIONS

level 3

level 2

level 1

level n (instance)

Fig. 4.1: Infrastructure for the execution and analysis of MLM hierarchies

Chapter 4 51

Execution and verification

consequence of the small representation distance between the two, the transformation is
straightforward. This has in fact simplified not only the transformation fromMultEcore
into Maude, but also the transformation in the opposite direction to bring results of
simulations and analysis back into the MultEcore tool.

To provide an intuition of how the transformation works, each MultEcore object
(including both a hierarchy and its MCMTs) is mapped into a corresponding Maude
object. References and conditions are handled in exactly the same way, by using
references as names and using the same set of expressions (types and operators)
for conditions. The rewriting modulo associativity, commutativity and identity
available in Maude captures naturally the operational semantics of MCMTs. The
major contributions have been handling boxes inside the MCMTs and performing the
rewriting of multilevel hierarchies. Examples of how boxes are used can be found in
Chapter 5 and Paper E.

The possibility to specify boxes allows us to define patterns where its unfolding
would result in a collection of elements. In this way, a single rule can cover an entire
set of rule variants where the number of elements may vary depending on the instance
model. We have developed a two-steps process to handle boxes. For each MCMT, a
rule without boxes is generated. When Maude finds a match for such a rule, it gets
enough information to process the cardinalities of the most external boxes. Then, using
the metaprogramming capabilities of Maude, a second rule with the corresponding
number of replicas of the boxes is generated, which is used to take the corresponding
rewriting step using the original partial substitution. Nested boxes are processed one
level at a time, recursively unfolding the boxes, and expanding the matching until no
further boxes are left. Lets and conditions inside boxes are processed at each step (see
Chapter 5).

As mentioned at the end of Chapter 2, we have provided basic support for param-
eterisable languages to be used, for instance, in the manipulation or specification of
attributes, the cardinality of boxes and the specification conditions on the MCMTs. The
language to be used to specify attributes is a parameter of the model. Its instantiation
provides a set of available types, a syntax, and an eval operation that gives semantics to
the language. Optional operations, like match and apply, provide additional functional-
ity, which may be useful for some instantiations. So far, we have developed definitions
and corresponding instantiating views for OCL [51] and SML [234]. The support for
OCL is based on the Maude semantics of OCL proposed in [205]. It is interesting to
point out that if SML is used for attributes, we still have definitions of OCL for boxes’
cardinalities and other MultEcore features. For this, we exploit Maude’s functionalities
for the replication of built-in types.

The right-hand side of Figure 4.1 shows the Maude process perspective. The
transformer produces a functional module with the equational theory used to represent
MLM hierarchies (MLM Structure andMLMHierarchy), and a system module with
rewrite theory that represents the MCMT Rules. More details on how a system is
specified in Maude can be found in [54].

52 Chapter 4

CHAPTER 5
THE COLOURED PETRI NETS CASE STUDY

There exist many ways in whichMLM can help to alleviate the restrictions of traditional
MDSE approaches. One of them is the ability to give extendibility support to existing
modelling languages that are not easy to extend with, for instance, domain-specific
features, or provide additional concepts that one might need in the course of modelling
certain systems or environments. An example of this is the case of Coloured Petri nets
(CPNs). In this section, we illustrate how we have modelled a multilevel hierarchy
for PNs where a specific branch defines the CPN language. We also specify MCMT
rules which describe the operational semantics that enables the execution of CPN
models and illustrate how we have incorporated a preliminary Standard ML (SML)
implementation within the MultEcore-Maude infrastructure. This opens the door to
further extend the multilevel hierarchy with, e. g., domain-specific CPNs.

5.1 Coloured Petri nets

CPNs [116, 118] is a graphical modelling language in the domain of distributed systems
that facilitates the specification of communication protocols [77], data networks [38],
distributed algorithms [188], embedded systems [2], business process and workflow
modelling [238], manufacturing systems [250] and agent systems [88]. CPNs belong
to the family of high-level PNs [119], which are characterised by the combination of
classical PNs [170, 189] and a programming language. The use of a programming
language, e. g., SML [234] in CPNs, provides the primitives for the definition of data
types, for describing data manipulation and for creating compact and parameterisable
models. CPNs are widely used due to its rich body of theoretical results enabling
analysis, and an enormous set of supporting tools. The modelling language is suited
for discrete-event processes that include choice, iteration, and concurrent execution. In
a nutshell, a CPN model of a system is an executable model representing the states of
the system (places) and the events (transitions) connected to them (via arcs) that can
cause the system to change its state.

The increasing complexity of systems has promoted the proliferation of a plethora
of PNs variants and extensions during the last decades, as classical PNs are too basic
to capture the needs of most of the nowadays systems. A high-level comparison of
different kinds of PNs, divided into three categories, can be found in [32]. We refer
the reader to [230] for a survey where several PN tools are explored. While the CPN
language contains few (still powerful) constructs that the modeller needs to master in

The Coloured Petri nets case study

order to understand and use, the main tool for CPNs, CPN Tools [62], is not designed
to be easily extended with domain-specific features, although DSMLs have proved to
be one of the most important mechanisms of MDSE [168]. Furthermore, several recent
applications of CPNs [217] have shown that it would be beneficial to be able to develop
domain-specific variants that would make it possible to support:

• Modelling patterns representing commonly used approaches to capture concepts
from the problem domain.

• Modelling restrictions forcing the modeller to use only certain constructs in the
language when modelling concepts from the problem domain.

• Subtyping of elements allowing specific interpretations of certain model ele-
ments such as places, transitions, and arcs [204].

5.2 The CPN modelling language

To understand the CPN language and the CPN Tools, we developed a CPNmodel of the
MQTT publish-subscribe protocol [30]. We decided to construct such a model because
it was a sufficiently realistic case study to use the available functionalities of the CPN
Tools and, furthermore, the MQTT specification was written in natural language and
presented some ambiguities. Hence, the developed CPN model, described in Paper A,
serves as formal specification of it. In this chapter, we describe what mechanisms we
have developed in order to achieve some of the CPNs capabilities. To demonstrate this,
we will use an excerpt of the CPNmodel that describes the basic interactions regarding
subscription and unsubscription of clients to topics in MQTT. The CPNmodel fragment
is shown in Figure 5.1.

A CPNmodel describes the states using places (drawn as ellipses) of the system and
the events using transitions (drawn as rectangles) that can cause the system to change
its state. The CPN model in Figure 5.1 contains three places, two transitions, a number
of directed arcs connecting places and transitions, and some textual SML inscriptions
next to the places, transitions, and arcs. Nodes (places and transitions) together with
the directed arcs constitute the net structure. An arc always connects a place to a
transition or a transition to a place. Each place has an associated type (also called colour
set) determining the kind of data that tokens residing on the place may carry.

A place can hold an arbitrary number of tokens that constitute the marking of the
place. The state of a CPN is a marking of the places of the CPN model. The actions of a
CPN consist of occurrences of enabled transitions. For a transition to be enabled, it
must be possible to find a binding of the variables that appear in the surrounding arc
expressions of the transition such that the arc expression of each input arc evaluates to a
multi-set of token colours that is present on the corresponding input place. The types
of the arc expressions need to conform to the types of the places they are connected to.
When a transition occurs with a given binding, it removes from each input place the
multi-set of token colours to which the corresponding input arc expression evaluates.
Analogously, it adds to each output place of the transition the multi-set of token colours
to which the expression on the corresponding output arc evaluates. In addition to the
arc expressions, it is possible to attach a boolean expression to each transition. This

54 Chapter 5

5.2 The CPN modelling language

clients

ClientState

topics

STRING

ubscriptions Subscriptions

subscribe

[s = "CONN",
not (member t ts)]

unsubscribe

[s = "CONN",
member t ts]

t

(c,s)

(c,s)

t

(c,t::ts)(c,ts)

s

(c,ts) (c,remove t ts)

3
1`(1,"CONN")++
1`(2,"CONN")++
1`(3,"CONN")

2 1`"T1"++
1`"T2"

3
1`(1,[])++
1`(2,[])++
1`(3,[])

Fig. 5.1: CPN model excerpt for a simple communication flow

boolean expression is used as a guard on transitions (e. g., [s = "CONN", member t ts]

at the bottom of Figure 5.1). It specifies an additional requirement for the transition to
be enabled.

As shown in Figure 5.2, the ClientState colour set is composed by the product
of two elements, of types INT and STRING, as a tuple, that represents the ID and
the state of the client. The clients place has as colour set ClientState. Initially, we
have three tokens in clients place, (1, "CONN"), (2, "CONN") and (3, "CONN"), where
each one represents one client. They are displayed on the left of Figure 5.1 and, as
one can observe, all the clients are in state CONN, which means they are connected.
The place Subscriptions keeps track of the topics each client is subscribed to. The
Subscriptions colour set is given by the product of INT and Topics, which is a list of
STRING as shown in Figure 5.2. In the initial state of the net shown in Figure 5.1 no
client is subscribed to any topic. The available topics are listed in the topics place (in
the example, the two available topics are T1 and T2).

The four variables (c of type INT, s and t of type STRING and ts of type Topics)
declared in Figure 5.2 are used in the arc expressions and in the guards of the transitions.
In the state depicted in Figure 5.1, the subscribe transition is enabled. A transition
is enabled if the required tokens are present on places connected to input arcs of the

colset ClientState = product INT * STRING;
colset Topics = list STRING;
colset Subscriptions = product INT * Topics;

var c : INT;
var s, t : STRING;
var ts : Topics;

Fig. 5.2: Colour set definition and variables used in the CPN model in Figure 5.1

Chapter 5 55

The Coloured Petri nets case study

transition. As an example, the transition subscribe has three input arcs and three
output arcs. Hence, an occurrence of this transition will remove tokens from the places
clients, topics and subscriptions, and will add tokens to the same places (the three of
them are both input and output places). The specific tokens added and removed by the
occurrence of a transition are determined by the arc expressions, which are positioned
next to the arcs. An occurrence of an enabled transition requires data values to be
bound to the free CPN variables appearing in the guard, and in the input and output
arc expressions of the transition. This is needed to evaluate the arc expressions and the
guard. Note that the subscribe transition has two double arcs connected to it, from
clients and topics places with (c,s) and t arc expressions, respectively. Double arcs
are just syntactic sugar to represent two arcs in opposite directions with identical arc
expressions. The subscribe transition has also one input arc from the Subscriptions
place with (c,ts) as arc expression and one output arc towards the Subscriptions place
with (c,t::ts) as its arc expression. The latter represents a basic list operation that
appends the matched topic bound to the variable t to the existing list bound to the ts
variable. In other words, it adds the topic to the client’s topic list.

Notice also the guard expression of the subscribe transition, [s = “CONN”, not

(member t ts)], which is composed of two boolean conditions. The first one, s =

“CONN”, verifies that the candidate client must be connected. The second one, not
(member t ts), uses an auxiliary function (member) to check whether the topic is not
already on the client’s list. The unsubscription proceeds similarly, where the guard
at the unsubscribe transition verifies that the client is connected and the topics list
contains the candidate topic. The two arc expressions between unsubscribe and
Subscriptions facilitates the deletion of a topic from a client’s topics list once the
transition is fired. It uses the remove t ts auxiliary function in the output arc of the
transition to remove the topic from the list of subscribed topics.

In CPN Tools, double arcs (explained above) are the mechanism to recreate read
arcs [240] where the tokens that are present on them are used only for readability
purposes and they should never be removed or modified. The workaround with the
double arc basically removes and adds the token which simulates the read arc effect.
We describe in Section 5.3 how the extendibility capabilities of MultEcore allows to
define new elements such as Read Place and Read Arc.

5.3 Coloured Petri nets in MultEcore

In Paper E we defined a multilevel hierarchy to capture regular PNs and PNs with reset
and inhibitor arcs. A reset arc is an input arc that connects a place to a transition and
that removes all the tokens of the place when the transition is fired. An inhibitor arc
is an input arc which is used to reverse the logic of an input place. With an inhibitor
arc, the absence of a token in the input place is what enables the connected transition
(not its presence). Furthermore, we specified MCMT rules to execute instance models
of these two PNs variants and demonstrated how we can execute, verify and analyse
these instance models via the MultEcore-Maude infrastructure.

To handle CPNs, we have taken advantage of the PNs multilevel hierarchy shown in
Paper E. We depict in Figure 5.3 an overview of the entire PNs DSML family considered.
The first two levels are common, where the first one (petri-net-concepts), located at level

56 Chapter 5

5.3 Coloured Petri nets in MultEcore

(b) regular-petri-nets

(c) coloured-
petri-nets

(d) reset/
inhibitor-petri

nets

(e) communication-
flow

level 1

level 2

level 3

level 4

(a) petri-net-concepts

Fig. 5.3: PNs family multilevel hierarchy overview

1, represents the abstract concepts of PNs, and the model below (regular-petri-nets), at
level 2, represents regular PNs. It is in level 3 where we branch the hierarchy, since
the version shown in Paper E captures PNs with reset and inhibitor arcs (right-hand
branch, composed by Figure 5.3 (a), (b) and (d)). For the CPNs case study, level 3
captures CPNs (coloured-petri-nets model) as shown in Figure 5.3 (c). At level 4, we
define a CPN instance model, which will be detailed in the next sections and represents
the model depicted in Figure 5.1 in MultEcore syntax. Note that any of the models
in the intermediate levels can be considered a DSML which is used to define the
level(s) below it, using the types they define in a structurally coherent manner, and
satisfying the given constraints. In other words, regular PN models could also be
created by instantiating directly elements in level 2. As one can observe, the definition
of a language family, such as the PNs family allows to capture the common patterns
once (levels 1 and 2) and use them as core language of the different potential branches
that might emerge representing domain concretisations (level 3). In this regard, a
multilevel hierarchy facilitates theModelling pattern item discussed in Section 5.1. In
the next sections, we explore the left-hand branch of the multilevel hierarchy and detail
the content of each model.

5.3.1 Petri nets concepts

We show in Figure 5.4 (a) a PN metamodel aimed to capture the abstract concepts
of Petri nets (petri-nets-concepts). The purpose of this model is merely structural, i. e.,
subsequent levels below should define the concrete semantics of the PN language(s).
A PetriNet containsNodes, which can be either a Place or a Transition, and Arcs. The
tool MultEcore allows us to make use of the inheritance relation and to markNode as
an abstract class, which cannot be instantiated (note the italics). Note that we only
display the multiplicities on edges in those cases where it is not the default one (0..*).
For instance, target and source multiplicities are 1..1.

Chapter 5 57

The Coloured Petri nets case study

PetriNet
EClass 1-*-*

Node
EClass

Place
EClass

Transition
EClass 1-2-3

Arc
EClass

nodes@1-*-*

EReference

arcs@1-*-*

EReference

source@1-2-3
EReference

target@1-2-3
EReference

inputArcs@1-2-3
EReference

outputArcs@1-2-3

EReference

InputArc

2-2 weight : int

Arc

OutputArc

2-2 weight : int

Arc

RegularTransition
Transition

RegularPlace

2-2 numTokens : int

Place

Token

2-2 value : string

EClass

source@1-2-2

source

target@1-2-2

target

target@1-2-2

target

source@1-2-2

source

inputRegularArcs@1-2-2
inputArcs

outputRegularArcs@1-2-2

outputArcs

tokens@2-2-1

EReference

ColouredInputArc
InputArc

ColouredOutputArc

OutputArc

ColouredTransition

RegularTransition

ColouredPlace

RegularPlace

Expression

1-1 expression : string

EClass

source@1-1-1

source
target@1-1-1

target

target@1-1-1

target

source@1-1-1

source

outputColouredArcs@1-1-1

outputRegularArcs

inputColouredArcs@1-1-1

inputRegularArcs

guard@1-1-1

EReference

initialMarking@1-1-1

EReference

inputExpression@1-1-1
EReference

outputExpression@1-1-1
EReference

(a) petri-nets-concepts

level 1

(b) regular-petri-nets

level 2

(c) coloured-petri-nets

level 3

ReadArc

Arc@2

ReadPlace

RegularPlace 1-1-1

1-1 weight : int

target@1-*-*

target@2

source@1-1-1

source@2

expression@1-1-1
EReference

readArcs@1-1-*

inputArcs

1-2-3

1-2-3

1-2-3

1..11..1

1..1

1..1

1..1

1..1

2-2-1 1-2-2

1-2-2

1-2-2

1-2-2

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1
1..1

1..1

1-1-1

1-1-1

1-1-1 1-1-1

1-1-1

1-1-1

Fig. 5.4: Models (a), (b) and (c) from Figure 5.3

58 Chapter 5

5.3 Coloured Petri nets in MultEcore

5.3.2 Regular Petri nets
The definition for regular PNs that we provide in this case study is not restricted to the
so-called Ordinary PNs where input and output arcs consume or produce, respectively,
only a single token [108]. We allow natural numbers on arcs so that more than one
token can be added/removed at a time. This is also aligned with the CPNs language
specification which allows using so-called multi-sets of tokens [118]. A multi-set is
similar to a set, except that values can appear more than once. Following the PNs
convention, we denote this number as the weight of the arc.

Figure 5.4 (b) displays the regular-petri-netsmodel, located at level 2 of the hierarchy,
where we instantiate the concepts defined at level 1. Thus, in this model, we provide
the structural basis for the modeller to be able to define further PN instance models.
InputArc and OutputArc connect Regularplaces and RegularTransitions. A Regu-

larPlace controls how many tokens it is holding via the numTokens attribute.1 The
weight of arcs is represented as attributes calledweight of type int in classes InputArc

and OutputArc.

5.3.3 Coloured Petri nets
As stated in Section 5.1, CPNs and, in general high-level PNs, are boosted with
the capabilities that a programming language offers. The functional SML language
is used in CPNs, and to cope with it, we have instrumented our MultEcore-Maude
infrastructure to provide a preliminary parametric SML implementation to demonstrate
its potential. The coloured-petri-netsmodel in Figure 5.4 (c) contains some relevant CPN
concepts discussed in Section 5.1.

A significant difference of CPNs with respect to other PNs is that one can specify
SML expressions and functions in different parts of the models. The Expression node,
associated to arcs, places and transitions in Figure 5.4 (c), precisely captures this, where
the concrete expression is provided by instantiating its expression attribute. Such an at-
tribute is of type string. Instances of the expression attribute will be written as strings
in MultEcore and will be appropriately processed in Maude. The rest of the elements
in this level make use of expressions in different ways: ColouredPlaces can have ini-
tialMarkings (edge from ColouredPlace to Expression), ColouredTransitions might
have guards as boolean conditions, andColouredInputArcs andColouredOutputArcs
can have inputExpressions and outputExpressions, respectively. All these concepts
(except the initial marking, which we do not instantiate in level 4 of the hierarchy) have
been shown in Section 5.1.

Another fundamental aspect regarding flexibility is the possibility to easily extend
the modelling language represented by the multilevel hierarchy. To demonstrate this,
we have extended the coloured-petri-nets model by adding the ReadPlace and ReadArc

nodes (the semantics of these elements is given in Section 5.2). A ReadArc connects
a ReadPlace and a ColouredTransition, which at the same time keeps track of the
number of ReadArcs connected to it (via readArcs edge). ReadArcs can also have
an expression (edge from ReadArc to Expression). By simply adding the ReadPlace

1Note that the number of tokens may be calculated with the OCL expression rp.tokens→size(). The
attribute is however used to speed up calculations and to illustrate the manipulation of attributes in
MCMT rules.

Chapter 5 59

The Coloured Petri nets case study

and ReadArc nodes, as well as the edges that connect them, allows us to extend the
language and demonstrate the application of Modelling restrictions and Subtyping of
elements listed in Section 5.1. The former is achieved by structurally representing that
eachReadPlacemust be connected to aColouredTransition via aReadArc, forbidding,
for instance, that a ReadPlace is connected to a ColouredInputArc. The latter is given
by freshly creating a new interpretation of a place and an arc that has been decided
a-posteriori. Note that subtyping does not strictly refer to the use of a specialisation
mechanism, e. g., inheritance, but the possibility of specifying new concretisation of
certain elements in levels below.

5.4 Behaviour of Coloured Petri nets

As for other PNs, the dynamic behaviour of a CPN is given by the token game,
representing various states of the system. This token game is based on the firing of
transitions that leads to the consumption/production of tokens; each fired transition
produces a new model state. We have already specified the semantics of other PNs
(e. g., regular PNs and reset/inhibitor PNs in Paper E) in a similar way. We have defined
a single MCMT rule that can cover every possible execution of a single transition in
CPNs. However, the fact that we have to take into account that CPNs incorporate a
programming language, SML in our case, has increased the complexity of the designed
MCMT rule. Furthermore, it has encouraged us to enrich MCMTs with additional
functionalities that will be explained in this section. The rule is shown in Figure 5.5.
We do not enter into details of the META block as it has already been explained in
Chapter 2. Hence, we refer the reader to Paper E for details on how theMETA block
works. In the following, we focus on the FROM and TO blocks.

The use of the boxing mechanism has facilitated the specification of a single rule for
every possible permutation and combination of different arcs and places, as well as any
number of tokens connected to them. The Fire transitionMCMT rule has been designed
to cover different cases that can be simultaneously present regarding places connected
to a transition in the CPNs context. Each case is encapsulated within a dashed box,
which we explain in the following, from top to bottom of the FROM part of Figure 5.5:

1. The first box covers input places connected via input arcs to the transition tr. It is
surrounded by a dashed box where its cardinality is given by the following OCL
expression: tr.inputColouredArcs→select(a | tr.outputColouredArcs→exists(b
| a.source != b.target))→size(). This expression is needed to count places that
are only connected via input arcs to the transition and to distinguish them from
those places that are connected via both input and output arcs (this is the case
number 4, depicted at the bottom of Figure 5.5). The elements placed inside this
first box, p1, a1 and a1e, together with their corresponding edges, a1s, a1t and
a1exp, specify the place-arc-expression pattern that can be found an arbitrary
number of times. The inner box, that encapsulates tk1 and p1tk is used to match
any number of tokens given by the weight a1w of the arc a1, which is used as
cardinality of this box.
To deal with the fact that the free variables of a transition are evaluated taking
into account all the arcs connected to them, we have incorporated let clauses to

60 Chapter 5

5.4 Behaviour of Coloured Petri nets

MCMTs. Let clauses allow to store each partial match of the variables of the arc
expressions (e. g., a1exp that captures the matched arc expression of an element
in the model) with the values of the tokens (e. g., v1). These partial matches that
are calculated when the rule is unfolded must be tracked back and put together
in the general context of the rule. For instance, the let subst1i = match(a1exp, v1)

creates one variable subst1i per matched token. Then, the outer expression, let
subst1 = U subst1i, creates one variable subst1 per instance of ColouredPlace,
which gets assigned the union (U) of the substitution variables from all the
matched tokens. We explain below how all the matches are put together and
used to create new tokens based on the evaluation of the arc expressions.

2. The second box handles read arcs connected to the transition. The number of read
places and arcs connected to the transition is calculated with the OCL expression
tr.readArcs→size(). The two let clauses defined within this box work analogously
as explained for the first case. The cardinality of the inner box is given by the
weight a2w of the arc a2.

3. The thirdbox covers all the outputplaces connected to tr. Thenumber of these kind
of places (instances of ColouredPlaces, po, connected to instances of Coloured-
OutputArcs, ao) is given by the expression tr.outputColouredArcs→size().

4. The last box deals with places that are simultaneously input and output of
the transition, i. e., it has an input arc and an output arc connected to each
of them. The cardinality of the box is given by the OCL expression comple-
mentary to the one shown in the first case: tr.inputColouredArcs→select(a |

tr.outputColouredArcs→exists(b | a.source = b.target))→size(). Note that the
let elements follow the same logic as in cases 1 and 2. The difference is that we
have a3 to capture the input arc, and ao2 to capture the output arc, with their
corresponding expressions, a3e and ao2e, respectively.

In order to execute this rule, there are also some additional requirements that must
be satisfied. At the bottom of Figure 5.5, we have the conditions of the rule. The
first line, let subst = subst1 U subst2 U subst3, defines a variable subst that takes
the union of all the matches captured in cases 1, 2 and 4. This variable contains all
the information of the matches of the unfolded variables with the corresponding
unfolded values which corresponds to the binding of the transition (see [136] for details
on bindings in CPNs). The second line in the Conditions block checks whether the
guard trguard (attribute located in trg node) is satisfied. To achieve this, we use the
expression evalSml(apply(trguard, subst)), which checks whether there exist some
combination of variables with values assigned that fulfil the boolean expression of the
transition that might use some of these variables.

The right-hand side of the rule is shown in the TO block of Figure 5.5. We again
describe each of the cases, from top to bottom:

1. The tokens that have been matched from the corresponding input places have
been removed, hence they do not appear in the TO side.

Chapter 5 61

The Coloured Petri nets case study

tokens
RegularPlace Token

value : string

ColouredPlace

ColouredInputArc

ColouredOutputArc

Expression

expression : string

ReadArc

ColouredTransition

source

target

source
target

target

inputExpression

outputExpression

guard

expression

inputColouredArcs

outputColouredArcs

readArcs

p1

tk1
Token

a1
Coloured
InputArc

value:v1

a1e
Expression

expression:a1exp

tr
Coloured
Transition

trg
Expression

expression:trguard
p1tk

tokens
a1s

source a1ttarget

a1exp
inputExpression

trguard
guard

p2
Read
Place

tk2
Token

a2
Read
Arc

value:v2

a2e
Expression

expression:a2exp

p2tk
tokens

a2s
source

a2t
target

a2exp
inputExpression

[tr.inputColouredArcs->select(
a | tr.outputColouredArcs->exists(
b | a.source != b.target))->size()]

[tr.readArcs->size()]

po
Coloured

Place
ao

Coloured
OutputArc

aoe
Expression

expression:aoexp

aot
target

aos
source

aoexp
outputExpression

[tr.outputColouredArcs->size()]

p1
Coloured

Place
a1

Coloured
InputArc

a1e
Expression

expression:a1exp

tr
Coloured
Transition

trg
Expression

expression:trguard

a1s
source a1ttarget

a1exp
inputExpression

trguard
guard

p2
Read
Place

tk2
Token

value:v2

a2e
Expression

expression:a2exp

p2tk
tokens

a2t
target

a2exp
inputExpression

[tr.readArcs->size()]

po
Coloured

Place
ao

Coloured
OutputArc

aoe
Expression

expression:aoexp

aot
target

aos
source

aoexp
outputExpression

[tr.outputColouredArcs->size()]

tko
Token

value:evalSml(
apply(aoexp,
subst))

potk
tokens

Conditions:
let subst = subst1 U subst2 U subst3
evalSml(apply(trguard, subst))

source
ReadPlace

weight:a1w

InputArc

weight : int

OutputArc

weight : int

[a1w]

weight:aow
[aow]

weight:aow

weight:a1w

p3
Coloured

Place

tk3
Token

a3
Coloured
InputArc

value:v3

a3e
Expression

expression:a3exp

p3tk
tokens

a3s
source

a3exp
inputExpression

ao2
Coloured
OutputArc

ao2e
Expression

expression:ao2exp

ao2t
target

ao2exp
outputExpression

a3t
target

[a3w]
weight:a3w

weight:ao2w

[tr.inputColouredArcs->select(
a | tr.outputColouredArcs->exists(
b | a.source = b.target))->size()]

p3
Coloured

Place

tko2
Token

a3
Coloured
InputArc

a3e
Expression

expression:a3exp

po2tk
tokens

a3s
source

a3exp
inputExpression

ao2
Coloured
OutputArc

ao2e
Expression

expression:ao2exp

ao2t
target

ao2exp
outputExpression

[ao2w]

weight:a3w

weight:ao2w

weight : int

[tr.inputColouredArcs->select(
a | tr.outputColouredArcs->exists(
b | a.source != b.target))->size()]

ao2s
source

a3t
target

ao2s
source

[tr.inputColouredArcs->select(
a | tr.outputColouredArcs->exists(
b | a.source = b.target))->size()]

Coloured
Place

[a2w]

weight:a2w

a2a2s
source

weight:a2w

Read
Arc[a2w]

let subst1i =
match(a1exp, v1)

let subst1 = U subst1i

let subst2i =
match(a2exp, v2)

let subst2 = U subst2i

let subst3i =
match(a3exp, v3)

let subst3 = U subst3i

value:evalSml(apply
(ao2exp, subst))

META
FROM TO

Fig. 5.5: Fire transitionMCMT rule for CPNs

62 Chapter 5

5.5 Composition of Petri net languages

2. In read places, the tokens are only used to read their information, but are left
untouched. That is why the execution does not perform any change on read
places.

3. Output places are going to get new tokens whose number is given by the weight
aow of the arc ao. The values of the tokens are given by computing the arc
expression aoexpwith the subst variable which contains the information of the
tokens consumed previously. This value is therefore calculated using the function
evalSml(apply(aoexp,subst)).

4. Analogously to case number 3, the new tokens created in the place that
acts as input and output at the same time are calculated by the expression
evalSml(apply(ao2exp,subst)). Also, the tokens that were matched in the FROM

part are removed from the place (p3).

The potential of the boxes has allowed us to use a single rule to cover every possible
execution of a transition in a CPN model. The incorporation of the let clauses and
operations, such as the union, has made it possible to preserve and save information
across boxes and compose it for producing the new tokens or evaluate the guard of the
transition. We refer the reader to Paper E for additional information on the available
facilities for execution and verification of PNs.

5.5 Composition of Petri net languages

We have illustrated the PNs family in the form of a multilevel hierarchy in Figure 5.3.
The two models located at level 3, namely coloured-petri-nets and reset/inhibitor-petri-
nets, symbolise different sublanguages the instances of which can represent concrete
configurations for CPNs or for PNs with reset and inhibitor arcs (e. g., the gas station
model shown in Paper E). However, these two languages are not mutually exclusive
and they could be used together, as some concepts of one of them might be useful
for the other. As we have discussed in Chapter 3, these kinds of languages can be
composed by using the notion of supplementary hierarchies. For instance, we will
show in this section how CPNs can incorporate some concepts from the reset/inhibitor
PNs to enhance some elements at the instance level. It is important to mention that
although CPN Tools already supports read and reset arcs, for comparison reasons,
we chose this example to illustrate the feasibility of extending a language through
supplementary hierarchies. Similar to this example, we can add other functionalities
that are not currently supported in CPNs.

Figure 5.6 (a) shows an excerpt of the communication-flow model in MultEcore
syntax. It comprises the unsubscription situation which analogous part in CPN
syntax (extracted from Figure 5.1) is depicted in Figure 5.6 (b). We can find in
Figure 5.6 (a), for instance, the guard of the unsubscribe transition (as an instance of
the expression attribute of the unsubscribeguard node) "s==\"CONN\" andmember

t ts". We can also find the two arc expressions attached to the arcs that connect the
subscriptions place (of type ColouredPlace) with the unsubscribe transition of type
ColouredTransition). One can observe that these two arc expressions, namely a7exp

and a8exp are the same as those reflected in the corresponding arcs in Figure 5.6 (b).

Chapter 5 63

The Coloured Petri nets case study

subscriptions
ColouredPlace ExtendedPlace

unsubscribe
ColouredTransition 0-0-0 ExtendedTransition

a7

weight=1

ColouredInputArc 0-0-0

ResetArc a8

weight=1

ColouredOutputArc 0-0-0

a7exp

expression="(c,ts)"

Expression 0-0-0

unsubscribeguad
Expression

expression="s == \"CONN\"
and member t ts"

0-0-0

a7s@0-0-0
source

a7t@0-0-0

target

a8s@0-0-0
source

a8t@0-0-0
target

a7exp@0-0-0
inputExpression

a8exp@0-0-0
outputExpression

unsubguard@0-0-0
guard

0-0-0

a8exp
Expression 0-0-0

expression="(c, remove t
ts)"

subscriptions

unsubscribe

[s= "CONN",
member t ts]

(c,ts) (c,remove t ts)

(a) communication-flow model
excerpt in MultEcore

(b) communication-flow
 model excerpt in CPN Tools

Fig. 5.6: Communication-flow model in MultEcore syntax (a) (composed version) and in
CPN Tools (b)

The model shown in Figure 5.6 (a) represents an excerpt of the full model in MultEcore
syntax which is illustrated in Figure 5.7. This model is now an instance of both the
coloured-petri-nets model located in Figure 5.4 (c) and the reset/inhibitor-petri-nets model
located in Figure 5.4 (d). However, the key point of Figure 5.6 (a) is that some elements
are multi-typed by elements defined in the other branch of the hierarchy (specifically in
the reset/inhibitor-petri-netsmodel). Note that the complete model in Figure 5.7 do not
represent a composed model, but we have opted to use the model excerpt in Figure 5.6
(a) to illustrate a composition example and its analogous part in Figure 5.6 (b) (without
any composition detail) to facilitate its readability. Still, the complete model shown in
Figure 5.7 could be also multi-typed as we have exemplified in Figure 5.6 (a).

The current semantics of the unsubscribe transition is that, every time it is fired, a
client unsubscribes from one of the topics it was subscribed to. Let us consider now that
we want to change the semantics where unsubscribewould remove all the tokens at
once, i. e., all clients unsubscribe from all the topics they were subscribed to. One of the
concepts defined at level 3 of the right-hand branch is the notion of reset arc which is an
input arc that connects a place to a transition and that removes all the tokens of the place
when the transition is fired. Then, we can make use of the ResetArc, ExtendedPlace
and ExtendedTransition concepts defined in that model (these elements can be found
in Figure 6 of Paper E) and use them to multi-type elements in our model at level 4.
In this case, the subscriptions place in Figure 5.6 is typed by ColouredPlace, from
the coloured-petri-nets model, and is typed by ExtendedPlace, from the supplementary
branch (green ellipse at the top right corner of the node). Analogously, a7 is typed by
ColouredInputArc and ResetArc and unsubscribe is typed by ColouredTransition

64 Chapter 5

5.5 Composition of Petri net languages

clients
ReadPlace

0-0-0
topics

ReadPlace
0-0-0

subscriptions
ColouredPlace

0-0-0

subscribe
ColouredTransition

0-0-0

unsubscribe
ColouredTransition

0-0-0

a1

w
eight=

1

ReadArc
0-0-0

a2

w
eight=

1

ReadArc
0-0-0

a4

w
eight=

1

ReadArc
0-0-0

a3

w
eight=

1

ReadArc
0-0-0

a5

w
eight=

1

ColouredInputArc
0-0-0

a6

w
eight=

1

ColouredO
utputArc

0-0-0

a7

w
eight=

1

ColouredInputArc
0-0-0

a8

w
eight=

1

ColouredO
utputArc

0-0-0

a1exp

expression=
"(c,s)"

Expression
0-0-0

a3exp

expression=
"t"

Expression
0-0-0

a2exp

expression=
"(c,s)"

Expression
0-0-0

a4exp

expression=
"t"

Expression
0-0-0

a5exp

expression=
"(c, ts)"

Expression
0-0-0

a7exp

expression=
"(c,ts)"

Expression
0-0-0

a6exp

expression=
"(c, t :: ts)"

Expression
0-0-0

a8exp

expression=
"(c, rem

ove t
ts)"

Expression
0-0-0

subscribeguad

expression=
"s =

=
 \"CO

N
N

\"
and not (m

em
ber t ts)"

Expression
0-0-0

unsubscribeguad
Expression

expression=
"s =

=
 \"CO

N
N

\"
and m

em
ber t ts" 0-0-0

client1

value=
"(1,\"CO

N
N

\")"

Token@
2

0-0-0

client2

value=
"(1,\"CO

N
N

\")"

Token@
2

0-0-0

client3

value=
"(1,\"CO

N
N

\")"

Token@
2

0-0-0

topic1

value=
"T1"

Token@
2

0-0-0

topic2

value=
"T2"

Token@
2

0-0-0

client1sub

value=
"(1,[])"

Token@
2

0-0-0

client2sub

value=
"(2,[])"

Token@
2

0-0-0

client3sub

value=
"(3,[])"

Token@
2

0-0-0

a1s@
0-0-0
source

a1t@
0-0-0

target

a2s@
0-0-0

source

a2t@
0-0-0

target

a3s@
0-0-0

source

a3t@
0-0-0

target

a4s@
0-0-0

source

a4t@
0-0-0

target

a5s@
0-0-0
source

a5t@
0-0-0

target

a7s@
0-0-0

source

a7t@
0-0-0

target

a6s@
0-0-0

source

a6t@
0-0-0

target

a8s@
0-0-0

source

a8t@
0-0-0

target

a1exp@
0-0-0

expression

a2exp@
0-0-0

expression

a4exp@
0-0-0

expression

a3exp@
0-0-0

expression

a5exp@
0-0-0

inputExpression

a7exp@
0-0-0

inputExpression

a6exp@
0-0-0

outputExpression

a8exp@
0-0-0

outputExpression

unsubguard@
0-0-0

guard

subguard@
0-0-0

guard

client1tk@
0-0-0

tokens@
2

client2tk@
0-0-0

tokens@
2

client3tk@
0-0-0

tokens@
2

c1stk@
0-0-0

tokens@
2

c2stk@
0-0-0

tokens@
2

c3stk@
0-0-0

tokens@
2

topic1tk@
0-0-0

tokens@
2

topic2tk@
0-0-0

tokens@
2

Fig. 5.7: Communication-flowmodel in MultEcore syntax

Chapter 5 65

The Coloured Petri nets case study

and ExtendedTransition, respectively. Having this, the semantics of the multi-typed
elements are given as a combination of the semantics of each respective model (coloured-
petri-nets from the left-hand branch and reset/inhibitor-petri-nets from the right-hand
branch) where the types are located.

In this chapter, we have described how the three shortcomings highlighted in
Section 5.1 are alleviated. First, we have shown that the construction of a language
family in the form of a multilevel hierarchy captures modelling patterns. In this case,
levels 1 and 2 of the hierarchy illustrated in Figure 5.3 capture general PNs patterns
that can be reused by models in different branches in levels below. Second, we have
demonstrated how we can define modelling restrictions, for example, to delimit the use
of certain constructs such as read arcs, where only read places can be connected to
them (shown in Figure 5.4). Finally, we have depicted how, by constructing a multilevel
hierarchy, subtyping of elements can be achieved in levels below. For instance, we
have specified different forms of places (e. g., ColouredPlace and ReadPlace), arcs
(e. g., ResetArc and ColouredOutputArc) and transitions (e. g., RegularTransition
and ColouredTransition).

66 Chapter 5

CHAPTER 6
RELATED WORK, CONCLUSIONS AND FUTURE
WORK

In this chapter, we first discuss related work and summarise the thesis by revisiting the
research questions and discussing the main contributions. Then, we outline directions
for future work and conclude the thesis.

6.1 Related work

In this section, we summarise related work of the three main aspects of this thesis,
namely, Multilevel Modelling (MLM), composition and execution.

6.1.1 Multilevel Modelling

In Chapter 2, we discussed the key concepts of MLM and described various MLM
languages and tools. The most widely used approach to the specification of MLM
frameworks is the Orthogonal Classification Architecture (OCA) [21]. It has been a
reference since it emerged and mature tools such as Metadepth [65], OMME [241],
Melanee [12] and OMLM [112] use it. However, we do not limit ourselves to this
architecture but MultEcore follows the golden braid architecture [111] with Ecore as
the topmost metamodel where each model at any level can have access to it or it can
be transitively instantiated as many times as required to create a multilevel hierarchy.
Other approaches, such as FMMLx [94] and DMLA [228] follow the same principle.
Using a fixed metamodel can present some shortcomings since the user is forced to use
such a metamodel and it is not allowed to specify more than one type for each element.
To solve this, one can make use of the supplementary hierarchies where different types
can be added to elements as explained in Chapter 2.

MultEcore can be positioned as a level-adjuvant approach since we classify elements
in the multilevel hierarchy in a level-based manner. Level-adjuvant approaches such
as the DPF Workbench [141], OMLM [112], Metadepth [65], Melanee [12], Dual Deep
Modelling (DDM) [176] and FMMLx [50, 94] support some form of potency as described
in Chapter 2. The MultEcore potency implementation (3-value range potency) has
been influenced by Multi-potency [206] and star-potency [99]. The fact that we can
use three values and the star to represent unbounded potency, has allowed us to give
the capability to modellers to define multilevel hierarchies with the desired degree

Related work, conclusions and future Work

of precision. A more in-depth analysis of all the MLM approaches can be found in
Chapter 2.

Regarding the specification of behaviour using MTs, in MLM there exist a fewMLM
approaches that handle behaviour. For instance, Metadepth, which takes advantage of
the Epsilon languages, and Melanee, which is based on a service API and a plug-in
mechanism, facilitate the execution ofmodels. We further discuss these two approaches
in Paper E.

One of the key features we have incorporated into MCMTs is the possibility to use
parametric nested boxes. The specification of boxes in an MCMT rule allows it to be
parametric and fit the concrete model configuration at runtime. Therefore, the rule
can cover every possible situation regarding the replicated number of elements. For
instance, the Fire transitionMCMT rule shown in Figure 5.5 in Chapter 5 allows us to
cover any number of arcs connected to a transition, and also any number of tokens that
are present in each place. There exist other works in the literature that bring solutions
to pattern definition and application in the context of graph transformations. Some
examples are the star operator [148], the collection operator [104], recursion [105] and
rule-nesting [9]. A more in-depth discussion of these approaches can be found in
Paper E.

6.1.2 Composition

As described in Chapter 3, there exist several techniques for structure composition.
The development of our approach for composition based on the use of supplementary
hierarchies was highly influenced by the study of the merge andweaving operators. We
studied the literature regarding the merge operator and analysed the shortcomings it
presented, mainly, the fact that merging implied creating additional artefacts and losing
the individuality of the elements prior to the operation (as discussed in Chapter 3).
There exist some approaches in 2-level modelling that support some composition
operator. In Melange [75], the operational semantics of a DSL involves the use of an
action language to define methods that are statically introduced in the concepts of the
DSL abstract syntax. In our approach, we define the semantics separately, by means
of MCMTs, avoiding the need to change the abstract syntax (for us, the multilevel
hierarchy) of the DSML. GeKo [135]) operates only on the structure, while our approach
also provides support for the composition of behaviour by amalgamating MCMT rules.
Further details on some approaches that support some composition operator operator
in 2-level modelling (such as AToM3 [73], Melange [75] and the GReAT tool [29]) and
our approach based on supplementary hierarchies can be found in Paper D.

There are other approaches that are worth mentioning, for instance, Gromp [159]
that supports modular languages design and language modules composition through
a merge operator. The Atlas Model Weaver (AMW) [35] is a facility that implements
a weaving operator for establishing relationships between elements from different
models. These links are captured in a weaving model that conforms to a weaving
metamodel, declaring the kind of relationship that can be modelled. It also provides
a composition language that allows language designers to manually describe the
composition of several language modules. LISA [162, 163] is an approach that makes
use of the inheritance operator to achieve composition. In LISA, language modules are

68 Chapter 6

6.1 Related work

defined as attribute grammars that can have inheritance relationships among them.
LISA supports modular language design and language modules composition, and
uses ideas from object-oriented programming. MontiCore [133, 134] supports the
construction of textual DSLs where the abstract and concrete syntaxes are defined in
BNF-like grammars, and semantics are defined denotationally in a theorem prover.
It implements the inheritance operator to support modular languages design and
language modules composition.

Note that MultEcore relies on Maude for execution and that we perform the
composition of MCMTs via an amalgamation process. CoorMaude [211] also relies on
Maude and a coordination model that employs so-called Coordination Roles (CRs). The
coordinationmodel is an exogenous, transparentmodel, that promotes the separation of
functional and coordination aspects. With such a separation, the system behaviour can
be simulated, defining different objects configuring the system and different sequences
of operations. In summary, CoorMaude performs the composition directly on Maude,
while we do it in MultEcore prior to the transformation of the multilevel setting to
Maude specification.

To the best of our knowledge, only Metadepth has contributed to structural compo-
sition in the MLM context. Metadepth supports facet-oriented modelling [72], where
slots can be dynamically added or removed from elements, constraints and types
through the notion of facets. Facet-oriented modelling, which is discussed in detail in
Chapter 3, shares similarities with our composition approach based on supplementary
hierarchies.

6.1.3 Execution and verification

In this thesis, we have focused on the execution of models based on the specification of
MTs by means of Multilevel Coupled Model Transformations (MCMTs). Among the
techniques discussed in Chapter 4, we can classify the MCMTs approach as specifying
operational semantics.

In the context of MLM, Metadepth [65] is integrated with the Epsilon family of
languages [87], which permits using both the EOL [131] as an action language to define
behaviour for metamodels, and also the Epsilon Validation Language (EVL) [132] for
expressing constraints. Metadepth compiles the models for execution and simulation
purposes as we do in MultEcore. However, for the execution they are forced to flatten
their multilevel language to a two-level version in order to run the models. As shown
in Section 4.5, we rely on the Maude system [54] for execution. Maude is agnostic of
the notion of levels as every element is an object in the specification, and hence we can
directly use the multilevel setting avoiding the intermediate flatting step.

In the context of 2-level modelling, we find other approaches similar to our work
that also support state space calculation and verification of temporal properties.
Henshin [9, 223], is an EMF-based tool that can operate directly on EMF models.
Furthermore, it supports modal µ-calculus [44] model checking by integrating the
CADP [96] model checker and validation of the models through OCL invariants.
GROOVE [126, 190] is implemented in Java under Eclipse and it is a graph-based
transformation tool. It uses graphs to represent model states and transitions are
performed via the application of graph production rules. To generate the state space,

Chapter 6 69

Related work, conclusions and future Work

the GROOVE Simulator engine recursively computes and applies all enabled graph
production rules at each state. GEMOC [43, 59] is an Eclipse-based tool built on top of
EMF. It supports both the design and construction of DSMLs and also the execution of
the models conforming to such DSMLs. The GEMOC execution framework provides
an API that integrates any kind of metaprogramming approach used to define discrete-
event operational semantics into an execution engine. In our case, we have taken
advantage of the different analysis techniques supported by Maude, like reachability
analysis, bounded and unbounded model checking of invariants and LTL formulas.
We detail additional related work regarding execution and verification in Paper C and
Paper E.

6.2 Research Questions revisited

The research work of this thesis has been dedicated to the MLM and Coloured Petri
nets (CPNs) fields. In this section, we revisit our research questions (RQs) and discuss
how we have addressed them.

RQ1: How can MLM be used to alleviate the shortcomings of Coloured Petri nets and the
CPN Tools?

While the lack of focus on some ideas such as composition and verification within
MLM was the primary motivation for this thesis, the fact that we identified some chal-
lenges in CPNs that could be solved by applying MLM techniques motivated us to
apply our results in the context of the CPNs case study. We have demonstrated that
MultEcore’s flexibility in the horizontal dimension allows defining an arbitrary num-
ber of domain-specific languages. Furthermore, its vertical flexibility promotes the
specification of families of languages in combination with the horizontal extension, giv-
ing rise to a variety of available DSML languages within the same multilevel hierarchy.
Further details on vertical and horizontal flexibility are given in Paper C and in Paper F.
Furthermore, we have successfully defined a multilevel hierarchy for a family of PN
languages (detailed in Paper E) where one branch of it leads to define CPN models
(presented in Chapter 5) together with their corresponding semantics. The semantics
specification has been possible due to the major improvements we have introduced to
the MCMTs.

RQ2: How can reuse across related multilevel DSMLs be facilitated?

We were aware that there existed a lot of research work regarding the reuse of
(modelling) languages within traditional MDSE approaches and from other fields,
such as Aspect-oriented programming or software language engineering. Our goal
was to reflect some of the ideas present in the literature in our underlying theory and
the MultEcore tool. We analysed how the merge and weaving operators had been
used in the literature and decided to develop our own solution, which resulted in
the notion of supplementary hierarchy to multi-type elements. Using supplementary
hierarchies to achieve composition was part of our development and we used it not
only as a structural resource to expand the multilevel hierarchy with new concepts but

70 Chapter 6

6.3 Summary of contributions

also to foster composition. The supplementary dimension has turned into an elegant
solution to enhance reusability and modularity in a non-intrusive way across different
MLM hierarchies. We compared our approach to other relevant and commonly ac-
cepted approaches to composition in the MLM community, like the linguistic extension
approach [72].

RQ3: How can the underlying theory be adapted to achieve the composition of MLM hierar-
chies and amalgamation of their respective MCMT rules?

We extended the underlying theory to consider the composition of multilevel hi-
erarchies and the amalgamation of the MCMT rules. The intuition behind the formal
extension of the theory we made relies on being able to specify more than one typing
chain and providing the model instances with several types, one from each typing
chain. In practice, each multilevel hierarchy (the application, and the supplemen-
tary) would represent a typing chain. Note that we also allow specifying different
typing chains within the same multilevel hierarchy if each branch represents a lan-
guage that could be composed to multi-type elements at the instance level (see [204]
and Chapter 5). We not only extended the formalisation, but also applied the ideas
to a case study and developed a guided engine to semi-automatically produce the
amalgamated MCMT rules. The details of the theoretical extensions, the case study
and the description of the MultEcore amalgamation engine can be found in Paper D.

RQ4: How can a term-rewriting engine like Maude be used as an execution engine for
MCMTs with the goal to simulate and verify multilevel DSMLs?

In MultEcore, it was already possible to specify MCMT rules using the MultEcore
textual DSML [149]. However, there was no engine to rely on to execute these MCMTs
in order to simulate the MLM hierarchies. In this regard, we had two choices. On
one hand, we could implement an engine that: (i) takes care of the matching of the
MCMT rules with the multilevel hierarchy; (ii) applies such matches to generate new
model states; (iii) implements a state space generator and some property specification
logic such as LTL or CTL to verify behavioural properties. This idea was proposed
but not fully implemented by Macias [149]. Instead, we decided to take advantage
of an existing system, specifically Maude, which was powerful enough to handle all
the machinery we needed in MultEcore. This has resulted in the MultEcore-Maude
infrastructure that allows us to execute models and verify them by integrating Maude
as a background process into MultEcore, making the user agnostic of all the low-level
details. This infrastructure and some of its applications can be explored in Papers C, E
and F and in Chapter 5.

6.3 Summary of contributions

Following the constructive research method (detailed in Section 1.8) has allowed us to
contribute in many aspects to the fields of CPNs and MLM, in an incremental way. In
this section, we summarise the contributions to these areas.

Chapter 6 71

Related work, conclusions and future Work

6.3.1 Contributions to Coloured Petri nets
Our initial goal was to bring MLM to the next step towards the composition and
execution of multilevel DSMLs. The fact that we realised that CPNs was presenting
some shortcomings regarding extension and customisation of the language [217]
motivated us to use it as a case study in which we could apply our MLM contributions.
Thus, our first effort was to understand the language, familiarise ourselves with the
CPN Tools and discern their strong and weak points, to then address them by applying
MLM techniques. Our study of the tool consisted of specifying a realistic enough
protocol (we chose the MQTT protocol), modelling it and performing verification
on it. Choosing MQTT was not an arbitrary decision, as we were aware that the
MQTT protocol was documented in natural language and presented some ambiguities.
Therefore, we decided to develop an MQTT CPN model that constituted a formal
specification of the protocol that could be simulated and verified, which turned into a
journal publication (see Paper A).

The obtained results were satisfactory, but there was an inherent problem regarding
the size of the computed state spaces of some of the scenarios we simulated for the
first publication. This encouraged us to further work on the MQTT case, leading us to
implement a method to alleviate the state explosion problem. We implemented the
sweep-line method which deletes states from memory during state space exploration.
We implemented this method within the CPN Tools using the SML language and,
in addition, we incorporated support for certain CTL formulas that can be verified
on-the-fly at the same time as the sweep-line method is running. The verification
results were consistent with those obtained in the first publication and the simulated
scenarios presented a substantial reduction in memory usage. These contributions
were also published as a journal publication (see Paper B).

6.3.2 Contributions to Multilevel Modelling
The contributions made to the MLM field have been related to the MultEcore approach
and its underlying theory. The MultEcore’s state [152] that was taken as the starting
point of this work allowed the user to specify multilevel hierarchies and sketch the
MCMT rules. However, there were some tool limitations when defining the different
models that shaped the hierarchy and the MCMTs were not executable at all.

Also, while the concept of supplementary hierarchy had been theoretically pro-
posed [149, 154] it was not implemented within the MultEcore tool. We have imple-
mented it in MultEcore and applied it to different cases (see [202, 204] and Papers D
and F). In the following, we list the contributions made from both theoretical and
practical perspectives:

• The concept of supplementary hierarchy has its origin in the concept of typing
chain, present in the existing formalisation (see [245]). However, this was an
unexploited feature and the formalisation did not take into account multiple
typing chains (or supplementary hierarchies). Exploring the idea of multiple
supplementary hierarchies led us to extend the formalisation not only to be able
to define multiple typing chains, but also to combine them. The result was a
formal extension that considered both the combination of MLM hierarchies and

72 Chapter 6

6.3 Summary of contributions

also the amalgamation of MCMTs to describe combined behaviour. Naturally,
we applied these new incorporations to MultEcore, where the user can add and
remove supplementary hierarchies in a natural, non-invasive and semi-automatic
way, and carry on the composition of multilevel hierarchies and amalgamation of
their MCMT rules (through a guided wizard). This work is covered by several
publications: the formal details together with their application into a case study
can be found in Paper D. The usage of the supplementary hierarchies for different
purposes can be seen in Paper F and in [202, 204].

• The MCMTs were theoretically presented in [149, 154, 155] and the MultEcore
tool supported the specification of MCMT rules. However, no engine was
implemented that could execute the rules against the models to simulate them.
Our goal was tomake this possible, andwe developed an initial infrastructure that
connected MultEcore with Maude, which possessed the necessary functionalities
that were required for execution. This preliminary infrastructure, with some
limitations, was presented in Paper C [193]. For this publication, we had to
improve the expressive power of the MCMTs due to the practical needs of the
case study. These improvements enhanced the flexibility of the MCMTs for
their application into the multilevel hierarchy, within the horizontal and vertical
dimensions (see Paper C [Section 4.2] for more details), and incorporated a boxing
mechanism to define submodel patterns. This mechanism allowed us to define
parts of the MCMT rule that would be replicated to match an arbitrary number
of times in the model. Still, this boxing mechanism was very limited, as one
could only specify boxes on the left-hand side of the rule and nested boxes as
well as cross-level boxes were not supported. The infrastructure built at this time
had a bidirectional transformation between MultEcore and Maude, producing
executable Maude files from MultEcore that the user had to run manually to
produce XML output files. Then, the user had to load each XML file manually,
creating the corresponding MultEcore model files.

• The current MultEcore-Maude infrastructure has been widely improved and
extended with respect to the preliminary version presented in Paper C. The
improvements were motivated by our final goal which was to achieve execution
and verification and apply it to the CPNs case study via a defined multilevel
infrastructure and the specification of the behavioural MCMT rules. Still, the
CPNs complexity given by the programming language (SML in CPNs) made us
reconsider an intermediate step. Such a step consisted of building a multilevel
hierarchy to handle ordinary PNs with some extensions. Note that to finally
handle the CPNs case we reused the multilevel hierarchy constructed for the PNs
case described in Paper E. The CPNs can be seen as one of the available DSMLs
of the PNs language family described by the multilevel hierarchy (see Chapter 5
for details). We successfully constructed such a hierarchy, specified the MCMT
rules, and highly improved the infrastructure, hiding the Maude part to the user
by a Maude process encapsulation within MultEcore. The MCMTs were again
improved and extended with new features. It is important to mention that the
MCMTs supported in the current MultEcore version, as presented in this thesis,
have significantly evolved with respect to its original version presented in [149].

Chapter 6 73

Related work, conclusions and future Work

The current version of the MCMTs implements the following functionalities:

– Attributes definition and manipulation which bring additional expressive-
ness to the specification of behaviour. Examples of this are depicted in
Papers D and E.

– Rule application conditions that add extra requirements for a rule to be
applied. Conditions have been used, for instance, in Paper E.

– Nested parametric boxes to handle submodel patterns, improving expres-
siveness and reducing the proliferation of rules. The boxes can be used on
left- and right-hand sides and their cardinalities can be computed by using
an OCL expression (see, for instance, Paper E). Furthermore, there might be
boxes crossing multiple levels (see Paper F for an example).

– Possibility to handle SML or OCL expressions, both in the models and in
the MCMT rules, by parametrising which language is being used. Note that
the OCL and SML supported versions are still basic and both languages
can be used in the MCMTs for the manipulation of attribute values, for the
specification of conditions, and to express the cardinality of the boxes. They
can also be used to instantiate attributes in the multilevel hierarchy with a
valid expression for the selected language. See Paper E and Chapter 5 for
more details.

Furthermore, the producedMaudefiles are organised in amodular, parameterised
way. This facilitates adding further languages by parametrising certain parts of the
Maude representation files. Also, the user can use the supportedMaude execution
and verification tools directly from the MultEcore graphical model editor, and
the results are directly obtained and graphically displayed in MultEcore. These
improvements are detailed on Paper E, Chapter 4 and Chapter 5.

6.3.3 Case studies

To evaluate the contributions detailed in Sections 6.3.1 and 6.3.2 we used different
case studies. The contributions related to the CPNs field that resulted from the study
of the CPN Tools are reflected in the MQTT CPN model (in Papers A and B). The
theoretical contribution for composition and amalgamation was evaluated with a case
study where two multilevel hierarchies, one to handle process management and one
that captures human-being aspects (in Paper D).

The incrementally built MultEcore-Maude infrastructure was first used to execute
a multilevel DSML for Product Line Systems (in Paper C). The latest version of the
infrastructure has been evaluated with: (i) a multilevel hierarchy for PNs (in Paper E);
(ii) a solution to the Multi Process Challenge [5] where not only all the mandatory
and optional requirements were fulfilled but also we extended the challenge with
additional enhancements such as model execution (in Paper F); (iii) and finally the
construction and execution of an extended version of the PNs multilevel hierarchy
used originally in Paper E where a branch of the hierarchy captures CPNs (described
in Chapter 5).

74 Chapter 6

6.4 Future work

6.4 Future work

The work presented in this thesis opens several research lines for future work regarding
CPNs and MLM. In this section, we discuss potential research directions for future
work in these areas.

6.4.1 Coloured Petri nets
Even though our initial goal regarding CPNs was to face some of the challenges they
presented and use them as a case study of our MLM approach, the work carried
out in the CPNs field turned into two journal publications. The development of the
MQTT CPNmodel (Paper A) was based on the most recent MQTT specification version
(3.1.1. [30]) at that time. There may come new versions that would require slight
modifications of the MQTT CPN model in order to keep it updated. While the model
supported all the basic features specified in the MQTT specification, there is room for
improvements, such as simulation of loss of packets and persistence of data. Note
also that the model does not consider real time and the simulated scenarios should be
appropriately interpreted. The key point of the model we have designed is to inspect
the correct exchange of messages and focus on an accurate communication between
the clients and the broker.

Regarding the sweep-line method implementation (Paper B), we experimented
with a set of controlled scenarios, where, for instance, the number of clients, or the
packet identifiers were scoped to have small controlled configurations. A bigger pool
of scenarios would help to optimise the implementation of the sweep-line method
and further analyse the progress measure [117]. This would be relevant to make other
analyses and study, for example, how the reduction factor grows with the value of the
parameter of the progress measure. Furthermore, there are also several possibilities for
improving the implementation of the property-specific CTLmodel checking algorithms
that we employ, where in the current version only a selection of properties is supported.
This is because it is challenging to combine CTL model checking with the sweep-line
method since conventional algorithms for CTLmodel checking propagates information
backwards from a state to its predecessors. This follows the opposite workflow than
the forward progress-first exploration that the sweep-line method performs.

6.4.2 Multilevel Modelling
Within the field of MLM, and using our MultEcore approach, we have mainly con-
tributed to the composition and execution aspects. In the next subsections we explore
future work in these directions.

6.4.2.1 Composition

Our formalisation allows us to dealwith an arbitrary number of typing chains. However,
we have so far explored the case of composing two multilevel hierarchies and the
amalgamation of pairs of MCMT rules. Even though MultEcore’s current version
allows to specify three or more supplementary hierarchies, it would be interesting
to evaluate the composition of such scenarios where not only compose multiple

Chapter 6 75

Related work, conclusions and future Work

hierarchies, but also amalgamate three or more MCMT rules into one. This would also
require improvements in the conflicting cases, where the prioritisation formulae given
in Paper D currently consider two possible solutions depending on which rules the
user prioritises. The amalgamation engine described in Section 4 of Paper D can also
be further improved. First, from the design level, where more advanced techniques
could be used to design the wizard and be more oriented towards providing a better
user experience. Second, the resulting amalgamated MCMT rules obtained could be
integrated into the MultEcore-Maude infrastructure.

The MultEcore-Maude infrastructure does not yet consider the transformation of
several multilevel hierarchies, although its implementation should not be a major
challenge. Note that the representation distance between the hierarchies and the
MCMTs in MultEcore and its corresponding Maude representation is rather small.
Thus, given that the MultEcore side already contains all the necessary information
to handle composition and amalgamation, it would only be necessary to extend the
Maude signature and adapt the transformer to take into account the new information.

It would be appropriate to develop case studies that encourage the behavioural
execution of composed multilevel hierarchies to evaluate the practicality of the amal-
gamated MCMT rules that create new model states based on the composed model
languages. To have a first intuition, the first case that should be tested is the case study
shown in Section 4.5 of Paper D.

While we have demonstrated how MCMT rules can be combined in Paper D, these
are rather simple. Currently, there are several limitations regarding amalgamation of
more complex situations. For example, the amalgamation of MCMT rules similar to
those used for the PNs language family that incorporates additional features provided
by the programming languages cannot be amalgamated. Another example, is how to
handle the amalgamation of MCMT rules that specify boxes, which we have not yet
considered.

6.4.2.2 MultEcore-Maude infrastructure for execution and verification

We discuss in this subsection future work in the direction of the MultEcore-Maude
infrastructure.

Petri nets family multilevel hierarchy The PNs family first presented in Paper E
and then reused in Chapter 5 to model CPNs helped greatly to improve both the
theoretical foundation and the implementation of the MultEcore framework. The
execution and verification parts detailed in Paper E were tested with a gas station
model. The verification we performed was based on a manually-abstracted version
of such gas station model. Abstraction is key for the analysis of cases in which the
reachable state space is infinite, and becomes also very important even when it is finite
to improve efficiency. Future versions of the MultEcore-Maude infrastructure should
support some user-friendly way of specifying abstracted versions of the models that
are going to be verified.

Regarding the CPNs branch presented in Chapter 5, we have demonstrated how we
can achieve some key points such asmodelling patterns and restrictions, aswell as easily
extend and include new concepts. The design choice of combining the reset/inhibitor

76 Chapter 6

6.4 Future work

PNs with CPNs was to take advantage of the already existing part which was used in
Paper E. Note that CPN Tools supports reset and inhibitor arcs which we intentionally
have used as examples to demonstrate how composition can help to easily incorporate
new concepts. In other words, we could introduce new concepts in a hierarchy in the
same way as we have added reset and inhibitor arcs to our CPNs model.

Extension of the MultEcore-Maude infrastructure The current state of the
MultEcore-Maude infrastructure (Paper E) integrates a limited number of Maude
functionalities, such as sequential execution given a certain number of steps, custom
rule-based execution and the verification of LTL formulae. Still, Maude has several
other functionalities that can be incorporated into the infrastructure, such as reach-
ability analysis, a tool for the specification of abstracted versions of models and the
customisation of the strategy language for execution [207, 208]. Some improvements
can also be done in MultEcore and the infrastructure, mostly to enhance its usability.
For instance, a more intelligent way to parameterise the language that is used (i) for
the attributes in the multilevel hierarchy; (ii) in the MCMT rules; (iii) in the cardinality
of the boxes; and (iv) in the conditions.

TheMQTTmodel version inMultEcore represents an excerpt of themodel originally
submitted to PaperA.While themain aspects ofCPNs, such as the use of a programming
language as SML, have been successfully applied, the model should be extended so that
it reaches an analogous state to the version created in the CPN Tools. Also, to enhance
the verification capabilities, it could be interesting to provide Maude with a CTL
implementation and test whether the sweep-line method (Paper B) can be extrapolated
to this environment.

Preserving graphical positioning of unchanged model elements While the in-
frastructure automatically creates the new model states in MultEcore upon applying
MCMT rules, and provides their graphical representation, the elements are not graphi-
cally placed based on their previous distribution. This feature would highly improve
the simulation of the multilevel hierarchies, and would even open the path for imple-
menting other interesting techniques, such as highlighting the newly created elements
by some layering technique or some kind of execution animation. There are different
alternatives to achieve this. While currently in MultEcore the new states are freshly
created, we could preserve and reuse the files that contain the graphical distribution
(similarly as done by GEMOC [43]) of elements and synchronise it with the new model
state, which would conserve the unmodified elements’ positions. Another alternative
technique would be to keep the information that is stored in the graphical representa-
tion file in another artefact. This artefact wouldmaintain the information of the existing
elements together with their graphical distribution and would serve to preserve this
information for new graphical representation files.

State space viewer Regarding verification, the current implementation allows the
user to verify LTL properties in a Maude-like syntax from MultEcore. An important
feature, especially to facilitate the user to carry out model checking, would be the
creation of an LTL-like language in MultEcore using some textual DSML that facilitates
the specification and verification of the behavioural properties. Another integration

Chapter 6 77

Related work, conclusions and future Work

that could be incorporated is a graphical viewer of the state space of the system being
modelled, such that the user could inspect the different model states and analyse them,
for example like GROOVE does [190].

Performance and efficiency Our main goal has never been to evaluate the perfor-
mance of the infrastructure that takes care of the execution and verification parts.
Moreover, we have not aimed to compare the infrastructure with other mature non-
MLM-based tools which goal is execution and verification, such as the CPN Tools
itself which contains many optimisations in this regard. Although Maude is one of the
most efficient engines for rewriting, the current MultEcore-Maude infrastructure and
representation present a high level of complexity. Note that our approach focuses on
enhancing flexibility, which comes with a cost in performance, as the more variables
the system has, the more costly it is to find valid matches for all of these variables. An
interesting research line is to evaluate the performance of the framework, and how to
balance flexibility and generality of the approach with executions that are feasible and
reasonable in time cost. Also, as mentioned in Section 6.4.2.2, other techniques can
be used to reduce the consumption time, such as defining abstracted versions of the
system.

6.5 Conclusions

In this thesis, we have presented our infrastructure for the definition, composition
and execution of multilevel DSMLs. These DSMLs are encapsulated into multilevel
hierarchies which can be defined in a flexible way using the MultEcore tool. This
definition is supported by a graphical editor, and functionalities like the use of a
three-value potency allow models to be defined as precise or generic as needed. In
addition to enable the definition of the structural dimension of multilevel hierarchies,
we facilitate the specification of the behaviour of domain-specific modelling languages
by means MCMT rules.

A key contribution in this thesis is the possibility to compose multilevel hierarchies
and amalgamate the involved MCMT rules. This composition, by using supplementary
hierarchies, enhances reusability and modularity. Our approach for supplementary
hierarchies has been formally described and successfully implemented in MultEcore,
where both model elements and MCMT rule elements may have multiple types.

Another fundamental contribution has been the construction of an infrastructure
that connects MultEcore with Maude to further explore the behavioural dimension of
multilevel hierarchies. The integration of Maude as a process within MultEcore allows
us to execute and verify the instance models directly from the MultEcore interface and
obtain new results automatically.

78 Chapter 6

BIBLIOGRAPHY

[1] R. Acerbis, A. Bongio, M. Brambilla, M. Tisi, S. Ceri, and E. Tosetti. Developing
eBusiness Solutions with a Model Driven Approach: The Case of Acer EMEA.
In Web Engineering, 7th International Conference, ICWE 2007, Como, Italy, July 16-20,
2007, Proceedings, pages 539–544, 2007. 1.2

[2] M. A. Adamski, A. Karatkevich, and M. Wegrzyn. Design of embedded control
systems, volume 267. Springer, 2005. 5.1

[3] J. P. A. Almeida, C. M. Fonseca, and V. A. de Carvalho. A Comprehensive Formal
Theory for Multi-level Conceptual Modeling. In H. C. Mayr, G. Guizzardi, H. Ma,
and O. Pastor, editors, Conceptual Modeling - 36th International Conference, ER 2017,
Valencia, Spain, November 6-9, 2017, Proceedings, volume 10650 of Lecture Notes in
Computer Science, pages 280–294. Springer, 2017. 2.3.1, 2.4.1

[4] J. P. A. Almeida, A. Rutle, M. Wimmer, and T. Kühne. The MULTI process
challenge. In L. Burgueño, A. Pretschner, S. Voss, M. Chaudron, J. Kienzle,
M. Völter, S. Gérard, M. Zahedi, E. Bousse, A. Rensink, F. Polack, G. Engels,
and G. Kappel, editors, 22nd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, MODELS Companion 2019, Munich,
Germany, September 15-20, 2019, pages 164–167. IEEE, 2019. 2.4.3

[5] J. P. A. Almeida, A. Rutle, M. Wimmer, and T. Kühne. The MULTI Process Chal-
lenge. Enterprise Modelling and Information Systems Architectures, 2021. Available
at https://bit.ly/3b3cQZV. 1.8, 1.9.6, 1.10, 2.4.3, 6.3.3

[6] J. M. Álvarez, A. Evans, and P. Sammut. Mapping between Levels in the
Metamodel Architecture. In M. Gogolla and C. Kobryn, editors, «UML» 2001
- The Unified Modeling Language, Modeling Languages, Concepts, and Tools, 4th
International Conference, Toronto, Canada, October 1-5, 2001, Proceedings, volume
2185 of Lecture Notes in Computer Science, pages 34–46. Springer, 2001. 2.2

[7] F. Arbab. The IWIM Model for Coordination of Concurrent Activities. In
Coordination Languages andModels, First International Conference, COORDINATION
’96, Cesena, Italy, April 15-17, 1996, Proceedings, pages 34–56, 1996. 3.3.2

[8] F. Arbab. Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci., 14(3):329–366, 2004. 3.3.2

[9] T. Arendt, E. Biermann, S. Jurack, C. Krause, andG. Taentzer. Henshin: Advanced
Concepts and Tools for In-Place EMF Model Transformations. In D. C. Petriu,
N. Rouquette, and Ø. Haugen, editors,Model Driven Engineering Languages and
Systems - 13th International Conference, MODELS 2010, Oslo, Norway, October 3-8,
2010, Proceedings, Part I, volume 6394 of Lecture Notes in Computer Science, pages
121–135. Springer, 2010. 4.4, 6.1.1, 6.1.3

BIBLIOGRAPHY

[10] T. Asikainen and T. Männistö. Nivel: a metamodelling language with a formal
semantics. Softw. Syst. Model., 8(4):521–549, 2009. 2.4.1

[11] C. Atkinson. Meta-modeling for distributed object environments. In 1st Interna-
tional Enterprise Distributed Object Computing Conference (EDOC ’97), 24-26 October
1997, Gold Coast, Australia, Proceedings, page 90. IEEE Computer Society, 1997. 2.2

[12] C. Atkinson and R. Gerbig. Flexible Deep Modeling with Melanee. In S. Betz
and U. Reimer, editors, Modellierung 2016, volume 255 of LNI, pages 117–122,
Bonn, 2016. Gesellschaft für Informatik. 1.3, 2.3.1, 2.4.2, 4.2.2, 6.1.1

[13] C. Atkinson, R. Gerbig, and T. Kühne. Comparing multi-level modeling ap-
proaches. In C. Atkinson, G. Grossmann, T. Kühne, and J. de Lara, editors,
Proceedings of the Workshop on Multi-Level Modelling co-located with ACM/IEEE 17th
International Conference on Model Driven Engineering Languages & Systems (MoD-
ELS 2014), Valencia, Spain, September 28, 2014, volume 1286 of CEUR Workshop
Proceedings, pages 53–61. CEUR-WS.org, 2014. 2.2, 2.3.1, 2.3.1, 2.4.3

[14] C. Atkinson, R. Gerbig, and N. Metzger. On the Execution of Deep Models.
In 1st International Workshop on Executable Modeling co-located with ACM/IEEE
18th International Conference on Model Driven Engineering Languages and Systems
(MODELS 2015)., pages 28–33, 2015. 1.5

[15] C. Atkinson and T. Kühne. Meta-level independent modelling. In International
Workshop on Model Engineering at 14th European Conference on Object-Oriented
Programming, volume 12, page 16, 2000. 1.3, 2.2

[16] C. Atkinson and T. Kühne. Strict Profiles: Why and How. In A. Evans, S. Kent,
and B. Selic, editors, «UML» 2000 - The Unified Modeling Language, Advancing the
Standard, Third International Conference, York, UK, October 2-6, 2000, Proceedings,
volume 1939 of Lecture Notes in Computer Science, pages 309–322. Springer, 2000.
2.2

[17] C.Atkinson andT.Kühne. Processes andProducts in aMulti-LevelMetamodeling
Architecture. Int. J. Softw. Eng. Knowl. Eng., 11(6):761–783, 2001. 1.3, 2.2

[18] C.Atkinson andT.Kühne. TheEssence ofMultilevelMetamodeling. InM.Gogolla
and C. Kobryn, editors, «UML» 2001 - The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, 4th International Conference, Toronto, Canada, October
1-5, 2001, Proceedings, volume 2185 of Lecture Notes in Computer Science, pages
19–33. Springer, 2001. 1.2, 2.2, 2.3.2, 2.4.1, 2.4.2

[19] C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul., 12(4):290–321, 2002. 2.2, 2.3.2

[20] C. Atkinson and T. Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Softw., 20(5):36–41, 2003. 1.3, 2.1, 2.2

[21] C. Atkinson and T. Kühne. Concepts for ComparingModeling Tool Architectures.
In L. C. Briand and C. Williams, editors, Model Driven Engineering Languages and

80 Bibliography

BIBLIOGRAPHY

Systems, 8th International Conference, MoDELS 2005, Montego Bay, Jamaica, October
2-7, 2005, Proceedings, volume 3713 of Lecture Notes in Computer Science, pages
398–413. Springer, 2005. 2.1, 2.2, 6.1.1

[22] C. Atkinson and T. Kühne. Reducing accidental complexity in domain models.
Software & Systems Modeling, 7(3):345–359, 2008. 1.2, 1.3, 2.2

[23] C. Atkinson and T. Kühne. In defence of deep modelling. Inf. Softw. Technol.,
64:36–51, 2015. 1.2, 1.3, 2.4.2

[24] C. Atkinson and T. Kühne. On Evaluating Multi-level Modeling. In Proceedings
of MULTI @ MODELS, pages 274–277, 2017. 1.3

[25] C. Atkinson, T. Kühne, and J. de Lara. Editorial to the theme issue on multi-level
modeling. Softw. Syst. Model., 17(1):163–165, 2018. 2.2

[26] C. Atkinson, T. Kühne, and B. Henderson-Sellers. Systematic stereotype usage.
Softw. Syst. Model., 2(3):153–163, 2003. 2.2

[27] C. W. Bachman and M. Daya. The Role Concept in Data Models. In Proceedings of
the Third International Conference on Very Large Data Bases - Volume 3, VLDB ’77,
page 464–476. VLDB Endowment, 1977. 3.2.4

[28] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008. 1.5, 4.4

[29] D. Balasubramanian, A. Narayanan, S. Neema, F. Shi, R. Thibodeaux, and
G. Karsai. A SubgraphOperator for Graph Transformation Languages. ECEASST,
6, 2007. 3.3.1, 6.1.2

[30] A. Banks and R. Gupta. MQTT Version 3.1.1. OASIS standard, 29, 2014.
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.
1.9.1, 5.2, 6.4.1

[31] W. Bast, M. Murphree, L. Michael, K. Duddy, M. Belaunde, C. Griffin, S. Sendall,
V. Didier, J. Steel, L. Tratt, et al. MOFQVT final adopted specification: meta object
facility (MOF) 2.0 query/view/transformation specification. Object Management
Group specification, 2005. 4.2.2

[32] L. Bernardinello and F. de Cindio. A survey of basic net models and modular
net classes. In Advances in Petri Nets 1992, The DEMON Project, pages 304–351.
Springer, 1992. 5.1

[33] J. Bettin and T. Clark. Advanced modelling made simple with the Gmodel
metalanguage. In J. Bézivin, R. M. Soley, and A. Vallecillo, editors, Proceedings of
the First International Workshop on Model-Driven Interoperability, MDI@MoDELS
2010, Oslo, Norway, October 3-5, 2010, pages 79–88. ACM, 2010. 2.4.1

[34] J. Bézivin. On the unification power of models. Softw. Syst. Model., 4(2):171–188,
2005. 1.1, 2.1

Bibliography 81

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

BIBLIOGRAPHY

[35] J. Bézivin, S. Bouzitouna, M. D. D. Fabro, M. Gervais, F. Jouault, D. S. Kolovos,
I. Kurtev, and R. F. Paige. A canonical scheme for model composition. In
Model Driven Architecture - Foundations and Applications, 2nd European Conference,
ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006, Proceedings, pages 346–360, 2006.
2.5.1, 3.2.2, 6.1.2

[36] M. Biehl. Literature study on model transformations. Royal Institute of Technology,
Tech. Rep. ISRN/KTH/MMK, 291, 2010. 4.1

[37] E. Biermann, H. Ehrig, C. Ermel, U. Golas, andG. Taentzer. Parallel Independence
of Amalgamated Graph Transformations Applied to Model Transformation. In
Graph Transformations and Model-Driven Engineering - Essays Dedicated to Manfred
Nagl on the Occasion of his 65th Birthday, pages 121–140, 2010. 3.3.1

[38] J. Billington and M. Diaz. Application of Petri nets to Communication Networks:
Advances in Petri nets, volume 1605. Springer Science & Business Media, 1999.
1.6, 5.1

[39] P. Boehm, H. Fonio, and A. Habel. Amalgamation of Graph Transformations: A
Synchronization Mechanism. J. Comput. Syst. Sci., 34(2/3):377–408, 1987. 3.3.1

[40] M. M. Bonsangue, F. Arbab, J. W. de Bakker, J. J. M. M. Rutten, A. Secutella, and
G. Zavattaro. A transition system semantics for the control-driven coordination
language MANIFOLD. Theor. Comput. Sci., 240(1):3–47, 2000. 3.3.2

[41] G. Booch, J. Rumbaugh, and I. Jacobson. Unified modeling language semantics
and notation guide 1.0. Rational Software Corporation, San Jose, California, 1997.
2.1, 2.2

[42] A. Boronat, J. Á. Carsí, and I. Ramos. Algebraic specification of a model
transformation engine. In International Conference on Fundamental Approaches to
Software Engineering, pages 262–277. Springer, 2006. 4.2.2

[43] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. DeAntoni, and B. Combe-
male. Execution framework of the GEMOC studio (tool demo). In T. van der
Storm, E. Balland, and D. Varró, editors, Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering, Amsterdam, The Nether-
lands, October 31 - November 1, 2016, pages 84–89. ACM, 2016. 1.5, 4.4, 6.1.3,
6.4.2.2

[44] J. C. Bradfield and C. Stirling. Modal mu-calculi. In P. Blackburn, J. F. A. K. van
Benthem, and F. Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in
logic and practical reasoning, pages 721–756. North-Holland, 2007. 6.1.3

[45] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software Engineering in
Practice, Second Edition. Synthesis Lectures on Software Engineering. Morgan &
Claypool Publishers, 2017. 1.1, 1.2

[46] J. Bruel, B. Combemale, E. Guerra, J. Jézéquel, J. Kienzle, J. de Lara, G.Mussbacher,
E. Syriani, andH. Vangheluwe. Comparing and classifyingmodel transformation
reuse approaches across metamodels. Softw. Syst. Model., 19(2):441–465, 2020. 2.2

82 Bibliography

BIBLIOGRAPHY

[47] B. R. Bryant, J. Gray,M.Mernik, P. J. Clarke, R. B. France, andG.Karsai. Challenges
and directions in formalizing the semantics of modeling languages. Comput. Sci.
Inf. Syst., 8(2):225–253, 2011. 4.2

[48] A. Bucchiarone, A. Cicchetti, and A. Marconi. Exploiting Multi-level Modelling
for Designing and Deploying Gameful Systems. In M. Kessentini, T. Yue,
A. Pretschner, S. Voss, and L. Burgueño, editors, 22nd ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS 2019,
Munich, Germany, September 15-20, 2019, pages 34–44. IEEE, 2019. 1.3

[49] L. Cardelli. Structural Subtyping and the Notion of Power Type. In J. Ferrante
and P. Mager, editors, Conference Record of the Fifteenth Annual ACM Symposium
on Principles of Programming Languages, San Diego, California, USA, January 10-13,
1988, pages 70–79. ACM Press, 1988. 2.3.1, 2.3.2, 2.4.1

[50] T. Clark, P. Sammut, and J. S. Willans. Applied metamodelling: A foundation for
language driven development (third edition). CoRR, abs/1505.00149, 2015. 2.3.1,
2.4.1, 6.1.1

[51] T. Clark and J. Warmer. Object Modeling With the OCL: The Rationale Behind the
Object Constraint Language, volume 2263. Springer, 2003. 1.9.5, 2.4.2, 4.5

[52] T. Clark and J. Willans. Software Language Engineering with XMF and XModeler.
Formal and Practical Aspects of Domain-Specific Languages: Recent Developments,
2:311–340, 01 2012. 2.4.1

[53] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243, 2002. 4.5

[54] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007. 1.7, 1.10, 4.4, 4.5, 4.5, 6.1.3

[55] T. Cleenewerck. Component-Based DSL Development. InGenerative Programming
and Component Engineering, Second International Conference, GPCE 2003, Erfurt,
Germany, September 22-25, 2003, Proceedings, pages 245–264, 2003. 4.2.1

[56] T. Cleenewerck and I. Kurtev. Separation of concerns in translational semantics
for DSLs in model engineering. In Proceedings of the 2007 ACM Symposium on
Applied Computing (SAC), Seoul, Korea, March 11-15, 2007, pages 985–992, 2007.
4.2.1

[57] A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland. Finite State Automata
and Simple Recurrent Networks. Neural Comput., 1(3):372–381, 1989. 4.4

[58] P. Coad. Object-oriented patterns. Commun. ACM, 35(9):152–159, 1992. 2.2

Bibliography 83

BIBLIOGRAPHY

[59] B. Combemale, O. Barais, and A. Wortmann. Language Engineering with the
GEMOC Studio. In 2017 IEEE International Conference on Software Architecture
Workshops, ICSA Workshops 2017, Gothenburg, Sweden, April 5-7, 2017, pages
189–191. IEEE Computer Society, 2017. 4.4, 6.1.3

[60] T. M. W. Committee. The MULTI Process Challenge. CEUR Workshop Proceedings,
2018. Available at https://bit.ly/3gKalPD. 2.4.3

[61] P. Cousot. Abstract Interpretation. ACM Comput. Surv., 28(2):324–328, 1996. 4.4

[62] CPN tools. http://cpntools.org/. 5.1

[63] K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Syst. J., 45(3):621–646, 2006. 2.5.2, 4.1

[64] V. A. de Carvalho and J. P. A. Almeida. Toward a well-founded theory for
multi-level conceptual modeling. Softw. Syst. Model., 17(1):205–231, 2018. 2.3.1,
2.4.1

[65] J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth. In Objects,
Models, Components, Patterns, volume 6141 of Lecture Notes in Computer Science,
pages 1–20. Springer International Publishing, July 2010. 1.3, 1.5, 2.3.1, 2.4.2, 3.2.4,
4.2.2, 6.1.1, 6.1.3

[66] J. de Lara and E. Guerra. Generic Meta-modelling with Concepts, Templates
and Mixin Layers. In Model Driven Engineering Languages and Systems - 13th
International Conference, MODELS, pages 16–30, 2010. 1.3, 2.2

[67] J. de Lara and E. Guerra. A Posteriori Typing for Model-Driven Engineering:
Concepts, Analysis, andApplications.ACMTrans. Softw. Eng.Methodol., 25(4):31:1–
31:60, 2017. 2.2

[68] J. de Lara and E. Guerra. Refactoring Multi-Level Models. ACM Trans. Softw. Eng.
Methodol., 27(4):17:1–17:56, 2018. 2.2, 2.4.2

[69] J. de Lara and E. Guerra. Multi-level Model Product Lines - Open and Closed
Variability forModellingLanguage Families. InH.Wehrheimand J. Cabot, editors,
Fundamental Approaches to Software Engineering - 23rd International Conference, FASE
2020, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, volume 12076 of
Lecture Notes in Computer Science, pages 161–181. Springer, 2020. 2.2

[70] J. de Lara, E. Guerra, R. Cobos, and J. Moreno-Llorena. Extending Deep Meta-
Modelling for Practical Model-Driven Engineering. Comput. J., 57(1):36–58, 2014.
2.2, 2.3.2

[71] J. de Lara, E. Guerra, and J. S. Cuadrado. Model-driven engineering with domain-
specific meta-modelling languages. Softw. Syst. Model., 14(1):429–459, 2015. 1.2,
1.3, 2.2, 2.4.2

84 Bibliography

BIBLIOGRAPHY

[72] J. de Lara, E. Guerra, J. Kienzle, and Y. Hattab. Facet-oriented modelling:
open objects for model-driven engineering. In D. Pearce, T. Mayerhofer, and
F. Steimann, editors, Proceedings of the 11th ACM SIGPLAN International Conference
on Software Language Engineering, SLE 2018, Boston, MA, USA, November 05-06,
2018, pages 147–159. ACM, 2018. 2.5.1, 3.2.4, 3.4.1, 3.4.1, 6.1.2, 6.2

[73] J. de Lara and H. Vangheluwe. AToM 3: A Tool for Multi-formalism and
Meta-modelling. In International Conference on Fundamental Approaches to Software
Engineering, pages 174–188. Springer, 2002. 3.3.1, 6.1.2

[74] J. de Lara Jaramillo, C. Ermel, G. Taentzer, and K. Ehrig. Parallel Graph
Transformation for Model Simulation applied to Timed Transition Petri Nets.
Electron. Notes Theor. Comput. Sci., 109:17–29, 2004. 3.3.1

[75] T. Degueule, B. Combemale, A. Blouin, O. Barais, and J.-M. Jézéquel. Melange:
A meta-language for modular and reusable development of dsls. In Proceedings
of the 2015 SLE Conference, pages 25–36. ACM, 2015. 1.4, 3.2.1, 6.1.2

[76] A. Demuth, R. E. Lopez-Herrejon, and A. Egyed. Cross-layer modeler: a tool
for flexible multilevel modeling with consistency checking. In T. Gyimóthy
and A. Zeller, editors, SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European Software
Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011, pages
452–455. ACM, 2011. 2.4.2

[77] J. Desel, W. Reisig, and G. Rozenberg, editors. Lectures on Concurrency and Petri
Nets, Advances in Petri Nets, volume 3018 of LNCS. Springer, 2004. 1.6, 5.1

[78] G. Dodig Crnkovic. Constructive Research and Info-Computational Knowledge
Generation, volume 314, pages 359–380. Springer International Publishing, 01
1970. 1.8

[79] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, R. Rubio, and C. L.
Talcott. Programming and symbolic computation in Maude. J. Log. Algebraic
Methods Program., 110, 2020. 4.5

[80] F. Durán and H. Garavel. The rewrite engines competitions: A rectrospective. In
D. Beyer, M. Huisman, F. Kordon, and B. Steffen, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as
Part of ETAPS 2019, Proceedings, Part III, volume 11429 of Lecture Notes in Computer
Science, pages 93–100. Springer, 2019. 4.5

[81] F. Durán, A. Moreno-Delgado, F. Orejas, and S. Zschaler. Amalgamation of
domain specific languages with behaviour. Journal of Logical and Algebraic Methods
in Programming, 86:208–235, 2017. 1.4, 2.5.1, 3.2.2

[82] S. Easterbrook, J. Singer, M. D. Storey, and D. E. Damian. Selecting Empirical
Methods for Software Engineering Research. In Guide to Advanced Empirical
Software Engineering, pages 285–311. Springer International Publishing, 2008. 1.8

Bibliography 85

BIBLIOGRAPHY

[83] H. Ehrig, K. Ehrig, C. Ermel, F.Hermann, andG. Taentzer. Information preserving
bidirectional model transformations. In M. B. Dwyer and A. Lopes, editors,
Fundamental Approaches to Software Engineering, 10th International Conference, FASE
2007, Held as Part of the Joint European Conferences, on Theory and Practice of Software,
ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings, volume 4422 of
Lecture Notes in Computer Science, pages 72–86. Springer, 2007. 2.5.2

[84] H. Ehrig, F. Hermann, and U. Prange. Cospan DPO approach: An alternative for
DPO graph transformations. Bulletin of the EATCS, 98:139–149, 2009. 3.4.2

[85] E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, pages 995–1072. 1990. 4.4

[86] E. A. Emerson and J. Srinivasan. Branching time temporal logic. In Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency,
School/Workshop, Noordwĳkerhout, TheNetherlands,May 30 - June 3, 1988, Proceedings,
pages 123–172, 1988. 4.4

[87] Epsilon. http://www.eclipse.org/epsilon/, 2012. 2.4.2, 6.1.3

[88] J. M. Fernandes and O. Belo. Modeling multi-agent systems activities through
Colored Petri nets. In 16th IASTED International Conference on Applied Infomatics
(AI’98), pages 17–20, 1998. 5.1

[89] W. J. Fokkink. Process Algebra: AnAlgebraic Theory of Concurrency. InAlgebraic
Informatics, Third International Conference, CAI 2009, Thessaloniki, Greece, May 19-22,
2009, Proceedings, pages 47–77, 2009. 4.4

[90] C. Fonseca. ML2: An Expressive Multi-Level Conceptual Modeling Language. PhD
thesis, Universidad Federal Do Espirito Santo, 09 2017. 2.3.1, 2.4.1

[91] C. M. Fonseca, J. P. A. Almeida, G. Guizzardi, and V. A. de Carvalho. Multi-level
conceptual modeling: From a formal theory to a well-founded language. In
Conceptual Modeling - 37th International Conference, ER 2018, Xi’an, China, October
22-25, 2018, Proceedings, volume 11157 of Lecture Notes in Computer Science, pages
409–423. Springer, 2018. 2.4.1

[92] R. B. France, F. Fleurey, R. Reddy, B. Baudry, and S. Ghosh. Providing support for
model composition inmetamodels. In 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), 15-19 October 2007, Annapolis, Maryland,
USA, pages 253–266, 2007. 2.5.1, 3.1

[93] R. B. France and B. Rumpe. Domain specific modeling. Softw. Syst. Model.,
4(1):1–3, 2005. 1.2

[94] U. Frank. MultilevelModeling - Toward aNewParadigm of ConceptualModeling
and Information Systems Design. Bus. Inf. Syst. Eng., 6(6):319–337, 2014. 2.3.1,
2.4.1, 6.1.1

86 Bibliography

BIBLIOGRAPHY

[95] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the Temporal Analysis of
Fairness. In Conference Record of the Seventh Annual ACM Symposium on Principles
of Programming Languages, Las Vegas, Nevada, USA, January 1980, pages 163–173,
1980. 4.4

[96] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A Toolbox for
the Construction and Analysis of Distributed Processes. In W. Damm and
H. Hermanns, editors, Computer Aided Verification, 19th International Conference,
CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume 4590 of Lecture
Notes in Computer Science, pages 158–163. Springer, 2007. 6.1.3

[97] H. Garavel, M. Tabikh, and I. Arrada. Benchmarking implementations of term
rewriting and pattern matching in algebraic, functional, and object-oriented
languages - the 4th rewrite engines competition. In V. Rusu, editor, Rewriting
Logic and Its Applications - 12th International Workshop, WRLA 2018, Held as a
Satellite Event of ETAPS, Proceedings, volume 11152 of Lecture Notes in Computer
Science, pages 1–25. Springer, 2018. 4.5

[98] D. Gelernter. Generative Communication in Linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, 1985. 3.3.2

[99] R. Gerbig. The Level-agnostic Modeling Language: Language Specification and Tool
Implementation. PhD thesis, Universität Mannheim, 2011. 2.3.2, 6.1.1

[100] R. Gerbig, C. Atkinson, J. de Lara, and E. Guerra. A Feature-based Comparison
of Melanee and Metadepth. In C. Atkinson, G. Grossmann, and T. Clark, editors,
Proceedings of the 3rd International Workshop on Multi-Level Modelling co-located with
ACM/IEEE 19th International Conference on Model Driven Engineering Languages &
Systems (MoDELS 2016), Saint-Malo, France, October 4, 2016, volume 1722 of CEUR
Workshop Proceedings, pages 25–34. CEUR-WS.org, 2016. 2.2, 2.4.3

[101] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of software engineering.
Prentice Hall, 1991. 1.1

[102] M. Goedicke, B. Enders, T. Meyer, and G. Taentzer. ViewPoint-Oriented Software
Development: Tool Support for Integrating Multiple Perspectives by Distributed
Graph Transformation. In Tools and Algorithms for Construction and Analysis of
Systems, 6th International Conference, TACAS 2000, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS, pages 43–47, 2000. 3.3.1

[103] C. Gonzalez-Perez and B. Henderson-Sellers. A powertype-basedmetamodelling
framework. Softw. Syst. Model., 5(1):72–90, 2006. 1.3, 2.2

[104] R. Grønmo, S. Krogdahl, and B. Møller-Pedersen. A collection operator for graph
transformation. Software and Systems Modeling, 12(1):121–144, 2013. 2.5.2, 6.1.1

[105] E. Guerra and J. de Lara. Adding Recursion to Graph Transformation. ECEASST,
6, 2007. 6.1.1

Bibliography 87

BIBLIOGRAPHY

[106] E. Guerra and J. de Lara. On the Quest for Flexible Modelling. In A. Wasowski,
R. F. Paige, and Ø. Haugen, editors, Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MODELS 2018,
Copenhagen, Denmark, October 14-19, 2018, pages 23–33. ACM, 2018. 2.2, 2.4.2

[107] G. Gupta and E. Pontelli. Specification, Implementation, and Verification of
Domain Specific Languages: A Logic Programming-Based Approach. In Com-
putational Logic: Logic Programming and Beyond, Essays in Honour of Robert A.
Kowalski, Part I, pages 211–239, 2002. 4.2

[108] A. Halder and A. Venkateswarlu. A study of petri nets modeling analysis and
simulation. Department of Aerospace Engineering Indian Institute of Technology
Kharagpur, India, 2006. 5.3.2

[109] B. Henderson-Sellers, T. Clark, and C. Gonzalez-Perez. On the search for a
level-agnostic modelling language. In C. Salinesi, M. C. Norrie, and O. Pastor,
editors, Advanced Information Systems Engineering - 25th International Conference,
CAiSE 2013, Valencia, Spain, June 17-21, 2013. Proceedings, volume 7908 of Lecture
Notes in Computer Science, pages 240–255. Springer, 2013. 2.3.1

[110] C. A. R. Hoare and N. Wirth. An Axiomatic Definition of the Programming
Language PASCAL. Acta Informatica, 2:335–355, 1973. 4.2.3

[111] D. R. Hofstadter et al. Gödel, Escher, Bach: an eternal golden braid, volume 13. Basic
books New York, 1979. 2.4.1, 6.1.1

[112] M. Igamberdiev, G. Grossmann, M. Selway, and M. Stumptner. An integrated
multi-level modeling approach for industrial-scale data interoperability. Softw.
Syst. Model., 17(1):269–294, 2018. 2.3.1, 2.4.2, 6.1.1

[113] S. P. Jácome-Guerrero and J. de Lara. TOTEM: Reconciling multi-level modelling
with standard two-level modelling. Comput. Stand. Interfaces, 69:103390, 2020. 2.2,
2.4.2, 2.4.3

[114] M. Jarke, R. Gallersdörfer, M. A. Jeusfeld, and M. Staudt. ConceptBase - A
Deductive Object Base for Meta Data Management. J. Intell. Inf. Syst., 4(2):167–
192, 1995. 2.4.1, 2.4.1

[115] M. Jarke, M. A. Jeusfeld, H. W. Nissen, C. Quix, and M. Staudt. Metamodelling
with Datalog and Classes: ConceptBase at the Age of 21. In M. C. Norrie
and M. Grossniklaus, editors, Object Databases, Second International Conference,
ICOODB 2009, Zurich, Switzerland, July 1-3, 2009. Revised Papers, volume 5936 of
Lecture Notes in Computer Science, pages 95–112. Springer, 2009. 2.4.1

[116] K. Jensen and L. M. Kristensen. Coloured Petri nets: modelling and validation of
concurrent systems. Springer Science & Business Media, 2009. 1.6, 5.1

[117] K. Jensen, L. M. Kristensen, and T. Mailund. The sweep-line state space explo-
ration method. Theor. Comput. Sci., 429:169–179, 2012. 4.4, 6.4.1

88 Bibliography

BIBLIOGRAPHY

[118] K. Jensen, L. M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer, 9(3):213–254, Jun 2007. 1.6, 5.1, 5.3.2

[119] K. Jensen and G. Rozenberg. High-level Petri nets: theory and application. Springer
Science & Business Media, 2012. 1.6, 5.1

[120] M. A. Jeusfeld. DeepTelos Demonstration. In 22nd ACM/IEEE International
Conference onModelDrivenEngineering Languages and SystemsCompanion,MODELS
Companion 2019, Munich, Germany, September 15-20, 2019, pages 98–102. IEEE,
2019. 2.4.1

[121] M. A. Jeusfeld. DeepTelos for ConceptBase: A Contribution to theMULTI Process
Challenge. In 22nd ACM/IEEE International Conference onModel Driven Engineering
Languages and Systems Companion, MODELS Companion 2019, Munich, Germany,
September 15-20, 2019, pages 66–77. IEEE, 2019. 2.4.1

[122] M. A. Jeusfeld, J. P. A. Almeida, V. A. Carvalho, C. M. Fonseca, and B. Neumayr.
Deductive reconstruction of MLT* for multi-level modeling. In E. Guerra and
L. Iovino, editors,MODELS ’20: ACM/IEEE 23rd International Conference on Model
Driven Engineering Languages and Systems, Virtual Event, Canada, 18-23 October,
2020, Companion Proceedings, pages 83:1–83:10. ACM, 2020. 1.3, 2.4.1

[123] M. A. Jeusfeld and B. Neumayr. DeepTelos: Multi-level Modeling with Most
General Instances. In I. Comyn-Wattiau, K. Tanaka, I. Song, S. Yamamoto, and
M. Saeki, editors, Conceptual Modeling - 35th International Conference, ER 2016,
Gifu, Japan, November 14-17, 2016, Proceedings, volume 9974 of Lecture Notes in
Computer Science, pages 198–211, 2016. 2.3.1, 2.4.1

[124] J. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fouquet. Mashup
of metalanguages and its implementation in the Kermeta language workbench.
Software and Systems Modeling, 14(2):905–920, 2015. 1.4, 4.2.2

[125] S. Jurack and G. Taentzer. Towards Composite Model Transformations Using
Distributed Graph Transformation Concepts. InModel Driven Engineering Lan-
guages and Systems, 12th International Conference, MODELS 2009, pages 226–240,
2009. 3.3.1

[126] H. Kastenberg and A. Rensink. Model Checking Dynamic States in GROOVE.
In A. Valmari, editor,Model Checking Software, 13th International SPIN Workshop,
Vienna, Austria, March 30 - April 1, 2006, Proceedings, volume 3925 of Lecture Notes
in Computer Science, pages 299–305. Springer, 2006. 1.5, 4.4, 6.1.3

[127] S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full Code Generation.
Wiley, 2008. 1.2

[128] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. In ECOOP’97 - Object-Oriented Program-
ming, 11th European Conference, Jyväskylä, Finland, June 9-13, 1997, Proceedings,
pages 220–242, 1997. 3.1

Bibliography 89

BIBLIOGRAPHY

[129] J. Kienzle, G. Mussbacher, B. Combemale, and J. Deantoni. A unifying framework
for homogeneous model composition. Software & Systems Modeling, 18(5):3005–
3023, 2019. 1.4, 3.1, 3.2.1, 3.3.2

[130] P. Knirsch and S. Kuske. Distributed Graph Transformation Units. In Graph
Transformation, First International Conference, ICGT 2002, Barcelona, Spain, October
7-12, 2002, Proceedings, pages 207–222, 2002. 3.3.1

[131] D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon Object Language (EOL). In
A. Rensink and J. Warmer, editors, Model Driven Architecture - Foundations and
Applications, 2nd European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13,
2006, Proceedings, volume 4066 of Lecture Notes in Computer Science, pages 128–142.
Springer, 2006. 2.4.2, 6.1.3

[132] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. On the Evolution of OCL for
Capturing Structural Constraints in Modelling Languages. In J. Abrial and
U. Glässer, editors, Rigorous Methods for Software Construction and Analysis, volume
5115 of Lecture Notes in Computer Science, pages 204–218. Springer, 2009. 6.1.3

[133] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: Modular Development of Textual
Domain Specific Languages. In Objects, Components, Models and Patterns, 46th
International Conference, TOOLS EUROPE 2008, Zurich, Switzerland, June 30 - July
4, 2008. Proceedings, pages 297–315, 2008. 3.2.3, 4.2.1, 6.1.2

[134] H. Krahn, B. Rumpe, and S. Völkel. Monticore: a framework for compositional
development of domain specific languages. Int. J. Softw. Tools Technol. Transf.,
12(5):353–372, 2010. 3.2.3, 4.2.1, 6.1.2

[135] M. E. Kramer, J. Klein, J. R. H. Steel, B. Morin, J. Kienzle, O. Barais, and J. Jézéquel.
Achieving Practical Genericity inModelWeaving through Extensibility. In Theory
and Practice of Model Transformations - 6th International Conference, ICMT 2013,
Budapest, Hungary, June 18-19, 2013. Proceedings, pages 108–124, 2013. 3.2.2, 6.1.2

[136] L. M. Kristensen and S. Christensen. Implementing Coloured Petri Nets Using a
Functional Programming Language. High. Order Symb. Comput., 17(3):207–243,
2004. 1.6, 5.4

[137] T. Kühne. Exploring Potency. In A. Wasowski, R. F. Paige, and Ø. Haugen,
editors, Proceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2018, Copenhagen, Denmark, October
14-19, 2018, pages 2–12. ACM, 2018. 2.3.2

[138] T. Kühne. A story of levels. In Proceedings of MULTI @ MODELS, pages 673–682,
2018. 2.3.1, 2.5.1

[139] T. Kühne and A. Lange. Meaningful metrics for multi-level modelling. In
E. Guerra and L. Iovino, editors, MODELS ’20: ACM/IEEE 23rd International
Conference on Model Driven Engineering Languages and Systems, Virtual Event,
Canada, 18-23 October, 2020, Companion Proceedings, pages 85:1–85:9. ACM, 2020.
2.4.3

90 Bibliography

BIBLIOGRAPHY

[140] T. Kühne and D. Schreiber. Can programming be liberated from the two-level
style: multi-level programming with deepjava. In R. P. Gabriel, D. F. Bacon, C. V.
Lopes, and G. L. S. Jr., editors, Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada, pages 229–244.
ACM, 2007. 1.3, 2.3.1, 2.4.1

[141] Y. Lamo, X. Wang, F. Mantz, Ø. Bech, A. Sandven, and A. Rutle. DPF Workbench:
a multi-level language workbench for MDE. In Proceedings of the Estonian Academy
of Sciences 62(1):3-15, 2013. 1.3, 2.3.1, 2.4.2, 3.3.1, 6.1.1

[142] A. Lange. dACL: the deep constraint and action language for static and dynamic
semantic definition in Melanee. Master’s thesis, University of Mannheim, 2016.
2.4.2

[143] A. Lange andC.Atkinson. Multi-levelmodelingwithMELANEE. In R.Hebig and
T. Berger, editors, Proceedings of MODELS 2018 Workshops, Copenhagen, Denmark,
October, 14, 2018, volume 2245 of CEUR Workshop Proceedings, pages 653–662.
CEUR-WS.org, 2018. 2.4.2

[144] A. Lange and C. Atkinson. On the Rules for Inheritance in LML. In 22nd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems Companion, MODELS Companion 2019, Munich, Germany, September 15-20,
2019, pages 113–118. IEEE, 2019. 2.4.2

[145] J. D. Lara, E. Guerra, and J. S. Cuadrado. When and how to use multilevel
modelling. ACM Transactions on Software Engineering and Methodology (TOSEM),
24(2):12, 2014. 1.2, 1.3, 2.2

[146] M. E. V. Larsen, J. DeAntoni, B. Combemale, and F. Mallet. A Behavioral Coordi-
nation Operator Language (BCOoL). In T. Lethbridge, J. Cabot, and A. Egyed,
editors, 18th ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems, MoDELS 2015, Ottawa, ON, Canada, September 30 - October 2,
2015, pages 186–195. IEEE Computer Society, 2015. 3.3.2

[147] P. Lincoln, N. Martí-Oliet, and J. Meseguer. Specification, Transformation, and
Programming of Concurrent Systems in Rewriting Logic. In Specification of Parallel
Algorithms, Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA, May
9-11, 1994, pages 309–339, 1994. 4.4

[148] J. Lindqvist, T. Lundkvist, and I. Porres. A Query Language With the Star
Operator. ECEASST, 6, 2007. 2.5.2, 6.1.1

[149] F. Macías. Multilevel modelling and domain-specific languages. PhD thesis, Western
Norway University of Applied Sciences and University of Oslo, 2019. 1.10, 2.3.1,
2.3.2, 2.4.3, 2.5, 2.5.1, 2.5.2, 6.2, 6.3.2

[150] F. Macías, E. Guerra, and J. de Lara. Towards Rearchitecting Meta-Models
into Multi-level Models. In H. C. Mayr, G. Guizzardi, H. Ma, and O. Pastor,
editors, Conceptual Modeling - 36th International Conference, ER 2017, Valencia,

Bibliography 91

BIBLIOGRAPHY

Spain, November 6-9, 2017, Proceedings, volume 10650 of Lecture Notes in Computer
Science, pages 59–68. Springer, 2017. 1.10, 2.3.2, 2.4.2

[151] F. Macías and A. Rodríguez. MultEcore webpage. https://ict.hvl.no/
multecore/, August 2021. 1.10, 2.5.2

[152] F. Macías, A. Rutle, and V. Stolz. Multecore: Combining the best of fixed-level and
multilevel metamodelling. In C. Atkinson, G. Grossmann, and T. Clark, editors,
Proceedings of the 3rd International Workshop on Multi-Level Modelling co-located with
ACM/IEEE 19th International Conference on Model Driven Engineering Languages &
Systems (MoDELS 2016), Saint-Malo, France, October 4, 2016, volume 1722 of CEUR
Workshop Proceedings, pages 66–75. CEUR-WS.org, 2016. 2.5, 6.3.2

[153] F. Macías, A. Rutle, and V. Stolz. A tool for the convergence of multilevel
modelling approaches. In R. Hebig and T. Berger, editors, Proceedings of MODELS
2018 Workshops, Copenhagen, Denmark, October, 14, 2018, volume 2245 of CEUR
Workshop Proceedings, pages 633–642. CEUR-WS.org, 2018. 2.4.2

[154] F.Macías, A. Rutle, V. Stolz, R. Rodríguez-Echeverría, andU.Wolter. AnApproach
to Flexible Multilevel Modelling. Enterp. Model. Inf. Syst. Archit. Int. J. Concept.
Model., 13:10:1–10:35, 2018. 2.3.2, 6.3.2

[155] F. Macías, U. Wolter, A. Rutle, F. Durán, and R. Rodriguez-Echeverria. Multilevel
Coupled Model Transformations for Precise and Reusable Definition of Model
Behaviour. Journal of Logical and Algebraic Methods in Programming, 106:167–195,
2019. 1.3, 1.10, 2.3.2, 2.5.1, 4.5, 6.3.2

[156] Z. Manna and H. Sipma. Deductive Verification of Hybrid Systems Using STeP.
In Hybrid Systems: Computation and Control, First International Workshop, HSCC’98,
Berkeley, California, USA, April 13-15, 1998, Proceedings, pages 305–318, 1998. 4.4

[157] J. Y. Marchand, B. Combemale, and B. Baudry. A categorical model of model
merging and weaving. In Proceedings of the 4th International Workshop on Modeling
in Software Engineering, MiSE 2012, Zurich, Switzerland, June 2-3, 2012, pages
70–76, 2012. 1.4, 3.2.2

[158] R. C. Martin, D. Riehle, and F. Buschmann, editors. Pattern Languages of Program
Design 3. Addison-Wesley Longman Publishing Co., Inc., USA, 1997. 2.2

[159] I. Melo, M. E. Sánchez, and J. Villalobos. Composing graphical languages. In
Proceedings of the First Workshop on the Globalization of Domain Specific Languages,
GlobalDSL@ECOOP 2013, Montpellier, France, July 1, 2013, pages 12–17, 2013. 3.2.1,
6.1.2

[160] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale, and B. Baudry.
Leveraging Software Product Lines Engineering in the development of external
DSLs: A systematic literature review. Computer Languages, Systems & Structures,
46:206–235, 2016. 1.4, 2.5.2, 3.1, 3.2

92 Bibliography

https://ict.hvl.no/multecore/
https://ict.hvl.no/multecore/

BIBLIOGRAPHY

[161] T. Mens and P. V. Gorp. A taxonomy of model transformation. Electron. Notes
Theor. Comput. Sci., 152:125–142, 2006. 1.5, 2.4.2, 2.5.2, 4.1, 4.2.2

[162] M. Mernik. An object-oriented approach to language compositions for software
language engineering. J. Syst. Softw., 86(9):2451–2464, 2013. 3.2.3, 6.1.2

[163] M. Mernik, V. Zumer, M. Lenic, and E. Avdicausevic. Implementation of multiple
attribute grammar inheritance in the tool LISA. ACM SIGPLAN Notices, 34(6):68–
75, 1999. 3.2.3, 6.1.2

[164] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci., 96(1):73–155, 1992. 4.5

[165] J. Meseguer. Twenty years of rewriting logic. J. Log. Algebr. Program., 81(7-8):721–
781, 2012. 4.5

[166] Meta Object Facility (MOF) specification 2.5.1.
https://www.omg.org/spec/MOF. 1.2, 2.1

[167] H. Mili, F. Pachet, et al. Patterns for metamodeling, 1998. 2.2

[168] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernández, B. Nordmoen, and
M. Fritzsche. Where does model-driven engineering help? Experiences from
three industrial cases. Software & Systems Modeling, 12(3):619–639, 2013. 1.2, 5.1

[169] P. Muller, F. Fleurey, and J. Jézéquel. Weaving Executability into Object-Oriented
Meta-languages. In L.C. Briand andC.Williams, editors,ModelDrivenEngineering
Languages and Systems, 8th International Conference, MoDELS 2005, Montego Bay,
Jamaica, October 2-7, 2005, Proceedings, volume 3713 of Lecture Notes in Computer
Science, pages 264–278. Springer, 2005. 4.2.2

[170] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989. 4.4, 5.1

[171] G. Mussbacher, O. Alam, M. Alhaj, S. Ali, N. Amálio, B. Barn, R. Bræk, T. Clark,
B. Combemale, L. M. Cysneiros, U. Fatima, R. France, G. Georg, J. Horkoff,
J. Kienzle, J. C. Leite, T. C. Lethbridge, M. Luckey, A. Moreira, F. Mutz, A. P. A.
Oliveira, D. C. Petriu, M. Schöttle, L. Troup, and V. M. B. Werneck. Assessing
Composition in Modeling Approaches. In Proceedings of the CMA 2012 Workshop,
CMA ’12, New York, NY, USA, 2012. Association for Computing Machinery. 1.4,
3.1

[172] G. Mussbacher, D. Amyot, and J. Whittle. Composing goal and scenario mod-
els with the aspect-oriented user requirements notation based on syntax and
semantics. In Aspect-Oriented Requirements Engineering, pages 77–99. Springer
International Publishing, 2013. 3.1, 3.3.2

[173] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing
Knowledge About Information Systems. ACM Trans. Inf. Syst., 8(4):325–362, 1990.
2.4.1

Bibliography 93

BIBLIOGRAPHY

[174] B. Neumayr, M. A. Jeusfeld, M. Schrefl, and C. G. Schütz. Dual Deep Instantiation
and Its ConceptBase Implementation. InAdvanced Information Systems Engineering
- 26th International Conference, CAiSE 2014, Thessaloniki, Greece, June 16-20, 2014.
Proceedings, volume 8484 of Lecture Notes in Computer Science, pages 503–517.
Springer, 2014. 1.3, 2.4.1

[175] B. Neumayr, C. G. Schuetz, C. Horner, and M. Schrefl. Deepruby: Extending
ruby with dual deep instantiation. In Proceedings of MODELS 2017 Workshops,
Austin, TX, USA, September, 17, 2017, volume 2019 of CEUR Workshop Proceedings,
pages 252–260. CEUR-WS.org, 2017. 2.3.1, 2.4.1

[176] B. Neumayr, C. G. Schuetz, M. A. Jeusfeld, and M. Schrefl. Dual deep modeling:
multi-level modeling with dual potencies and its formalization in f-logic. Softw.
Syst. Model., 17(1):233–268, 2018. 2.3.1, 2.3.2, 2.4.1, 6.1.1

[177] S. Nidhra and J. Dondeti. Black box and white box testing techniques-a literature
review. International Journal of Embedded Systems and Applications (ĲESA), 2(2):29–
50, 2012. 4.4

[178] J. Odell. Power types. J. Object Oriented Program., 7(2):8–12, 1994. 2.2, 2.3.1, 2.3.2,
2.4.1

[179] A. Oyegoke. The constructive research approach in project management research.
International Journal of Managing Projects in Business, 4(4):573–595, 2011. 1.8

[180] R. F. Paige, D. S. Kolovos, and F. Polack. An action semantics for MOF 2.0. In
H. Haddad, editor, Proceedings of the 2006 ACM Symposium on Applied Computing
(SAC), Dĳon, France, April 23-27, 2006, pages 1304–1305. ACM, 2006. 4.2.2

[181] G. A. Papadopoulos and F. Arbab. Coordination Models and Languages. Adv.
Comput., 46:329–400, 1998. 3.3.2

[182] M. Papathomas. A Unifying Framework for Process Calculus Semantics of
Concurrent Object-Oriented Languages. In Object-Based Concurrent Computing,
ECOOP’91 Workshop, Geneva, Switzerland, July 15-16, 1991, Proceedings, pages
53–79, 1991. 4.4

[183] J. Parrow. An introduction to the π-calculus. InHandbook of Process Algebra, pages
479–543. 2001. 4.4

[184] P. Perrotta. Metaprogramming Ruby 2: Program Like the Ruby Pros. Facets of Ruby
series. Pragmatic Bookshelf, 2014. 2.4.1

[185] F. Ramalho, J. Robin, and R. S. M. de Barros. XOCL - an XML Language for
Specifying Logical Constraints in Object Oriented Models. J. Univers. Comput.
Sci., 9(8):956–969, 2003. 2.4.1

[186] U. Ranger andM. Lüstraeten. Search Trees for Distributed Graph Transformation
Systems. Electron. Commun. Eur. Assoc. Softw. Sci. Technol., 4, 2006. 3.3.1

94 Bibliography

BIBLIOGRAPHY

[187] W. Reisig. Petri nets: an introduction, volume 4. Springer Science & Business
Media, 2012. 1.6

[188] W. Reisig. Elements of distributed algorithms: modeling and analysis with Petri nets.
Springer Science & Business Media, 2013. 1.6, 5.1

[189] W. Reisig. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013. 5.1

[190] A. Rensink. The GROOVE simulator: A tool for state space generation. In
International Workshop on Applications of Graph Transformations with Industrial
Relevance, pages 479–485. Springer, 2003. 3.3.1, 4.4, 6.1.3, 6.4.2.2

[191] A. Rensink and J. Kuperus. Repotting the Geraniums: On Nested Graph
Transformation Rules. ECEASST, 18, 2009. 3.3.1

[192] A. Rodríguez. MultEcore-Maude webpage. https://ict.hvl.no/
multecore-maude/, August 2021. 1.10, 2.5.2

[193] A. Rodríguez, F. Durán, A. Rutle, and L. M. Kristensen. Executing Multilevel
Domain-Specific Models in Maude. Journal of Object Technology, 18(2):4:1–21, 2019.
1.9, 1.9.3, 1.10, 1.11, 6.3.2

[194] A. Rodriguez, F. Durán, and L. M. Kristensen. Execution and Analysis of
MultEcoreMultilevel Modelling Languages usingMaude. Manuscript submitted
for publication to the International Journal on Software and Systems Modeling.
Submitted version available at: https://bit.ly/3ug4iWZ, 2020. 1.9, 1.9.5, 1.11

[195] A. Rodríguez, L. M. Kristensen, and A. Rutle. On Modelling and Validation
of the MQTT IoT Protocol for M2M Communication. In D. Moldt, E. Kindler,
and H. Rölke, editors, Proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE’18), Bratislava, Slovakia, June 24-29, 2018, volume 2138
of CEUR Workshop Proceedings, pages 99–118. CEUR-WS.org, 2018. 1.12

[196] A. Rodríguez, L. M. Kristensen, and A. Rutle. Formal Modelling and Incremental
Verification of the MQTT IoT Protocol. Trans. Petri Nets Other Model. Concurr.,
14:126–145, 2019. 1.9, 1.9.1, 1.11

[197] A. Rodríguez, L. M. Kristensen, and A. Rutle. On CTL Model Checking of the
MQTT IoT Protocol using the Sweep-Line Method. In D. Moldt, E. Kindler, and
M. Wimmer, editors, Proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE’19), Aachen, Germany, June 23-28, 2019, volume 2424
of CEUR Workshop Proceedings, pages 57–72. CEUR-WS.org, 2019. 1.12

[198] A. Rodríguez, L. M. Kristensen, and A. Rutle. Verification of the MQTT IoT
Protocol Using Property-Specific CTL Sweep-Line Algorithms. Trans. Petri Nets
Other Model. Concurr., 15:165–183, 2021. 1.9, 1.9.2, 1.11, 4.4

[199] A. Rodríguez and F. Macías. Multilevel Modelling with MultEcore: A Contri-
bution to the MULTI Process Challenge. In Proceedings of MULTI @ MODELS,
pages 152–163, 2019. 1.10, 1.12, 2.2

Bibliography 95

https://ict.hvl.no/multecore-maude/
https://ict.hvl.no/multecore-maude/
https://bit.ly/3ug4iWZ

BIBLIOGRAPHY

[200] A.Rodriguez andF.Macías. MultilevelModellingwithMultEcore: A contribution
to the Multi-Level Process Challenge. Manuscript submitted for publication to
the Enterprise Modelling and Information Systems Architectures Journal. Submitted
version available at: https://bit.ly/3tjzgw9, 2021. 1.9, 1.9.6, 1.11

[201] A. Rodriguez, F. Macías, F. Durán, A. Rutle, and U. Wolter. Composition
of Multilevel Domain-Specific Modelling Languages. Manuscript submitted
for publication to the Journal of Logical and Algebraic Methods in Programming.
Submitted version available at: https://bit.ly/2SncxCp, 2020. 1.9, 1.9.4, 1.11,
2.5.1

[202] A. Rodríguez, A. Rutle, F. Durán, L. M. Kristensen, and F. Macías. Multilevel
modelling of coloured petri nets. In R. Hebig and T. Berger, editors, Proceedings of
MODELS 2018 Workshops, Copenhagen, Denmark, October, 14, 2018, volume 2245 of
CEUR Workshop Proceedings, pages 663–672. CEUR-WS.org, 2018. 1.12, 2.5.1, 6.3.2

[203] A. Rodriguez, A. Rutle, F. Durán, L. Kristensen, F. Macías, and U. Wolter.
Composition of multilevel modelling hierarchies. In The Nordic Workshop on
Programming Theory, 01 2020. 1.12

[204] A. Rodríguez, A. Rutle, L. M. Kristensen, and F. Durán. A Foundation for the
Composition of Multilevel Domain-Specific Languages. InMULTI@ MoDELS,
pages 88–97, 2019. 1.10, 1.12, 2.5.1, 3.4.1, 5.1, 6.2, 6.3.2

[205] M. Roldán and F. Durán. Dynamic validation of OCL constraints with mOdCL.
Electron. Commun. Eur. Assoc. Softw. Sci. Technol., 44, 2011. 4.5

[206] A. Rossini, J. de Lara, E. Guerra, A. Rutle, and U. Wolter. A formalisation of deep
metamodelling. Formal Aspects Comput., 26(6):1115–1152, 2014. 2.3.2, 6.1.1

[207] R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo. Parameterized Strategies
Specification in Maude. In J. L. Fiadeiro and I. Tutu, editors, Recent Trends in
Algebraic Development Techniques - 24th IFIP WG 1.3 International Workshop, WADT
2018, Egham, UK, July 2-5, 2018, Revised Selected Papers, volume 11563 of Lecture
Notes in Computer Science, pages 27–44. Springer, 2018. 6.4.2.2

[208] R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo. Strategies, Model Checking
and Branching-Time Properties in Maude. In S. Escobar and N. Martí-Oliet,
editors, Rewriting Logic and Its Applications - 13th International Workshop, WRLA
2020, Virtual Event, October 20-22, 2020, Revised Selected Papers, volume 12328 of
Lecture Notes in Computer Science, pages 156–175. Springer, 2020. 6.4.2.2

[209] A. Rutle. Diagram Predicate Framework: A formal approach to MDE. PhD thesis,
University of Bergen, 2010. 2.4.2

[210] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on Web
Services using Process Algebra. Int. J. Bus. Process. Integr. Manag., 1(2):116–128,
2006. 4.4

96 Bibliography

https://bit.ly/3tjzgw9
https://bit.ly/2SncxCp

BIBLIOGRAPHY

[211] M. Sánchez, P. J. Clemente, J. M. Murillo, and J. H. Núñez. CoordMaude:
Simplifying Formal Coordination Specifications of Cooperation Environment.
Electron. Notes Theor. Comput. Sci., 82(3):643–658, 2003. 3.3.2, 6.1.2

[212] D. A. Schmidt. Denotational Semantics: A Methodology for Language Development.
William C. Brown Publishers, USA, 1986. 4.2

[213] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006. 1.2, 3.1

[214] S. Sendall and W. Kozaczynski. Model Transformation: The Heart and Soul of
Model-Driven Software Development. IEEE Softw., 20(5):42–45, 2003. 4.1

[215] N. Shankar, S. Owre, J. M. Rushby, and D. W. Stringer-Calvert. Pvs prover guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, 1:11–12, 2001. 4.4

[216] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artif. Intell., 138(1-2):181–234, 2002. 2.4.1

[217] K. I. F. Simonsen, L.M. Kristensen, and E. Kindler. Pragmatics annotated coloured
petri nets for protocol software generation and verification. In Transactions on
Petri Nets and Other Models of Concurrency XI, pages 1–27. Springer, 2016. 1.6, 5.1,
6.3.1

[218] J. Snyder and U. Flemming. The Object Modeling Language (OML) Specification.
J. Object Oriented Program., 03 1995. 2.2

[219] T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen. Model-driven software
development - technology, engineering, management. Pitman, 2006. 1.2

[220] F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data Knowl. Eng., 35(1):83–106, 2000. 3.2.4

[221] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: eclipse modeling
framework. Pearson Education, 2008. 1.2, 2.1, 2.5.1

[222] J. E. Stoy. Denotational semantics: the Scott-Strachey approach to programming language
theory. MIT press, 1981. 4.2.1

[223] D. Strüber, K. Born, K. D. Gill, R. Groner, T. Kehrer, M. Ohrndorf, and M. Tichy.
Henshin: A Usability-Focused Framework for EMF Model Transformation
Development. In J. de Lara and D. Plump, editors, Graph Transformation - 10th
International Conference, ICGT 2017, Held as Part of STAF 2017, Marburg, Germany,
July 18-19, 2017, Proceedings, volume 10373 of Lecture Notes in Computer Science,
pages 196–208. Springer, 2017. 1.5, 4.4, 6.1.3

[224] P. Stünkel, H. König, Y. Lamo, and A. Rutle. Towards multiple model synchro-
nization with comprehensive systems. In Fundamental Approaches to Software
Engineering - 23rd International Conference, FASE 2020, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2020, Proceedings, vol-
ume Accepted for publication of Lecture Notes in Computer Science. Springer, 2020.
3.2.2, 3.4.1

Bibliography 97

BIBLIOGRAPHY

[225] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. VanMierlo, and H. Ergin.
AToMPM: A web-based modeling environment. InMODELS-JP 2013, volume
1115 of CEUR Workshop Proceedings, pages 21–25, 2013. 1.3, 2.4.2

[226] G. Taentzer. Parallel and distributed graph transformation - formal description and
application to communication-based systems. Berichte aus der Informatik. Shaker,
1996. 3.3.1

[227] A. R. Tena, F. Macıas, L. M. Kristensen, and A. Rutle. Towards domain-specific
cpn modelling languages. Marina Waldén (Editor), page 62, 2017. 1.12

[228] Z. Theisz, S. Bácsi, G. Mezei, F. A. Somogyi, and D. Palatinszky. By Multi-layer to
Multi-level Modeling. In 22nd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, MODELS Companion 2019, Munich,
Germany, September 15-20, 2019, pages 134–141. IEEE, 2019. 1.3, 2.3.1, 2.4.2, 6.1.1

[229] Z. Theisz, S. Bácsi, G. Mezei, F. A. Somogyi, and D. Palatinszky. Join potency:
a way of combining separate multi-level models. In E. Guerra and L. Iovino,
editors,MODELS ’20: ACM/IEEE 23rd International Conference on Model Driven
Engineering Languages and Systems, Virtual Event, Canada, 18-23 October, 2020,
Companion Proceedings, pages 84:1–84:5. ACM, 2020. 2.3.2

[230] W. J. Thong and M. A. Ameedeen. A survey of petri net tools. In H. A. Sulaiman,
M. A. Othman, M. F. I. Othman, Y. A. Rahim, and N. C. Pee, editors, Advanced
Computer and Communication Engineering Technology, pages 537–551, Cham, 2015.
Springer International Publishing. 5.1

[231] S. Tripakis and T. Dang. Modeling, Verification, and Testing Using Timed and Hybrid
Automata. 11 2009. 4.4

[232] J. Troya, J. M. Bautista, F. López-Romero, and A. Vallecillo. Lightweight Testing
of Communication Networks with e-Motions. In Tests and Proofs - 5th International
Conference, TAP@TOOLS2011, Zurich, Switzerland, June 30 - July 1, 2011. Proceedings,
pages 187–204, 2011. 4.4

[233] D. Turi and G. D. Plotkin. Towards a Mathematical Operational Semantics. In
Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw,
Poland, June 29 - July 2, 1997, pages 280–291, 1997. 4.2.2

[234] J. D. Ullman. Elements of ML programming. Prentice-Hall, Inc., 1994. 1.6, 4.5, 5.1

[235] The Unified Modelling Language (UML) specification 2.5.1.
https://www.omg.org/spec/UML. 1.2

[236] D. Urbán, Z. Theisz, and G. Mezei. Self-describing Operations for Multi-level
Meta-modeling. In S.Hammoudi, L. F. Pires, and B. Selic, editors, Proceedings of the
6th International Conference on Model-Driven Engineering and Software Development,
MODELSWARD 2018, Funchal, Madeira - Portugal, January 22-24, 2018, pages
519–527. SciTePress, 2018. 2.4.2

98 Bibliography

BIBLIOGRAPHY

[237] A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets,
held in Dagstuhl, September 1996, pages 429–528, 1996. 4.4

[238] W. Van Der Aalst, K. M. Van Hee, and K. van Hee. Workflow management: models,
methods, and systems. MIT press, 2004. 5.1

[239] S. Van Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, and T. Kühne. Multi-level
modelling in the Modelverse. In MULTI@ MoDELS, volume 1286 of CEUR
Workshop Proceedings, pages 83–92, 2014. 1.3, 2.4.2

[240] W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding and Finite Prefix for Nets
with Read Arcs. In CONCUR ’98: Concurrency Theory, 9th International Conference,
Nice, France, September 8-11, 1998, Proceedings, pages 501–516, 1998. 5.2

[241] B. Volz and S. Jablonski. Towards an Open Meta Modeling Environment. In
Proceedings of the 10th Workshop on Domain-Specific Modeling, DSM’10, 10 2010.
2.4.2, 6.1.1

[242] J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in model-
driven engineering. IEEE software, 31(3):79–85, 2014. 1.2

[243] J. Whittle, P. K. Jayaraman, A. M. Elkhodary, A. Moreira, and J. Araújo. MATA:
A unified approach for composing UML aspect models based on graph transfor-
mation. LNCS Trans. Aspect Oriented Softw. Dev., 6:191–237, 2009. 3.2.2

[244] G. Winskel. The formal semantics of programming languages: an introduction. MIT
press, 1993. 4.2.3

[245] U. Wolter, F. Macías, and A. Rutle. The Category of Typing Chains as a Foun-
dation of Multilevel Typed Model Transformations. Technical Report 2019-417,
University of Bergen, Department of Informatics, November 2019. 2.5.1, 2.5.1,
2.5.2, 6.3.2

[246] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. S. Fitzgerald. Formal methods:
Practice and experience. ACM Comput. Surv., 41(4):19:1–19:36, 2009. 4.4

[247] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer. Modeling languages
in Industry 4.0: an extended systematic mapping study. Software and Systems
Modeling, 19(1):67–94, 2020. 2.2

[248] G. Yang, M. Kifer, H. Wan, and C. Zhao. FLORA-2: User’s Manual. Flora-2 portal
on Sourceforge, December 2020. 2.4.1

[249] G. Zhang and M. M. Hölzl. Hila: High-level aspects for UML state machines. In
Models in Software Engineering, Workshops and Symposia at MODELS 2009, Denver,
CO, USA, October 4-9, 2009, Reports and Revised Selected Papers, pages 104–118,
2009. 2.5.1, 3.1

[250] M. Zhou and A. D. Robbi. Applications of Petri net methodology to manufacturing
systems, pages 207–230. Springer Netherlands, Dordrecht, 1994. 5.1

Bibliography 99

BIBLIOGRAPHY

[251] S. Zschaler, D. S. Kolovos, N. Drivalos, R. F. Paige, andA. Rashid. Domain-Specific
Metamodelling Languages for Software Language Engineering. In M. van den
Brand, D. Gasevic, and J. Gray, editors, Software Language Engineering, Second
International Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised
Selected Papers, volume 5969 of Lecture Notes in Computer Science, pages 334–353.
Springer, 2009. 1.4, 3.1

100 Bibliography

Part II

ARTICLES

PAPER A
FORMAL MODELLING AND INCREMENTAL
VERIFICATION OF THE MQTT IOT PROTOCOL

Alejandro Rodríguez, Lars Michael Kristensen, Adrian Rutle

In Transactions on Petri Nets and Other Models of Concurrency XIV, volume 11790 of
Lecture Notes in Computer Science, pages 126-145, Springer Nature, 2019

Formal Modelling and Incremental
Verification of the MQTT IoT Protocol

Alejandro Rodŕıguez(B), Lars Michael Kristensen, and Adrian Rutle

Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, Bergen, Norway

{arte,lmkr,aru}@hvl.no

Abstract. Machine to Machine (M2M) communication and Internet
of Things (IoT) are becoming still more pervasive with the increase of
communicating devices used in cyber-physical environments. A promi-
nent approach to communication between distributed devices in highly
dynamic IoT environments is the use of publish-subscribe protocols such
as the Message Queuing Telemetry Transport (MQTT) protocol. MQTT
is designed to be light-weight while still being resilient to connectivity
loss and component failures. We have developed a Coloured Petri Net
model of the MQTT protocol logic using CPN Tools. The model covers
all three quality of service levels provided by MQTT (at most once, at
least once, and exactly once). For the verification of the protocol model,
we show how an incremental model checking approach can be used to
reduce the effect of the state explosion problem. This is done by exploit-
ing that the MQTT protocol operates in phases comprised of connect,
subscribe, publish, unsubscribe, and disconnect.

1 Introduction

Publish-subscribe messaging systems support data-centric communication and
have been widely used in enterprise networks and applications. A main reason
for this is that a software system architecture based on publish-subscribe mes-
saging provides better support for scalability and adaptability than the tradi-
tional client-server architecture used in distributed systems. The interaction and
exchange of messages between clients based on the publish-subscribe paradigm
are based on middleware usually referred to as a broker (or a bus) that manages
topics. The broker provides space decoupling [9] allowing a client acting as a
publisher on a given topic to send messages to other clients acting as subscribers
to the topic without the need to know the identity of the receiving clients. The
broker also provides synchronisation decoupling in that clients can exchange mes-
sages without being executing at the same time. Furthermore, the processing in
the broker can be parallelized and handled using event-driven techniques.

The loose coupling and support for asynchronous point-to-multipoint mes-
saging, make the publish-subscribe paradigm attractive also in the context of
Internet of Things (IoT) which has experienced significant growth in applica-
tions and adoptability in recent years [17]. The IoT paradigm blends the virtual
c© Springer-Verlag GmbH Germany, part of Springer Nature 2019
M. Koutny et al. (Eds.): ToPNoC XIV, LNCS 11790, pp. 126–145, 2019.
https://doi.org/10.1007/978-3-662-60651-3_5

Paper A 105

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 127

and the physical worlds by bringing different concepts and technical components
together: pervasive networks, miniaturisation of devices, mobile communication,
and new ecosystems [6]. Moreover, the implementation of a connected product
typically requires the combination of multiple software and hardware compo-
nents distributed in a multi-layer stack of IoT technologies.

MQTT [3] is a publish-subscribe messaging protocol for IoT designed with the
aim of being light-weight and easy to implement. These characteristics make it
a suitable candidate for constrained environments such as Machine-to-Machine
communication (M2M) and IoT contexts where a small memory footprint is
required and where network bandwidth is often a scarce resource. Even though
MQTT has been designed to be easy to implement, it still contains relatively
complex protocol logic for handling connections, subscriptions, and the vari-
ous quality of service levels related to message delivery. Furthermore, MQTT is
expected to play a key role in future IoT applications and will be implemented
for a wide range of platforms and in a broad range of programming languages
making interoperability a key issue. This, combined with the fact that MQTT
is only backed by an (ambiguous) natural language specification, motivated us
to develop a formal and executable specification of the MQTT protocol.

We have used Coloured Petri Nets (CPNs) [12] for the modelling and veri-
fication of the MQTT specification. The main reason is that CPNs have been
successfully applied in earlier work to build formal specifications of communica-
tion protocols [8], data networks [5], and embedded systems [1]. To ensure the
proper operations of the constructed CPN model, we have validated the CPN
model using simulation and verified an elaborate set of behavioural properties
of the constructed model using model checking and state space exploration. In
the course of our work on the MQTT specification [3] and the development of
the CPN model, we have identified a number of issues related in particular to
the implementation of the quality of service levels. These issues are a potential
source of interoperability problems between implementations. For the construc-
tion of the model we have applied some general modelling patterns for CPN
models of publish-subscribe protocols. Compared to earlier work on modelling
and verification of publish-subscribe protocols [4,10,18] (which we discuss in
more details towards the end of this paper) our work specifically targets MQTT,
and we consider a more extensive set of behavioural properties.

The rest of this paper is organised as follows. In Sect. 2 we present the MQTT
protocol context and give a high-level overview of the constructed CPN model.
Section 3 details selected parts of the CPN model of the MQTT protocol. In
Sect. 4 we present our experimental results on using simulation and model check-
ing to validate and verify central properties of MQTT and the CPN model.
Finally, in Sect. 5 we sum up the conclusions, discuss related work, and out-
lines directions for future work. Due to space limitations, we cannot present the
complete CPN model of the MQTT protocol. The constructed CPN model is
available via [15]. The reader is assumed to be familiar with the basic concepts
of Petri Nets and High-level Petri Nets [12].

106 Paper A

128 A. Rodŕıguez et al.

2 MQTT Protocol and CPN Model Overview

MQTT [3] runs over the TCP/IP protocol or other transport protocols that
provide ordered, lossless and bidirectional connections. MQTT applies topic-
based filtering of messages with a topic being part of each published message.
An MQTT client can subscribe to a topic to receive messages, publish on a
topic, and clients can subscribe to as many topics as they are interested in. As
described in [14], an MQTT client can operate as a publisher or subscribe and we
use the term client to generally refer to a publisher or a subscriber. The MQTT
broker [14] is the core of any publish/subscribe protocol and is responsible for
keeping track of subscriptions, receiving and filtering messages, deciding to which
clients they will be dispatched, and sending them to all subscribed clients. There
are no restrictions in terms of hardware to run as an MQTT client, and any
device equipped with an MQTT library and connected to an MQTT broker can
operate as a client.

2.1 Modelling Roles and Messages

Figure 1 shows the top-level module of the CPN MQTT model which consists of
two substitution transitions (drawn as rectangles with double-lined borders) rep-
resenting the Clients and the Broker roles of MQTT. Substitution transitions con-
stitute the basic syntactical structuring mechanism of CPNs and each of the sub-
stitution transitions has an associated module that models the detailed behaviour
of the clients and the broker, respectively. The name of the (sub)module associ-
ated with a substitution transition is written in the rectangular tag positioned
next to the transition.

Fig. 1. The top-level module of the MQTT CPN model.

The complete CPN model of the MQTT protocol consists of 24 modules
organised into six hierarchical levels. We have constructed a parametric CPN
model which makes it easy to change the number of clients and topics without

Paper A 107

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 129

making changes to the net-structure. This makes it possible to investigate dif-
ferent configuration of MQTT and it is a main benefit provided by CPNs in
comparison to ordinary Petri Nets.

The two substitution transitions in Fig. 1 are connected via directed arcs to
the two places CtoB and BtoC. The clients and the broker interact by produc-
ing and consuming tokens on the places. Figure 2 shows the central data type
definitions used for the colour sets of the places CtoB and BtoC and the mod-
elling of clients and messages. The colour sets QoS is used for modelling the
three quality of service levels supported by MQTT (see below), and the colour
set PID is used for modelling the packet identifiers which plays a central role in
the MQTT protocol logic. We have abstracted from the actual payload of the
published messages. The reason for this is that the message transport structure
and the protocol logic of MQTT is agnostic to the payload contained, i.e., the
actual content that will be sent in the messages. For similar reasons, we also
abstract from the hierarchical structuring of topics.

Fig. 2. Client and message colour set definitions (Color figure online)

108 Paper A

130 A. Rodŕıguez et al.

The places CtoB and BtoC are designed to behave as queues. The queue mech-
anism offers some advantages that the MQTT specification implicitly indicates.
The purpose of this is to ensure the ordered message distribution as assumed
from the transport service on top of which MQTT operates. Even so, the CtoB
and BtoC places are slightly different; while CtoB is modelled as a single queue
that the broker manages to consume messages, BtoC is designed to maintain an
incoming queue of messages for each client. This construction assures that all
clients will have their own queue, individually respecting the ordered reception of
messages. The function initMsgQueue() initialises the queues according to the
number of clients specified by the symbolic constant C. The BrokerxMessages
colour set for the CtoB place used at the bottom of Fig. 2 consists of a list of
ClientxMessage which are pairs of Client and Messages.

We represent all the messages that the clients and the broker can use by
means of the Message colour set. We use the terms packet and message indis-
tinguishably when we refer to control packets. The control information used
depends on the messages considered. As an example, a Connect message (packet)
does not contain control information, but a Publish message requires a specific
Topic, QoS, and PID. The Topic and QoS colour sets are both indexed types
containing values (topic(1), topic(2) ... topic(T) depending on the constant
T, and QoS(0), QoS(1) and QoS(2), respectively. The ClientxMessages colour
set for the BtoC place encapsulates all the queues (each one declared as a pair
of Client and Messages in the ClientxMessageQueue colour set) in one single
queue. This modelling pattern allows us to deal with the distribution of multiple
messages in a single step in the broker side which in turn simplifies the modelling
of the broker and reduces the number of reachable states of the model.

2.2 Quality of Service

The MQTT protocol delivers application messages according to the three Qual-
ity of Service (QoS) levels defined in [3]. The QoS levels are motivated by the
different needs that IoT applications may have in terms of reliable delivery of
messages. It should be noted that even if MQTT has been designed to oper-
ate over a transport service with lossless and ordered delivery, then message
reliability still must be addressed as logical transport connections may be lost.

The delivery protocol is symmetric, and the clients and the broker can each
take the role of either a sender or a receiver. The delivery protocol is concerned
solely with the delivery of an application message from a single sender to a single
receiver. When the broker is delivering an application message to more than one
client, each client is treated independently. The QoS level used to deliver an
outbound message from the broker could differ from the QoS level designated
in the inbound message. Therefore, we need to distinguish two different parts of
delivering a message: a client that publishes to the broker and the broker that
forwards the message to the subscribing clients. The three MQTT QoS levels for
message delivery are:

At most once: (QoS level 0): The message is delivered according to the
capabilities of the underlying network. No response is sent by the receiver and

Paper A 109

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 131

no retry is performed by the sender. The message arrives at the receiver either
once or not at all. An application of this QoS level is in environments where
sensors are constantly sending data and it does not matter if an individual
reading is lost as the next one will be published soon after.

At least once (QoS level 1): Where messages are assured to arrive, but
duplicates can occur. It fits adequately for situations where delivery assurance
is required but duplication will not cause inconsistencies. An application of
this are idempotent operations on actuators, such as closing a valve or turning
on a motor.

Exactly once (QoS level 2): Where messages are assured to arrive exactly
once. This is for use when neither loss nor duplication of messages are accept-
able. This level could be used, for example, with billing systems where dupli-
cate or lost messages could lead to incorrect charges being applied.

When a client subscribes to a specific topic with a certain QoS level it means
that the client is determining the maximum QoS that can be expected for that
topic. When the broker transfers the message to a subscribing client it uses
the QoS of the subscription made by the client. Hence QoS guarantees can get
downgraded for a particular receiving client if subscribed with a lower QoS. This
means that if a receiver is subscribed to a topic with a QoS level 0, no matter if
a sender publishes in this topic with a QoS level 2, then the receiver will proceed
with its QoS level 0.

3 Modelling the Protocol Roles and Their Interaction

We now consider the different phases and the client-broker interaction in the
MQTT protocol, and show how we have modelled the MQTT protocol logic
using CPNs. MQTT defines five main operations: connect, subscribe, publish,
unsubscribe, and disconnect. Such operations, except the connect which must be
the first one for the clients, are independent of each other and can be triggered
in parallel by either the clients or the broker. The model is organized following
a modelling pattern that ensures modularity and therefore, encapsulation of the
protocol logic and behaviour of such operations. This offers advantages both for
readability and understandability of the model and also, for making easier to
detect and fix errors during the incremental verification.

3.1 Interaction Overview

In order to show how the clients and the broker interact, we describe the different
actions that clients may carry out by considering an example. Figure 3 shows a
sequence diagram for a scenario where two clients connect, perform subscribe,
publish and unsubscribe, and finally disconnect from the broker. The numbers on
each step of the communication define the interaction of the protocol as follows:

110 Paper A

132 A. Rodŕıguez et al.

Fig. 3. Message sequence diagram illustrating the MQTT phases.

1. Client 1 and Client 2 request a connection to the Broker.
2. The Broker sends back a connection acknowledgement to confirm the estab-

lishment of the connection.
3. Client 2 subscribes to topic 1 with a QoS level 1, and the Broker confirms the

subscription with a subscribe acknowledgement message.
4. Client 1 publishes on topic 1 with a QoS level 1. The Broker responds with a

corresponding publish acknowledgement.
5. The Broker transmits the publish message to Client 2 which is subscribed to

the topic.
6. Client 2 gets the published message, and sends a publish acknowledgement

back as a confirmation to the Broker that it has received the message.
7. Client 2 unsubscribes to topic 1, and the Broker responds with an unsubscribe

acknowledgement.
8. Client 1 and Client 2 disconnect.

3.2 Client and Broker State Modelling

The colour sets defined for modelling the client state are shown in Fig. 4. The
place Clients (top-left place in Fig. 5) uses a token for each client to store their
respective state during the communication. This is a modelling pattern that
allows not only to parameterize the model so we can change the number of clients
without modifying the structure, but also to maintain all the clients indepen-
dently in only one place and with a proper data structure that encapsulates
all the information required. The states of the clients are represented by the
ClientxState colour set which is a product of Client and ClientState. The
record colour set ClientState is used to represent the state of a client which
consists of a list of TopicxQoS, a State, and a PID. Using this, a client stores the
topics it is subscribed to, and the quality of service level of each subscription.

Paper A 111

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 133

Fig. 4. Colour set definitions used for modelling client state. (Color figure online)

The State colour set is an enumeration type containing the values READY (for
the initial state), WAIT (when the client is waiting to be connected), CON (when
the client is connected), and DISC (for when the client has disconnected).

Below we present selected parts of the model by first presenting a high-level
view of the clients and broker sides, and then illustrating how the model captures
the execution scenario described in Sect. 3.1 where two clients connects, one sub-
scribes to a topic, and the other client publishes on this topic. The unsubscribe
and the disconnection phases are not detailed due to space limitations.

Fig. 5. ClientProcessing submodule.

112 Paper A

134 A. Rodŕıguez et al.

3.3 Client Modelling

The ClientProcessing submodule in Fig. 5 models all the operations that a client
can carry out. Clients can behave as senders and receivers, and the five substitu-
tion transitions CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE and DISCONNECT
has been constructed to capture both behaviours.

The socket place Clients stores the information of all the clients that are
created at the beginning of the execution of the model. In this scenario there
are two clients, and the value of the tokens representing the state of the two
clients is provided in the green rectangle (the marking of the place) next to the
Clients place. The BtoC and CtoB port places are associated with the socket
places already shown in Fig. 2.

3.4 Broker Modelling

We have modelled the broker similarly as we have done for clients. This can be
seen from Fig. 6 which shows the BrokerProcessing submodule. The Connected-
Clients place keeps the information of all clients as perceived by the broker. This
place is designed as a central storage, and it is used by the broker to distribute
the messages over the network. The broker behaviour is different from that of
the clients, since it will have to manage all the requests and generate responses
for several clients at the same time.

Fig. 6. The BrokerProcessing module.

Paper A 113

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 135

3.5 Connection Phase

The first step for a client to be part of the message exchange is to connect to the
broker. A client will send a CONNECT request, and the broker will respond with a
CONNACK message to complete the connection establishment. Figure 7 shows the
CONNECT submodule in a marking where client(1) has sent a CONNECT request
and it is waiting (state = WAIT) for the broker acknowledgement processing to
finish such that the connection state can be set to CON.

Fig. 7. CONNECT module after the sendCONNECT occurrence.

The broker will receive the CONNECT request. The broker will register
the client in the place ConnectedClients and send back the acknowledgement.
Figure 8 shows the situation where client(1) is connected in the broker side
and the CONNACK response has been sent back to the client. The function
connectClient() used on the arc from the ProcessCONNECT transition to the
ConnectedClients place will record the connected client on the broker side. The
last step of the connection establishment will occur again in the clients side,
where the transition ReceiveCONNACK (in Fig. 7) will be enabled, meaning that
the confirmation for the connection of client(1) can proceed.

3.6 Subscription Phase

Starting from the point where both clients are connected (i.e., for both clients,
the state is CON as shown at the top of Fig. 9), client(2) will send a SUBSCRIBE
request to topic(1) with QoS(1). The place PendingAcks represents a queue that
each client maintains to store the PIDs that are waiting to be acknowledged. In
this example, the message has assigned a PID = 0, and client(2) is waiting for
an acknowledgement to this subscription with a PID = 0. When a client receives
a SUBACK (subscribe acknowledgement) it will check that the packet identifier (0

114 Paper A

136 A. Rodŕıguez et al.

Fig. 8. ProcessCONNECT module after the ProcessCONNECT occurrence.

Fig. 9. SUBSCRIBE module after the SUBSCRIBE occurrence.

in this case) is the same to ensure that the correct packet is being received. At
the bottom right side of the Fig. 9, the message has been sent to the broker.

We show now the situation where the SUBSCRIBE request has been processed
by the broker as represented in Fig. 10. The function brokerSubscribeUpdate()
manages the subscription process, so if the client is subscribing to a new topic,
it will be added to the client state stored in the broker. If the client is already
subscribed to this topic it will update it. In the example, one can see that
client(1) keeps the same state, but client(2) has appended this new topic
to its list. The corresponding SUBACK message has been sent to client(2) (with
the PID set to 0) to confirm the subscription. Next, client(2) will detect that
the response has arrived and it will check that the packet identifiers correspond
to each other.

Paper A 115

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 137

Fig. 10. ProcessSUBSCRIBE module after occurrence of ProcessSUBSCRIBE.

3.7 Publishing Phase

The publishing process in the considered scenario requires two steps to be com-
pleted. First a client sends a PUBLISH in a specific topic, with a specific QoS,
which is received by broker. The broker will answer back with the corresponding
acknowledgement, depending on the quality of service previously set. Second,
the broker, that stores information for all clients, will propagate the PUBLISH
sent by the client to any clients subscribing to that topic. We have modelled
the clients and broker sides using different submodules depending on the qual-
ity of service that is being applied for sending and receiving. In our example,
client(1) will publish in topic(1) with a QoS(1). This means that the broker
will acknowledge back with a PUBACK to client(1), and will create a PUBLISH
message for client(2), which is subscribed to this topic with a QoS(1). In this
case, there is no downgrading for the client(2), so the publication process will
be similar to step 1, i.e, client(2) will send back a PUBACK to the broker.

Figure 11 shows the situation in the model where client(1) has sent a
PUBLISH with a QoS(1) for the topic(1). Similar to the subscription process,
the place CtoB holds the message that the broker will receive, and the place
Publishing keeps the information (PID and topic in this case) of the packet that
needs to be acknowledged. The transition TimeOut models the behaviour for the
re-transmission of packets. Quality of service level 1 assures that the message
will be received at least once. The TimeOut transition will be enabled to re-send
the message until the client has received the acknowledgement from the broker.

The Broker module models the logic for both receiver and sender behaviours.
Figure 12 shows a marking corresponding to the state where the broker has
processed the PUBLISH request made by client(1), and it has generated both
the answer to this client and the PUBLISH message for client(2) (in this case,
only one client is subscribed to the topic). The port place BPID (Broker PID),
at top right of Fig. 12, will hold a packet identifier for each message that the
broker re-publishes to the clients. The port place Publishing keeps information

116 Paper A

138 A. Rodŕıguez et al.

Fig. 11. PUBLISH QoS 1 module after the PUBLISH QoS 1 occurrence.

for all the clients that will acknowledge back the publish messages transmitted
by the broker. Again, a TimeOut is modelled which, in this case, creates PUBLISH
messages for all the clients subscribed to the topic in question. In the BtoC place
(bottom right of Fig. 12), one can see that both messages have been sent, one
for the original sender client(1) (PUBACK packet), and one for the only receiver
client(2) (PUBLISH packet).

Fig. 12. Process QoS 1 module after the Process QoS 1 occurrence.

To finish the process, client(2) will notice that there has been a message
published in topic(1). Since client(2) is subscribed to this topic with QoS(1),

Paper A 117

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 139

it must send a PUBACK acknowledgement to the broker to confirm that it has
received the published message. Figure 13 shows the Receive QoS 1 submodule
in the clients side. The transition Receive QoS 1 has been fired meaning that
client(2) has received the publish message from the broker, and has sent the
corresponding PUBACK. When the broker detects the incoming PUBACK message,
it will check if there is some confirmation pending in the Publishing place (in
Fig. 12 where client(2) is waiting for a PID = 0 in topic(1) with QoS(1).

Fig. 13. Receive module after the transition Receive QoS 1 occurrence

3.8 Findings

In the course of constructing the CPN model based on the informal MQTT
specification, we encountered several parts that were vaguely defined and which
could lead developers to obtain different implementations. The most significant
issues are detailed below.

– There is a gap in the specification related to the MQTT protocol being
described to run over TCP/IP, or other transport protocols that provide
ordered, lossless and bidirectional connections. The QoS level 0 description
establishes that message loss can occur, but the specification is not clear as
to whether this is related to termination of TCP connections and/or clients
connecting and disconnecting from the broker.

– It is specified that the receiver (assuming the broker role) is not required to
complete delivery of the application message before sending the PUBACK (for
QoS1) or PUBREC or PUBCOMP (for QoS2) and the decision of handling
this is up to the implementer. For instance, in the case of QoS level 2, the
specification provides two alternatives with respect to forward the publish
request to the subscribers: (1) The broker will forward the messages when
it receives the PUBLISH from the original sender; or (2) The broker will

118 Paper A

140 A. Rodŕıguez et al.

forward the messages after the reception of the PUBREL from the original
sender. Even it is assured that either choice does not modify the behaviour
of the QoS level 2, this could lead to different implementation decisions and
therefore consequent interoperability problems.

– The documentation specifies that when the original sender receives the PUB-
ACK packet (with a QoS level 1), ownership of the application message is
transferred to the receiver. It is unclear how to determine that the original
sender has received the PUBACK packet. The same applies for QoS level 2
and the PUBREC packet.

4 Model Validation and Verification

During development of the MQTT protocol model we used single-step and auto-
matic simulation to test the proper operation of the model. To perform a more
exhaustive validation of the model, we have conducted state space exploration
of the model and verified a number of behavioural properties.

We have conducted the verification of properties using an incremental app-
roach consisting of three steps. In the first step we include only the parts related
to clients connecting and disconnecting. In the second step we add subscribe
and unsubscribe, and finally in the third step we add data exchange considering
the three quality of service levels in turn. At each step, we include verification
of additional properties. The main motivation underlying this incremental app-
roach is to be able to control the effect of the state explosion problem. Errors in
the model will often manifest themselves in small configurations and leading to
a very large state space. Hence, by incrementally adding the protocol features,
we can mitigate the effect of this phenomenon. We identified several modelling
errors in the course of conducting this incremental model validation based on
the phases of the MQTT protocol.

In addition, we have developed a mechanism to be able to explore different
scenarios and check the behavioural properties against them fully automatically.
This has been done by providing the model with a set of parameterized options,
which we can easily change. This feature allows us to first modify add or remove
new configurations, and secondly to run them automatically. For each new mod-
ification in the parameters, we always run the six incremental executions and
check the behavioural properties. Among others, one can quickly change the
number of clients, the roles that such clients can perform (either subscriber,
publisher, or both), switch between acyclic or cyclic version (where reconnection
of clients is allowed) or enable/disable the possibility to retransmit packets (by
means of timeouts).

To obtain a finite state space, we have to limit the number of clients and
topics, and also bound the packet identifiers. It can be observed that there is
no interaction between clients and brokers across topics as the protocol treats
each topic in isolation. Executing the protocol with multiple topics is equiv-
alent to running multiple instances of the protocol in parallel. We therefore
only consider a single topic for the model validation. Initially, we consider two

Paper A 119

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 141

clients. The packet identifiers are incremented throughput the execution of the
different phases of the protocol (connect, subscribe, data exchange, unsubscribe,
and disconnect). This means that we cannot use a single global bound on the
packet identifiers as a client could reach this bound, e.g., already during the
publish phase and hence the global bound would prevent (block) a subsequent
unsubscribe to take place. We therefore introduce a local upper bound on packet
identifiers for each phase. This local bound expresses that the given phase may
use packet identifiers up to this local bound. Note that the use of bounds does
not guarantee that the client uses packet identifiers up to bound. It is the guard
on the transitions sending packets from the clients that ensures that these local
bounds are enforced. Finally, we enforce an upper bound on the number of mes-
sages that can be in the message queues on the places CtoB and BtoC.

Below we describe each step of the model validation and the behavioural
properties verified. The properties verified in each step include the properties
from the previous step. We summarise the experimental results at the end. For
the actual checking of properties, we have used the state and action-oriented
variant of CTL supported by the ASK-CTL library of CPN Tools.

Step 1 – Connect and Disconnect. In the first step, we consider only the
part of the model related to clients connecting and disconnecting to the broker.
We consider the following behavioural properties:

S1-P1-ConsistentConnect. The clients and the broker have a consistent view
of the connection state. This means that if the clients side is in a connect
state, then also the broker has the client recorded as connected.

S1-P2-ClientsCanConnect. For each client, there exists a reachable state in
which the client is connected to the broker.

S1-P3-ConsistentTermination. In each terminal state (dead marking),
clients are in a disconnect state, the broker has recorded the clients as dis-
connected, no clients are recorded as subscribed on both clients and broker
sides, and there are no outstanding messages in the message buffers.

S1-P4-PossibleTermination. The protocol can always be terminated, i.e., a
terminal state (dead marking) can always be reached.

The two properties S1-P3 and S1-P4 imply partial correctness of the protocol
as it states that the protocol can always be terminated, and if it terminates, then
it will be in a correct state. The state space obtained in this step is acyclic when
we do not allow reconnections. This together with S1-P3 implies the stronger
property of eventual correct termination. This is, however, more a property of
how the model has been constructed as in a real implementation there is nothing
forcing a client to disconnect.

Step 2 – Subscribe and Unsubscribe. In the second step, we add the ability
for the clients to subscribe and unsubscribe (in addition to connect and discon-
nect from step 1). For subscribe and unsubscribe we additionally consider the
following properties:

120 Paper A

142 A. Rodŕıguez et al.

S2-P1-CanSubscribe. For each of the clients, there exists states in which both
the clients and the broker sides consider the client to be subscribed.

S2-P2-ConsistentSubscription. If the broker side considers the client to be
subscribed, then the clients side considers the client to be subscribed.

S2-P3-EventualSubscribed. If the client sends a subscribe message, then
eventually both the clients and the broker sides will consider the client to
be subscribed.

S2-P4-CanUnsubscribe. For each client there exists executions in which the
client sends an unsubscribe message.

S2-P5-EventualUnsubscribed. If the client sends an unsubscribe message,
then eventually both the clients and the broker sides considers the client to
be unsubscribed.

It should be noted that for property S2-P2, the antecedent of the impli-
cation deliberately refers to the broker side. This is because the broker side
unsubscribes the client upon reception of the unsubscribe message, whereas the
client side does not remove the topic from the set of subscribed topics until the
subscribe acknowledgement message is received from the broker. Hence, during
unsubscribe, we may have the situation that the broker has unsubscribed the
client, but the subscribe acknowledgement has not yet been received on the client
side.

Step 3 – Publish and QoS Levels. In this step we also consider publication
of data for each of the three quality of service levels. As we do not model the
concrete data contained in the messages, we use the packet identifiers attached
to the message published to identity the packets being sent and received by the
clients. In order to reduce the effect of state explosion, we verify properties for
each QoS level in isolation. To make it simpler to check properties related to
data being sent, we record for each client the packet identifiers of messages sent.
For all three service levels, we consider the following properties:

S3-P1-PublishConnect. A client only publishes a message if it is in a con-
nected state.

S3-P2-CanPublish. For each client there exists executions in which the client
publishes a message.

S3-P3-CanReceive. For each client there exists executions in which the client
receives a message.

S3-P4-Publish. Any data (packet identifiers) received on the client side must
also have been sent on the client side.

S3-P5-ReceiveSubscribed. A client only receives data if it is subscribed to
the topic, i.e., the client side considers the client to be subscribed.

It should be noted that it is possible for a client to publish to a topic without
being subscribed. The only requirement is that the client is connected to the bro-
ker. What data can correctly be received depends on the quality of service level
considered. We therefore have one of the following three properties depending
on the quality of service considered.

Paper A 121

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 143

S3-P6-Publish-QoS0. The data (packet identifiers) received by the subscribing
clients must be a subset of the data (packet identifiers) sent by the clients.

S3-P7-Publish-QoS1. The data sent on the client side must be a subset of the
multi-set of packets received by the subscribing clients.

S3-P8-Publish-QoS2. The data received by each client is identical to the
packet identifiers sent by the clients.

To check the above properties related to data received, we accumulate the
packet identifiers received such that they can be compared to the packet identi-
fiers sent. To simplify the verification of data received, we force (using priorities)
both clients to be subscribed before data exchange takes places since otherwise
the data that can be received depends on the time at which the clients were
subscribed and unsubscribed.

Table 1 summarises the validation statistics where each configuration (sce-
nario) is represented by a row comprised of Clients, Roles and Version. We report
the size of the state space (number of states/number of arcs) and the number of
dead markings (written below the state space size). We do not show the dead
markings for the cyclic configurations as they are always 0. The columns S3.1,
S3.2 and S3.3 correspond to the results considering QoS level 0, QoS level 1
and QoS level 2, respectively. Cells containing a hyphen represent configurations
where the state space exploration and model checking did not complete within
12 h which we used as a cut-off point.

Table 1. Summary of configurations and experimental results for model validation

N◦
Clients

Roles Version State space (states/arcs)

Number of dead markings

Step 1 Step 2 Step 3

S3.1 S3.2 S3.3

2 1 sub/1 pub Acyclic 35/48

1

258/480

4

622/1074

21

1312/2616

21

3234/6394

21

2 sub-pub 35/48

1

1849/4120

16

4282/8840

70

11462/23934

70

43791/85682

76

1 sub/1 pub Cyclic 24/38 271/547 1149/2265 2376/5045 5996/12267

2 sub-pub 24/38 2954/6798 8138/17714 20362/43572 79913/159254

3 2 sub/1 pub Acyclic 163/292

1

9529/25408

16

31765/76848

165

103176/262254

165

–

1 sub/2 pub 163/292

1

1262/2862

4

10360/21604

90

46721/120321

90

–

2 sub/1 pub Cyclic 84/175 12650/35875 87450/235887 254095/679920 –

1 sub/2 pub 84/175 1057/2662 23817/59342 101794/279871 –

5 Conclusions and Related Work

We have presented a formal CPN model based on the most recent specification of
the MQTT protocol (version 3.1.1 [3]). The constructed CPN model represents a
formal and executable specification of the MQTT protocol. While performing an

122 Paper A

144 A. Rodŕıguez et al.

exhaustive review of the MQTT specification to develop the model, we found sev-
eral issues that might lead to not interoperable implementations. Consequently,
this may add extra complexity for interoperability in the heterogeneous ecosys-
tem that surrounds the application of a protocol such as MQTT.

The model has been built using a set of general CPN modelling patterns
ensuring modular organisation of the protocol roles and protocol processing logic.
Furthermore, we incorporated parameterization that makes it easy to change,
among others, the number of clients and topics without having to make changes
in the CPN model structure. In addition, we have applied modelling patterns
related to the input and output message queues of the clients (publishers and
subscribers) and brokers. These modelling patterns apply generally for modelling
distributed systems that include one-to-one and one-to-many communication.

For the validation of the model, we have conducted simulation and state
space exploration in order to verify an extensive list of behavioural properties
and thereby validate the correctness of the model. In particular, our modelling
approach makes it possible to apply an incremental verification technique where
the functionality of the protocol is gradually introduced and properties are veri-
fied in each incremental step. A main advantage of the modelling patterns used
for communication and message queues is that they avoid intermediate states
and hence contributes to making state space exploration feasible.

There exists previous work on modelling and validation of the MQTT proto-
col. In [11], the authors uses the UPPAAL SMC model checker [7] to evaluate dif-
ferent quantitative and qualitative (safety, liveness and reachability) properties
against a formal model of the MQTT protocol defined with probabilistic timed
automata. Compared to their work, we have verified a larger set of behavioural
properties using the incremental approach adding more operations in each step.
In [13], tests are conducted over three industrial implementations of MQTT
against a subset of the requirements specified in the MQTT version 3.1.1 stan-
dard using the TTCN-3 test specification language. In comparison to our work,
test-based approaches do not cover all the possible executions but only randomly
generated scenarios. With the exploration of state spaces, we considered all the
possible cases. In [2], the authors first define a formal model of MQTT based on
timed message-passing process algebra, and they conduct analysis of the three
QoS levels. In contrast, our work is not limited to the publishing/subscribing
process, but considers all operations of the MQTT specification.

We are planning to extend the features supported by the model in order to
be able to simulate more sophisticated scenarios. For instance, we will allow the
model to deal with persistence of data, so clients can receive the messages on
reconnections lost suddenly in the middle of some operation. Furthermore, we
plan to improve the mechanism to simulate loss of packets as an extension of the
timeout system already implemented. In addition to aiding in the development
of compatible MQTT implementations, the CPN MQTT model may also be used
as basis for testing of MQTT implementations. As part of future work, we plan
to explore model-based testing of MQTT protocol implementations following the
approach presented in [16].

Paper A 123

Formal Modelling and Incremental Verification of the MQTT IoT Protocol 145

References

1. Adamski, M.A., Karatkevich, A., Wegrzyn, M.: Design of Embedded Control Sys-
tems, vol. 267. Springer, Boston (2005). https://doi.org/10.1007/0-387-28327-7

2. Aziz, B.: A formal model and analysis of an IoT protocol. Ad Hoc Netw. 36, 49–57
(2016)

3. Banks, A., Gupta, R.: MQTT Version 3.1.1. OASIS Standard, 29 (2014). http://
docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

4. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verification of publish-
subscribe architectures. In: Proceedings of the 29th International Conference on
Software Engineering, pp. 199–208. IEEE Computer Society (2007)

5. Billington, J., Diaz, M.: Application of Petri Nets to Communication Networks:
Advances in Petri Nets, vol. 1605. Springer, Heidelberg (1999). https://doi.org/10.
1007/BFb0097770

6. Chen, S., Xu, H., Liu, D., Hu, B., Wang, H.: A vision of IoT: applications, chal-
lenges, and opportunities with China perspective. IEEE Internet Things J. 1(4),
349–359 (2014)

7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

8. Desel, J., Reisig, W., Rozenberg, G. (eds.): Lectures on Concurrency and Petri
Nets, Advances in Petri Nets. LNCS, vol. 3018. Springer, Heidelberg (2004).
https://doi.org/10.1007/b98282

9. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The many faces of
publish/subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)

10. Garlan, D., Khersonsky, S., Kim, J.S.: Model checking publish-subscribe systems.
In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 166–180.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 11

11. Houimli, M., Kahloul, L., Benaoun, S.: Formal specification, verification and eval-
uation of the MQTT protocol in the Internet of Things. In: Mathematics and
Information Technology, pp. 214–221. IEEE (2017)

12. Jensen, K., Kristensen, L.: Coloured Petri nets: a graphical language for modelling
and validation of concurrent systems. Commun. ACM 58(6), 61–70 (2015)

13. Mladenov, K.: Formal verification of the implementation of the MQTT protocol in
IoT devices. Master thesis, University of Amsterdam (2017)

14. MQTT essentials part 3: Client, broker and connection establishment. https://
www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe

15. Rodriguez, A., Kristensen, L.M., Rutle, A.: Complete CPN model of the MQTT
Protocol. via Dropbox. http://www.goo.gl/6FPVUq

16. Wang, R., Kristensen, L., Meling, H., Stolz, V.: Application of model-based testing
on a quorum-based distributed storage. In: Proceedings of PNSE 2017, volume 1846
of CEUR Workshop Proceedings, pp. 177–196 (2017)

17. Wortmann, F., Flüchter, K.: Internet of things. Bus. Inf. Syst. Eng. 57(3), 221–224
(2015)

18. Zanolin, L., Ghezzi, C., Baresi, L.: An approach to model and validate publish/-
subscribe architectures. Proc. SAVCBS 3, 35–41 (2003)

124 Paper A

PAPER B
VERIFICATION OF THE MQTT IOT PROTOCOL
USING PROPERTY-SPECIFIC CTL SWEEP-LINE
ALGORITHMS

Alejandro Rodríguez, Lars Michael Kristensen, Adrian Rutle

In Transactions on Petri Nets and Other Models of Concurrency XV, volume 12530 of Lecture
Notes in Computer Science, pages 165-183, Springer Nature, 2021

Verification of the MQTT IoT Protocol
Using Property-Specific CTL Sweep-Line

Algorithms

Alejandro Rodŕıguez(B), Lars Michael Kristensen, and Adrian Rutle

Department of Computer Science, Electrical Engineering, and Mathematical Sciences,
Western Norway University of Applied Sciences, Bergen, Norway

{arte,lmkr,aru}@hvl.no

Abstract. MQTT is a publish-subscribe communication protocol being
increasingly used for implementing internet-of-things (IoT) applications.
In earlier work we have developed a formal and executable model of the
MQTT protocol using Coloured Petri Nets (CPNs) and performed an ini-
tial verification of behavioural properties. The contribution of this paper
is to investigate the use of the sweep-line method for verification of the
MQTT CPN model in order to alleviate the effect of the state explosion
problem. We formulate the behavioural properties using Computation
Tree Logic (CTL) and show how to formulate a progress measure for the
sweep-line method based on the main phases of the MQTT protocol. To
perform the verification of properties, we provide some property-specific
CTL model checking algorithms compatible with the sweep-line method.

Keywords: Coloured Petri Nets · Modelling · Verification ·
Communication protocols · Internet of Things

1 Introduction

The development of distributed software systems is challenging, and one of
the main approaches to tackle the challenges is to build an executable model
of the system prior to implementation and deployment. Coloured Petri Nets
(CPNs) [13] is a formal modelling formalism convenient for specifying complex
concurrent and distributed systems. CPN Tools [9,15] is a software tool that
supports the construction, simulation (execution), state space analysis, and per-
formance analysis of CPN models. One of the key functionalities of CPN Tools
is the ability to perform model checking [1] of the modelled system. This means
that one can generate the state space (the set of reachable states) of a system
in order to verify key behavioural properties. Temporal logics [23] such as Com-
putation Tree Logic (CTL) and Linear Temporal Logic (LTL) are widely used
to express behavioural properties of systems.

MQTT [2] is a publish-subscribe messaging protocol for IoT suited for
constrained application domains such as Machine-to-Machine communication

c© Springer-Verlag GmbH Germany, part of Springer Nature 2021
M. Koutny et al. (Eds.): ToPNoC XV, LNCS 12530, pp. 165–183, 2021.
https://doi.org/10.1007/978-3-662-63079-2_8

Paper B 127

166 A. Rodŕıguez et al.

(M2M) and IoT contexts. MQTT is designed with the aim of being light-weight
and easy to implement. In earlier work [19], we have developed a formal and
executable specification of MQTT motivated by the fact that until now, the
protocol has only been specified using an (ambiguous) natural language specifica-
tion. MQTT contains relatively complex protocol logic for handling connections,
subscriptions, and quality of service levels related to message delivery.

Our initial verification experiments were conducted using ordinary full state
spaces and clearly highlighted the presence of the state explosion problem [8,22].
This was caused by the exponential growth in the number of reachable states of
the system with respect to the number of clients, packets, and topics. A large
part of the model checking research has aimed at developing techniques for allevi-
ating this inherent complexity problem. This includes several different families of
reduction methods such as partial-order reduction methods [7] that reduce the
number of interleaving execution considered, and hash compaction [21] which
provides a compact representation of states with a small probability of not cov-
ering the complete state space. Since the amount of memory is often the lim-
iting factor in model checking, we focus on the family of methods that combat
state explosion by deleting states from memory during state space exploration.
Specifically, we consider the sweep-line method [12] which is based on the idea
of exploiting a notion of progress exhibited by many systems. We focus on CTL
because CPN Tools implements a CTL-based temporal logic called ASK-CTL [3]
which enables queries taking into account both state and event information. Fur-
thermore, CTL is able to capture the behavioural properties of interest for the
MQTT protocol.

The contribution of this paper is twofold: (1) the implementation of the
sweep-line method using the Standard ML (SML) language together with the
ability of performing model checking of certain behavioural properties specified
using tailored CTL sweep-line model checking algorithms based on [17]; and (2)
the application of sweep-line based CTL model checking to our CPN model of the
MQTT IoT protocol. It should be noted that there already exists work on LTL
model checking using the sweep-line method [10], but several of the behavioural
properties that we aim to verify for MQTT are true CTL properties, i.e., not
expressible in LTL [22,24].

The rest of this paper is organised as follows. In Sect. 2 we introduce the
sweep-line method and in Sect. 3 we provide the property-specific CTL model
checking algorithm that we employ for the verification. Section 4 gives a brief
review of the CPN model of the MQTT protocol. We describe the experiments
carried out and the results obtained in Sect. 5. Finally, in Sect. 6, we sum up the
conclusions and outline directions for future work. The reader is assumed to be
familiar with the basic concepts of CPNs and CTL model checking techniques.
This paper is based upon the workshop paper [20] and the conference paper [17].

2 The Sweep-Line State Space Exploration Method

The sweep-line method [4] is aimed at systems for which it is possible to define
a measure of progress based on the states of the system. A progress measure

128 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 167

maps each state of the system into a progress value and is in most cases specific
for the system under consideration. In this paper, we consider the version of
the sweep-line algorithm for monotonic progress measures. The key property of
a monotonic progress measure is that for any given state s, all states reachable
from s have a progress value which is greater than or equal to the progress value
of s. This means that a monotonic progress measure preserves the reachability
relation. Having defined a progress measure of the system makes it possible to
organise the state space into layers such that states that share the same progress
value belong to the same layer.

The basic idea of the sweep-line method is to explore the state space in a
least-progress-first order, one layer at a time, such that once all states in a given
layer have been processed, they are removed from memory and the exploration
proceeds to the next layer [12]. In conventional state space exploration, the states
are kept in memory to recognise already visited states. However, a monotonic
progress measure guarantees that states which have a progress value that is
strictly less than the minimal progress value of those states for which successors
have not yet been calculated can never be reached again. It is therefore safe to
delete such states from memory which significantly reduces the memory usage
during the state space exploration.

The progress exploited by the sweep-line method and formalised in the form
of a progress measure is defined below in Definition 1 where S denotes the set
of system states, s0 ∈ S denote the initial state, s →∗ s′ denotes that s′ ∈ S is
reachable from s ∈ S via some number of transitions, and reach(s0) the set of
states reachable from the initial state.

Definition 1 (Monotonic Progress Measure). A monotonic progress
measure is a tuple P = (O,�, Ψ) such that O is a set of progress values,
� is a total order on O, and Ψ : S → O is a progress mapping such that
∀s, s′ ∈ reach(s0) : s →∗ s′ ⇒ Ψ(s) � Ψ(s′). �

A progress measure is non-monotonic when there is at least one regress edge,
i.e., an edge where the source state has a larger progress value than the des-
tination state. A generalised version of the sweep-line method that can handle
non-monotonic progress measures and regress edges also exists [14], but is not the
focus of our work. It was already proved [12] that the sweep-line method guar-
antees full coverage of the state space, and in the case of a monotonic progress
measure it terminates after having explored each reachable state once. In the
case of a non-monotonic progress measures, termination is still guaranteed but
some states may be explored multiple times.

Algorithm 1 based on [12] specifies the sweep-line algorithm for monotonic
progress measures. The algorithm starts with a hash table of visited states and
a priority queue on progress values containing the states that are still to be
processed. Both are initialized at the beginning with the initial state s0 (lines
2-3). The progress value for the current (initial) layer ψc is also initialized in
line 4. Then, the algorithm executes a loop (lines 5-28) which ends when all the
reachable states have been processed. For each iteration, we select one of the

Paper B 129

168 A. Rodŕıguez et al.

Data:
Nodes � Hash table of visited states currently stored.
Unprocessed � Priority queue of unprocessed states.
Layer � List of states processed in the current layer.
ψc � Progress value for current layer.
Φ � Property to be verified.
Result: True if the property is satisfied, false otherwise.

1 begin
2 Nodes.insert(s0)
3 Unprocessed.insert(s0)
4 ψc ←− ψ(s0)
5 while ¬(Unprocessed.isEmpty()) do

/* node with lowest progress measure */

6 s ←− Unprocessed.getMinElement()
7 if ψc � ψ(s) then
8 if ¬ (checkProperty(Layer, Φ)) then
9 return false

10 end
11 forall s′ ∈ Layer do
12 Nodes.delete(s′)
13 end
14 Layer ←− ∅

/* Update progress measure for current layer */

15 ψc ←− ψ(s)

16 end
17 Layer.insert(s)

/* For every successor state of s */

18 forall (t, s′) such that s
t−→ s′ do

19 if ¬(Nodes.contains(s′)) then
20 Nodes.insert(s′)
21 if (ψ(s) � ψ(s′)) then
22 RaiseException(‘Regress edge found’)
23 else
24 Unprocessed.insert(s′)
25 end

26 end

27 end

28 end
29 return true

30 end

Algorithm 1: Sweep-line algorithm for monotonic progress measures

states with the lowest progress value among the unprocessed states (line 6). The
condition in line 7 checks if the progress value of the layer is strictly less than
the progress value of the selected state; if so, we are about to move into the
next layer. This is the point where we invoke the property-specific CTL model

130 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 169

checking algorithm for the property Φ using the checkProperty procedure at
line 8. If the checkProperty determines that the property is violated, then we
return false and the algorithm stops. The implementation of checkProperty

is the subject of the next section. In line 18, we use s
t−→ s′ to denote that the

transition t is enabled in state s, and that the occurrence of t in s leads to the
state s′. If the property is never violated the algorithm returns true at the end
of the execution (line 29).

3 CTL Property Checking Algorithms

CTL [5] is an important branching temporal logic that is sufficiently expressive
for the formulation of an important set of behavioural system properties. Even
though a large set of properties can be specified using the semantics of CTL, there
are some restrictions when applying them with the sweep-line method algorithm.
The challenge of combining CTL model checking with the sweep-line method
is that conventional algorithms for CTL model checking propagate information
backwards from a state to its predecessors [6]. This follows the opposite workflow
than the forward progress-first exploration that the sweep-line method performs.

In this paper, we do not consider the full CTL, but only formulas of the
AG{EF,AF}-fragment that can be obtained from the following grammar, where
p as an atomic state proposition and φ is called a state predicate:

Φ ::=AGψ |ψ
ψ ::=EFφ |AFφ |φ
φ ::= p |φ1 ∧ φ2 |φ1 ∨ φ2 | ¬φ

The formulas expressing behavioural properties to be verified are interpreted
over the paths of the state space as informally explained below:

Property - AGψ “Invariantly”, which holds if ψ holds in all states that are
reachable from the current state.

Property - EFφ “Holds potentially” or “possibly”, which holds if it is possible
to find a state reachable from the current state where φ holds.

Property - AFφ “Holds eventually” which holds if from the current state, a
state satisfying φ is always eventually reached.

Property - AG EFφ “Always possible”, which holds if from any state reachable
from the current state, a state satisfying φ can always be reached.

Property - AG AFφ “Always eventually”, which holds if from any state reach-
able from the current state, a state satisfying φ is always eventually reached.

We say that a formula (property) Φ holds if Φ holds in the initial state s0. To
model check the AFEF and AGAFproperties, we exploit the set of strongly
connected components (SCC). A strongly connected component of a directed
graph is a maximal subgraph determined by nodes that are mutually reachable.
A strongly connected component is terminal if no states in the component has
outgoing edges to states in other components. It should be noted that when

Paper B 131

170 A. Rodŕıguez et al.

checking the AGAF and AF properties we implicitly add a self-loop to any
terminal states, i.e. (deadlocked) states without enabled transitions.

Because of the monotonicity of the progress measure, each strongly connected
component only contains nodes belonging to the same layer and is hence always
contained in a single layer. This is formally stated in the proposition below.

Proposition 1. Let P = (O,�, ψ) a monotonic progress measure, SCC be the
set of strongly connected components, and let scc ∈ SCC be a strongly connected
component. Then: ∀s, s′ ∈ scc : ψ(s) = ψ(s′).

Proof. Assume that there exists an scc ∈ SCC and states s, s′ ∈ scc such that
ψ(s) 	= ψ(s′). Hence either ψ(s) 	� ψ(s′) or ψ(s′) 	� ψ(s). Since s and s′ are in
the same scc, then they are mutually reachable and therefore there must exist
a pair of states (si, sj) on the path from either s to s′ or s′ to s such that
ψ(si) 	� ψ(sj). This contradicts the fact that the progress measure is monotonic.

Based on this, we can compute the strongly connected components for a given
layer immediately before we delete the nodes in the current layer and move to
the next one. The algorithm checks the property depending on the form of the
property as outlined below.

Property - AGφ. We check that every node within the layer satisfies φ. If φ
does not hold in one of them, we return false and abort the exploration.

Property - EFφ. If at least one state is encountered that satisfies φ, then true
is returned and the execution finishes. Thus, false will be returned if at the
end of the exploration not a single state satisfying φ has been found.

Property - AG EFφ. For this property, we first compute the SCC of the
given Layer. The property will not be satisfied and therefore the procedure
will finish the execution returning false, if any scc among the SCC of Layer
is terminal and φ does not hold in any of the states contained in scc.

Property - AG AFφ. For this property, we first compute the SCC of the
given Layer. We then remove the states that satisfy φ. If the resulting set of
nodes has a cycle, then the property is violated and therefore the execution
immediately finishes returning false.

Property - AFφ. This property can be checked in a similar fashion as AGAFφ
with the modification that we can truncate the search at SCC where all cycles
include a state satisfying φ.

The two first properties can easily be checked by just inspecting each state
encountered during the sweep-line state space exploration. For verification of the
two other properties, we invoke the procedure checkProperty at the moment
where the algorithm is about the leave the current layer and move into the next
ones. We do not detail the checking of AFφ as it is very similar to AGAFφ as
explained above.

132 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 171

A consequence of Proposition 1 is that SCC can be computed by considering
one layer at a time. Furthermore, Theorem 1 ensures that the sweep-line method
covers all reachable states which means that we will encounter all strongly con-
nected components at some stage. The remaining step consist of linking the
inspection of SCC to the model checking of the AGEF and AGAF properties.
This is done in the proposition below which formalises the requirements infor-
mally introduced above.

Proposition 2. Let SCC be the set of strongly connected components of M ,
SCCT ⊆ SCC the set of terminal strongly connected components, and let φ be
a state predicate. Then:

1. AGEFφ is satisfied ⇔ ∀scc ∈ SCCT ∃s ∈ scc : φ(s)
2. AGAFφ is satisfied ⇔ ∀scc ∈ SCC : scc \ {s ∈ scc : φ(s)} is acyclic

Proof. First we prove 1. Assume that AGEFφ holds and there exists a terminal
scc named scct such that no states in scct satisfy φ. Since all states belong to
some scc, then we can find a path from the initial state to a state s in scct. Since
scct is terminal and do not contain states satisfying φ, then we can no longer
reach states that satisfies φ from s. Hence, AGEFφ cannot hold. Assume that
each terminal scc contains a state satisfying φ and let s be any reachable state.
Since we cannot have cycles that spans multiple SCC and all states belong to
some scc, there must exists a path from the scc to which s belongs to a state s′

in some terminal scc. Within this terminal scc, all states are mutually reachable
and by our assumption at least one state in there satisfies φ. Hence, AGEFφ
holds.

Next we prove 2. Assume that AGAFφ holds and there exists a scc such that
when all states satisfying φ are removed from scc we still have a cycle consisting
of states in scc. In that case, we can find a path s0, s1 . . . s leading to a state
s on this cycle, and we can then extend this to an infinite path by repeating
the states on the cycle to which s belong. Since no state on the cycle satisfy φ,
then AGAFφ cannot hold. Hence, we cannot have such cycles. Assume now
that each strongly connected component becomes acyclic when removing states
satisfying φ. Since all cycles belongs to some strongly connected component,
then we cannot have cycles where no states satisfy φ. Thus, from any states on
an infinite path we must eventually encounter a state satisfying φ which means
that AGAFφ holds.

Based on Proposition 2 we can now specify the checkProperty procedure
which is given in Algorithm 2. The procedure first computes the SCC of the
given layer L. Here any algorithm for computing SCC can be used, and we do
not specify this further. Based on the SCC and Proposition 2, the procedure
then checks whether the property being investigated is violated in which case
false is returned and the entire algorithm terminates. At the end of the algorithm
(line 18), true is returned in case the property was never violated.

Paper B 133

172 A. Rodŕıguez et al.

1 begin
2 SCC ← ComputeSCC(Layer)
3 if Φ ≡ AGEFφ then
4 forall scc ∈ SCC do
5 if isTerminal(scc) ∧ ∀s ∈ scc : ¬φ(s) then
6 return false
7 end

8 end

9 end
10 if Φ ≡ AGAFφ then
11 forall scc ∈ SCC do
12 V ← scc \ {s ∈ scc | φ(s)}
13 if hasCycle(V) then
14 return false
15 end

16 end

17 end
18 return true

19 end

Algorithm 2: Checking strongly connected components of current layer

We have not specified the details of the isTerminal and hasCycle pro-
cedures. The isTerminal procedure can be implemented by checking that all
successors of nodes in the scc are contained in the scc. The hasCycle procedure
can be implemented by, e.g., a depth-first search of the nodes in V .

The completeness of the basic sweep-line algorithm and Proposition 1 ensures
that all strongly connected components will eventually have been computed and
inspected in Algorithm 2. Furthermore, Algorithm 2 is a direct implementation
of the two properties stated in Proposition 2. We therefore have the following
theorem concerning the correctness of our algorithm:

Theorem 1. Let P = (O,�, ψ) be a monotonic progress measure, and let Φ ≡
AGEFφ or Φ ≡ AGAFφ. Then Algorithm 1 terminates and Φ is satisfied if
and only if the algorithm returns true.

In Algorithm 2 we have separated the computation of SCC from the check-
ing of the SCC. As an optimisation it is possible to integrate the checking of
the properties of a scc into the scc computation algorithm. This could make it
possible to check the SCC as they are encountered by the scc-algorithm. As a
further optimisation it is also possible to compute the SCC as the layer is being
explored and not at the end of exploring a layer. However, for reason of clarity,
we have decided to separate the two steps in the formulation of the algorithm.

As the continuation of the work presented in [17], we have implemented
Algorithm 1 using the Standard ML language, and integrated it into CPN Tools.
This allows us not only to analyse states spaces of models constructed using
CPN Tools taking advantage of the sweep-line method, but also to verify the

134 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 173

aforementioned behavioural properties. We have also optimised the algorithm, so
every time a property is violated or we know that it cannot be further satisfied,
the execution stops to save time.

4 The CPN MQTT Model

Our aim is to use the property-specific sweep-line model checking algorithms for
CTL from the previous section to verify the key behavioural properties of the
CPN model we have developed of the MQTT protocol [19].

MQTT applies topic-based filtering of messages with a topic being part of
each published message. An MQTT client can subscribe to a topic to receive
messages, publish on a topic, and clients can subscribe to as many topics as they
are interested in. As described in [18], an MQTT client can operate as a publisher
or as a subscriber, and we use the term client to generally refer to a publisher or
a subscriber. The broker [18] is the core of any publish/subscribe protocol and is
responsible for keeping track of subscriptions, receiving and filtering messages,
deciding to which clients they will be dispatched, and sending them to all sub-
scribed clients. The MQTT protocol delivers application messages according to
the three Quality of Service (QoS) levels defined in [2], which are motivated by
the typically needs that IoT applications may have in terms of reliable delivery
of messages.

4.1 Interaction Overview

MQTT defines five main operations: connect, subscribe, publish, unsubscribe
and disconnect. Such operations, except the connect which must be performed
a priori by each of the clients who want to participate in the communication,
are mutually independent and can be triggered in parallel by the clients and
processed by the broker. We have developed the CPN model following modelling
patterns that ensure modularity, and thereby encapsulation of both the protocol
logic and the behaviour of such operations.

In order to show how the clients and the broker interact, we describe the
different actions that clients may carry out by considering an example. Figure 1
shows a sequence diagram for a scenario where two clients connect, perform
subscribe, publish and unsubscribe, and finally disconnect from the broker. The
protocol interaction is as follows:

1. Client 1 and Client 2 request a connection to the Broker.
2. The Broker sends back a connection acknowledgement (CONNACK) to confirm

the establishment of the connection.
3. Client 2 subscribes to topic 1 with a QoS level 1, and the Broker confirms the

subscription with a subscribe acknowledgement message.
4. Client 1 publishes on topic 1 with a QoS level 1. The Broker responds with a

corresponding publish acknowledgement (PUBACK).
5. The Broker transmits the publish message to Client 2 which is subscribed to

the topic.

Paper B 135

174 A. Rodŕıguez et al.

Fig. 1. Message sequence diagram illustrating the MQTT phases.

6. Client 2 gets the published message, and sends a publish acknowledgement
back as a confirmation to the Broker that it has received the message.

7. Client 2 unsubscribes to topic 1, and the Broker responds with an unsubscribe
acknowledgement.

8. Client 1 and Client 2 disconnect.

4.2 CPN Model Overview

We now briefly show and discuss the model and its main elements that are
important for the understanding of the work carried out. We refer the reader
to [19] for a detailed description of the MQTT protocol and the MQTT CPN
model. The complete CPN model of the MQTT protocol consists of twenty four
modules organised into six hierarchical levels.

The model is organised following a modelling pattern that ensures modu-
larity and therefore, encapsulation of the protocol logic and behaviour of such
operations. This offers advantages both for readability and understandability of
the model and also, for making it easier to detect and fix errors during the incre-
mental verification. For instance, this has allowed us to make a clear separation
of the different QoS functional logic without having any negative complexity
impact on the model. Note that the verification is incremental in the sense that
we start with a core functionality of the protocol, and then we incrementally add
more operations until we have the complete functionality included. This implies
that we incrementally verify properties associated to each set of the operations.

Figure 2 shows the top-level module of the CPN MQTT model which con-
sists of two substitution transitions (drawn as rectangles with double-lined bor-
ders) representing the Clients and the Broker roles of MQTT. Substitution tran-
sitions constitute the basic syntactical structuring mechanism of CPNs and

136 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 175

Fig. 2. The top-level module of the MQTT CPN model.

each of the substitution transitions has an associated module that models the
detailed behaviour of the clients and the broker, respectively. The name of the
(sub)module associated with a substitution transition is written in the rectan-
gular tag positioned next to the transition.

The two substitution transitions in Fig. 2 are connected via directed arcs to
the two places CtoB and BtoC. The clients and the broker interact by producing
and consuming tokens on the places. The places CtoB and BtoC are designed
to behave as queues. The queue mechanism offers some advantages that the
MQTT specification implicitly indicates. The purpose of this is to ensure the
ordered message distribution as assumed from the transport service on top of
which MQTT operates.

4.3 Client and Broker State Modelling

The colour sets defined for modelling the client state are shown in Fig. 3. The
ClientProcessing submodule in Fig. 4 models all the operations that a client can
carry out. Clients can behave as senders and receivers, and the five substitution
transitions CONNECT, PUBLISH, SUBSCRIBE, UNSUBSCRIBE and DISCONNECT have
been constructed to capture both behaviours.

The place Clients (top-left place in Fig. 4) uses a token for each client to
store its respective state during the communication. The State colour set is
an enumeration type containing the values READY (for the initial state), WAIT
(when the client is waiting to be connected), CON (when the client is connected),
and DISC (for when the client has disconnected). The states of the clients are
represented by the ClientxState colour set which is a product of Client and
ClientState. The colour set ClientState is used to represent the state of a
client and consists of a list of TopicxQoS, a State, and a PID. Using this, a
client stores the topics it is subscribed to, and the quality of service level of

Paper B 137

176 A. Rodŕıguez et al.

Fig. 3. Colour set definitions used for modelling client state.

Fig. 4. ClientProcessing submodule.

each subscription. The colour set PID is used for modelling the packet identifiers
which play a central role in the MQTT protocol logic.

138 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 177

Fig. 5. The BrokerProcessing module.

We have structured the broker similarly as we have done for clients. This can
be seen from Fig. 5 which shows the BrokerProcessing submodule. The Connect-
edClients place keeps the information of all clients as perceived by the broker.
This place is designed as a central storage, and it is used by the broker to dis-
tribute the messages over the network. The broker behaviour is different from
that of the clients, since it will have to manage all the requests and generate
responses for several clients at the same time.

5 Model Checking and Experimental Results

In this section we show how we have performed sweep-line based model checking
of the CPN MQTT model and present the results from the experiments.

5.1 Progress Measure

The first aspect to consider is how to define the progress measure of the model.
Since the model runs in an acyclic configuration there is a final state where all
the clients are disconnected and we take advantage of the PID as a way to keep
track of the evolution of the message interchange. We have therefore defined
the progress measure as a combination of the different states the clients can
go through in conjunction with the PIDs. In the experiments, we consider two

Paper B 139

178 A. Rodŕıguez et al.

clients, so the initial state is made up of two clients in the READY state and PID
= 0 and the final state is reached when both clients are in a DISC state and the
PID = 3.

Our definition of this progress measure over the possible combinations splits
our state space into 100 layers. We have also experimented with other progress
measures specifications, for instance, just taking into account the states or only
the PIDs which for each such separated choice produces a total of 16 layers. In
our experience, there is a trade-off between the granularity and the size of each
layer, and it is up to the analyst to decide depending on the concrete resources.
Since the progress measure is defined such that the progress values are integers,
we have for the states assigned 1 for READY, 2 for WAIT, 3 for CON and 4 for
DISC, and 1 for PID = 0, 2 for PID = 1, 3 for PID = 2 and 4 for PID = 4. It
is important to note that the clients cannot backtrack to a previous state nor
to a lower PID. For instance, if client 1 reaches the CON state, it can never be
again in the WAIT state. As we need to keep a global notion of progress, we
compute it using the following equation with c1 and c2 being client 1 and client
2, respectively and where B is a base:

ψc = B3 ∗ state(c1) + B2 ∗ pid(c1) + B1 ∗ state(c2) + B0 ∗ pid(c2)

Essentially, we interpret the states and the PIDs of the two clients as a number
where B is required to be larger than the number of states of each client. In our
experiments, we have used B = 10, i.e., the decimal numbering system. With
this, we can obtain a progress value for each possibility (between 1111 and 4444)
and respecting the monotonic ordering of non-regress.

As we have implemented the model in a modular and parameterized fashion,
we are able to control several elements, for instance, the number of clients,
the operations those clients can perform (e.g., connect and subscribe), and the
size of the queues for handling messages. Note that, in order to obtain a finite
state space, we have to limit the number of clients and topics, and also bound
the packet identifiers. The packet identifiers are incremented throughout the
execution of the different phases of the protocol, i.e., the connect, subscribe,
data exchange, unsubscribe, and disconnect phases. This means that we cannot
use a single global bound on the packet identifiers as a client could reach this
bound, e.g., already during the publish phase and hence the global bound would
prevent (block) a subsequent unsubscribe to take place. We therefore introduce a
local upper bound on packet identifiers for each phase. This local bound expresses
that the given phase may use packet identifiers up to this local bound. In the
next subsection, we present the results of, first, running the state space using
the sweep-line algorithm, and second, verifying certain behavioural properties.

5.2 Incremental Verification and Properties

We have designed a system to run six incremental executions which gives us more
control to detect errors during the validation of the model and the verification
of the properties. The six different scenarios are wrapped within three different

140 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 179

steps. In the first step we include only the parts related to clients connecting and
disconnecting. In the second step we add subscribe and unsubscribe, and finally
in the third step we add data exchange considering the three quality of service
levels in turn. At each step, we include verification of additional properties. Below
we briefly discuss the three steps and the properties verified at each step. Note
that properties that reason about clients are verified for each individual client.
In other words, the properties make sure that every client involved satisfies the
property being verified.

Step 1. Connect and Disconnect. In this first step we consider only the part of
the model related to clients connecting and disconnecting to the broker.

S1-P1-ConsistentConnect. The clients and the broker have a consistent view
of the connection state.

S1-P2-ClientsCanConnect. There exists a reachable state in which each client
is connected to the broker.

S1-P3-ConsistentTermination. Each terminal state (dead marking) has a
consistent and desired behaviour.

S1-P4-PossibleTermination. The protocol can always be terminated, i.e., a
terminal state (dead marking) can always be reached.

Step 2. Subscribe and Unsubscribe. In this step, we add the ability for the clients
to subscribe and unsubscribe (in addition to connect/disconnect from step 1).

S2-P1-CanSubscribe. There exists states in which both the clients and the
broker sides consider each client to be subscribed.

S2-P2-ConsistentSubscription. In every state there is a consistent subscrip-
tion in both clients and broker sides.

S2-P3-PossiblySubscribed. If the client sends a subscribe message, then even-
tually both the clients and the broker sides will consider the client to be
subscribed.

S2-P4-CanUnsubscribe. For each client there exists executions in which the
client sends an unsubscribe message.

S2-P5-EventuallyUnsubscribed. If the client sends an unsubscribe message,
then eventually that both the clients and the broker sides consider the client
to be unsubscribed.

Step 3. Publish and QoS levels. We add the ability for the clients to publish and
receive messages in addition to the rest of the properties of Steps 1 and 2.

S3-P1-PublishConnect. Each client can publish if it is in a connected state.
S3-P2-CanPublish. There exists an execution in which each client publishes

a message.
S3-P3-CanReceive. For each client there exists an execution in which each

client receives a message.
S3-P4-ReceiveSubscribed. A client only receives data if it is subscribed to

the topic, i.e., the client side considers the client to be subscribed.

Paper B 141

180 A. Rodŕıguez et al.

Table 1 shows the representation of the properties in CTL. Note that the
verified properties have the forms described in Sect. 3. We have marked in Table 1
some properties with “*”. The property S2-P3 has been computed as if it were
an EF property (the same applies to S2-P5). However, this does not completely
verify the property since it only checks that it is possible to find a state where
the client is subscribed. What we really want to check is that we can reach a
state where the client sends a subscribe message, and eventually after that the
client is subscribed in the broker side. The implementation of such properties of
the form AG(Φ ⇒ AF (Ψ)) is part of our future work.

5.3 Experimental Results

Table 2 summarises the statistics as a result of running the six scenarios, using
both approaches, the traditional CPN state space exploration and the sweep-
line method approach, and verifying the properties aforementioned. The States
and Arcs columns give the number of states and edges, respectively, in the state
space. The Peak column lists the peak number of states stored in memory (i.e.,
the number of states in the largest layer). The Rel. Mem. Reduction column
indicates the reduction of memory as the result of using the sweep-line method,
compared to the total number of states (stored in memory by the tradition
approach). For instance, in row number 5 in Table 2, we have a reduction in
memory consumed of 84.17%, which means that the number of states we have
in memory corresponds to the 15.83% of the total amount of states we would
store using the traditional approach. The TV-Time column amounts the time
that took for the traditional procedure to verify the properties. The SLV-Time
column details the time needed to verify the properties using the sweep-line
approach. Finally, the column Rel. Time Increment gives the relative additional

Table 1. CTL properties verified.

Property CTL formula Description

S1-P1 AGΦ Φ: Consistent connection

S1-P2 EFΦ Φ: Each client is connected to the broker

S1-P3 AG(¬ DM ∨ Φ) DM: Dead marking | Φ: desired dead marking

S1-P4 AGEF DM DM: Dead marking (checked in S1-P3 that it is desired)

S2-P1 EFΦ Φ: Each client can subscribe

S2-P2 AGΦ Φ: Each client is consistently subscribed

S2-P3* EFΦ Explanation above

S2-P4 EFΦ Φ: Each client can unsubscribe

S2-P5* EFΦ Explanation above

S3-P1 AG (Φ ⇒ Ψ) Φ: Client connected | Ψ: Client can publish

S3-P2 EFΦ Φ: Each client can send a publish

S3-P3 EFΦ Φ: Each client can receive a publish

S3-P4 AG (Φ ⇒ Ψ) Φ: Client receives a publish | Ψ: Client is subscribed

142 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 181

Table 2. Results on the six incremental executions using both approaches.

Configuration States Arcs Peak Rel. Mem.

Reduction

TV-Time SLV-Time Rel. Time

Increment

1. Conn-Disconn 35 48 9 74.29% 0.00 s 0.00 s 0%

2. 1 + Subscribe 507 1,054 180 64.50% 0.156 s 0.219 s 79%

3. 2 + Unsubscribe 1,849 4,120 300 83.78% 1.328 s 2.171 s 63.48%

4. 3 + Pub QoS 0 4,282 8,840 711 83.4% 4.453 s 4.983 s 11.9%

5. 3 + Pub QoS 1 11,462 23,934 1,815 84.17% 20.172 s 28.531 s 41.44%

6. 3 + Pub QoS 2 43,791 85,682 7,037 83.93% 168.113 s 250.708 s 49.13%

time that was necessary for the sweep-line method to proceed, compared to the
traditional approach.

The two approaches provided the same results during the evaluation of the
properties, keeping the consistency of the verification process. Even though the
sweep-line is more time consuming, the memory usage was successfully reduced
even in the worst case scenario. The highest relative time consumption is located
in the third row with an increase of 63.48%. However, this should not be taken
completely as reference since the calculation with such a low number of states
and arcs is very sensitive to also the time that takes to compute the state space
and the SCC.

6 Conclusions and Future Work

We have presented the application of the sweep-line method for verifying an
elaborate set of behavioral properties of the MQTT protocol. The application of
the sweep-line method relied on a set of on-the-fly algorithms for model checking
selected CTL behavioral properties. We have compared the application of the
sweep-line method with the application of standard CTL model checking in CPN
Tools demonstrating a substantial reduction in memory usage at the expense
of a modest increase in execution time. The consistency between the results
obtained using conventional CTL model checking and the results obtained with
the implementation of our property-specific CTL model checking algorithms for
the sweep-line method serves as a validation of our new approach.

We see several possible directions for future work based on the results and
experiments presented in this paper. We plan to investigate a more complete
set of scenarios where different configurations are considered. This includes the
number of clients, different progress measures, distinct queue sizes, and the pos-
sibility of retransmitting packets. This is going to be relevant to make other
analysis and study, first, how the number and size of the strongly connected
components affects the sweep-line method and second, how the reduction factor
grows with the value of the parameter. Related to this, there are also several pos-
sibilities for improving the implementation of the property-specific CTL model
checking algorithms that we employ.

Paper B 143

182 A. Rodŕıguez et al.

CTL model checking with the sweep-line method has until now been an open
research problem, and the algorithms presented represents a first step towards
addressing this. The extension of our approach to cover a larger subset of CTL
properties is an important direction of future work. An example is the S2-P3-
EventualSubscribed property discussed in Sect. 5. Properties on this form can be
explored in a two-steps fashion way, where first the property in the left-hand side
of the implication is accomplished, and then a second instance of the state space
is explored, checking whether the property in the right-hand side is satisfied or
not. The work presented in [16] on using tailored model checking algorithms
for different CTL properties could serve as a starting point. A key challenge is
to identity a subset of CTL compatible with the least-progress-first exploration
order of the sweep-line method. In the context of symbolic model checking using
binary-decision diagrams (BDDs), forward CTL model checking algorithms have
been developed [11]. However, the sweep-line method is not compatible with the
use of BDDs. The reason is that deleting states from a BDD (as required by
the sweep-line method) may cause the memory usage for storing the BDD to
increase. This counteracts the idea of how the sweep-line method alleviates the
state explosion problem.

A more open direction of future work is to develop CTL model checking
techniques that can be used for non-monotonic progress measures - and not
only monotonic progress measures as presented in this paper. We see potential
improvements in being capable of including non-monotonic progress measures. It
would significantly expand the class of models that can be analysed, for instance,
we could also run the algorithm in the cyclic version of the CPN MQTT model.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Banks, A., Gupta, R.: MQTT Version 3.1.1. OASIS Stand. 29, 89 (2014). http://
docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

3. Cheng, A., Christensen, S., Mortensen, K.H.: Model checking coloured petri nets
- exploiting strongly connected components. DAIMI Rep. Ser. 26, 519 (1997)

4. Christensen, S., Kristensen, L.M., Mailund, T.: A sweep-line method for state space
exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
450–464. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9 31

5. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

7. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using
partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279–287 (1999)

144 Paper B

Verification of the MQTT IoT Protocol Using CTL Sweep-Line Algorithms 183

8. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6 1

9. CPN tools. http://cpntools.org/
10. Evangelista, S., Kristensen, L.M.: Hybrid on-the-fly LTL model checking with the

sweep-line method. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS,
vol. 7347, pp. 248–267. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31131-4 14

11. Iwashita, H., Nakata, T., Hirose, F.: CTL model checking based on forward state
traversal. In: Proceedings of International Conference on Computer Aided Design,
pp. 82–87. IEEE Computer Society (1996)

12. Jensen, K., Kristensen, L., Mailund, T.: The sweep-line state space exploration
method. Theor. Comput. Sci. 429, 169–179 (2012)

13. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3), 213–254 (2007)

14. Kristensen, L.M., Mailund, T.: A generalised sweep-line method for safety prop-
erties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
549–567. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45614-7 31

15. Kristensen, L.M., Christensen, S.: Implementing coloured petri nets using a func-
tional programming language. Higher-order Symbolic Comput. 17(3), 207–243
(2004)

16. Liebke, T., Wolf, K.: Taking some burden off an explicit CTL model checker. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 321–341.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 18

17. Lilleskare, A., Kristensen, L.M., Høyland, S.-O.: CTL model checking with the
sweep-line state space exploration method. In: Proceedings of Norwegian Infor-
matics Conference (NIK) (2017)

18. MQTT essentials part 3: Client, broker and connection establishment. https://
www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe

19. Rodŕıguez, A., Kristensen, L.M., Rutle, A.: Formal modelling and incremental
verification of the MQTT IoT protocol. In: Koutny, M., Pomello, L., Kristensen,
L.M. (eds.) Transactions on Petri Nets and Other Models of Concurrency XIV.
LNCS, vol. 11790, pp. 126–145. Springer, Heidelberg (2019). https://doi.org/10.
1007/978-3-662-60651-3 5

20. Rodriguez, A., Kristensen, L.M., Rutle, A.: On CTL model checking of the MQTT
IoT protocol using the sweep-line method. In: Petri Nets and Software Engineering.
International Workshop, PNSE 19, Aachen, Germany, June 24, 2019, volume 2424
of CEUR Workshop Proceedings, pp. 57–72 (2019)

21. Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60385-9 13

22. Valmari, A.: The state explosion problem. In: Advanced Course on Petri Nets, pp.
429–528. Springer (1996)

23. Van Leeuwen, J., Leeuwen, J.: Handbook of Theoretical Computer Science, vol. 1.
Mit Press, Elsevier (1990)

24. Vardi, M.Y.: Branching vs. Linear time: final showdown. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45319-9 1

Paper B 145

PAPER C
EXECUTING MULTILEVEL DOMAIN-SPECIFIC
MODELS IN MAUDE

Alejandro Rodríguez, Francisco Durán, Adrian Rutle, Lars Michael Kristensen

In Journal of Object Technology Volume 18, number 2 (July 2019), pages 4:1-21, 2019.

Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Executing Multilevel Domain-Specific
Models in Maude

Alejandro Rodrígueza Francisco Duránb Adrian Rutlea

Lars Michael Kristensena

a. Western Norway University of Applied Sciences, Bergen, Norway
b. Universidad de Málaga, Málaga, Spain

Abstract Multilevel modelling (MLM) tackles the limitation in the number
of abstraction levels present in traditional modelling approaches within the
model-driven software engineering (MDSE) field. One way to specify the
behaviour description of MLMs is by means of multilevel model transfor-
mations. In this paper, we propose an approach to achieve reusability and
flexibility in specifying and executing multilevel model transformations.
For this purpose, we rely on code-generation and the efficient rewriting
logic mechanisms that Maude provides. As a proof of concept, we have
developed an infrastructure which combines our MLM tool MultEcore, that
facilitates definition of MLM hierarchies and transformations, with Maude,
which performs the execution of the transformations on these hierarchies.

Keywords Multilevel modelling; Model transformations; Rewriting logic

1 Introduction
MDSE tackles the increasing complexity of software by utilizing abstractions and
modelling techniques, and treats models as first-class entities in all phases of software
development. MDSE has proven to be a successful approach in terms of gaining
quality and efficiency [WHR14, MGS+13]. Most traditional MDSE approaches are
based on the Object Management Group (OMG) 4-layer architecture, such as the
Eclipse Modelling Framework (EMF) [SBMP08] and the Unified Modelling Language
(UML) [UML]. These approaches follow a two-level hierarchy in which only two levels of
abstraction are available for the modeller; i.e., models and their instances. Compelling
to use these two-level (meta)modelling approaches may introduce several challenges,
for instance, convolution and an increase in the complexity of models [LGC14, LG18].
It also has a direct impact in the specification of Domain-Specific Modelling Languages
(DSML), since the domain expert might be forced to fit several abstraction layers
into the only two levels which are supported by the traditional approaches [AK08].
Furthermore, capturing all the concepts in the same level makes it more difficult to
define the metamodel and to fix the potential inconsistencies created in the artefacts
conforming to (or depending on) this metamodel.

Alejandro Rodríguez, Francisco Durán, Adrian Rutle, Lars Michael Kristensen. Executing Multilevel
Domain-Specific Models in Maude. Licensed under Attribution 4.0 International (CC BY 4.0). In
Journal of Object Technology, vol. 18, no. 2, 2019, pages 4:1–21. doi:10.5381/jot.2019.18.2.a4

Paper C 149

2 · Rodriguez et al.

MLM has proven to be a successful approach in areas such as software architec-
ture and enterprise/process modelling domains [LGC14, AK17, AKdL18]. Having a
hierarchical organization of the metamodels defined to precisely capture the desired
environment facilitates the possible extensions and modifications that might come in
the future, not only in the existing levels, but also for adding/removing levels. MLM
provides separation of concerns and therefore prevent the pollution of models where
specialization of concepts would be done in the same level. This also leads to a better
modularization and facilitates extendibility. Being able to add new metalevels makes
extensions/modifications independent on other models. Further benefits of MLM and
a detailed comparison between MLM and two-level traditional approaches can be
found in [LG18].

Understanding the behaviour of a model is key to comprehend the behaviour of
the underlying system that is being abstracted. In MDSE, model transformations are
one of the possible means to specify behaviour. Although there are several approaches
proposed for the definition and simulation of behavioural models based on reusable
model transformations (e.g., [dLV02, Ren03, RDV09]), these rely on traditional two-
level modelling hierarchies. Furthermore, modelling the behaviour through multilevel
model transformations [AGM15] and performing execution in MLM has not been
widely explored yet. Multilevel Coupled Model Transformations (MCMTs) have
already been proposed [MRS+18b, MWR+19] to achieve reusable multilevel model
transformations for the definition of behaviour. In this paper, we have improved the
MCMTs by making them more reusable and flexible, extended them with the notion
of cardinality, and implemented a first prototype for the execution of the rules.

In this paper, we propose an infrastructure for the execution of MLM hierarchies.
This infrastructure is built on top of previous work for specification of structure
and behaviour of MLM hierarchies in MultEcore [MRS16, MWR+19, MRS+18b].
MultEcore is a set of Eclipse plugins aimed to combine the best from traditional two-
level modelling – the mature tool ecosystem (integration with EMF) and familiarity
– with the flexibility of MLM. It supports the main features that characterize MLM
such as potency, multiple typing and unlimited level of abstractions.

We rely on Maude for the execution/simulation of MLM hierarchies [CDE+07].
Maude is a high-level language and a high-performance interpreter and compiler
in the OBJ algebraic specification family [GM13]. It supports rewriting logic and
programming of systems. Among the functionalities that Maude provides, we exploit
the ability to specify object-based systems which allows us to transform both the
multilevel hierarchy and the MCMTs from MultEcore to Maude. This transformation
provides the complete Maude specification (a rewrite logic theory) that can be directly
executed by the rewriting logic engine. Execution in Maude means to apply the rewrite
rules that gives the next states of our model. Ultimately, we can conduct reachability
analysis (by means of strategies [EMOMV07]) and model checking. Maude supports
model checking on the generated state space as it implements a Linear Temporal Logic
(LTL) [BK08] model checker.

Paper outline: We present the prototype infrastructure in Sect. 2. Section 3
introduces the MLM background and the running example which we use for the rest of
the paper. In Sect. 4 we describe how MCMTs work and display the rules we define for
the MLM hierarchy example presented in Sect. 3. Section 5 discusses how Maude can
be used to execute the MLM hierarchy and how the translation between MultEcore
and Maude has been achieved. In Section 6 we discuss related work. Finally, Section 7
concludes the paper and outlines directions for future work.

Journal of Object Technology, vol. 18, no. 2, 2019

150 Paper C

Executing Multilevel Domain-Specific Models in Maude · 3

2 The infrastructure
In this section, we present the overall architecture (see Fig. 1) of the infrastructure
which we have developed for the execution of MLM hierarchies. The left-hand side
of Fig. 1 shows the MultEcore part, where we can specify the MCMT rules (top), the
multilevel hierarchy (middle) and the possible specification of behavioural properties
that we want to check or enforce during the execution. In [MRS+18b] the so-called
supplementary hierarchies are used to define property specification languages like
Linear Temporal Logic (LTL) and to specify behavioural properties. We can directly
translate these properties to Maude since it implements an LTL model checker. The
Transformer: MultEcore ↔ Maude takes care of the automatic transformation. This
can be viewed as a bidirectional transformation [Ste07, CFH+09] between the model
spaces in MultEcore and Maude:

MultEcore → Maude: once the modeller decides which specific language is going
to be simulated, the transformer takes both the models that define the language
(the concrete hierarchy branch) and the multilevel model transformation rules,
and creates the Maude specification. Such a specification corresponds to a
functional Maude file that can be executed directly.

Maude → MultEcore: the states that Maude provides (new versions of the model)
are given by means of an XML file. This file is interpreted by the transformer
which can directly propagate the new state(s) to the multilevel hierarchy in
MultEcore.

The right-hand side of Fig. 1 shows the Maude perspective. Once we have generated
the specification with the Transformer, we are able to execute the model using Maude’s

MultEcore

Multilevel
hierarchy MCMTs

Maude rewriting engine

State0

M
ul

til
ev

el
 h

ie
ra

rc
hy

Configuration
Interface

 Interative

execution

Model
checking Behavioural

properties/
constraints

...State1 Staten

Batch
execution

M
C

M
Ts

 ru
le

s

CreatePart
Maude

TransferPart

SendPartOut

Assemble

Transformer
MultEcore

Maude

Figure 1 – Infrastructure for the execution of multilevel models

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 151

4 · Rodriguez et al.

rewriting engine. As Maude allows several kinds of rewriting procedures depending
on the strategy chosen, we might want to perform either an interactive execution (i.e.,
step-by-step, where the modeller can take control of the next states that can be given),
or batch execution to directly get a final state.

In our prototype, we fully implement the capability to specify multilevel hierarchies
and MCMTs, the bidirectional transformer, and the execution of the specified config-
urations (see [Dep] to access the infrastructure). This encompasses all the features
shown in the figure except for the Configuration Interface which is aimed to offer the
modeller a user-friendly interface for controlling aspects related to execution and
verification.

3 DSML Structure - Multilevel Modelling
In this section, we discuss how we achieve the definition of the structural dimension
of DSMLs by means of MLM. MLM is based on the idea of deep instantiation and
eliminating the restriction in the number of times a model element can be instantiated.
In this context, MLM techniques match well with the creation of DSMLs, especially
when we focus on behavioural languages since behaviour is usually defined at the
metamodel level while it is executed at least two levels below; i.e., at the instance
level [dLG10, MWR+19].

Usually, when we are defining the structure of a domain-specific language, we
mentally “sketch” this as a hierarchical composition. It is therefore natural to have
a way to literally translate this mental representation into a model. An example
of a multilevel hierarchy (originally from [RDV09]) describing a DSML for Product
Line Systems (PLS) is shown in Fig. 2. This hierarchy (which is specified using
MultEcore) contains three levels of abstractions (four if we include the reserved level
0 that corresponds to Ecore in EMF, and five if we take into account the extension we
make in Sect. 4.2). Note that each model in the hierarchy is a directed multi-graph
and we establish typing relations in the vertical dimension which are formalised as
graph homomorphisms [EEPT06]. The complete formalization as well as other MLM
examples and an evaluation of MultEcore are depicted in [Mac19]. Further examples
of multilevel models with four or more levels can be checked out in [RDLGN15].

The example displays a hierarchical distribution with the generic_plant model at
the top (Fig. 2a). In this model, the abstract concepts related to the manufacturing of
objects are defined. Machine is aimed for any gear that can create, modify or combine
objects, which are represented by the concept Part. Both concepts are linked by the
creates relation. A Container can store parts, and this connection is captured by the
relation contains. All machines may have containers where they can take parts from or
where they can drop the manufactured ones. These two relations are identified with
the in and out edges, respectively. The annotations in the rectangles at the right top
corners of the nodes, and after the names in the arrows (separated by ‘@’) specify the
potencies. Potency is used on elements as a means of restricting the levels at which
this element may be used to type other elements. In the case of MultEcore, a potency
specification includes three values: the first two specify the first and the last levels
where one can directly instantiate an element (min and max), and the third value
specifies the number of times the element can be indirectly re-instantiated (depth).

The second level contains two models which are defined for two specific environ-
ments: one for creating hammers and one for manufacturing stools (hammer_plant
in Fig. 2b and stool_plant in Fig. 2c, respectively). One can see that both branches

Journal of Object Technology, vol. 18, no. 2, 2019

152 Paper C

Executing Multilevel Domain-Specific Models in Maude · 5

share similarities. The languages (branches) must belong to the same family in order
to make (horizontal) reusability possible. The hammer_plant contains the concepts
related to the manufacturing of Hammers which are created by combining one Handle
and one Head. This can be seen from the multiplicities 1..1 in the relations hasHandle
and hasHead. These two relations have as type EReference (from Ecore [SBPM09])
since no relation is defined between parts in the top level model (generic_plant). This
is because the concept of assembling parts is too specific to be located in generic_plant.
At this level, we can also find the machines GenHandle and GenHead that create the
parts, the Assembler, and the containers Conveyor and Tray that move and store the
parts, respectively. It is due to the nature of PLSs that the stool_plant (Fig. 2c)
branch in the MLM hierarchy is structured similar to the one in hammer_plant. In this
case, we have machines GenLeg and GenSeat to generate Leg and Seat, respectively,
and a Gluer that puts together three legs and one seat to make a Stool.

The two models defined at the bottom of the hierarchy, in Fig. 2d and Fig. 2e,
represent specific configurations for hammers (hammer_config) and stools (stool_config)
productions, respectively. They contain specific instances of the concepts defined in
the levels above and they are used to specify concrete product lines configurations, in
which parts get transferred from generator machines to machines that combine them.

(a) generic_plant

(d) hammer_config (e) stool_config

(b) hammer_plant (c) stool_plant

EClass 1-1-* EClass 1-1-* EClass 1-1-*out@1-2-*

EReference contains@1-2-*

EReference

creates@1-1-*

EReference

in@1-2-*

EReference

GenHead 1-1-*

Conveyor 1-1-*

Tray 1-1-* Tray 1-1-*

GenHandle 1-1-*

Conveyor 1-1-*

Assembler 1-1-* Conveyor 1-1-*

out@1-1-* out@2

out@1-1-* out@2

cout@1-1-*

cout

cout@1-1-*

cout in@1-1-* in@2

out@1-1-*

out@2

cout@1-1-* cout

GenLeg 1-1-*

GenSeat 1-1-*

Box 1-1-*

Box 1-1-*

Gluer 1-1-*

Box 1-1-*

out@1-1-* out@2

out@1-1-* out@2

out@1-1-* out@2

in2@1-1-*

in@2

in1@1-1-*

in@2

Machine 1-1-* Machine 1-1-* Machine 1-1-*

Part 1-1-* Part 1-1-* Container 1-1-*

Part 1-1-*

creates@1-1-* creates creates@1-1-* creates

hasLeg@1-1-* EReference hasSeat@1-1-* EReference

Machine 1-1-* Machine 1-1-* Container 1-1-*

Part 1-1-* Part 1-1-* Container 1-1-*

Part 1-1-* Machine 1-1-*

creates@1-1-* creates creates@1-1-* creates cout@1-1-* EReference

hasHandle@1-1-*

EReference

hasHead@1-1-* EReference

3..3 1..11..1 1..1

Figure 2 – Full hierarchy for the PLS case study

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 153

6 · Rodriguez et al.

One could argue that this hierarchy can be managed with traditional two-level ap-
proaches using specialization and generalization (i.e., using subclassing and inheritance
relations, respectively). The traditional 4-layer architecture of OMG would force us to
a design with several concepts in the same model, since this architecture leaves only
one level for user models. The top level M3 is reserved for MOF; M2 for metamodels,
e.g., UML class diagram or UML object diagram; M1 is designated for user-models;
M0 has a “representation” relation to M1, which associates elements of M1 to real
world objects, i.e., there is no “instance-of” relationship to the M1 level above. Hence,
we would fit the levels generic_plant, hammer_plant and hammer_config into one model
at M1 level. Furthermore, the typing relations between model elements in these
different levels would have to be maintained manually, i.e., we would need elements
like MachineInstance and MachineType, ContainerInstance and ContainerType, etc.

MLM provides the flexibility needed to avoid the use of anti-patterns (e.g., type-
object pattern is described in [LGC14, LG18]) when fitting several layers of abstractions
into one single level. This anti-pattern appears when both the concept and the
metaconcept are defined in the same level, leading to convolution. Since the focus and
the contribution of this paper is oriented to the flexible definition of the behaviour
and the execution/simulation of the models, we do not enter into details of all the
concepts related to the definition and construction of MLM hierarchies; we refer
to [dLGC15, AK18, Küh18a, Küh18b, MWR+19] for the details.

4 DSML behaviour - MCMTs
Transformation rules can be used to represent actions that may happen in the system.
Conventional in-place model transformations (MTs) are rule-based modifications of
a source model (specified in the left-hand side of the rule) resulting in a new state
of the model (determined by the right-hand side). While the left-hand side takes as
input (a part of) a model and it can be understood as the pattern we want to find in
our original model, the right-hand side describes the target state of the system we
want to acquire in our model. There is a match when what we specify in the left-hand
side is found in our source model. The behaviour is the implicit transition from the
left-hand side to the right-hand side.

MCMTs have been proposed as a mean to overcome the issues of both the traditional
two-level transformation rules and the multilevel model transformations [MWR+19].
While the former lacks the ability to capture generalities, the later is too loose to be
precise enough (case distinctions). In this section we show how the behaviour of a
multilevel DSML can be described by using MCMTs.

4.1 PLS behaviour definition
The actions illustrated in this section describe a possible behaviour in the PLS
environment. These actions detail how to create parts, move them through the
different machines and assemble them into new parts. A rule CreatePart can be
specified as shown in Fig. 3. It represents the process in which a machine creates a
part. The META block allows us to locate types in any level of the hierarchy that can
be used in FROM and TO blocks.

However, the actual power of the META comes from the fact that it facilitates
the definition of an entire multilevel pattern. The rule CreatePart is sufficient
to generate instances of Head and Handle for the hammer branch of Fig. 2 and

Journal of Object Technology, vol. 18, no. 2, 2019

154 Paper C

Executing Multilevel Domain-Specific Models in Maude · 7

M1
Machine

P1
Partcr

creates

m1
M1

m1
M1

p1
P1c

cr

META . . .

FROM TO

Figure 3 – Rule CreatePart: The
execution gives a state where a
machine has created a part

instances of Seat and Leg for the stool branch
of Fig. 2. The variable P1 matches to any of
the aforementioned parts, both in hammer_plant
and stool_plant models, and the variable M1
matches any of the creator machines: GenHead,
GenHandle, GenSeat or GenLeg. However, the
key feature is that this rule can only match the
generators of parts, since we require M1 in the
META block to have a creates relation to P1.
Then a correct match of the rule comes when an
element, coupled together with its type, fits an
instance of M1 that has a relation of type creates to an instance of P1. For example,
GenHead in Fig. 2b, fits M1, since GenHead has a creates relation to Head. Hence, m1
can be matched to ghead (defined at the left in Fig. 2d) when applying the rule, in
order to create a new part (p1), which would be an instance of Head.

Compared to the original idea of MCMTs [MWR+19] (the levels specified in a
rule had to be consecutive by default) we have removed the strictness in the levels to
provide a more flexible definition. There might be several levels in between the blocks
FROM/TO and the upper level. This is represented by the three dots in Fig. 3.

Another rule called SendPartOut shown in Fig. 4 is the action defined for moving a
created part from its generator into the output container. It shows two levels specified
in the META block (separated by the upper double line). Similarly as in the CreatePart
rule, the three dots in between the specified meta levels enhance the flexibility of the
rule that can be applied in several cases without modifying it (this will be shown later
in this section). Also, it leads to a more natural way of defining that a type is defined
at some level above, without the need of saying explicitly in which level. At the top
level, we mirror part of generic_plant, defining elements like out and contains, that
are used directly as types in the FROM and TO blocks. These elements are defined
as constants, meaning that the name of the pattern element must match an element
with the same name in the typing chain. The use of constants allows us to be more
restrictive when matching, and significantly reduces the amount of matches that we
obtain. On the other hand, we allow the type on the variables to be transitive (i.e.,
indirect typing). For instance P1, which has the variable Part for the type, will match
any node which indirectly has Part as type, or ultimately will match to Part if no
indirect one is found. Fig. 5 displays TransferPart rule which moves a part from a
Conveyor to a Tray. It models the action where c1 (of type Conveyor), that holds a
part p1 and which is connected to t1 with Tray as type (described in the FROM block),
moves such a part to t1 (specified in the FROM block).

ContainerMachine Part
out contains

creates

M1
Machine

P1
Partcr

creates

. . .

c1
Container

m1
M1

p1
P1 c

cr
out

out
p1

P1

m1
M1

c1
Containerout

outco

contains

META

FROM TO

. . .

Figure 4 – Rule SendPartOut: A part is moved from the creator machine to a container

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 155

8 · Rodriguez et al.

Container Part
contains

Conveyor Tray
cout

. . .

t1
Tray

c1
Conveyor

p1
Part

co1

contains

c

cout
p1

Part

c1
Conveyor

t1
Tray

co2

contains

c

cout

META

FROM TO

. . .

Figure 5 – Rule TransferPart: The execution provides a model state where a part is trans-
ferred from a conveyor to a tray

The Assemble rule creates new products by combining the component parts. It
assembles two parts into a different part (see Fig 6). It requires, for the resulting part
p3, to consist of, or be built from parts p1 and p2. Having three variables for the
different parts, allows us to make an explicit distinction between them even though
all of them are instances of Part. Variables [M] and [N] in the intermediate level on
the h1 and h2 relations, represent the cardinality that have to be matched in order
to apply the rule. A part consisting of other parts might also need a specific number
of instances to be built from. In Fig. 2b we can see that a Hammer is composed of 1
Handle and 1 Head (this in fact can be understood as the default case). However, in
Fig. 2c, a Stool needs 3 Legs in order to be assembled. As the multiplicity has been
explicitly specified in the second META level of the rule, and we have established those
same variables for the multiplicities in the FROM block, then the rule will take that
into consideration during the matching process. When this process takes action, M
and N will be bound to 3 and 1 for stools, respectively. Then, these numbers will be
used to check whether that amount of parts exist in the FROM block. For the match
to succeed, three legs and one seat (and the respective relations with the container),
need to be found. Thus, this is syntactic sugar to represent that in the model it is
necessary to explicitly find this number of instances for the match to occur. The
way we define and use these multiplicities is inspired by the concept of cardinality
described in [SCGdL11]. Fig. 7 shows the unfolded version of the Assemble rule. As
M and N have been bound to 3 and 1, respectively, the pattern shown in the figure
needs to be found for a successful match.

Machine Container Part
in

out

contains

P3
Part

P1
Part

P2
Parth1[M]

EReference

h2[N]

EReference

. . .

m1
Machine

c1
Container

c2
Container

p1
P1

p2
P2

i
in

o
outco1 contains

co2 contains

[M]

[N]

c1
Container

m1
Machine

c2
Container

p3
P3

i
in

o
out

co3

contains

META . . .

FROM TO

Figure 6 – Rule Assemble: The execution gives a state where a machine takes several parts
and assemble them in a new one

Journal of Object Technology, vol. 18, no. 2, 2019

156 Paper C

Executing Multilevel Domain-Specific Models in Maude · 9

Machine Container Part
in

out

contains

P3
Part

P1
Part

P2
Parth1[M]

EReference

h2[N]

EReference

. . .

m1
Machine

c1
Container

c2
Container

p1 1
P1

p1 2
P1

p1 3
P1

p2 1
P2

i
in

o
out

co1 1

contains

co1 2

contains

co2 3

contains

co2 1

contains

c1
Container

m1
Machine

c2
Container

p3
P3

i
in

o
out

co3

contains

META . . .

FROM TO

Figure 7 – Unfolded version of Assemble rule. The match takes into account the multiplici-
ties specified, and searches for three p1 and one p2

4.2 Horizontal and vertical flexibility
In the previous section we have defined the model transformation rules that provide
the behaviour to the multilevel hierarchy. Horizontal flexibility is indirectly inferred
since these rules can be directly applied to both branches shown in Fig. 2. For example,
CreatePart rule can be applied to create either a Head or a Handle (for hammer branch)
or to create a Leg or a Seat (for stool branch).

In this section, we demonstrate how MCMT rules are still applicable when modifying
an existing multilevel hierarchy (vertical flexibility) and how we can make restrictions
in the rules to confine the typing flexibility.

GenHead 1-1-*

Head 1-1-*

creates@1-1-*creates

special_head_config

Figure 8 – New specified level
for creating green heads

Let us suppose that ACME factories have some
specific type of hammers that are created by a han-
dle and a green head. This can be introduced as
a new level in between Fig. 2b and Fig. 2d, that
captures the ability to create green heads, called spe-
cial_head_config. This new level is depicted in Fig. 8.
The two nodes, SpecialGenHead and GreenHead and
the edge creates are now instances of GenHead, Green-
Head and creates, respectively, which are defined in
the level hammer_plant (Fig. 2b).

We are now able both to define a generator for
regular heads and also a generator for green heads,
in the level shown in Fig. 2d. As this depends on
the concrete scenario, we might construct different
configurations which can include any combination of the two generator of heads
aforementioned, and the rules should be agnostic to those possibilities. Fig. 9 shows
the two possible matches depending on the machine we define at the instantiation
level (i.e., at the lowest level). At the left side of the dashed double vertical line we
can see the CreatePart rule, already shown in Fig. 3.

At the right side we show a hierarchy consisting of three levels (divided by hor-
izontal lines). These levels comprise those elements of the PLS hierarchy involved
in the generation of heads (i.e., a generator that creates a head). They represent

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 157

10 · Rodriguez et al.

Figure 9 – Vertical reusability of rule CreatePart

hammer_plant (Fig. 2b), special_head_config (Fig. 8) and hammer_config (Fig. 2d)
levels, respectively. Note that the lowest level shown in this hierarchy is divided
by a vertical black line, which represents the same logic as the FROM/TO pattern.
This level is composed by two instances, one represents the match for the creation
of a regular head (at the top) and the other corresponds to the match of a specified
generator of green heads (at the bottom).

The dashed blue lines represent the match of the rule in case we define our
configuration as using regular head generator (ghead), while the dashed red lines
represent the match of the rule for a scenario where we have a green head generator
(specialghead). Moreover, the right hand side of the hierarchy at the instantiation level
(bottom-right side of Fig. 9) shows the state where the CreatePart rule has been fired.
As one can observe, the rule has not been modified at all, but the flexibility provided
allows both matchings depending on the scenario specified.

The default flexibility opens for several possible matchings. For instance, a normal
head could be created by a special head generator. Another possibility is, in the As-
semble rule, that a hammer can be manufactured from a green head and a normal
handle. Since considering these matches as valid is up to the modeller, we provide
functionality for allowing/disallowing them. We can restrict the CreatePart rule using
a matching strategy where the nearest type is selected (specialization priority) and
still leave open the matches for Assemble.

One might consider the need of restricting the indirect typing which is allowed
by-default since this flexible assumption (the type can be found at any number of jumps
of any length) might not be desired in all situations. To disallow that, we can use t@n
(n | n ∈ N) over a type t. First, this disables the indirect typing (so we must find the
type in just one jump upwards) and second, it forces the type to be at n levels above
the one where the match for t has been found.

Journal of Object Technology, vol. 18, no. 2, 2019

158 Paper C

Executing Multilevel Domain-Specific Models in Maude · 11

5 Formal specification and execution with Maude
As explained in Section 1, the MultEcore tool allows us to define multilevel hierarchies
and MCMTs to describe their behavior. MultEcore relies on Maude for the simulation
and formal analysis of the specified MLM systems.

Maude [CDE+07] is a specification language based on rewriting logic [Mes92], a
logic of change that can naturally deal with states and non deterministic concurrent
computations. A rewrite logic theory is a tuple (Σ;E;R), where Σ is called signature
and specifies the type structure (sorts, subsorts, etc.) and E is the collection of
equations and memberships declared in the functional module. Therefore, (Σ;E) is an
equational theory that specifies the system states as elements of the initial algebra
τ (Σ;E), and R is a set of rewrite rules that describe the one-step possible concurrent
transitions in the system. Rewrite specifications thus described are executable, since
they satisfy some restrictions such as termination and confluence of the equational
subspecfication and coherence of equations and rules. Indeed, Maude provides support
for rewriting modulo associativity, commutativity and identity, which perfectly captures
the evolution of models made up of objects linked by references as in graph grammar.
In summary, Maude provides, among others, the next useful features [CDE+02]:

Formal specification. The Maude specification of multilevel hierarchies and MCMTs
represents a formal semantics in rewriting logic. Since these specifications
are executable, they can be used for simulating/executing our models. The
automatic bidirectional transformation MultEcore ↔ Maude allows the execution
of MLM models from the MultEcore tool. Indeed, Maude’s flexibility and
customization capabilities have allowed us to represent MLM models and MCMTs
in Maude using a syntax very similar to the MultEcore syntax. This has led to
a straightforward transformation between MultEcore and Maude.

Execution of the specification. The Maude specification obtained from MLM hier-
archies and corresponding MCMTs using the above transformation are executable,
and therefore can be used to simulate them in Maude. The versatile rewriting
engine provides a lot of functionalities to customize the way we go trough the
execution steps. As we will see below, we can simulate our systems letting
Maude choose the path to follow, or we can specify a concrete path by means of
execution strategies.

Formal environment. Once the rewriting logic specification of the MLM hierarchies
and their MCMTs is available in Maude, we can use the formal tools in its formal
environment to analyze the systems thus described. For example, we can check
properties as confluence or termination of our specifications, but also perform
reachability analysis, model checking or theorem proving on them.

5.1 Multilevel hierarchies in Maude
In the Maude language, object-oriented systems can be specified by object-oriented mod-
ules in which classes and subclasses are declared, with the usual support for inheritance,
dynamic binding, etc. A class is declared with syntax class C | a1: S1,. . . , an: Sn,
where C is the name of the class, ai are attribute identifiers, and Si are the sorts of
the corresponding attributes. The objects of a class C are record-like structures of the
form < O : C | a1: v1, . . . , an: vn >, where O is the identifier of the object and vi

are the current values of its attributes.

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 159

12 · Rodriguez et al.

1 class Model | name : Name, om : Name, elts : Configuration, rels : Configuration .
2 class Element | name : Oid, type : Oid .
3 class Node | .
4 class Relation | source : Oid, target : Oid, min-mult : Nat, max-mult : Nat* .
5 subclasses Node Relation < Element .

Figure 10 – Maude structure of a multilevel hierarchy

In a concurrent object-oriented system, the concurrent state, which is called
a configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting using rules that describe the effects of the
communication events of objects and messages. The system presented in this paper
evolves as the result of applying the rewrite rules on collections of objects.

A multilevel hierarchy is represented in Maude as a structure of sort System of the
form MLM{model1 model2 . . .modeln}, where MLM is the name of the multilevel
hierarchy and each modeli is an object of class Model that represents a model in the
hierarchy. Note that when the transformation from MultEcore to Maude is to be
performed, the modeller have to decide the branch that is it going to be executed.
For instance, for the PLS hierarchy used in this paper, the modeller would decide
between hammer or stool branch. Fig. 10 illustrates the specification of a multilevel
hierarchy in Maude. A model is represented as an object of class Model, which has
attributes representing its name, its ontological metamodel om, and the nodes (elts)
and relations (rels) that are part of it (line 1). As mentioned in the previous paragraph,
Configuration is a predefined sort in Maude implemented to deal with object-based
systems. Instances of classes Node (line 3) and Relation (line 4) represent, respectively,
nodes and relations. Both are subclasses (line 5) of a class Element (line 2) of elements
with a name and a type. In addition to the attributes inherited from Element, class
Relation has attributes for the source and target of a relation, and its multiplicity range
(min-mult, max-mult).

The sort Name allows us to define how our objects are going to be identified.
For instance, the identifier of a model is represented as level(x), for x either 0 or a
natural number. Level 0 is always reserved for Ecore and n the lowest level in the
hierarchy. Identifiers are required to be unique. The transformation assigns these
names automatically when generated. As we will see in the next section, objects
generated in transformation rules are also given unique fresh names.

Given these declarations, Fig. 11 illustrates how models are represented. Specifically,
it shows the Maude term that represents the generic_plant level (corresponding to
Fig. 2a). Note that this is just one of the models in the MLM hierarchy. In this case
it has assigned level(1) (Line 1). Then we have the name of the model (“generic-plant”,
Line 2) and its metamodel at the level right above represented by om : “Ecore” (Line
3). It contains two sets, elts (Line 4) and rels (Line 8), for capturing the nodes and the
relations, respectively. For instance, the relation specified in Line 11, with identifier
oid(1,5), represents the in relation between a machine and a container: its name is
id(1,“in”), its type is id(0, “EReference”), and it links two nodes, id(1, “Machine”) as
source (in Line 5) and id(1, “Container”) as target (in Line 6). As expected, all the
information available in MultEcore is encoded in the Maude representation.

Journal of Object Technology, vol. 18, no. 2, 2019

160 Paper C

Executing Multilevel Domain-Specific Models in Maude · 13

5.2 The MCMT rules in Maude
In Maude, a distributed system is axiomatized by an equational theory describing its
states as an algebraic data type and a collection of conditional rewrite rules specifying
its behaviour. Rewrite rules are written crl [l] : t => t′ if C, with l the rule label, t and
t′ terms, and C a guard or condition. Rules describe the local, concurrent transitions
that are possible in the system, i.e., when a part of the system state fits the pattern t,
then it can be replaced by the corresponding instantiation of t′. The guard C acts as
a blocking precondition: a conditional rule can only be fired if its condition is satisfied.
Rules may be given without label or condition.

We can directly translate MCMT rules to conditional rewrite rules in Maude. We
illustrate this representation of rules with the CreatePart rule in Fig. 3. Fig. 12 shows
its Maude counterpart. The left-hand side of the rule (Lines 2-17) encodes the META
and FROM blocks of the rule. In this case, in the META section there is one model
level(L), and in the FROM one model level(J). Notice that we are not specifying a
concrete level, but we use variables that will be bound when the rewriting engine
matches the rule to our MLM concrete hierarchy. It is in the conditions where we can
constraint the behaviour of the rule by defining predicates or conditional expressions,
such as L < J. The counter specified in Line 16 is an auxiliary object that keeps a
counter so that we can create fresh new identifiers for the elements created in the
right-hand side. The rest of the left-hand side is fairly straightforward as it can directly
be inferred from the CreatePart rule displayed in Fig. 3). Atts..., Elts..., O..., etc. are
just variables we define to capture those attributes we do not explicitly specify.

The right-hand side of the rule (Lines 18-29) shows how the objects in the left-hand
side will be modified when the rule is applied; the ellipses are only to save space.
Model level(L) (the META) is left unmodified. We display in detail the level(J) model,
which corresponds to the TO block shown in Fig. 3. As we can see in Lines 22 and
24-25, there are two new elements. The first one corresponds to the new part, which
will have identifier oid(J, s N), name id(J, s s s N), and type P1 (note the reference to
the correspondent object in model level(L)). Notice that new identifiers and names are
generated by using the counter object. The s operator is a Maude predefined operator
that calculates the successor of a number. For instance, if J and N get bound to 3 and
100, we would get as results oid(3, 101) and id(3,103), respectively. A new relation is
also created, with source m1 (Line 12) and target the new part id(J, s s s N).

In addition to the condition on models level(L) and level(J), other conditions are also

1 < level(1) : Model |
2 name : "generic-plant",
3 om : "Ecore",
4 elts : (
5 < oid(1,1): Node | name : id(1, "Machine"), type : id(0, "EClass") >
6 < oid(1,2): Node | name : id(1, "Container"),type : id(0, "EClass") >
7 < oid(1,3): Node | name : id(1, "Part"), type : id(0, "EClass") >),
8 rels : (
9 < oid(1,4): Relation | name : id(1, "out"), type : id(0, "EReference"),

10 source : id(1, "Machine"), target : id(1, "Container") >
11 < oid(1,5): Relation | name : id(1, "in"), type : id(0, "EReference"),
12 source : id(1, "Machine"), target : id(1, "Container") >
13 < oid(1,6): Relation | name : id(1,"contains"), type : id(0,"EReference"),
14 source : id(1, "Container"), target : id(1, "Part") >
15 < oid(1,7): Relation | name : id(1,"creates"), type : id(0,"EReference"),
16 source : id(1, "Machine"), target : id(1, "Part") >) >

Figure 11 – Maude specification for generic_plant model

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 161

14 · Rodriguez et al.

given as a conjunction of predicates. In this case, * references of variables are handled
by the predicate *. This predicate is necessary to provide a type with the transitive
dimension mentioned in Sect. 4.1. We call it * to be consistent with the original idea
(degree of genericness ∗t) presented in [MRS+18b]. Multiplicities, potencies, and other
facilities in the rules are handled similarly.

5.3 Execution and results
Given MLM hierarchies and MCMT rules specified in Maude as shown in the previous
section, we have several options for executing it. Given an initial ground MLM hierarchy
instantiation from which to start the execution, the Maude rewrite commands can
attempt the consecutive application of the rules in our specification. Maude provides
two different rewriting commands, for which we can specify a maximum number
of rewriting steps to take, implementing two different strategies: rewrite follows a
top-down rule-fair strategy and frewrite follows a depth-first position-fair strategy.

In addition, Maude also provides commands for the controlled execution of our
rules. Maude facilitates a rich strategy language with which we can specify our own
strategies. For example, we can perform a batch execution, just by specifying step
by step, which rules are to be applied, and, if desired, the objects on which it should
happen, by providing a partial substitution for the instantiation.

Let us show a very simple example of the use of the srewrite command (abbreviated
srew), which allows us to apply a concrete strategy to a given term (our initial state will

1 crl [CreatePart] :
2 { < level(L) : Model |
3 name : M,
4 elts : (< O01 : Node | name : M1, type : *Machine, A01 >
5 < O02 : Node | name : P1, type : *Part, A02 >
6 Elts),
7 rels : (< O03 : Relation | name : cr, type : *creates, source : M1, target : P1,A03>
8 Rels),
9 Atts >

10 < level(J) : Model |
11 name : M’,
12 elts : (< O04 : Node | name : m1, type : *M1, A04 >
13 Elts’),
14 rels : Rels’,
15 Atts’ >
16 < counter : Counter | value : N >
17 Conf }
18 => { < level(L) : Model | ... >
19 < level(J) : Model |
20 name : M’,
21 elts : (< O04 : Node | name : m1, type : *M1, A04 >
22 < oid(J, s N) : Node | name : id(J, s s s N), type : P1 >
23 Elts’),
24 rels : (< oid(J, N) : Relation | name : id(J, s s N), type : cr,
25 source : m1, target : id(J, s s s N), min-mult : 1, max-mult : 1 >
26 Rels’),
27 Atts’ >
28 < counter : Counter | value : s s s s N >
29 Conf }
30 if L < J
31 /\ *(*M1, level(sd(J,1)), M1, ...)
32 /\ *(*Machine, level(sd(L,1)), id(1, "Machine"), ...)
33 /\ *(*Part, level(sd(L,1)), id(1, "Part"), ...)
34 /\ *(*creates, level(sd(L,1)), id(1, "creates"), ...) .

Figure 12 – Maude representation of the CreatePart rule (note the ellipses)

Journal of Object Technology, vol. 18, no. 2, 2019

162 Paper C

Executing Multilevel Domain-Specific Models in Maude · 15

be the Maude representation of either hammer_config (Fig. 2d) or stool_config (Fig. 2e))
where we specify the rules (and optionally some constraints within them) ordering.

1 srew PLS using CreatePart ;
2 CreatePart ;
3 SendPartOut ;
4 SendPartOut ;
5 TransferPart ;
6 TransferPart ;
7 Assemble ;
8 TransferPart .

Figure 13 – Strategy for manufacturing a
Hammer in hammer_config configuration

Let us assume that we want to make
a complete iteration over the ham-
mer_config model (for a smoother ex-
planation, in this scenario we do not
consider having the specialghead as in-
stance of SpecialGenHead displayed in
Fig. 8 and described in Sect. 4). We
would need then to create a head, a
handle, and eventually we would get as-
sembled a new hammer. Fig. 13 shows
the defined strategy we can execute to
test if such a final state is reached.

PLS in Line 1 corresponds to the initial term (the complete hierarchy). As the
strategy is written, each application of the CreatePart rule (Lines 1 and 2) can create
either a Handle or a Head. This is not a problem as the rewriting engine provides all
the solution, and then it discards the non valid ones when applying the Assemble rule
(a solution right before the execution of Assemble might have produced 2 Handles).
However, we can constrain the applications of the CreatePart rule by explicitly providing
a partial substitution:

CreatePart[P1 <- id(2, "Handle")] ;
CreatePart[P1 <- id(2, "Head")] ;

With this, we are binding P1 to generate first a Handle, then a Head. In both cases,
we would end up having the same solution.

GenHead 1-1-*

Conveyor 1-1-*

Tray 1-1-* Tray 1-1-*

GenHandle 1-1-*

Conveyor 1-1-*

Assembler 1-1-* Conveyor 1-1-*

Hammer 1-1-*

out@1-1-* out@2

out@1-1-* out@2

cout@1-1-*

cout

cout@1-1-*

cout in@1-1-* in@2

out@1-1-*

out@2

cout@1-1-* cout

contains@1-1-* contains@2

Figure 14 – hammer_config with a Hammer

The rest of the rules are applied se-
quentially. Taking the model in Fig. 2d
as reference, we would create a handle
and a head, and move them to the con-
veyors c1 and c2, respectively, using the
rule SendPartOut. Then we move both
parts to the tray t1 with the rule Trans-
ferPart and the parts are assembled into
a hammer using the rule Assemble. Fi-
nally, the hammer is moved from the con-
veyor c3 to the tray t2 using again the
rule TransferPart. Once we get a solu-
tion model by running the rules, Maude
generates an XML file which is transformed back into MultEcore. Fig. 14 shows how
the solution would look in the graphical view of MultEcore.

6 Related work
There exist several tools and technologies that support dynamic execution of models
through model transformation in a graphical manner. A Tool for Multi-Paradigm
Modeling (AToMPM) [SVM+13], the Foundational UML (fUML) [Sub11] and the
Executable Meta-Object Facility (xMOF) [MLWK13], are some examples that grant
such capability. AToMPM is an open-source framework for designing DSML environ-

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 163

16 · Rodriguez et al.

ments, performing model transformations, manipulating and managing models which
runs entirely over the web. The fUML is an executable subset of UML that can be
used to define, in an operational style, the structural and behavioural semantics of
systems. However, due to its exclusive focus on UML, it cannot be applied to arbitrary
domain-specific languages. The Action Language for Foundational UML (ALF) [Sei14],
which is built on top of fUML, provides functionality for executing UML models in a
textual way. They both are intended to work together, resulting in a more complete
framework that provides both graphic and programmatic (when a high degree of details
is required) facets. The xMOF is a metamodelling language that integrates Ecore with
the behavioural part of fUML. It is aimed at developing executable DSMLs that can
be simulated using the fUML virtual machine. In [BEK+06], the authors present an
approach for the definition of in-place transformations in EMF. All the approaches
mentioned above are based on traditional two-level approaches which disallow the
multilevel capabilities presented in this paper.

ConceptBase [JGJ+95] is a tool that implements the object model of a Datalog-
based variant of Telos [MBJK90]. It supports subtyping chains and unrestricted
class-instance relationships. However, it does not make a clear organization of elements
in hierarchical models. Furthermore, it does not support key features of MLM as
flexible depth (supported by our approach via Potency concept). The MOMENT-QVT
tool [BCR06] is a model transformation engine that provides partial support for the
QVT relations language [RVA06]. QVT (Query/View/Transformation) is a standard
set of languages for model transformation defined by the OMG. In [AGT12], authors
present an approach to transform from a multilevel setting to a two-level configuration
(and the other way around) using the ATL Transformation Language (ATL) [JABK08],
which is not designed to work within a multilevel context. However, our approach
makes it possible to directly define the behaviour of our multilevel hierarchy (by using
MCMTs). Since we can directly translate and use MLM hierarchies in Maude, a
transformation to a two-level setting to be able to rely on a model transformation
engine (like ATL or QVT [Kur07]) is not necessary.

In [RGdLV08], the authors show how Maude is used to represent a subset of the
PLS example used in this paper. The subset corresponds to the left-hand branch of
the multilevel hierarchy shown in Fig. 2. In their work, they encode both the PLS
metamodel and an instance of it, to later be able to simulate it and perform formal
analysis and model checking. Changes in either the metamodel or the model would
need to be done manually in the Maude implementation. Our approach hides the
Maude implementation so the user can make modifications directly in the graphical
editor which are in turn translated automatically to Maude.

7 Conclusions and future work
In this paper, we have described how flexible and reusable model transformations
(by means of the MCMTs) can be applied in the context of MLM. In addition to a
theoretical foundation, we have developed a prototype of an infrastructure to connect
our MLM tool MultEcore with Maude in order to execute/simulate the constructed
models. We have showcased the flexibility and reusability of the MCMT rules, first,
in the vertical aspect by adding an extra level into an MLM hierarchy, and second,
in the horizontal aspect by using the same rules for two branches of the hierarchy.
Furthermore, two important new features have been successfully applied. First, the
default restriction forcing the levels in the rules to be consecutive has been lifted,

Journal of Object Technology, vol. 18, no. 2, 2019

164 Paper C

Executing Multilevel Domain-Specific Models in Maude · 17

providing vertical flexibility. Second, multiplicities are now supported in the MCMTs,
enriching the syntax and enhancing the reusability of the rules.

We see several directions for future work. The infrastructure that connects Mul-
tEcore with Maude has been constructed as a proof of concept, and we are working on
considerable extensions. To generalise from the examples in this paper, we will design
an experiment in which we pick several mainstream behavioural models, refactor them
to MLM hierarchies using [LG18], adapt them to MultEcore using the rearchitecter
tool presented in [MRS18a], and then execute them using the presented infrastructure.

We have developed a first version of the multiplicities (cardinalities) in MCMTs.
However, we intend to further extend this feature for more complex cases with potential
nested definitions. We plan also to provide MultEcore functionalities to control the
Maude execution directly from the editor. Moreover, we want to give the user the
control to make executions customizable so that step-by-step or batch simulations might
be performed. Another task is to provide the MultEcore-Maude transformation engine
with more comprehension so that it becomes more fault tolerant. We currently offer the
user the possibility to define both the multilevel hierarchy and the behavioural rules.
We also want to work on improving the part of the infrastructure for the definition of
behavioural properties to later verify them with Maude, in a user-friendly manner.
Furthermore, we are currently working on better ways to specify rule orchestration
and prioritization to improve the definition and application of strategies in a more
generic, reusable and user-friendly way.

References
[AGM15] Colin Atkinson, Ralph Gerbig, and Noah Metzger. On the execution

of deep models. In EXE@ MoDELS, pages 28–33, 2015. URL: http:
//ceur-ws.org/Vol-1560/paper5.pdf.

[AGT12] Colin Atkinson, Ralph Gerbig, and Christian Tunjic. Towards multi-
level aware model transformations. In International Conference
on Theory and Practice of Model Transformations, pages 208–223.
Springer, 2012.

[AK08] Colin Atkinson and Thomas Kühne. Reducing accidental complexity
in domain models. Software & Systems Modeling, 7(3):345–359, 2008.

[AK17] Colin Atkinson and Thomas Kühne. On evaluating multi-level model-
ing. In MoDELS, 2017.

[AK18] Colin Atkinson and Thomas Kühne. Deep instantiation. In En-
cyclopedia of Database Systems, Second Edition. Elsevier, 2018.
doi:10.1007/978-1-4614-8265-9_80608.

[AKdL18] Colin Atkinson, Thomas Kühne, and Juan de Lara. Editorial to the
theme issue on multi-level modeling. Softw. Syst. Model., 17(1):163–
165, February 2018. doi:10.1007/s10270-016-0565-6.

[BCR06] Artur Boronat, José Á. Carsí, and Isidro Ramos. Algebraic specifica-
tion of a model transformation engine. In International Conference
on Fundamental Approaches to Software Engineering, pages 262–277.
Springer, 2006.

[BEK+06] Enrico Biermann, Karsten Ehrig, Christian Köhler, Günter Kuhns,
Gabriele Taentzer, and Eduard Weiss. Graphical definition of in-place

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 165

18 · Rodriguez et al.

transformations in the eclipse modeling framework. In MoDELS, pages
425–439. Springer, 2006.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[CDE+02] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martı-Oliet, José Meseguer, and José F Quesada. Maude: Spec-
ification and programming in rewriting logic. Theoretical Computer
Science, 285(2):187–243, 2002.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn Talcott. All about Maude
a high-performance logical framework: how to specify, program and
verify systems in rewriting logic. Springer-Verlag, 2007.

[CFH+09] Krzysztof Czarnecki, J Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F Terwilliger. Bidirectional transformations:
A cross-discipline perspective. In International Conference on The-
ory and Practice of Model Transformations, pages 260–283. Springer,
2009.

[Dep] HVL Computer Science Department. MultEcore Maude Website. URL:
https://ict.hvl.no/multecore-maude/.

[dLG10] Juan de Lara and Esther Guerra. Generic meta-modelling with con-
cepts, templates and mixin layers. In MoDELS, pages 16–30, 2010.
doi:10.1007/978-3-642-16145-2_2.

[dLGC15] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. Model-
driven engineering with domain-specific meta-modelling languages.
Software and System Modeling, 14(1):429–459, 2015. doi:10.1007/
s10270-013-0367-z.

[dLV02] Juan de Lara and Hans Vangheluwe. Atom 3: A tool for multi-
formalism and meta-modelling. In International Conference on Funda-
mental Approaches to Software Engineering, pages 174–188. Springer,
2002.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Monographs in
Theoretical Computer Science. An EATCS Series. Springer, 2006.
URL: https://doi.org/10.1007/3-540-31188-2, doi:10.1007/
3-540-31188-2.

[EMOMV07] Steven Eker, Narciso Martí-Oliet, José Meseguer, and Alberto
Verdejo. Deduction, strategies, and rewriting. Electronic Notes in
Theoretical Computer Science, 174(11):3–25, 2007.

[GM13] Joseph A Goguen and Grant Malcolm. Software Engineering with OBJ:
algebraic specification in action, volume 2. Springer Science & Business
Media, 2013.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
Atl: A model transformation tool. Science of computer programming,
72(1-2):31–39, 2008.

[JGJ+95] Matthias Jarke, Rainer Gallersdörfer, Manfred A Jeusfeld, Martin
Staudt, and Stefan Eherer. Conceptbase—a deductive object base for

Journal of Object Technology, vol. 18, no. 2, 2019

166 Paper C

Executing Multilevel Domain-Specific Models in Maude · 19

meta data management. Journal of Intelligent Information Systems,
4(2):167–192, 1995.

[Küh18a] Thomas Kühne. Exploring potency. In Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, pages 2–12, 2018. doi:10.1145/3239372.
3239411.

[Küh18b] Thomas Kühne. A story of levels. In Proceedings of MULTI Workshop:
co-located with ACM/IEEE 21st International Conference on Model
Driven Engineering Languages and Systems, pages 673–682, 2018. URL:
http://ceur-ws.org/Vol-2245/multi_paper_5.pdf.

[Kur07] Ivan Kurtev. State of the art of QVT: A model transformation lan-
guage standard. In International Symp. on Applications of Graph
Transformations with Industrial Relevance, pages 377–393. Springer,
2007.

[LG18] Juan de Lara and Esther Guerra. Refactoring multi-level models.
ACM Trans. Softw. Eng. Methodol., 27(4):17:1–17:56, November 2018.
doi:10.1145/3280985.

[LGC14] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and
how to use multilevel modelling. ACM Trans. on Software Engineering
and Methodology (TOSEM), 24(2):12, 2014.

[Mac19] Fernando Macías. Multilevel modelling and domain-specific languages.
PhD dissertation, University of Oslo, Norway, 2019.

[MBJK90] John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis
Koubarakis. Telos: Representing knowledge about information systems.
ACM Transactions on Information Systems (TOIS), 8(4):325–362,
1990.

[Mes92] José Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96(1):73–155, 1992.

[MGS+13] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, Miguel A. Fer-
nández, Bjørn Nordmoen, and Mathias Fritzsche. Where does model-
driven engineering help? Experiences from three industrial cases. Soft-
ware & Systems Modeling, 12(3):619–639, 2013.

[MLWK13] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel.
xMOF: Executable DSMLs based on fUML. In SLE, pages 56–75.
Springer, 2013.

[MRS16] Fernando Macías, Adrian Rutle, and Volker Stolz. Multecore: Combin-
ing the best of fixed-level and multilevel metamodelling. In MULTI@
MoDELS, pages 66–75, 2016.

[MRS18a] Fernando Macías, Adrian Rutle, and Volker Stolz. A tool for the
convergence of multilevel modelling approaches. In MULTI@ MoDELS,
2018.

[MRS+18b] Fernando Macías, Adrian Rutle, Volker Stolz, Roberto Rodriguez-
Echeverria, and Uwe Wolter. An approach to flexible multilevel mod-
elling. Enterprise Modelling and Information Systems Architectures,
13:10:1–10:35, 2018.

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 167

20 · Rodriguez et al.

[MWR+19] Fernando Macías, Uwe Wolter, Adrian Rutle, Francisco Durán, and
Roberto Rodriguez-Echeverria. Multilevel Coupled Model Trans-
formations for Precise and Reusable Definition of Model Behaviour.
Journal of Logical and Algebraic Methods in Programming, 2019.
doi:10.1016/j.jlamp.2018.12.005.

[RDLGN15] Alessandro Rossini, Juan De Lara, Esther Guerra, and Nikolay
Nikolov. A comparison of two-level and multi-level modelling for
cloud-based applications. In ECMFA, pages 18–32. Springer, 2015.

[RDV09] Jose E. Rivera, Francisco Durán, and Antonio Vallecillo. A graphical
approach for modeling time-dependent behavior of DSLs. In Visual
Languages and Human-Centric Computing, 2009. VL/HCC 2009.
IEEE Symposium on, pages 51–55. IEEE, 2009.

[Ren03] Arend Rensink. The groove simulator: A tool for state space genera-
tion. In International Workshop on Applications of Graph Transforma-
tions with Industrial Relevance, pages 479–485. Springer, 2003.

[RGdLV08] José Eduardo Rivera, Esther Guerra, Juan de Lara, and Antonio
Vallecillo. Analyzing rule-based behavioral semantics of visual modeling
languages with maude. In International Conference on Software
Language Engineering, pages 54–73. Springer, 2008.

[RVA06] Sreedhar Reddy, R Venkatesh, and Zahid Ansari. A relational ap-
proach to model transformation using qvt relations. TATA Research
Development and Design Centre, pages 1–15, 2006.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework 2.0. Addison-Wesley
Professional, 2nd edition, 2009.

[SCGdL11] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. Generic
model transformations: Write once, reuse everywhere. In ICMT, pages
62–77, 2011. doi:10.1007/978-3-642-21732-6_5.

[Sei14] Ed Seidewitz. UML with meaning: executable modeling in founda-
tional UML and the Alf action language. In HILT, pages 61–68. ACM,
2014.

[Ste07] Perdita Stevens. A landscape of bidirectional model transformations.
In International Summer School on Generative and Transformational
Techniques in Software Engineering, pages 408–424. Springer, 2007.

[Sub11] OMG Semantics Of A Foundational Subset. For executable UML
models (fUML), version 1.0, 2011.

[SVM+13] Eugene Syriani, Hans Vangheluwe, Raphael Mannadiar, Conner
Hansen, Simon Van Mierlo, and Huseyin Ergin. AToMPM: A web-
based modeling environment. In MoDELS, pages 21–25, 2013.

[UML] UML. http://www.uml.org/.
[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of

practice in model-driven engineering. IEEE software, 31(3):79–85,
2014.

Journal of Object Technology, vol. 18, no. 2, 2019

168 Paper C

Executing Multilevel Domain-Specific Models in Maude · 21

About the authors

Alejandro Rodríguez is a PhD student at the Western Nor-
way University of Applied Sciences. He is currently researching
in Model-driven software engineering, multilevel modelling and
coloured Petri net fields. He is part of the Software Engineering,
Sensor Networks and Engineering Computing department. Contact
him at arte@hvl.no

Francisco Durán is Full Professor at the Department of Com-
puter Science of the University of Málaga, Spain. He received his
Ph.D. degree in Computer Science from the University of Málaga
in 1999, after several years as an International Fellow at SRI Inter-
national, CA. He is one of the developers of the Maude system, and
his research interests deal with the application of formal methods
to software engineering, including topics such as cloud systems,

model-driven engineering, component-based software development, open distributed
programming, reflection and meta-programming, and software composition.

Adrian Rutle is Associate Professor at the Western Norway
University of Applied Sciences, Norway. His research focuses on
the application of theoretical results from the field of model-driven
software engineering. His work has recently focused on modelling
and simulation for smart robotics, MLM, patient workflows and
their verification. His main expertise is the development of formal
modelling frameworks for domain-specific modelling languages,
graph-based logic for reasoning about static and dynamic properties

of models, and the use of model transformations for the definition of semantics of
modelling languages.

Lars Michael Kristensen received the PhD in computer science
from University of Aarhus, and is currently professor in software
engineering at Western Norway University of Applied Sciences.
He has published more than 70 papers in strictly referred journal
and conferences, is member of the Editorial Board of the TopNoC
Springer journal, and is a member of the steering committee for
the International Petri Nets conference. He is co-author of the

most recent textbook on Coloured Petri Net and CPN Tools which is one of the most
widely used software tools for modelling and validation of concurrent systems.

Acknowledgments Francisco Durán was partly funded by the project PGC2018-
094905-B-I00 (Spanish MINECO/FEDER), and by Univ. Málaga, Andalucía Tech.

Journal of Object Technology, vol. 18, no. 2, 2019

Paper C 169

PAPER D
COMPOSITION OF MULTILEVEL
DOMAIN-SPECIFIC MODELLING LANGUAGES

Alejandro Rodríguez, FernandoMacías, Francisco Durán, Adrian Rutle andUweWolter

In Journal of Logical andAlgebraicMethods in Programming,Elsevier Ltd, 2020. (Submitted)

Composition of Multilevel Domain-Specific Modelling
Languages

Alejandro Rodŕıgueza,∗, Fernando Maćıasd, Francisco Duránc, Adrian Rutlea,
Uwe Wolterb

aWestern Norway University of Applied Sciences, Bergen, Norway
bUniversity of Bergen, Bergen, Norway

cITIS Software, University of Málaga, Málaga, Spain
dIMDEA Software Institute, Madrid, Spain

Abstract

Multilevel Modelling (MLM) approaches make it possible for designers and mod-
ellers to work with an unlimited number of abstraction levels to specify their
domain-specific modelling languages (DSMLs). To fully exploit MLM tech-
niques, we need powerful model composition operators. Indeed, the composition
of DSMLs is becoming increasingly relevant to the modelling community either
because some DSMLs may share commonalities that we want to make reusable,
or because we want to facilitate interoperability between DSMLs. In this paper,
we propose a composition mechanism for structure and behaviour of multilevel
modelling hierarchies. Our approach facilitates the inclusion of additional fea-
tures while keeping a clear separation of concerns that enhances modularity. We
provide a formal semantics of the constructions based on category theory and
graph transformations and show their use in practice on a case study.

Keywords: Model-driven software engineering, Domain-specific modelling
languages, Multilevel Modelling, Composition, Category theory, Graph theory,
Graph transformations

1. Introduction

Multilevel Modelling is a prominent research area where models and their
specifications can be organised into several levels of abstraction [1, 2]. Al-
though there exist several approaches for MLM (see [3, 4, 5, 6] for some of
them), they all share the idea of not limiting the number of levels that design-
ers can use to specify their modelling languages. This restriction is present in
traditional Model-Driven Software Engineering (MDSE) approaches which are

∗Corresponding author
Email addresses: arte@hvl.no (Alejandro Rodŕıguez), fernando.macias@imdea.org

(Fernando Maćıas), duran@lcc.uma.es (Francisco Durán), Adrian.Rutle@hvl.no (Adrian
Rutle), uwe.wolter@uib.no (Uwe Wolter)

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingAugust 6, 2021

Paper D 173

based on the Object Management Group (OMG) 4-layer architecture such as the
Unified Modelling Language (UML) [7] and the Eclipse Modelling Framework
(EMF) [8, 9]. Like traditional MDSE approaches, MLM uses abstractions and
modelling techniques to tackle the continually increasing complexity of software
by considering models as first-class entities throughout the software engineering
life cycle. Despite the success of MDSE approaches in terms of quality and
effectiveness gains [10], modellers can only make use of two levels of abstrac-
tion to specify their systems: one for (meta)models and one for their instances.
Model designers might find this limitation too restrictive. Moreover, these limi-
tations may lead to complications like model convolution, accidental complexity
and mixing concepts belonging to different domains (see, e.g., [11, 12, 13] for
discussions on this).

One of the most successful applications of MDSE is in the construction of
(industrial) DSMLs [9]. DSMLs are modelling languages tailored to specific
areas which are meant to be easily understood and used by domain experts.
Thus, such challenges become more prevalent in the case of defining DSMLs,
since variations on general purpose languages (i.e., to specify different refine-
ments oriented to the different domains) would require further specialisations
on the metamodels.

The MLM community has demonstrated that MLM is a successful approach
in areas such as process modelling and software architecture domains [11, 14,
15]. Furthermore, MLM techniques are excellent for the creation of DSMLs,
especially when focusing on behavioural languages, since behaviour is usually
defined at the metamodel level while it is executed, at least, two levels below at
the instance level [16, 17].

Although DSMLs are conceived to describe and abstract different concrete
domains, we may find many similarities between existing DSMLs. In fact, the
research community in software language engineering has proposed the notion
of Language Product Lines Engineering (LPLE) with the goal of constructing
software product lines where the products are languages [18]. The key aspect
of their approach is the definition of language features that encapsulate a set
of language constructs representing certain DSML functionalities. Usually, one
can detect that some DSMLs share certain commonalities coming from similar
modelling patterns that can be abstracted and reused across several other lan-
guages. Interoperability and reusability can therefore be achieved by advocating
modularisation and composition techniques.

We have observed that several DSMLs can benefit from each other by com-
posing them, resulting into a more complete system specification. To cope with
this, we present an alternative approach to handle composition based on mul-
tiple typing which we compare with the standard way of facing composition
through a merge operator. Traditionally, frameworks had to craft, in a tedious,
ad-hoc and (usually) non reusable way, their own composition operators. Fur-
ther research in this direction had raised more standard and widely accepted
composition mechanisms, such as the merge operator or through direct linking
among modules [18, 19]. Taking advantage of MLM and inspired by the concept
of language feature, we present in this paper mechanisms based on our MLM

2

174 Paper D

approach and multiple typing to foster composition by defining the abstract syn-
tax and the behavioural description in a modular way, i.e., by adding/removing
dimensions to a selected model or a model transformation rule. We compare
our construction with the merge operator and put into practice our constructs
to achieve composition by applying them to a case study where we consider a
multilevel DSML for processes management and a DSML that abstracts human
being notions.

The rest of the paper is organised as follows. Section 2 describes our ap-
proach for Multilevel Modelling regarding structure (Section 2.1) and opera-
tional semantics (Section 2.2). Section 3 presents our composition mechanism.
After motivating this mechanism in Section 3.1, we compare it to the usual
merge operator and present its categorical semantics in Section 3.2. We apply
in Section 4 the formal constructions presented in Section 3.2 to a case study
where we demonstrate how the composition of two different languages can be
successfully managed. In Section 5, we discuss related work, and finally conclude
the paper and outline directions for future work in Section 6.

2. Background: Multilevel Modelling

MLM is a recognised research area with clear advantages in several scenar-
ios [20]. It provides the flexibility needed to avoid the use of anti-patterns, e.g.,
the type-object pattern described in [11, 21] when fitting several layers of ab-
straction into one single level. This anti-pattern appears when both the concept
and the metaconcept have to be defined in the same level, leading to convolu-
tion. However, there exist several challenges within the MLM community that
hamper its wide-range adoption, such as a lack of recognised standards and fun-
damental concepts of the paradigm, that have led to a proliferation of different
multilevel tools [22, 23] without a clear consensus and focus.

The MultEcore approach for MLM combines two-level and multilevel mod-
elling approaches and takes the best from each world with the goal of bringing
standards into MLM solutions [16, 24]. Its main goal is to facilitate the specifica-
tion of multilevel hierarchies which are both generic and precise [25, 24]. These
ideas are reflected in the MultEcore tool. The tool enables multilevel modelling
in the Eclipse Modelling Framework (EMF), allowing us to reuse the existing
EMF tools and plugins [26, 27]. MultEcore provides facilities to the modeller
to define both the structure and the behaviour of multilevel hierarchies.

MultEcore is designed as a set of Eclipse plugins, giving access to its ma-
ture tool ecosystem (integration with EMF) and incorporating the flexibility of
MLM. In the MultEcore approach [16], the abstract syntax is provided by MLM
models and the behaviour by the so-called Multilevel Coupled Model Transfor-
mations (MCMTs) [16, 25]. Using the MultEcore tool, modellers can (i) define
MLM models using the model graphical editor, (ii) define MCMTs using its rule
editor, and (iii) execute specific models. The execution of MultEcore models
rely on a transformation of these models into Maude [28] specifications [29]. To
provide a formal description of our framework and the aforementioned features,
we rely on graph transformations and corresponding parts of category theory.

3

Paper D 175

2.1. Multilevel Modelling in MultEcore - Structure

The MultEcore multilevel modelling approach is based on a flexible typ-
ing mechanism based on graphs. We present in this section a summary of the
formalisation in [30] on which we base the semantics of our composition con-
struction in Section 3.2. In this formalisation, models are represented as graphs,
since they are a natural way of abstracting concepts and the relations among
them. Each model in our approach is identified by a name and represented as
directed multigraph. Graphs are defined as follows.

Definition 1 (Graph). A Graph G = (GN ,GA, scG, tgG) consists of a set of
nodes GN , a set of arrows GA and two maps scG ∶ GA → GN and tgG ∶ GA → GN

that assign to each arrow its source and target node, respectively. These two
maps must be total for the graph to be considered valid. We use the notations

x
fÐ→ y or f ∶ x→ y to indicate that scG(f) = x and tgG(f) = y.

Intuitively, graphs consist of nodes and arrows. A node represents a class,
and an arrow represents a relation between two classes. Hence, an arrow always
connects two nodes in the same graph, and any two nodes can be connected
by an arbitrary number of arrows. Relations between graphs, like typing and
matching, are defined by means of graph homomorphisms.

Definition 2 (Graph Homomorphism). A homomorphism ϕ ∶ G → H between
graphs is given by two maps ϕN ∶ GN → HN and ϕA ∶ GA → HA such that
scG;ϕN = ϕA; scH and tgG;ϕN = ϕA; tgH . Note that we use the symbol ; to
denote composition in diagrammatic order.

We use the terms graph and model indistinctly. Models are distributed in
multilevel modelling hierarchies. By a multilevel modelling hierarchy we under-
stand a tree-shaped hierarchy of models with a single root one typically depicted
at the top of the hierarchy tree. Thus, hierarchies enclose a set of models which
are connected via typing relations.

Figure 1 displays a simple multilevel hierarchy containing three levels of
abstraction (four if we include the reserved Ecore model placed at the top in
level 0, Figure 1(a)). Note that each graph, except the one at the top has
exactly one parent graph in the hierarchy. Then, at Level 1, we branch into two
paths. The models generic-model-1 and generic-model-2 (Figures 1(b) and 1(c),
respectively) contain three nodes and one relation each. As shown in the figure,
the type of a node is indicated in an ellipse at its top left side, e.g., EClass is the
type of A, B, and C in model generic-model-1, as well as of D, E, and F in model
generic-model-2. The type of an arrow is written near the arrow in italic font
type, e.g., EReference under G in model generic-model-1, and under H in model
generic-model-2. As we see below, typing relations are graph homomorphisms.
However, we use these two individual typing graphical representations to express
types without filling up the hierarchy graphical representations with arrows.

A hierarchy has n+1 abstraction levels, where n is the maximal path length in
the hierarchy tree. Levels are indexed with increasing natural numbers starting
from the uppermost one, with index 0. Each graph in the hierarchy is placed at

4

176 Paper D

A
EClass 1-1-2

B
EClass 1-1-2

C
EClass 1-1-2

G@1-1-2

EReference

EReference

A1
A 1-1-1

B1
B

EClass

1-1-1
C1

C 1-1-1

B2
B 1-1-1

A2
A 1-1-1

G1@1-1-1

G

G2@1-1-1

G

(a) Ecore

a1
A1 0-0-0

b1
B1 0-0-0

g1@0-0-0

G1

(f) configuration-1

F
EClass 1-1-2

D
EClass 1-1-2

E
EClass 1-1-2

H@1-1-2
EReference

D1
D 1-1-1

E1
E 1-1-1

F1
F 1-1-1

H1@1-1-*

H

Level 0

Level 1

Level 2

Level 3 - Instance

(b) generic-model-1

(d) specific-model-1 (e) specific-model-2

(c) generic-model-2

Figure 1: Multilevel hierarchy for a conceptual example

some level i, where i is the length of the path from that graph to the topmost one.
To be flexible concerning abstraction levels and to support a smooth evolution
of modelling descriptions, we allow certain positions in a hierarchy to be empty,
i.e., filled by an empty graph. We use the notation Gi to indicate that a graph is
placed at level i. For implementation reasons, we use Ecore [8] as root graph at
level 0 in all example hierarchies, since Ecore is based on the concept of graph
which makes it powerful enough to represent the structure of software models.

We use levels as an organisational tool, where the main rationale for locating
elements in a particular level is grouping them by how abstract they are, and
how reusable and useful they can be in that particular level. Thus, we encour-
age the level cohesion principle [31], that is, we recommend to organise elements
that are semantically close (by means of potency and level organisation). On
the contrary, we do not promote the level segregation principle, which estab-
lishes that level organisational semantics should be unique, i.e., aligned to one
particular organisational scheme, such as classification or generalisation. We
use, however, a more broad abstraction semantics. Furthermore, the MultEcore

5

Paper D 177

tool checks correct potency and typing safeness.1

In Figure 1, red horizontal lines are used to indicate the separation between
two consecutive levels, and upwards dashed arrows represent sequences of graphs
that constitute typing chains Gi, Gi−1, . . . , G1, G0.

For flexibility reasons, we allow typing to jump over abstraction levels, i.e.,
an element in graph Gi may have no type in Gi−1 but only in one (or more) of the
graphs in Gi−2, . . . , G1, G0. Moreover, two different elements in the same graph
may be typed by elements located in different graphs along the typing chain.
To formalise this kind of flexible typing, we use partial graph homomorphisms.

Definition 3 (Partial Graph Homomorphism). A partial graph homomor-
phism ϕ ∶ G ○Ð→H is given by a subgraph D(ϕ) ⊑ G, called the domain of
definition of ϕ, and a graph homomorphism ϕ ∶D(ϕ)Ð→H .

To express transitivity of typing and later also compatibility of typing, we
need as well the composition of partial graph homomorphisms as a partial order
between partial graph homomorphisms.

Definition 4 (Composition of partial graph homomorphisms). The compo-
sition ϕ;ψ ∶ G ○Ð→K of two partial graph homomorphisms ϕ ∶ G ○Ð→H and
ψ ∶H ○Ð→K is defined as follows:

• D(ϕ;ψ) := ϕ−1(D(ψ)), i.e., for all nodes e ∈ GN we have e ∈ D(ϕ;ψ)N
iff e ∈ D(ϕ)N and ϕN(e) in D(ψ)N , and for all arrows f ∈ GA we have
f ∈D(ϕ;ψ)A iff f ∈D(ϕ)A and ϕA(f) ∈D(ψ)A.

• (ϕ;ψ)N(e) := ψN(ϕN(e)) for all e ∈D(ϕ;ψ)N and (ϕ;ψ)A(f) := ψA(ϕA(f)) for all f ∈D(ϕ;ψ)A.

More abstractly, the composition of two partial graph homomorphisms is defined
by the following commutative diagram of total graph homomorphisms. (Keep in
mind that inverse images are just special pullbacks.)

D(ϕ;ψ)
D(ϕ) D(ψ)

G H K

⊑ ϕ∣ψ
⊑ ϕ ⊑ ψ

ϕ;ψ

PB

Note that D(ϕ;ψ) =D(ϕ) if ϕ is total, i.e., H = D(ϕ).

Definition 5 (Order between partial graph homomorphisms). For any two
parallel partial graph homomorphisms ϕ,φ ∶ G ○Ð→H we have ϕ ⪯ φ if, and
only if, D(ϕ) ⊑ D(φ) and, moreover, ⊑;φ = ϕ for the corresponding total graph
homomorphisms ϕ ∶D(ϕ)→H and φ ∶D(φ)→H .

1Typing relations cannot be circular, reversed or inconsistent neither vertically, i.e., within
the same hierarchy, nor horizontally, i.e., if we consider more than one hierarchy.

6

178 Paper D

Typing chains appear in multilevel hierarchies as sequences of graphs from a
certain graph in the hierarchy all the way up to the top of the hierarchy. They
are formally defined in Definition 6.

Definition 6 (Typing Chain G). A typing chain G = (G,n, τG) is given by a
natural number n, a sequence G = [Gn,Gn−1, . . . ,G1,G0] of graphs of length
n + 1 and a family τG = (τGj,i ∶ Gj ○Ð→Gi ∣ n ≥ j > i ≥ 0) of partial graph
homomorphisms, called typing morphisms, satisfying the following properties:

• Total: All the morphisms τGj,0 ∶ Gj → G0 with n ≥ j ≥ 1 are total.

• Transitive: For all n ≥ k > j > i ≥ 0 we have τk,j ; τj,i ⪯ τk,i.
• Connex: For all n ≥ k > j > i ≥ 0 we have D(τGk,j)∩D(τGk,i) ⊑D(τGk,j ; τGj,i)

and, moreover, τGk,j ; τ
G
j,i and τk,i coincide on D(τGk,j) ∩D(τGk,i).

Totality, transitivity and connexity ensure that for any element e in any
graph Gi in a typing chain there exists a unique index me, with i >me ≥ 0, such
that e is in the domain of the typing morphism τGi,me

but not in the domain of

any typing morphism τGi,j with i > j >me.

Definition 7 (Individual Direct Type). For any e in a graph Gi in a typing
chain G = (G,n, τG), with n ≥ i ≥ 1, we call ty(e) ∶= τGi,me

(e) its individual direct
type. We say also that e is a direct instance of ty(e).

By df(e) = i −me we denote the difference between i and the level where
ty(e) is located. Usually, this difference is 1, which means that the type of
e is placed at the level right above it. For convenience, we use the following
abbreviations:

ty2(e) = ty(ty(e)) ty3(e) = ty(ty(ty(e))) . . .

df2(e) = df(e) + df(ty(e)) df3(e) = df2(e) + df(ty2(e)) . . .

From a general point of view, we obtain for any e in Gi a sequence of typing
assignments of length 1 ≤ se ≤ i with (i − dfse(e)) = 0. The number se of steps
depends individually on the item e. We call any of the elements ty(e), ty2(e),
ty3(e), . . . a transitive type of e. The requirement that the domains of definition

of typing morphisms are subgraphs ensures that for any arrow x
fÐ→ y in any

graph Gi the non-dangling condition is satisfied: The source and the target of
the direct type ty(f) ∈ Gmf

of f are transitive types of x and y, respectively.
Finally, we want to mention that any sequence [Gn,Gn−1, . . . ,G1,G0] of graphs
such that any e in any graph Gi with n ≥ i ≥ 1 has a unique individual direct
type ty(e) in one of the graphs Gi−1, . . . ,G1,G0 gives rise to a typing chain,
according to Definition 6, as long as the non-dangling condition for arrows is
satisfied (compare [30]).

Level 2 in Figure 1 contains instances of models described in Level 1 (called
specific-model-1 and specific-model-2). The nodes and references in the models
depicted in Figures 1(d) and 1(e) are typed by elements defined, in this case, at

7

Paper D 179

Level 1, e.g., for A1 node and G1 relation the types are A and G, respectively. At
the bottom of the hierarchy (Figure 1(f)), we have (at Level 3) the Instance level
where model configuration-1 is displayed. Note that, even though there exists
one typing chain per model (except for Ecore), we only focus on the typing chain
computed from the bottommost level (Instance level). Notice also that in the
hierarchy shown in Figure 1, the typing chain is represented by upwards dashed
arrows from the instance level given by the left-hand branch of the hierarchy.

The last concept introduced in Figure 1 is potency, displayed as three num-
bers in a red box at the top right of every node, and concatenated to the name
after “@” for every reference. Potencies are used on elements as a means of
restricting the levels at which these elements may be used to type other ele-
ments. Thanks to potencies on elements we can define the degree of flexibility
/ restrictiveness we want to allow on the elements of our multilevel hierarchy.
These three values are used to constrain the instantiation of elements so that
the flexibility of our approach can be controlled in order to use concepts in a
sensible manner. The first two values, start and end, specify the range of levels
below, relative to the current one, where the element can be directly instan-
tiated. In the example hierarchy in Figure 1, these two values are always 1,
meaning that the element can only be instantiated in the level right below. A
potency value of 2 − 4 −X, for instance, would mean that an element can be
directly instantiated two, three and four levels below the one where the element
is defined. The third value, depth, is used to control the maximum number of
times that the element can be transitively instantiated, regardless of the levels
where this happens. That is, the amount of times an instance of that element
can be re-instantiated.

In the example in Figure 1, all elements at level 1 have a depth of 2, meaning
that they can be directly instantiated, and these instances can be instantiated
themselves again (i.e. two times at most). This value is therefore dependent
on the value of the type, and the depth of an element must always be strictly
less than the depth of its type. For this reason, all elements in level 2 have a
depth value of 1, and their instances of 0, meaning that they cannot be further
instantiated. For elements in level 3, the instance level, the first two values also
become 0, since there are no further levels below where these elements could
be instantiated. In other words, the potency 0 − 0 − 0 is used to enforce that
elements at the bottom level (3) are used purely as instances, which cannot be
refined further into levels below it. In general, the default potency for elements
is 1 − 1 − ∗ (∗ meaning unbounded), and the potencies for all elements in the
top level (Ecore) is 0 − ∗ − ∗ in order to allow, exceptionally, self-typing and to
keep all instantiation initially unconstrained.

2.2. Multilevel Modelling in MultEcore - Operational semantics

Transformation rules can be used to represent actions that may happen in
the system. Conventional in-place model transformations (MTs) are rule-based
modifications of a source model (specified in the left-hand side of the rule)
resulting in a new state of such a model (determined by its right-hand side).
The left-hand side takes as input (a part of) a model and it can be understood as

8

180 Paper D

L I R

S D T

M

PO FPBC
δμ

λ ρ

ν

θ

Figure 2: Conventional two-level MT rule

the pattern we want to find in our original model. The right-hand side describes
the transformation we want to perform on our model and thereby the next state
of the system.

Since we use graphs to formalise models, we employ graph transformation
rules to express the operational semantics of multilevel models. A graph trans-
formation rule is defined by a left L and a right R pattern. These patterns are
graphs which are mapped to each other via graph morphisms λ, ρ from or to
a third graph I, such that L,R, I constitute either a span (L ←Ð I Ð→ R) or
a co-span (L Ð→ I ←Ð R), respectively [32, 33]. These graph morphisms are
typically homomorphisms, and more specifically inclusions. Then in the span
version, the graph I is the intersection of L and R, while it is the union in the
co-span version. In our approach, In this paper, we use the co-span version of
graph transformation rules since the graph I can be used to collect the whole
context between L and R, as well as due to advantages related to the properties
of the constructions used in the application of these rules [33] (see also below).

Figure 2 depicts the application of a graph transformation rule. To apply a
rule (L↪ I ↩ R) to a source graph S, a match µ of the left pattern in S has to
be found, i.e., a graph homomorphism µ ∶ LÐ→ S. Then, using a pushout con-
struction (PO), followed by a final pullback complement construction (FPBC),
a target graph T will be produced [33].

We use MTs to provide definitions of behaviour by means of so-called Mul-
tilevel Coupled Model Transformations (MCMTs) [16]. MCMTs have been pro-
posed as a means to take traditional two-level transformations rules (Figure 2)
into the multilevel model world, with the right balance between precision and
flexibility (see [16] for details). That is, MCMTs allow us to exploit multilevel
modelling capabilities within the context of MTs. In this paper, we focus on
the use of MCMTs to describe the operational semantics of DSMLs. MCMTs
can also be used with other purposes, for instance, MCMTs have been used to
check the structural correctness of models in [34, 27].

Figure 3 shows a simple example of an MCMT rule (called Add and Connect)

9

Paper D 181

that models the creation of a new node and a relation between the existing node
and the new one.

a

VarG
GVarA VarB

G
A B

VarA

A B

FROM TO

g
VarGa

VarA
b

VarB

META

Figure 3: Rule Add and Connect : The execution of this rule gives a new state on the model
where a new node is created and connected to the first one

The FROM and TO blocks describe the left pattern and the right pattern
of the rule, respectively. The META block depicts a typing chain allowing us
to locate types in any level of the chain that can be used as individual types
for the items in the FROM and TO block, respectively. Notice that this is quite
powerful, as META facilitates the definition of an entire multilevel pattern. At
the top level of Figure 3, we mirror parts of generic-model-1, defining elements
like A, B and G as constants. We differentiate constants as their names are
underlined and their types are not specified via the ellipse above (for nodes) or
the italic text (for references). The use of constants constrains the matching
process, significantly reducing the amount of matches. The rule can be applied
to models (instances) typed by the left-hand typing chain of Figure 1 (i.e.,
specific-model-1, generic-model-1, Ecore).

Note, that the horizontal lines do not enforce consecutiveness between the
levels specified in the rule with respect to the hierarchy. This leads to a more
natural way of defining that a type is defined at some level above, without
explicitly stating in which level. In fact, this also promotes flexibility in case of
future modifications of the number of branches (horizontal dimension) and the
depth (vertical dimension) of hierarchies. Consider for the horizontal dimension,
for instance, in the example in Figure 1, adding a new model called specific-
model-1’, branching at level 2, as instance of generic-model-1. For the vertical
dimension, consider for example introducing a new level between levels 2 and
3 to create a more refined model (called, e.g., more-specific-model-1). The key
aspect is that none of these extensions would require the modification of other
models in the hierarchy, nor the rule depicted in Figure 3, while the MCMT
would still be valid. This flexibility is achieved as we allow the types on the
variables to be transitive types. For instance, VarA (placed at the second level
of the META), typed by the variable A, would match any node which indirectly
has A as type, or ultimately will match to A if no indirect one is found. A correct

10

182 Paper D

match of the rule comes when an element, coupled together with its type, fits
an instance of VarA (e.g., a located in the FROM part).

Given the current state of the hierarchy in Figure 1, any instances of elements
matching the pattern VarA would be candidates to perform the transformation.
This in turn makes it possible to apply the rule to either instances of A1 or
to instances of A2 (these elements are defined in model specific-model-1 at
Figure 1).

The general structure of an MCMT and its application is displayed in Fig-
ure 4. The figure can be visualised as two flat trees, each of them defined by
typing chains and connected to each other by matching morphisms.

L I R

MM0

PO FPBC

...

MM1

MMn

TG0

...

TGi

...

TGm

S D T

β0

=

=

=

δ

λ
ν

θ

ρ

μ

β1

βn

Figure 4: Formal construction for MCMT

The tree on the left contains the pattern that the user defines in the rule.
It consists of the left and right parts of the rule (FROM and TO, respectively),
represented as L and R in the diagram, and the interface I that is the union of
both L and R, being λ and ρ inclusion graph homomorphisms.

These three graphs are typed by elements in the same typing chain MM =(MM,n, τMM), defined in the META block, which is depicted as a sequence of
metamodels MM i, for 0 ≤ i ≤ n, that ends with the root of the chain MM 0 (Ecore
in our case). The multilevel typing of the graphs L, I,R is given by families of
typing morphisms.

Definition 8 (Multilevel Typed Graph). A multilevel typed graph (H,σH)
is a graph H with a multilevel typing σH ∶H ⇒ G of H over a typing chain G
= (G,n,τG) given by a family σH = (σH ∶ H ○Ð→Gi ∣n ≥ i ≥ 0) of partial graph
homomorphisms.

11

Paper D 183

So, the rule is given by multilevel typed graphs (L,σL ∶ L⇒MM), (R,σR ∶
R ⇒MM), (I, σI ∶ I ⇒MM) with I = L ∪R such that σL and σR coincide
on the intersection L ∩R and σI is constructed as the union of σL and σR.

For the rule to be applied, we have to find a match (a graph homomor-
phism µ) of the pattern graph L into an instance graph S at the bottom
of the current application hierarchy. The choice of S determines a sequence
[S,TGm, TGm−1, . . . , TG1, TG0] of graphs from S up to the top of the hierar-
chy. The sequence [TGm, TGm−1, . . . , TG1, TG0] of graphs constitutes a typing
chain T G = (TG,m, τTG) and the family of typing morphisms from S into TGi,
m ≥ i ≥ 0 turns S into a multilevel typed graph (S,σS ∶ S ⇒ T G). The match
µ ∶ L→ S has, however, to satisfy some application conditions: There has to be
a match of the typing chain MM into the typing chain T G that is compatible
with the multilevel typings σL, σS and the match µ. Matches of typing chains
are described by a very flexible concept of morphisms between typing chains.

Definition 9. A typing chain morphism (φ, f) ∶ G →H between two typing
chains G = (G,n, τG) and H = (H,m, τH) with n ≤m is given by

• a function f ∶ [n] → [m], where [n] = {0,1,2, . . . , n}, such that f(0) = 0
and j > i implies f(j) > f(i) for all i, j ∈ [n], and

• a family of total graph homomorphisms φ = (φi ∶ Gi →Hf(i) ∣ i ∈ [n]) with

τGj,i;φi ⪯ φj ; τHf(j),f(i) for all n ≥ j > i ≥ 0. (1)

A typing chain morphism (φ, f) ∶ G →H is called closed if, and only if, τGj,i;φi =
φj ; τ

H
f(j),f(i) for all n ≥ j > i ≥ 0.

There are three flexibility features we want to underline: (1) Jumps of typing
can be arbitrarily stretched in the sense, that the difference f(j) − f(i) can be
bigger than the difference j − i. (2) We require, in general, only that typing
is preserved, i.e., if an element e in Gj has a transitive type in Gi then the
image φj(e) in Hf(j) is required to have a transitive type in Hf(i). For closed
typing chain morphisms, we require, however, that typing is also reflected, i.e.,
if the image φj(e) in Hf(j) has a transitive type in Hf(i) it is required that e

has a transitive type in Gi. (3) The granularity of typing does not need to be
preserved, i.e., if an element e in Gj has a direct (!) type in Gi then the image
φj(e) in Hf(j) needs only to have a transitive type in Hf(i).

The graph homomorphisms βn, . . . , β1, β0 and the assignments 0 ↦ 0,1 ↦
i, . . . , n ↦ m in Figure 4 depict the required typing chain morphism (match)(β, f) ∶MM → T G . To describe type compatibility of matches and the result
of an MCMT application we need to have the composition of typing chain
morphisms at hand.

Definition 10 (Composition of typing chain morphisms). The composition(φ, f); (ψ, g) ∶ G → K of two typing chain morphisms (φ, f) ∶ G → H, (ψ, g) ∶

12

184 Paper D

H → K between typing chains G = (G,n, τG), H = (H,m, τH), K = (K, l, τK)
with n ≤m ≤ l is defined by

(φ, f); (ψ, g) ∶= (φ;ψ↓f , f ; g)
where ψ↓f ∶= (ψf(i) ∶Hf(i) →Kg(f(i)) ∣ i ∈ [n]) and thus

φ;ψ↓f ∶= (φi;ψf(i) ∶ Gi →Kg(f(i)) ∣ i ∈ [n]).
Chain denotes the category of typing chains and typing chain morphisms.
It turns out that multilevel typings are not appropriate to formulate adequate

compatibility conditions for matches. Therefore, we describe multilevel typing
by means of inclusion chains and typing chain morphisms.

Lemma 1 (Inclusion chain). For any graph H we can extend any sequence
H = [Hn,Hn−1, . . . ,H1,H0] of subgraphs of H , with H0 = H, to a typing chainH = (H,n, τH) where for all n ≥ j > i ≥ 0 the corresponding partial inclusion
graph homomorphism τHj,i ∶ Hj ○Ð→Hi is given by D(τHj,i) ∶= Hj ∩Hi and the
span of total inclusion graph homomorphisms

Hj D(τHj,i) =Hj ∩Hi Hi
⊑ τHj,i

By means of Lemma 1, we can represent now the four given multilevel typings
σL ∶ L ⇒MM, σI ∶ I ⇒MM, σR ∶ R ⇒MM, and σS ∶ S ⇒ T G , equivalently,
by four corresponding inclusion chains (see Figures 5 and 6)

• L = (L,n, τL) with Li ∶=D(σLi) for all i ∈ [n] and thus L0 = L,

• I = (I , n, τ I) with Ii ∶=D(σIi) for all i ∈ [n] and thus I0 = I ,

• R = (R,n, τR) with Ri ∶=D(σRi) for all i ∈ [n] and thus R0 = R and

• S = (S,m, τS) with Sj ∶=D(σSj) for all j ∈ [m] and thus S0 = S ,

together with four typing chain morphisms

• (σL, id[n]) ∶ L →MM with σL = (σLi ∶ Li →MMi ∣ i ∈ [n]),
• (σI , id[n]) ∶ I →MM with σI = (σIi ∶ Ii →MMi ∣ i ∈ [n]),
• (σR, id[n]) ∶R →MM with σR = (σRi ∶ Ri →MMi ∣ i ∈ [n]), and

• (σS , id[m]) ∶ S → T G with σS = (σSj ∶ Sj → TGj ∣ j ∈ [m]).
By construction, we have Ii = Li ∪Ri for all i ∈ [n] thus the family of inclusion
graph homomorphisms λi ∶ Li ↪ Ii, i ∈ [n] establishes a closed typing chain
morphism (λ, id[n]) ∶ L → I while the family of inclusion graph homomorphisms
ρi ∶ Ri ↪ Ii, i ∈ [n] establishes a closed typing chain morphism (ρ, id[n]) ∶R → I.
Finally, the construction of I ensures type compatibility of the rule:

(λ, id[n]); (σI , id[n]) = (σL, id[n]) and (ρ, id[n]); (σI , id[n]) = (σR, id[n]) (2)

13

Paper D 185

L I

MM

S D

T G

(µ, f)
(λ, id[n])

(ς, id[m])
(σD, id[m])

(σI , id[n])
(σS , id[m])(σL, id[n])

(δ, f)

(β, f)

Figure 5: Pushout step

Type compatibility of the matches µ ∶ L → S and (β, f) ∶ MM → T G
means that µ ∶ L → S restricts for each i ∈ [n] to a map µi ∶ Li → Sf(i) such
that this family of graph homomorphisms establishes a typing chain morphism(µ, f) ∶ L → S satisfying the equation

(σL, id[n]); (β, f) = (µ, f); (σS , id[m]). (3)

The type compatibility requirements for rules and matches ensure that the
pushout for graphs, at the bottom of Figure 4, gives rise to a pushout for the
corresponding inclusion chains at the bottom of Figure 5: For each n ≥ i > 0

we set Df(i) ∶= Sf(i) ∪ δ(Ii) thus the co-span S
ς↪ D

δ← I restricts to a co-span

Sf(i) ςf(i)↪ Df(i) δi← Ii. This co-span can be proven to be a pushout of the span

Sf(i) µi← Li
λi→ Ii. To get a complete inclusion chain D of length m, we simply

set Dj ∶= Sj and ςj ∶= idSj for all j ∈ [m] ∖ f([n]). The complex proof that this
simple construction provides indeed a pushout in Chain can be found in [30].

Since the bottom square in Figure 5 is a pushout, the type compatibily
conditions (2) and (3) ensure that there is a unique typing chain morphism(σD, id[m]) from D to T G such that

(δ, f); (σD, id[m]) = (σI , id[n]); (β, f) , (ς, id[m]); (σD, id[m]) = (σS , id[m]) (4)

This shows, that we have indeed constructed a type compatible multilevel typing
of the graph D.

For the second step of rule application, namely the FPBC construction shown
in Figure 6, we first construct FPBC in category Graph and obtain T . It will
remain to reconstruct the typing of T in order to create an inclusion chainT = (T ,m, τT). To achieve this, we construct the reduct of D = (D,m, τD)
along θ ∶ T ↪ D and id[m] by level-wise intersection (pullback) for all n ≥ i ≥ 1.

In such a way, we obtain an inclusion chain T = (T ,m, τT) together with a closed

14

186 Paper D

I R

MM

D T

T G

(ν, f)(ρ, id[n])
(θ, id[m])

(σD, id[m])
(σI , id[n])

(σT , id[m])
(σR, id[n])

(δ, f)

(β, f)

Figure 6: Final pullback complement step

typing chain morphism (θ, id[m]) ∶ T → D. The multilevel typing of T is simply
borrowed from D, that is, we define (see Fig. 6)

(σT , id[m]) ∶= (θ, id[m]); (σD, id[m]) (5)

and this trivially gives us the intended type compatibility of (θ, id[m]).
The specific conditions that are required are out of the scope of this paper,

and can be consulted in the technical report [30].

3. Composition

In current MDSE practice, DSMLs are built by language designers using
a metamodel defined by a general-purpose meta-modelling language [35], like
MOF. As mentioned in Section 1, this in turn leads to a metamodel that de-
scribes the instances that users of the language can build in the immediate
metalevel below. Thus, languages are specified within two levels: definition and
usage. However, the increasing complexity of software systems advocates the
need for more DSMLs as refinement of general-purpose languages [36]. Hence,
the need for alternative techniques that alleviate the two-level restrictions (pro-
vided, for instance, by MLM) becomes progressively significant.

By using MLM capabilities, one could customise families of similar DSMLs,
where certain commonalities are shared. In this context, the challenge for lan-
guage designers is to take advantage of the existing commonalities among similar
DSMLs by reusing, as much as possible, formerly defined language constructs [2].
Furthermore, having a way to modularise a language to create features — to
later reuse and combine them — can be used in different manners to produce
tailor-made DSMLs targeting the needs of well-defined audiences. This feature-
oriented approach to DSML engineering requires the definition of DSMLs in a
modularised fashion where language features are implemented as interdependent
and composable language modules.

15

Paper D 187

3.1. Standard Composition Approach

A consequence of having DSMLs that tackle scoped problem spaces (enhanc-
ing separation of concerns), is that often we find ourselves thinking that one of
them is not enough to reason about certain global properties or to execute the
complete system. In other words, it might be necessary to compose some of
the constructed models to achieve such goals. In general, model composition
unfolds along two dimensions, structure and behaviour.

Instance

Transition	system

Merge

(b)	MLM	Merge

...

Level 1

Level n-1

...

Merged Hierarchy

RS2

Hierarchy 1 Hierarchy 2

...

RS1

Metamodel 1 Metamodel 2

RS1 RS2Merge

Merged
Metamodel

Instance

Transition	system

(a)	Two-level	Merge

Level 1

C

C

C

C

Level n-1

Level n

RS1 RS2RSm=

RS1 RS2RSm=

Figure 7: Two-level merge combination vs MLM merge combination

Commonly, frameworks that offer composition operators had to define their
own composition rules and provide custom-made implementations of such opera-
tors (e.g., through model transformations). To alleviate ad-hoc implementations
and to provide standard operations, several researchers have proposed in [19]
a paradigmatic merging operation for structure composition and event schedul-
ing for behavioural composition. Intuitively, merging refers to the operation
in which “the common elements are included only once, while the rest are pre-
served”. Figure 7(a) shows how the merge operation in [19] works for two level
approaches. Formally, a merge combination operator takes two metamodels,
Metamodel 1 and Metamodel 2 as inputs, as well as a set of correspondence tu-
ples C = {⟨ex, ey⟩, . . .} with ex ∈ Metamodel 1 and ey ∈ Metamodel 2. The merge
combination operator produces a new output Merged Metamodel that contains,
for each tuple ⟨ex, ey⟩ ∈ C, a single metamodel element. All metamodel elements
in Metamodel 1 and Metamodel 2 that are not given a correspondence in C are
simply copied into the Merged Metamodel. In fact, this common and standard

16

188 Paper D

representation of merging is a colimit construction and goes back to Burstall
and Goguen’s work in the late 70’s [37].

Note that the elements displayed as circles in either of the metamodels,
are just abstract representations and could be a node or a reference; they are
displayed in this way to show how the combination is done after identifying cor-
responding elements. To represent each of the merged elements we use gradient
colour surrounded by line, which represent combined elements originally com-
ing from two individual ones. Also, the merge operator could take more than
two metamodels as inputs, as long as the set of correspondences C is properly
specified [38], but we discuss here the case of two for simplification purposes.

RS1 and RS2 are the sets of transformation rules attached to Metamodel
1 and Metamodel 2, respectively. In the same way, as we obtain a Merged
Metamodel by the merge operation, a set of rules (RSm) to be attached to such
a merged metamodel is produced by the disjoint union of each of the rule sets
(RSm = RS1 ⊎ RS2).

Instance models can be then specified by defining elements that are typed
(recall that dashed arrows represent typing graph morphisms) by elements lo-
cated in the Merged Metamodel. These instances can be executed producing the
Transition system (state space) which is obtained by applying the rules that
come from the resulting rule set RSm.

If we apply the merging approach to the MLM case, we get the situation
depicted in Figure 7(b). Following the same approach as for the two-level case,
we merge two multilevel hierarchies, Hierarchy 1 and Hierarchy 2, for which
the merging process would be done level-wise. If there exists some level mis-
match between the hierarchies, one can still establish correspondences among
elements, however, the resulting Merged Hierarchy must be structurally correct
and fulfil the corresponding multilevel constraints. The degree of safeness of
the different proposals implementing this approach depends on the amount of
sanity checks in each of them [31]. As stated at the beginning of Section 2.1, in
our implementation we provide mechanisms to assure that potency on elements
is preserved, and typings are correctly applied.

Shortcomings of the standard merge operator. A crucial shortcoming present in
the merge composition approach is the loss of the “individuality” nature of the
merged elements (see also [39] for further shortcomings related to constraint
checking). This means that the original elements that have been merged into
a new one cannot be used separately after the merge. This capability might
be useful in several situations. For example, when the elements about to be
composed are not identical, but powering up each other. In these situations,
we may need to use in our models the merged elements when we want to take
advantage of all the features each of them provides. However, certain parts
of the model might require their isolated aspects (i.e., the original, separated
elements) to be available. These merged elements are no longer available as
individual elements of the metamodel and hence cannot be instantiated at the
Instance level.

17

Paper D 189

3.2. Composition of hierarchies in MultEcore

Our proposal is to provide elements with multiple natures. Natures can
be dynamically added and removed, so elements can have their own specific
features, while still being able to define a combined and enriched nature. Our
formalisation of typing chains allows us to incorporate or remove additional
natures, as types, to elements. For instance, given a situation where we are
working with two typing chains, each of our nodes and references residing at
the instance level would be double-typed, each one provided by each of the
typing chains. But also, at any time, a typing chain can be removed without
affecting the other. Elements can therefore have, simultaneously, as many types
as we need. This can be seen as an aspect-like mechanism that we can use
as we require, being able to use aspects independently or together. The same
principles apply to the definitions of behaviour by the amalgamation of MCMTs
(Section 3.2.2). The fact that typing chains may be added and removed as
needed makes the composition of DSMLs very flexible.

3.2.1. Composition of multilevel modelling hierarchies

Our MLM approach does not restrict the number of typing chains that can
be specified in a hierarchy. Frequently, we denote a multilevel hierarchy as the
main or default one and call it application hierarchy, since it represents the
main language being designed. An application hierarchy can optionally include
an arbitrary number of supplementary hierarchies which add new aspects to
the application one. Note that we distinguish the typing chains and individual
typing relations of the application hierarchy with blue colours, and use green
for the supplementary ones. Adding or removing supplementary hierarchies is
made possible by the incorporation or extraction of additional typing chains.
For instance, we might have different hierarchies (physically separated, e.g., dif-
ferent projects in the MultEcore tool) that we want to compose. Such a result
can be achieved by assigning the role of application hierarchy to one of them
and adding the rest as supplementary ones. These two different “roles” assigned
to hierarchies are used for the most part in this paper, since it facilitates the
reusability and the modularisation of the system being modelled. However, it
is important to point out that, as long as the typing chains are properly de-
fined and consistent, the formalisation of application and supplementary typing
chains has no real difference. Therefore, we can consider both working with
several hierarchies, for which there might be several Ecore models at the top, or
with several branches within the same hierarchy where there is only one Ecore
model. The latter alternative can be achieved using the same techniques as the
former, as long as some of our constraints are weakened, e.g., the tree shape
(discussed in Section 2.1) that we impose on hierarchies or the single individual
type (Definition 7) of each element in a hierarchy.

Figure 8 displays the hierarchy in Figure 1, but in it two different branches
are combined within the same hierarchy, i.e., we specify two typing chains. The
left-hand branch, in which models are connected by blue dashed arrows, repre-
sents the main typing chain and guides how we can consistently and precisely

18

190 Paper D

A
EClass 1-1-2

B
EClass 1-1-2

C
EClass 1-1-2

G@1-1-2

EReference

EReference

A1
A 1-1-1

B1
B

EClass

1-1-1
C1

C 1-1-1

B2
B 1-1-1

A2
A 1-1-1

G1@1-1-1

G

G2@1-1-1

G

(b) generic-model-1

(d) specific-model-1

(a) Ecore

a1
A1 0-0-0

b1
B1 0-0-0

g1@0-0-0

F
EClass 1-1-2

D
EClass 1-1-2

E
EClass 1-1-2

H@1-1-2
EReference

D1
D 1-1-1

E1
E 1-1-1

F1
F 1-1-1

H1@1-1-*

H

G1,H1

Level 0

Level 1

Level 2

Level 3 - Instance

D1 E1

(e) specific-model-2

(c) generic-model-2

(f) configuration-1

Figure 8: Multilevel hierarchy with two typing chains

type elements. As described above, we can then add extra typing chains, in this
case, to our instance level, for example the one represented by the green dashed
arrows (characterised by the right-hand branch). Once a new typing chain is
incorporated, all the elements (both nodes and references) need to be extended
with a new type. Then, these types can be used/modified by the modeller as it
is done with the main type.

The model configuration-1 in Fig. 8(f) shows an example of how elements
may be double-typed. One can see that node a1 has two types associated, A1
from the left-hand typing chain, its main type, and D1 from the right-hand
typing chain, which adds additional information to the node. We have a similar
situation with reference g1 and its two types G1 and H1.

Figure 9 compares the merge case exposed in Figure 7(b) with our approach
for composition based on multiple typing chains. As already explained, a con-
siderable drawback of the merge operation is that, once the merge is performed,
the individuality of the elements that belonged to the different models prior
the composition step is lost. Notice in Figure 9(b) that we do not carry any
“physical” merge when a composed hierarchy or model is produced, but we
can instantiate elements with more than one type. The hierarchies are left un-

19

Paper D 191

Instance

Transition	system

Merge

(a)	MLM	Merge

...

Level 1

Level n-1

...

Merged Hierarchy

RS2

Hierarchy 1 Hierarchy 2

...

RS1

Level 1

Level n-1

C

C

Instance

Transition	system

(b)	MLM	multiple	typing	chains

...

Level 1

Level n-1

RS2

Hierarchy 1 Hierarchy 2

...

RS1

a2 a4a1
a3

Level n

Level n
RS1 RS2RSm=

RS1 RS2RSm=

Figure 9: MLM merge combination vs our approach with multiple typing chains

touched, but the rules belonging to each hierarchy might be amalgamated to
take into account a desired composed behaviour. Of course, we can preserve
the “individual” nature by using just one of the types as shown in either a2,
a3 or a4 elements in Figure 9(b). We discuss in section 3.2.2 how we achieve
behaviour composition (RSm = RS1∐RS2 at the bottom of Figure 9(b)).

The inclusion of an extra typing chain forces all the elements at the instance
level to have an additional new type from the newly incorporated typing chain.
Elements which do not get a specific type from the newly added typing chain
will get a default typing; i.e., the type of the nodes is set to EClass (and arrows
to EReference, respectively). Recall that this default typing to Ecore elements is
independent on whether the new typing chain is contained in the same hierarchy
(i.e., we use the same Ecore as a top most model G0) or we use a completely
new hierarchy. This is illustrated in Figure 10 which depicts a fragment of the
hierarchy of Figure 9(b) but using typing arrows (formally ty(e)) instead of
ellipses. We can see that the model configuration-1 has two typing chains: a
blue and a green one, in the same hierarchy. Note that, in a particular typing
chain we omit the default typing to Ecore elements if other intermediate types
exist (e.g., a2 has A1 in the blue branch, while it has only the default EClass
in the green one). We describe the individual typing for each of the elements
below; we denote TCx(e), with x = 1,2, the corresponding individual typings of

20

192 Paper D

A
1-1-2

EReference

A1
1-1-1

EClass

(b) generic-model-1

(d) specific-model-1

(a) Ecore

a1
0-0-0

a2
0-0-0

(f) configuration-1

D
1-1-2

D1
1-1-1

Level 0

Level 1

Level 2

Level 3
Instance

(e) specific-model-2

(c) generic-model-2

Figure 10: Typing chains to keep individuality of elements

the element e in typing chain x:

TC1(a1) ≡ a1 z→ ty1(a1) = A1 z→ ty21(a1) = A z→ ty31(a1) = EClass
TC2(a1) ≡ a1 z→ ty2(a1) =D1 z→ ty22(a1) =D z→ ty32(a1) = EClass
TC1(a2) ≡ a2 z→ ty1(a2) = A1 z→ ty21(a2) = A z→ ty31(a2) = EClass
TC2(a2) ≡ a2 z→ ty2(a2) = EClass

3.2.2. Amalgamation of MCMTs

In the previous section, we explained how we support composition of MLM
models by multiple typing. In this section, we will explain composition of be-
haviour by the amalgamation of MCMT rules. The amalgamation of trans-
formation rules has been widely discussed in the literature in the context of
traditional (two-level) approaches [40, 41, 42, 43, 44]. In this paper, we study
amalgamation in the MLM context and allow potentially conflicting rules to be
amalgamated under certain constraints.

We are working with two MLM hierarchies or, as in the running example,
with the composition of the two branches of Figure 8, each of them with its own
set of MCMTs. The elements will appear double-typed at the instance level (for
example, the situation described in Figure 8(f)). Thus, a key aspect is to also
be able to amalgamate rules which only pertain to each branch of the hierarchy.

21

Paper D 193

To illustrate the constructions, we will explain the process by amalgamating
two MCMTs, one for each branch: Rule A (TRA) for the left branch, which is
the rule depicted in Figure 3 and shown again in Figure 11(a), together with
Rule B (TRB), which is a very similar rule for the right branch (Figure 11(b)).

a

VarG
GVarA VarB

G
A B

VarA

A B

FROM TO

g
VarGa

VarA
b

VarB

META

d

VarH
HVarD VarE

H
D E

VarD

D E

FROM TO

h
VarHd

VarD
e

VarE

META

(b) - Rule B (TRB)(a) - Rule A (TRA)(a) - Rule A (TRA)

Figure 11: MCMT rules to be amalgamated: (a) Rule A affecting the left-hand branch and
(b) Rule B affecting the right-hand branch

An essential step to achieve amalgamation (or, in general, composition) is
the identification process where the elements that correspond to each other
have to be identified. Most works in the literature use a so-called kernel rule
to express correspondences between two or more rules [40, 41, 42, 43]. Also in
our approach, we assume that the user provides the correspondences between
elements in the rules which are to be amalgamated. That is, given Rule A
LA ↪ IA ↩ RA and Rule B LB ↪ IB ↩ RB , the correspondences provided by
the user (L0, I0 and R0) will be defined as a subrule TR0 such that TR0 ↪ TRA
and TR0 ↪ TRB .

Definition 11 (Subrule). A rule TR0 ∶= L0 ↪ I0 ↩ R0 is a subrule of a rule
TR ∶= L ↪ I ↩ R, written TR0 ↪ TR, where there exist three inclusion graph
morphisms L0 ↪ L, I0 ↪ I, and R0 ↪ R, such that the following diagrams are
commutative.

TR0

TR

L0 I0 R0

L RI

= =

This will give rise to three spans with inclusion graph morphisms: LA ↩
L0 ↪ LB , IA ↩ I0 ↪ IB and RA ↩ R0 ↪ RB . Recall that L ⊑ I and R ⊑ I,
hence, we can deduce R0 and L0 from I0, meaning that in practise the user only
needs to specify I0.

Amalgamating TRA and TRB w.r.t. TR0 means to combine the components
of the rules so that we obtain a single rule TRM such that (LM = LA+L0 LB)↪

22

194 Paper D

(IM = IA +I0 IB) ↩ (RM = RA +R0 RB). Again, we use pushout constructions,
as a common practise, to obtain the components of TRM . Below, we detail
the construction of LM as the pushout LA +L0 LB (see Figure 12). The same
constructions will apply for the I and R components of the rules.

L0 I0 R0

LA IA RA

LB IB RB

LM IM RM
λM ρM

ςL ςI ςR

μL μI μR

δL δI δR

λL λI λR

λ0 ρ0

λA ρA

λB ρB

Figure 12: Amalgamated rule construction with pushouts

However, since LA and LB (and, respectively, IA, IB , RA and RB) have
different multilevel types, we would need to unify the types by defining default
types for each of the elements in the other hierarchies, i.e., all LA elements
would have the default type (EClass/EReference) from the typing chainMMB =(MMB , nb, τ

MMB), while all LB elements will have the default types from the
typing chain MMA = (MMA , na, τ

MMA) (and again, the same for IA, IB , RA
and RB). Furthermore, L0 would have the default types in both chains.

We illustrate this in Figure 13. On the left-hand side, we break down the
LA+L0LB pushout resulting in LM together with their respective typing chains.
As described above, a is typed over MMA (VarA, A, EClass) and over MMB
(EClass), d is typed over MMB (VarD, D, EClass) and by EClass over MMA ,
a ≡ d in L0 is only double-typed by EClass in each of the typing chains, and the

resulting ad in LM is typed over MMA (via σL
A
M) and MMB (via σL

B
M) as

shown in the right-hand side of Figure 13.
Expressed in terms of inclusion chains, the aforementioned typing relations

mean that LA0,0 = LB0,0 = L0,0 = L0, where LA0,0 is the part of L0 which is typed

by MMA,0 (see Lemma 1). The rest of the levels LA0,i, with 0 < i ≤ na will be
empty since L0 has only default types in the two rules’ hierarchies. These types
are reflected by the two light thin arrows from L0 to the two EClasses inMMA
and MMB in Figure 13, respectively. Similarly, we have LAA,0 = LBA,0 = LA,0
and LAB,0 = LBB,0 = LB,0. The levels (except for 0) of the inclusion chains LA
(resp. LB) along σL

A
A ∶ LA ⇒ MMA (resp. σL

B
B ∶ LB ⇒ MMB) will be

constructed according to Lemma 1. Moreover, the default levels (except for

0) of the inclusion chains LA (resp. LB) along σL
B
A ∶ LA ⇒ MMB (resp.

σL
A
B ∶ LB ⇒ MMA) will be empty. Having these typing chains, we apply

level-wise pushouts as described in Section 2.2 [30].

23

Paper D 195

L0

POLA LB

LM

σL
LA a

VarA

A

EClass

a≡d

ad

d

VarD

D

EClass

LB

L0

PO

LM

MMB,0

MMB,1

MMB,2

MMA,0

MMA,1

MMA,2

ty(a) ty(d)

tyB(ad)tyA(ad)

M
A

σLM
B

σLA
A

σLB
B

σLB
A

σLA
B

σL0
A σL0

B

Figure 13: LM with typing chains as result of pushout of LA, LB modulo L0

The results of these level-wise pushouts would be two inclusion chains:

• LAM = (LAM , na, τLA
M) with σL

A
M ∶ LAM ⇒MMA : The levels LAM,i for all

0 ≤ i ≤ na of the inclusion chain will be produced by the pushouts of the
spans LAA,i ↩ LA0,i ↪ LAB,i.

• LBM = (LBM , nb, τLB
M) with σL

B
M ∶ LBM ⇒MMB : The levels LBM,i for all

0 < i ≤ nb of the inclusion chain will be produced by the pushouts of the
spans LBA,i ↩ LB0,i ↪ LBB,i.

Figure 14 illustrates how the levels LAM,0 and LAM,1 are constructed (the rela-
tions between the levels are omitted to simplify the diagrams). The other levels,
as well as the pushouts with respect to MMB , are constructed analogously.
LAM,0 and LAM,1 are obtained by the pushouts of the spans LAA,0 ↩ LA0,0 ↪ LAB,0
and LAA,1 ↩ LA0,1 ↪ LAB,1, respectively. The graphs LA0,1 and LAB,1 will be empty
since the inclusion chain is constructed with respect to MMA . This is be-
cause the elements of L0 and LB have only the default types in MMA , hence
only level 0 of these inclusion chains are none-empty such that L0 = L0,0 and
LB = LB,0. The construction of the two first levels for the rules TRA and TRB
from the running example is shown in Figure 15. Notice that d is neither iden-
tified in LA0,1 nor in LAB,1, as it only has the default EClass type w.r.t. MMA ,

located in level 0. Then, in LAM,1 we only have a, which is typed by A in MMA,1.
To summarise, the result of the amalgamation process is an amalgamated

rule where each element has two types. For the running example, the result of

24

196 Paper D

L0,0

LA,0

LA,1

LB,0

LM,0

LM,1

MMA,0

MMA,1

PO

PO

LB,1=Ø

L0,1=Ø

A

A

A

A

A

A

A

A

Figure 14: Levels 0,1 of the inclusion chain LM

L0,0

L0,1

LA,0

LA,1

LB,0

LB,1

LM,0

LM,1

MMA,0

A

PO

PO

a≡d

a

a

d

Ø

ad

a

EClass

MMA,1Ø

A

A

A

A

A

A

A

A

Figure 15: Levels 0,1 of the inclusion chain LM for the rules TRA and TRB

amalgamating TRA and TRB in Figure 11 is the rule TRM which is depicted
in Figure 16 as a co-span and in Figure 17 in the MultEcore syntax.

3.2.3. Amalgamation cases

If we inspect the constructions described in Section 3.2.2, we can observe
several amalgamation cases depending on how TRA and TRB are related by
TR0. Table 1 shows a summary of the cases that we contemplate, which are
listed below (note that one can see in the Amalgamation columns which elements
are identified, as the names are concatenated):

Case 1 : TRA adds, TRB adds and I0 = L0, i.e., added elements are not identified
(only a is identified with d which was already existing in L0).

Case 2 : TRA adds, TRB adds and L0 ⊏ I0, i.e. the elements newly added by
each of the rules are identified between them (for example in this case, b

25

Paper D 197

a≡d

a

a≡d

b≡e

a b

d

ad

g≡h

g

d eh

ad

be

gh
λM ρM

ςL ςI
ςR

μL μI μR

δL δI
δR

λL λI
λR

λ0 ρ0

λA ρA

λB ρB

a≡d

b≡e

g≡h

a b
g

d eh

ad

be

gh

Figure 16: Amalgamation construction application of the situation depicted in Figure 17

ad

VarG
GVarA VarB

VarA

A B

FROM TO

gh
VarG,
VarH

ad
VarA

be
VarB

META

VarH
HVarD VarE

D E

VarD VarD VarE

G
A B

H
D E

Figure 17: Amalgamated rule TRM as result of combining TRA and TRB

is identified with e and g with h, which are all newly added). This case
represents the example shown along Section 3.2.2

Case 3 : TRA adds, TRB adds, L0 ⊏ I0 and either (I0 ∖L0) ∩ LA ≠ ∅ or (I0 ∖L0)∩ LB ≠ ∅, i.e., newly added elements by TRA are identified with elements
which are in LB , or vice versa. This is a special case since, for as, b is
identified with e in I0, but e does not exist in L0. Therefore, as hinted
in the constructions shown in Section 3.2.2, we need to constrain the
match of LM in the source graph S by forcing the missing type for be
to be directly — i.e., not transitively — EClass. In abuse of notation, we
indicate with underlined text in the type rather than in the element (as we
do for constants) that the constrained typing relation must match exactly
one typing relation in the target hierarchy, instead of a potential series of
transitive typing relations.

26

198 Paper D

Table 1: Amalgamation cases

a
VarA

a
VarA

b
VarB

d
VarD

d
VarD

e
VarE

ad
VarA

e
VarD

g
VarG

h
VarH

h
VarH

ad
VarA VarD

g
VarG

b
VarB

VarE

1

a
VarA

a
VarA

b
VarB

d
VarD

d
VarD

e
VarE

ad
VarA

be
VarD

g
VarG

h
VarH

gh

VarH

ad
VarA VarD

VarG

VarEVarB2

a
VarA

a
VarA

d
VarD

d
VarD

e
VarE ad

VarA

be

VarD

h
VarH

gh

VarH

ad
VarA VarD VarE

3 b
VarB

be
VarB

b
VarB

g
VarG

VarB

VarGECLass

a
VarA

d
VarD

e
VarE

h
VarHb

VarB
g
VarG

a
VarA

d
VarD

be

gh VarH

ad
VarA VarD

VarEVarB

VarG
ad

VarA VarD4

d
VarD

a
VarA

ad
VarA VarD6 a

VarA
b

VarB
g
VarG

bgad
VarA VarD VarB

VarG

b
VarB

Pr. TRA

Pr. TRB

d
VarD

ad
VarA VarD

7
ad

VarA VarD
Pr. TRA

Pr. TRBa
VarA

b
VarB

a
VarA

d
VarD

e
VarE

h
VarH

beh
VarH

ad
VarA VarD VarEVarB

Rule A (TRA) Rule B (TRB) Amalg. (TRM)

LA LBRA RB LM RM
CASE

5 a
VarA

b
VarB

g
VarG

a
VarA

d
VarD

e
VarE

h
VarH d

VarD
ad

VarA VarD

g
VarG

b
VarB

e

VarH
h

VarE ad
VarA VarD

27

Paper D 199

From this point, the cases which include deletion of elements might cause a
general dangling arrow problem, which has to be solved. One solution is to get
rid of the dangling arrows using a special graph minus operator as explained
below. Alternatively, we could notify the user about the dangling arrows and
ask for user intervention as it is done, for instance, in version control systems
(see [45]).

Case 4 : TRA deletes and TRB deletes, where L0 = I0 (i.e., there are no new
identifications except for the ones in L0), LM = IM (no additions), and
IA∖RA = IB∖RB (identified/same elements are deleted). Note, if the only
deleted elements are those that have been identified, we have I0 ⊒ IM∖RM .

Case 5 : TRA deletes, TRB deletes, I0 = L0, LM = IM , IA ∖ RA ≠ IB ∖ RB
(different elements are deleted) and RM ⊒ I0 (all the identified elements
are preserved).

We will now analyse other cases involving deletion which could be covered
if RM is created by pushout of RA ↩ R0 ↪ RB . However, if we use such a
mechanism to construct RM , we would lose the effect of deletion, and certain
conflicts might just disappear. For example, if TRA deletes an element while
TRB keeps it, the element would be kept. Obviously, a potential dangling arrow
problem would also disappear since a deleted node a which is identified in L0 or
I0 would be kept if it is preserved by the rule which uses a as source or target of
an arrow. Therefore we introduce two priority formulae below to prioritise the
effect of one of the rules depending on the user’s choice (the calculation of RM ,
i.e., the square on the far right of Figure 12, would be done via the formulae
below).

Priority in TRA ∶ RM = RA ∪ (RB *-(I0 ∩RB))
Priority in TRB ∶ RM = RB ∪ (RA *-(I0 ∩RA))

We define *- as a graph minus operation that removes any dangling arrow
that could be left by the usual graph minus operation.

To illustrate an application of priorities, let us consider the example shown
in Figure 18 where we have two rules: TRA:= Add and connect and TRB :=
Delete node. The latter was originally conceived to be applied to the right-hand
branch of the hierarchy (specific-model-2, generic-model-2, Ecore) in Figure 8.
In the case of the Delete node rule, and following the same logic as explained for
the Add and connect rule, any match in our instance of the variable d placed in
the FROM block, whose type is VarD located at the second level of the META
block, and which is typed by the constant D located at the first level of the
META block, takes the instance to a new state where the matched element is
removed. These rules are conflicting in the sense that the user has identified
a with d and, while TRA adds a new arrow g to a, TRB deletes the element
d. However, as mentioned, applying our standard pushout construction would
produce a TRM in which the affect of the deletion in RM disappears.

Depending on which rule the user wants to prioritise, the corresponding
formula needs to be applied. First, the user has to provide I0 with the identifi-
cation. In this case, I0 only identifies a with d (a ≡ d). Such an identification

28

200 Paper D

a

VarG
GVarA VarB

VarA

A B

FROM TO

g
VarGa

VarA
b

VarB

META
FROM TO
META

VarD

D

D

d
VarD

G
A B

(b) - Rule B (TRB)(a) - Rule A (TRA)

Figure 18: MCMT rules to be amalgamated: (a) Rule A affecting the left branch and (b) Rule
B affecting the right branch

indicates us that a, d, or ad appearances in the formula must be treated as same
element. If the prioritisation falls on TRA, we have:

RM = (a gÐ→ b) ∪ (∅ *-(ad ∩ ∅))
RM = (a gÐ→ b)

If the prioritisation is given to TRB the result is:

RM = ∅ ∪ ((a gÐ→ b) *-(ad ∩ (a gÐ→ b))
RM = ∅ ∪ ((a gÐ→ b) *-a)
RM = b

Observe how a normal minus operation would keep a dangling arrow pointing
to b, while the *- operation removes also the arrow. We graphically show both

Priority:
TR_A

ad

VarG
GVarA VarB

VarA

A B

FROM TO

g
VarGad

VarA
b

VarB

META
VarD

D

VarD
VarD

Priority:
TR_Bb

VarB

G
A B D

Figure 19: Amalgamated rule TRM as result of combining TRA and TRB where RM has
been calculated with the priority formulae

29

Paper D 201

possible results in Figure 19, where the TO block depicts the two alternatives
depending on the priority.

Case 6 : One of the rules adds while the other deletes, for instance, TRA adds
something to an element while TRB deletes that element. This is the case
depicted above and shown in Figures 18 and 19 where RM is given by
prioritisation on one of the rules.

Case 7 : This case covers potential combinations of some of the cases afore dis-
cussed. There might be several additions and/or deletions at the same
time and, therefore, conflicts that would require prioritisation.

3.2.4. Amalgamated rule application

The last step, once the amalgamated multilevel double-typed rule is con-
structed, consists of its application into the composed multilevel hierarchy. Note
that the construction follows the same reasoning as for single multilevel typed
rules (detailed in Section 2.2). The complete construction for the amalgamated
rule application is depicted in Figure 20.

As we discussed in Section 3.2.3, the calculation of RM might not be done
by the pushout but with the priority formulae, so that we mark the right hand
pushout with ∗. We have the two typing chains MMA = (MMA, na, τ

MMA)
and MMB = (MMB , nb, τ

MMB) over which the double-typed MCMT rule is
defined. The multilevel double-typed rule is given by the four components (L0,
LA, LB and LM for L and respectively for I and R) and their multilevel typings

over the two typing chains MMA and MMB such that σL
A
A ∶ LA ⇒ MMA

and σL
B
B ∶ LB ⇒MMB , σI

A
A ∶ IA ⇒MMA and σI

B
B ∶ IB ⇒MMB and σR

A
A ∶

RA ⇒ MMA and σR
B
B ∶ RB ⇒ MMB . Then, we have σL

A
M ∶ LM ⇒ MMA ,

σL
B
M ∶ LM ⇒ MMB , σI

A
M ∶ IM ⇒ MMA , σI

B
M ∶ IM ⇒ MMB , σR

A
M ∶ RM ⇒MMA and σR

B
M ∶ RM ⇒MMB .

In the multilevel typed setting all the instance graphs S, D and T are mul-
tilevel double-typed over another two typing chains T GA = (TGA,ma, τ

TGA)
and T GB = (TGB ,mb, τ

TGB), the instance typing chains. A match of the

left-hand side (LM , σL
A
M , σL

B
M) of the multilevel double-typed rule into a mul-

tilevel double-typed instance graph (S, σS
A

, σS
B

) is given by a graph homo-
morphism µM ∶ LM → S together with the corresponding typing chain mor-
phisms (βA, fA) and (βB , fB) where βA = βAi ∶ MMAi →T GAfA(i) ∣ i ∈ [na] and
βB = βBi ∶ MMBi →T GB fB(i) ∣ i ∈ [nb], respectively.

Furthermore, µM ∶ LM → S has to be compatible with the multilevel typings

σL
A
M ∶ LM ⇒MMA and σL

B
M ∶ LM ⇒MMB , σS

A ∶ S ⇒ T GA and σS
B ∶ S ⇒T GB and, finally, with the typing chain morphisms (βA, fA) : MMA → T GA

and (βB , fB) : MMB → T GB .
We construct the pushout and then the final pullback complement of the

underlying graph homomorphisms in the category Graph as shown at the bottom
of Figure 20. The type compatibility conditions for the multilevel double-typed
rule as well as for the multilevel typed match should ensure that we obtain,

in a canonical way, multilevel typings σD
A ∶ D ⇒ T GA and σD

B ∶ D ⇒ T GB ,

30

202 Paper D

L0

I0

R0

LA

IA

RA

LB

IB

RB

LM

IM

RM

S

D

T

PO

(βA , fA)

(βB , fB)

δM

σL
A

σD
A

μM

μL

σT
B

ςL
δL λM

ρM

λL

μI

ςI

δI

λI

μR

ςR

δR

λR

νM

θM

FPBC

A

σI
A
M

σI
A
A

σL
A
M

σR
A
A

σR
A
M

σL
B
M

σL
B
B σI

B

M

σI
B

B

σR
B

M

σR
B

B

σS
B

σD
B

σS
A

σT
A

λ0

ρ0

λA

ρA

λB

ρB

Figure 20: Amalgamated rule application construction

σT
A ∶ T ⇒ T GA and σT

B ∶ T ⇒ T GB of the constructed graphs such that the
constructed graph homomorphisms ςM ∶ S ↪ D, δM ∶ IM → D, θM ∶ T ↪ D and
νM ∶ RM → T are type compatible.

4. Case study

The capability to perform composition of structure and operational seman-
tics takes the construction of DSMLs to a next step. Modelling a system often
involves the consideration of several perspectives that describe different aspects
of the system. In the case study that we present in this section, the main as-
pect of the system consists of a DSML defined as a multilevel hierarchy for the
management and distribution of process resources in a company. This is the
application hierarchy of the case study, called process management. The process
management hierarchy version we present in this paper is a fragment of the
hierarchy presented in the MULTI 2019 workshop, as our solution [27] to the
MULTI Process challenge [46, 47]. Therefore, all the modelling decisions affect-
ing the complete hierarchy (illustrated in Appendix A) were made to fulfil the
requirements of the challenge. The second DSML is described in an independent
multilevel hierarchy that captures certain notions related to human beings in

31

Paper D 203

general (e.g., stamina). This second hierarchy acts as the supplementary one
in our case study, and it is called the human-being hierarchy. By applying our
approach we observe that composition can be achieved in a natural and modu-
lar way. The composition of structure can be done by double typing elements,
while the MCMTs can be composed by applying the constructions introduced
in Section 3.2.

4.1. The process management hierarchy

This hierarchy represents the domain of process management, where the
modeller is interested in a complete description of a language that includes the
specification of particular occurrences (i.e., “processes” = “processes instances”,
“tasks” = “task occurrences”) and universal kinds of occurrences (“process def-
initions”, “task types”) and relations to actor types and artefact types. Our

Process
EClass 1-*-*

Task

3-* beginDate : string
3-* endDate : string
2-2 expectedDuration : int
2-2 isCritical : boolean

EClass 1-2-*

Actor
EClass 1-*-2

AbstractRole
EClass 1-2-*

Gateway
EClass 1-2-*

Sequence
EClass 1-2-*

AndSplit
EClass 1-2-*

AndJoin
EClass1-2-*

OrSplit
EClass 1-2-*

OrJoin
EClass 1-2-*

Artifact
EClass 1-2-*

InitTask
EClass 1-2-*

FinalTask
EClass 1-2-*

SeniorRole
EClass 1-2-*

Role
EClass 1-2-*

CombinedRole
EClass 1-2-*

contains@1-*-*

EReference

hasRole@1-*-*

EReference

executes@1-2-*
EReference

performs@3-*-*

EReference

creates@2-*-*

EReference

uses@1-2-*

EReference

produces@1-2-*

EReference

source@1-2-*
EReference

target@1-2-*

EReference

initialTask@1-2-* EReference

finalTask@1-2-*

EReference

includes@1-2-*

EReference

Level 1 - process

Figure 21: Process management model

original solution ([27]) presented models not only related to the general man-
agement of processes but also branches for specific processes in the domains of
software engineering and insurance. For the sake of simplicity, we focus only
on the software engineering branch as it suffices to illustrate our composition
approach.

4.1.1. Structure of the process management hierarchy

The process model depicted in Figure 21 is located in the first level (we
omit Ecore, which lives above process model) of the hierarchy and contains the
concepts concerning universal processes. This includes process types, task types,
artefact types, and actors. The composition relation named contains between

32

204 Paper D

Process and Task models that a process has one or more tasks. Task has some
attributes to model the duration, starting and ending day, and whether it is
critical or not. Actors may have multiple roles, which is captured by the refer-
ence hasRole between Actor and AbstractRole. We use for roles the traditional
object-oriented Composite pattern [48] and define AbstractRole as an abstract
node (italic font in the name). A special type of role to designate a Senior-
Role is also defined. Roles can have assigned kind of tasks whose instances can
execute. Also, each actor can either create or perform tasks. Finally, the two
references, produces and uses, from Task to Artifact, capture that tasks can both
use and produce artefacts. Ordering constraints between task types are estab-
lished through Gateways, which may be Sequence, OrSplit, OrJoin, AndSplit and
AndJoin.

SEArtifact
Artifact 1-1-*

SEActor
Actor 2-*-1

responsibleActor@2-*-*

EReference

Level 2 - software-engineering

Figure 22: Software engineering process model

The model software-engineering (in level 2) in Figure 22 captures specialisa-
tions that affect the software engineering domain. For instance, that each soft-

AnalystRole
Role@2 1-1-*

Level 2 - Acme-software-engineering

Figure 23: Acme software engineering process model excerpt

ware engineering artefact (SEArtifact node has as type Artifact from the process
model in Figure 21) must have assigned one responsible software engineering
actor.

The Acme-software-engineering model describes a concrete modelling lan-
guage for the Acme company, and characterises how the working flow is going to
be, which roles are allowed to execute certain types of tasks, which artefacts are
produced, and so on. Figure 23 shows the excerpt of this model that is needed
for the current case study — the entire model is depicted in Figure A.41(c). In
this excerpt, we find AnalystRole class of type Role. Note that @2 is added to it
type as it is located two levels above (at process model in Figure 21).

The lowest level of the process management hierarchy contains the instance
model (called Acme-configuration) and it is shown in Figure 24. It depicts a
very simple initial model with Alex as a software engineering actor (SEActor)

33

Paper D 205

Level 4 - Acme-configuration

Alex
SEActor@2 0-0-0

Analyst
AnalystRole 0-0-0

alex_role@1-1-*
hasRole@3

Figure 24: Acme initial configuration at the instance level

which has associated an Analyst role (of type AnalystRole).

a1role
hasRoleact1

Actor
r1 a1role

hasRole

a1p
performs

act1
Actor

r1e
e

r1
R1

task1
T1

e
executesR1

R1

Role
T1

Task

performshasRole
Actor Task

executes

Role

FROM TO
META

Figure 25: Rule Create Task : It creates a specific task associated to a concrete actor whose
role allows the execution of such kind of tasks

4.1.2. MCMTs for the process management hierarchy

The dynamics of processes is modelled by MCMTs, which describe the dif-
ferent actions that may occur in the system. We show here three of these rules
for the process management hierarchy that illustrate their use, and will serve us
to manifest their combination with rules in the second hierarchy.

The first rule, called Create Task, is shown in Figure 25. Given an actor act1
with a role r1 of some type R1 via a1role, the rule assigns a new task of the right
type to it. The role specified in the level 2 of the META block will constrain
the task that such role can execute. In addition, the model at the higher level
will similarly constrain the type of task that the actor can perform and its role
execute.

The second rule, named Produce Artefact, is depicted in Figure 26. If an
actor act1 and a task task1 he is performing (indicated by the a1p reference)
are found, the rule creates an artefact ar1 related both to the actor act1 via r
(typed by responsibleActor) and to the task task1 via t1pr.

The third rule that applies to the process management multilevel hierarchy,
named Delete task and illustrated in Figure 27, is meant to delete a task that an
actor is performing. Recall that rule levels are not expected to match consecutive

34

206 Paper D

a1p
performsact1

SEActor

p1
producesT1 A1

SEArtifact

producesTask Artifact

SEArtifact
responsibleActor
EReferenceSEActor

task1
T1

performs

Actor

a1p
performs

r
responsibleActor

act1
SEActor

t1pr
p1

task1

ar1

T1

A1

FROM

META

TO

Task

ArtifactActor

Figure 26: Rule Produce Artefact : It creates an artefact related to the task that produces it
and the actor responsible for it

levels in the hierarchy on which they are defined. In this case, the META model
would match to elements located at level 1 of the hierarchy (Figure 21), while
the FROM and TO parts would match at the instance level placed at level 4
(Figure 24). This flexibility is specified in Condition 1.

4.2. The human-being hierarchy

In the human-being hierarchy we tackle different aspects inherently related
to the human factor of the system.

4.2.1. Structure of the human-being hierarchy

This multilevel hierarchy is depicted in Figure 28. The model represented
in Figure 28(a) captures very general human being notions, such as that a
human (Human node) can do (does relation) multiple activities (Activity node).
Furthermore, a human has a stamina level which is represented as an Integer
(int), and an activity can have an impact on a human’s stamina. These two
characteristics are expressed via attributes in the respective nodes.

a1per
performsact1

Actor
task1 act1

ActorTask

performs
Actor Task

FROM TO
META

Figure 27: Rule Delete Task : It deletes a task an actor is performing

35

Paper D 207

Human

1-* stamina : int

EClass 1-*-*
Activity

1-* impact : int

EClass 1-*-*
does@1-1-*

EReference

Worker

1-1 profit : int

Human 1-1-*
Assignment

1-1 value : int

Activity 1-1-*

undertakes@1-1-*

does

(a) general-human-being

(b) worker-human-being

Figure 28: Human-being multilevel hierarchy

To give an example of refinement, we define in Figure 28(b) a model that
captures concepts for the domain of working human beings. Note that we could
add other models in here at the same level to capture other areas, such as
students, retired people, etc. Worker, undertakes and Assignment have, as types,
Human, does and Activity, respectively. Additionally in this level, two more
attributes are added that only concern the worker domain. The profit attribute
(defined in Worker) can be understood as the income that a worker obtains.
And value, specified in the Assignment node, is the benefit that completing the
assignment provides.

4.2.2. MCMTs for the human-being hierarchy

As we did for the process management hierarchy (Section 4.1.2), behaviour
here is also described using MCMTs. We provide two MCMT rules for this
hierarchy.

The first rule is called Undertake activity and it is shown in Figure 29. It
connects a worker work1 and an assignment as1. Attributes are also modified in
this rule. In the FROM block, s, p, i and v would capture values in the model for
the stamina and profit for work1 and the impact and value for as1, respectively,
during the matching process. In the TO block, apart from connecting them via
u (typed by undertakes) reference, the attributes on the worker are modified:
stamina in work1 gets decreased by the amount that was matched to the impact
from the assignment as1 but the profit on the worker work1 gets increased by
the amount specified in the value attribute in the assignment as1. Intuitively, a
worker that is undertaking an activity gets income at the cost of getting more
tired.

A second rule, named Finish Activity, is illustrated in Figure 30. Unlike the
previous rule which is defined in the domain of worker human beings, this one

36

208 Paper D

work1
Worker

as1

undertakes
doesWorker

Assignment

Assignment

does
Human Activity

- stamina : int - impact : int

- profit : int - value : int

- stamina = s
- profit = p

- impact = i
- value = v

u
undertakeswork1

Worker
as1

Assignment

- stamina = s - i
- profit = p + v

- impact = i
- value = v

FROM TO

Human Activity

META

Figure 29: Rule Undertake activity: It connects a worker with the assignment being performed
and updates its attributes

applies to human beings in general. The application of this rule finds a match
in the model where a human human1 connected to an activity act1 via d and
removes such a reference.

d
doeshuman1

Human
act1

Activity

does
Human Activity

human1
Human

act1
Activity

FROM TO
META

Figure 30: Rule Finish Activity: It removes the link between a human being and the activity
he was performing

4.3. Multilevel hierarchies combination

A modeller working on a concrete design of the processes of the Acme com-
pany (specific actors, tasks, artefacts, etc.) might find useful to complement that
given scenario with additional aspects, such as those described in the human-
being multilevel hierarchy (Figure 28). Through our approach one can put
together different perspectives, while there still exists a separation (via typing
chains) that can be analysed either together or separately.

For instance, observe the model Acme-configuration-composed depicted in
Figure 31 where we incorporate the human-being multilevel hierarchy (Fig-
ure 28) as a supplementary typing chain to reason about some elements de-
fined on it. We can, for example, give to Alex the new type Worker and keep
the SEActor type. Analogously, we can instantiate the attribute stamina, which
comes from the worker-human-being model (Figure 28(b)), with the value 3.

To give a full perspective of how the two hierarchies are put together and
how elements at instance level can make use of them, we provide selected parts

37

Paper D 209

Alex

stamina=3

SEActor@2 0-0-0
Worker Analyst

AnalystRole 0-0-0

alex_role@1-1-*
hasRole@3

Acme-configuration-composed

Figure 31: Instance model of Acme software engineering company including human-being
hierarchy

Actor
EClass 1-*-2

AbstractRole
EClass 1-2-*

Role
EClass 1-2-*

hasRole@1-*-*

EReference

SEActor
Actor 2-*-1

AnalystRole
Role@2 1-1-*

software-engineering

Acme-software-engineering

Acme-configuration

Alex

stamina=3

SEActor@2 0-0-0
Worker Analyst

AnalystRole 0-0-0

alex_role@1-1-*
hasRole@3

process

EReference

Ecore

EClass

Human

1-* stamina : int

EClass 1-*-*

Worker
Human 1-1-*

general-human-being

worker-human-being

level 0

level 1 level 1

level 2

level 2

level 3

level 4 / level 3

Instance

EReference

Ecore

EClass
level 0

Figure 32: Selected parts of process and human-being hierarchies creating a composed multi-
level hierarchy

38

210 Paper D

a1pu
performs,
undertakes

act1work1
Actor

task1as1
T1

- stamina = s
- profit = p

Human Activity

- stamina : int - impact : int

undertakes
doesWorker Assignment

- profit : int - value : int

Worker

- stamina = s - i
- profit = p + v

- impact = i
- value = v

Assignment

performshasRole
Actor Task

executes

Role

e
executesR1

Role
T1

Task

a1role
hasRoleact1work1

Actor
r1

R1Worker

task1as1
Assignment

- impact = i
- value = v

a1role
hasRole r1

R1

r1e
e

FROM TO

does

META

Human Activity

EClass

Figure 33: First rule amalgamation: It combines Create Task rule from the process hierarchy
with Undertake Activity rule from the human-being hierarchy

of each of the models and illustrate them in Figure 32, where one can observe
the typing chains for each hierarchy. Note that the model shown in Figure 31 is
located at level 4 / level 3 - Instance in Figure 32. Each of the types belonging
to each of the hierarchies can be precisely spotted in its corresponding typing
chain up to the topmost model. Firstly, Alex is typed by SEActor. Note that
the @2 means that SEActor is located at level: Alex’s level (level 4) minus 2, i.e.,
at level 2 — in the software-engineering model. Then SEActor’s type is Actor
located at level 1 which finally leads us to EClass defined at level 0. Secondly,
Alex’s second type is Worker, which is located at level 2 (worker-human-being
model). Worker’s type is Human placed one level above (general-human-being
model) and, ultimately, Human’s type is EClass. For each of the elements present
in any of the models, one must always be able to follow the typing chains up
to the topmost model located at level 0. The dashed semi-transparent lines in
Figure 32 represent the typing chains of each element.

4.4. MCMTs amalgamation

We show in this section, to demonstrate the application of the constructions
detailed in Section 3.2, three amalgamation cases, each of them combining one
rule from each hierarchy.

The first amalgamated rule shown in Figure 33 is given by the combination
of the Create Task (Figure 25) rule from the process management hierarchy and
the Undertake Activity (Figure 29) rule from the human-being hierarchy. We
identify in the META block both multilevel hierarchies (note they are separated
by a vertical dotted line) involved in the two typing chains present in the FROM

39

Paper D 211

a1pu
performs,
EReference

act1work1

SEActor

p1
producesT1

Task

A1

SEArtifact

task1as1

T1

performs,
undertakes

r
responsibleActor

act1work1

SEActor

t1pr
p1

task1as1

ar1

T1

A1

AssignmentWorker

- stamina = s
- profit = p

- impact = i
- value = v

does

Human Activity

- stamina : int - impact : int

undertakes
does

Worker Assignment

- profit : int - value : int

Worker

- stamina = s - i
- profit = p + v

- impact = i
- value = v

Assignment

produces
Task Artifact

SEArtifact
responsibleActor
EReferenceSEActor

performs

Actor

FROM
META

TO

Human Activity

Actor Artifact

a1pu

Figure 34: Second rule amalgamation: It combines Produce Artefact rule from the process
hierarchy with Undertake Activity rule from the human-being hierarchy

and TO blocks, product of the amalgamation process. The complete amalga-
mated rule is automatically obtained by applying the construction shown in
Figure 12, once I0 has been provided by the user. This rule intuitively assigns
to an actor/worker (act1work1) a task/assignment (task1as1) through a1pu, for
the first hierarchy, and undertakes, for the second one. As clarified in Case 3
of Section 3.2.3, act1work1’s type from the process hierarchy is constrained to
be EClass. The rule also connects r1 to task1as1 via r1e. Notice how r1e link
is not involved with the human-being hierarchy, which makes sense since roles
from the process hierarchy are not identified with anything into the human-being
hierarchy. Finally, it also applies the attribute manipulation such as decreasing
the stamina and increasing the profit of act1work1. This rule is identified by case
number 3 in Table 1.

The second amalgamated rule displayed at Figure 34 is constructed by com-
bining the Produce Artefact rule (Figure 26) from the process management hi-
erarchy and again the Undertake Activity rule from the human-being hierarchy.

In this case, we illustrate this rule as it presents a peculiarity. As one can
observe in Figure 34, there exists a mismatch between the number of levels in
the two hierarchies. While the first hierarchy on the rule (located in the left-
hand side of the dotted line in the META block) specifies three META levels, the
second hierarchy or at the right-hand side only contains two levels. However,
this is not a problem since either of the typing chains do not see themselves
affected by the other, and it is perfectly fine to find such kind of situations.
The application of this rule creates an artefact ar1 (which is not related to the

40

212 Paper D

a1perd
performs,

does

act1human1

Human

task1act1

Activity

does
Human Activity

act1human1

HumanActor Task Actor

performs
Actor Task

FROM
META

TO

act1human1

Human

task1act1

Activity

Actor

Priority:
Delete Task

Priority:
Finish Activity

Human

Figure 35: Third rule amalgamation: It combines Delete Task rule from the process hierarchy
with Finish Activity rule from the human-being hierarchy. The result depends on which rule
gets prioritised

human-being hierarchy) related to act1work1 through r and to task1as1 via t1pr.
Again, act1work1 also gets updated stamina and profit. This rule construction is
covered in case number 3 in Table 1 (notice the EReference second type of a1p
in the FROM block).

The last amalgamation example we have obtained, is given by the combina-
tion of Delete Task rule (Figure 27) from the process management hierarchy and
Finish Activity rule (Figure 30) from the human-being hierarchy. We illustrate
in this case an example where prioritisation must be given to one of the rules
in order the get RM (TO block). The two results depicted in the TO part are
calculated by applying the formulae given in Section 3.2.3. This example corre-
sponds to case number 6 in Table 1, as one rule is keeping the node task1act1
while the other is removing it.

4.5. Amalgamation in MultEcore

In MultEcore, we have developed a guided-procedure that the modeller fol-
lows in order to get the set of amalgamated rules. To facilitate the explanation,

Figure 36: First step of amalgamation wizard: Selection of multilevel hierarchies to be com-
bined

41

Paper D 213

we describe each step and add a corresponding figure of how it is displayed to
the user in the MultEcore wizard. We use the three amalgamated rules shown
in Figures 33, 34 and 35 for illustrative purposes and to demonstrate that the
produced amalgamated MCMT rules are sound with the expected results. The
amalgamation process is semi-automatic, and defined by the following steps:

1. The modeller decides which multilevel hierarchies are going to be com-
bined. These, together with their corresponding set of MCMT rules will
be loaded into the wizard. This is shown in Figure 36 where both mul-
tilevel hierarchy projects have been selected. It is important to mention
that one must select at least two of the available hierarchies in order to
advance to the second step.

2. In this step, the user has to pick the MCMT rules that are going to
be amalgamated. For instance, if we are combining two hierarchies, the
modeller has to specify pairs of MCMTs that are to be amalgamated. We
show in Figure 37 and describe below the four sub-steps that are involved
at this stage of the wizard:

• Figure 37.1. In this part of the dialog the user sees all the multi-
level hierarchies that have been selected. In this example we have:
. . . process2020main and . . . human.

• Figure 37.2. In this box the user automatically sees the available
MCMT rules that belong to the selected hierarchy in Figure 37.1.
Selecting one of them and pressing Add Rule (right side of the Figure)
adds the selected MCMT rule to the third box (Figure 37.3). Note
that only one rule can be added per hierarchy and, for instance,
adding two rules from the same hierarchy is not a valid situation.
Once a rule has been added to Figure 37.3, it is removed from the
box in Figure 37.2 until it has been resolved, i.e., combined with
another rule.

Figure 37: Second step of amalgamation wizard: Selection of MCMT rules combinations.

42

214 Paper D

• Figure 37.3. This box shows the potential MCMT rules that are
a priori candidates to be combined. Note that FinishActivity and
DeleteTask are currently shown in there, and pressing Combine will
save this combination together with the already decided ones.

• Figure 37.4. This last box shows the combinations that have been
stored for next steps of the wizard. Currently, two combinations
have already been decided: CreateTask + UndertakeActivity and Pro-
duceArtefact + UndertakeActivity. Combinations can be discarded by
selecting one and clicking on Remove (bottom right of Figure 37).
For the next step of the wizard we assume that the candidate com-
bination in Figure 37.3 is finally combined.

3. For each tuple of assigned MCMTs, one needs to give the identification of
the elements. As mentioned earlier, an essential step to achieve amalga-
mation (or, in general, composition) is the identification process where the
elements that correspond to each other have to be identified (I0). Several
approaches in the literature use a so-called kernel rule to express corre-
spondences between two or more rules [40, 41, 49, 42]. Thus, a mandatory
step within this process for the user is to provide the correspondences be-
tween elements in the rules which are to be amalgamated. We show in
Figure 38 the ongoing process of the identification of each node/edge for
each rule combination and describe each part:

• Figure 38.1. In this box the user can see the combinations selected
in the previous step. Note that we were actually showing two com-
binations in Figure 37.4 and the last one (DeleteTask and FinishAc-
tivity in Figure 37.3) we assume it has been combined at this point.
Clicking one of these combinations and pressing Select, reveals each
MCMT rules involved in such a combination in the Figure 38.2 box.

Figure 38: Third step of the amalgamation wizard: Identification of elements in each rule
combination.

43

Paper D 215

The three available combinations are: ProduceArtefact + Undertake-
Activity (selected), CreateTask + UndertakeActivity and DeleteTask +
FinishActivity.

• Figure 38.2. In here the MCMT rules of the combinations are
shown. The user can click on one of these rules and press Select
which breaks down all of the available elements of the selected rule
in the Figure 38.3 box. In the example UndertakeActivity is selected.

• Figure 38.3. The individual elements that belong to the selected
rule are shown in this part. To choose one to identify it with an-
other corresponding element, click on it and press Add element. In
the example, work1 (selected), as1 and u are the candidates elements,
and, for example, pressing Add element will move work1 to the Fig-
ure 38.4 list. Note that, similarly as in the second step with the
rules to be combined, only one element per rule can be selected for
one combination, and adding it as a candidate for the identification
temporarily removes it from the list in Figure 38.3. In this case, the
combination taking place considers one element from UndertakeActiv-
ity (work1) and one from ProduceArtefact (act1 which already added
in Figure 38.4).

• Figure 38.4. The identified candidate elements are shown in this
box. Currently, only act1 is on the list. Adding work1 from the
previous sub step will complete this identification list and will allow
the Save button to be pushed, which adds the identification to the
pool.

• Figure 38.5. This last box simply informs of the current status of
the saved identified elements in each amalgamation.

4. Finally, once all the correspondences are established, the modeller gets a
summary and is notified if conflicts have been detected. As discussed in
Section 3.2.2, a conflict may appear, for instance, when an identified node
is removed in one of the selected MCMTs, but kept in the other. Our
way to resolve conflicts is by granting prioritisation to one of the rules.
We show in Figure 39 the last step of the amalgamation wizard where
the summary of the MCMT rules that are going to be amalgamated is
provided. This step is divided into three categories:

• Figure 39.1. Here the conflicting amalgamated MCMT rules are
listed. In this case, there is only one conflicting situation, DeleteTask
+ FinishActivity. Picking it and pressing Select leads to the second
sub-step.

• Figure 39.2. The user can select in this box the rule that should
get prioritised. In this example we have chosen DeleteTask.

• Figure 39.3. This last part summarises the amalgamation cases
that are going to be produced. Note that we are showing here the
DeleteTask. . . situation to display how would it look like once the

44

216 Paper D

MCMT rule that is going to get prioritised is selected, i.e., by pushing
Select in Figure 39.2.

Once the Finish button is selected the engine computes the amalgamated
MCMT rules based on the identifications provided and the prioritisations given.

4.6. Textual DSML for MCMTs

MCMT rules in MultEcore are specified using a textual editor where the
MCMTs DSML [24, 25] has been built using Xtext [50]. This DSML provides
the specification of modules containing a collection of MCMT rules defined inde-
pendently of the hierarchy. The combined rules produced by the amalgamation
engine have the same format than the MCMT rules that the user could man-
ually write. Thus, the amalgamation results can be directly translated into an
MCMT file. An example of the results that are obtained is shown in Figure 40.

For the sake of simplicity, we only show the textual representation of the
third amalgamated rule DeleteTaskFinishActivity (with priority on Delete Task)
which was graphically displayed in Figure 35. The other two amalgamated
rules are shown in Appendix B (Figures B.42, B.43). In Figure 40, we dis-
tinguish three main blocks, the meta, the from and the to (lines 2, 22 and 29,
respectively). In the from and to blocks we can define patterns according to the
elements previously declared in the meta part. The meta block must contain a
valid, non-empty pattern, but the from and to blocks may be empty. Within
the textsfmeta we can define constant and variable elements, but we can only
define variables in the from and to parts. They contain the same information
that the corresponding blocks shown in the graphical rule.

Constant nodes are defined, for instance, as in line number 4 Actor: $pro-
cess[1]!Actor where Actor is the name of the constant node, $ is used to denote

Figure 39: Fourth step of the amalgamation wizard: Conflicts resolution and summary of the
MCMT rules that are going to be amalgamated.

45

Paper D 217

1 r u l e De l e t eTaskF in i shAct iv i ty {
2 meta{
3 //Nodes level 1 - Process
4 Actor : $proce s s [1] ! Actor
5 Task : $proce s s [1] ! Task
6
7 //Nodes level 1 - Human
8 Human : $human [1] ! Human
9 Activity : $human [1] ! Ac t i v i t y

10
11 //Edges level 1 - Process
12 performs : $proce s s [1] ! Actor . per forms
13
14 //Edges level 1 - Human
15 does : $human [1] ! Human . does
16
17 //Source.edge = Target
18 [Actor . per forms = Task]
19
20 [Human . does = Act iv i ty]
21 }
22 from {
23 act1human1 : Actor , Human
24 task1act1 : Task , Activity
25 a1perd : performs , does
26
27 [act1human1 . a1perd = task1act1]
28 }
29 to {
30 act1human1 : Actor , Human
31 }
32 }

Figure 40: Computed DeleteTaskFinishActivity MCMT rule. It corresponds to the graphical
MCMT rule depicted in Figure 35 with priority on Delete Task

that is a constant, process is an alias of the rule it belongs to (either process
or human) and [1] represents that it is located at level 1 of the meta block.
Constant edges, such as the one defined in line number 12, are given by its
name (performs) and ends with the form source.edge (Actor.performs). In this
rule there are not variables defined in the meta block, but they are very similar
with the exception that the $ is not written, and the nodes end with its type
name. Also, attributes can be declared below each node specifying its type. We
refer the reader to Figures B.42 and B.43 for some examples of variables and
attributes. At the end of the meta block, we define the assignment expressions
that are used to specify the structural relationships between the declared nodes
by means of the declared edges. An example is given in line 18 [Actor.performs
= Task], where Actor and Task are the source and target of the edge, performs.
In the example, the from block of the rule defines a pattern consisting of three
variables and one assignment expression, while its to block comprises just one

46

218 Paper D

variable declaration. The from and to blocks follow the same structure. Nodes
and edges in these levels are defined as shown in lines 24 and 25, respectively,
where, for example, task1act1 has two types, Task from the main process hierar-
chy and Activity from the supplementary human one. Similarly as for the meta
block, edges have to be specified within assignment expressions that link them
with its respective sources and targets (line 27).

5. Related work

We first discuss approaches within the context of traditional MDSE and the
Language Product Lines Engineering field that propose techniques to achieve
composition.

Melange [51] is a tool for the construction of DSLs that supports modular
language design and language modules composition. The dynamic semantics is
defined operationally as aspects in the Kermeta meta-language [52]. Operational
semantics of a DSL involves the use of an action language to define methods
that are statically introduced in the concepts of the DSL abstract syntax. In
our approach, we define the semantics separately, by means of MCMTs, avoid-
ing the need to change the abstract syntax (for us, the multilevel hierarchy) of
the DSML. Authors present in [53] an approach for building product lines of
metamodels. The key point of these approaches is that a transformation product
line is defined that becomes applicable for all metamodels in the set providing
reusability and flexibility. Even though such approaches typically require spec-
ifying a binding between the transformation interface and the metamodel, the
range of applicability is much wider than approaches where the transformation
can be reused on a closed fixed metamodel set [54]. The approach in [54] is
based on featured model transformations (FMTs) that can be seen as a kind
of metamodel that integrates the variability of a whole family of metamodels
which still provide a high degree of reusability. In our approach we go one step
further as we do not only consider the reusability of the transformation rules
within the same family, but also the incorporation of orthogonal languages.

GeKo [55] is a generic, extensible model weaver that can compose any models
that conform to a common metamodel. To operate, it takes as parameters a base
model, a pointcut model (the parametric pattern) and an advice model. The
tool replaces all instances of the pointcut model that are found in the model with
the advice model. While this approach focuses on the composition at the model
(instance) level, we discuss in this work the composition of language descriptions
via multilevel modelling hierarchies. Furthermore, GeKo operates only on the
structure, while our approach also provides support for the amalgamation of
dynamic semantics specified by means of MCMTs. MATA [56] is very similar to
GeKo but it is founded on graph transformations to do composition of structure
of models conforming to a common metamodel.

The work presented in [57] served us as inspiration to develop our approach.
In their work, the authors formally define how composition of structure and
amalgamation of semantic specifications can be achieved between a functional
DSL and several parametric non-functional ones. While they establish a weaving

47

Paper D 219

process to construct the combined, final products (both structure- and semantic-
wise), we try to be as minimally invasive as possible by incorporating the (sup-
plementary) typing chains which can be later removed in a flexible way. Thus,
as mentioned along this article, our structure combination process tends to be
virtual rather than physical in the sense that we do not produce a new combined
language, but incorporate/remove the new features we are interested in.

In the context of amalgamation of graph transformations, the authors im-
plement rule amalgamation based on nested graph predicates in GROOVE [58].
In there, a single structure holds the different rules, where pattern rules can
indicate the variations of the overall pattern structure. AToM3 supports the
amalgamation of rules to describe the explicit definition of interaction schemes
in different rule editors [43]. The authors of the GReAT tool [59], define the con-
cept of Group, so they can operate and apply delete, move or copy operations to
each of the elements within the group, in the context of a transformation rule.
In our approach we explore an alternative method to achieve amalgamation
based on multiple typing.

6. Conclusions and future work

In this paper we have described an alternative method to achieve compo-
sition of structure and semantics of model descriptions. While some standard
approaches might achieve composition, e.g., by implementing a merge operator,
we take advantage of the notion of application and supplementary hierarchies
to provide elements with more than one aspect by multiple typing them. Our
formalisation based on category theory and graph transformations allows us to
achieve such aspect-orientation flavor by incorporating additional typing chains.
We have formally demonstrated how amalgamated MCMT rules can be gener-
ated by computing their components (namely, LM , IM and RM) via pushouts
LA +L0 LB , IA +I0 IB and RA +R0 RB . We differentiate between rules that are
conflict free and those whose amalgamation would lead to conflicts. For the lat-
ter, we define an alternative formulation to compute RM , based on which rule
gets prioritised. Finally, we have illustrated and applied the constructions to a
case study where two independent multilevel hierarchies are combined and their
rules are amalgamated. Note that we rely on the user to provide the modulo
components that make it possible to calculate the resulting constructions. We
are investigating how to make this process (semi-)automatic by analysing how
elements at the instance level are related and multiple typed to suggest and
automatically compute amalgamated rules.

The MultEcore framework is currently supporting the amalgamation process
described in Sections 4.5 and 4.6. We plan to incorporate the execution of
composed hierarchies with their amalgamated MCMT rules into our MultEcore-
Maude infrastructure that allows to handle simulation/execution [29]. Also, we
plan to extend our case studies with other examples that allow us to evaluate
all cases depicted in Table 1.

48

220 Paper D

References

[1] C. Atkinson, T. Kühne, Processes and products in a multi-level metamodel-
ing architecture, International Journal of Software Engineering and Knowl-
edge Engineering 11 (06) (2001) 761–783.

[2] S. Zschaler, P. Sánchez, J. P. Santos, M. Alférez, A. Rashid, L. Fuentes,
A. Moreira, J. Araújo, U. Kulesza, VML* - A Family of Languages for
Variability Management in Software Product Lines, in: Software Lan-
guage Engineering, Second International Conference, SLE 2009, Denver,
CO, USA, October 5-6, 2009, Revised Selected Papers, 2009, pp. 82–102.
doi:10.1007/978-3-642-12107-4_7.

[3] J. de Lara, E. Guerra, Deep meta-modelling with MetaDepth, in: Objects,
Models, Components, Patterns, Vol. 6141, 2010, pp. 1–20. doi:10.1007/

978-3-642-13953-6_1.

[4] C. Atkinson, R. Gerbig, Flexible deep modeling with Melanee, in: S. Betz,
U. Reimer (Eds.), Modellierung 2016, Vol. 255 of LNI, Gesellschaft für
Informatik, Bonn, 2016, pp. 117–122.

[5] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo, H. Er-
gin, AToMPM: A web-based modeling environment, in: MODELS-JP 2013,
Vol. 1115 of CEUR Workshop Proceedings, 2013, pp. 21–25.

[6] S. Van Mierlo, B. Barroca, H. Vangheluwe, E. Syriani, T. Kühne, Multi-
level modelling in the Modelverse, in: MULTI@ MoDELS, Vol. 1286 of
CEUR Workshop Proceedings, 2014, pp. 83–92.

[7] UML, http://www.uml.org/.

[8] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: eclipse mod-
eling framework, Pearson Education, 2008.

[9] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernández, B. Nordmoen,
M. Fritzsche, Where does model-driven engineering help? Experiences from
three industrial cases, Software & Systems Modeling 12 (3) (2013) 619–639.

[10] J. Whittle, J. Hutchinson, M. Rouncefield, The state of practice in model-
driven engineering, IEEE software 31 (3) (2014) 79–85.

[11] J. D. Lara, E. Guerra, J. S. Cuadrado, When and how to use multilevel
modelling, ACM Transactions on Software Engineering and Methodology
(TOSEM) 24 (2) (2014) 12.

[12] C. Atkinson, T. Kühne, Reducing accidental complexity in domain models,
Software & Systems Modeling 7 (3) (2008) 345–359.

[13] C. Atkinson, T. Kühne, In defence of deep modelling, Inf. Softw. Technol.
64 (2015) 36–51. doi:10.1016/j.infsof.2015.03.010.

49

Paper D 221

[14] C. Atkinson, R. Gerbig, T. Kühne, Comparing multi-level modeling ap-
proaches, in: Proceedings of the Workshop on Multi-Level Modelling co-
located with ACM/IEEE 17th International Conference on Model Driven
Engineering Languages & Systems (MoDELS 2014), Valencia, Spain,
September 28, 2014, 2014, pp. 53–61.

[15] C. Atkinson, T. Kühne, On evaluating multi-level modeling, in: Proceed-
ings of MULTI @ MODELS, 2017, pp. 274–277.

[16] F. Maćıas, U. Wolter, A. Rutle, F. Durán, R. Rodriguez-Echeverria, Mul-
tilevel Coupled Model Transformations for Precise and Reusable Definition
of Model Behaviour, Journal of Logical and Algebraic Methods in Program-
ming 106 (2019) 167–195. doi:10.1016/j.jlamp.2018.12.005.

[17] J. de Lara, E. Guerra, Generic Meta-modelling with Concepts, Templates
and Mixin Layers, in: Model Driven Engineering Languages and Systems -
13th International Conference, MODELS, 2010, pp. 16–30. doi:10.1007/
978-3-642-16145-2_2.

[18] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale, B. Baudry,
Leveraging Software Product Lines Engineering in the development of ex-
ternal DSLs: A systematic literature review, Computer Languages, Systems
& Structures 46 (2016) 206–235. doi:10.1016/j.cl.2016.09.004.

[19] J. Kienzle, G. Mussbacher, B. Combemale, J. Deantoni, A unifying frame-
work for homogeneous model composition, Software & Systems Modeling
18 (5) (2019) 3005–3023.

[20] Arne Lange and Colin Atkinson, Multi-level modeling with MELANEE, in:
Proceedings of MULTI @ MODELS, 2018, pp. 653–662.

[21] J. de Lara, E. Guerra, Refactoring Multi-Level Models, ACM Trans. Softw.
Eng. Methodol. 27 (4) (2018) 17:1–17:56. doi:10.1145/3280985.

[22] C. Atkinson, T. Kühne, J. de Lara, Editorial to the theme issue on multi-
level modeling, Software and Systems Modeling 17 (1) (2018) 163–165.
doi:10.1007/s10270-016-0565-6.

[23] S. P. Jacome-Guerrero, J. de Lara, TOTEM: Reconciling multi-level mod-
elling with standard two-level modelling, Computer Standards and inter-
faces In press.

[24] F. Maćıas, A. Rutle, V. Stolz, R. Rodriguez-Echeverria, U. Wolter, An
Approach to Flexible Multilevel Modelling, Enterprise Modelling and In-
formation Systems Architectures 13 (2018) 10:1–10:35. doi:https://doi.
org/10.18417/emisa.13.10.

[25] F. Maćıas, Multilevel modelling and domain-specific languages, PhD thesis,
Western Norway University of Applied Sciences and University of Oslo
(2019).

50

222 Paper D

[26] F. Maćıas, A. Rutle, V. Stolz, Multilevel Modelling with MultEcore: A
Contribution to the MULTI 2017 Challenge, in: Proceedings of MULTI @
MODELS, 2017, pp. 269–273.

[27] A. Rodŕıguez, F. Maćıas, Multilevel Modelling with MultEcore: A Con-
tribution to the MULTI Process Challenge, in: Proceedings of MULTI @
MODELS, 2019, pp. 152–163. doi:10.1109/MODELS-C.2019.00026.

[28] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
C. Talcott, All about Maude a high-performance logical framework: how
to specify, program and verify systems in rewriting logic, Springer-Verlag,
2007.

[29] A. Rodŕıguez, F. Durán, A. Rutle, L. M. Kristensen, Executing Multilevel
Domain-Specific Models in Maude, Journal of Object Technology 18 (2)
(2019) 4:1–21. doi:10.5381/jot.2019.18.2.a4.

[30] U. Wolter, F. Maćıas, A. Rutle, The Category of Typing Chains as a Foun-
dation of Multilevel Typed Model Transformations, Tech. Rep. 2019-417,
University of Bergen, Department of Informatics (November 2019).

[31] T. Kühne, A story of levels, in: Proceedings of MULTI @ MODELS, 2018,
pp. 673–682.

[32] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic
Graph Transformation, Monographs in Theoretical Computer Science. An
EATCS Series, Springer, 2006. doi:10.1007/3-540-31188-2.

[33] H. Ehrig, F. Hermann, U. Prange, Cospan DPO approach: An alternative
for DPO graph transformations, Bulletin of the EATCS 98 (2009) 139–149.

[34] A. Rodŕıguez, A. Rutle, L. M. Kristensen, F. Durán, A Foundation for
the Composition of Multilevel Domain-Specific Languages, in: MULTI@
MoDELS, 2019, pp. 88–97. doi:10.1109/MODELS-C.2019.00018.

[35] J. de Lara, E. Guerra, Domain-Specific Textual Meta-Modelling Languages
for Model Driven Engineering, in: Modelling Foundations and Appli-
cations - 8th European Conference, ECMFA 2012, Kgs. Lyngby, Den-
mark, July 2-5, 2012. Proceedings, 2012, pp. 259–274. doi:10.1007/

978-3-642-31491-9_20.

[36] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling languages
in Industry 4.0: an extended systematic mapping study, Software and Sys-
tems Modeling 19 (1) (2020) 67–94. doi:10.1007/s10270-019-00757-6.

[37] R. M. Burstall, J. A. Goguen, Putting theories together to make spec-
ifications, in: Proceedings of the 5th International Joint Conference on
Artificial Intelligence. Cambridge, MA, USA, August 22-25, 1977, 1977,
pp. 1045–1058.

51

Paper D 223

[38] P. Stünkel, H. König, Y. Lamo, A. Rutle, Multimodel correspondence
through inter-model constraints, in: S. Marr, J. B. Sartor (Eds.), Con-
ference Companion of the 2nd International Conference on Art, Science,
and Engineering of Programming, Nice, France, April 09-12, 2018, ACM,
2018, pp. 9–17. doi:10.1145/3191697.3191715.

[39] P. Stünkel, H. König, Y. Lamo, A. Rutle, Towards multiple model syn-
chronization with comprehensive systems, in: Fundamental Approaches to
Software Engineering - 23rd International Conference, FASE 2020, Held as
Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2020, Proceedings, Vol. Accepted for publication of Lecture
Notes in Computer Science, Springer, 2020.

[40] P. Boehm, H. Fonio, A. Habel, Amalgamation of Graph Transformations:
A Synchronization Mechanism, J. Comput. Syst. Sci. 34 (2/3) (1987) 377–
408. doi:10.1016/0022-0000(87)90030-4.

[41] G. Taentzer, Parallel and distributed graph transformation - formal de-
scription and application to communication-based systems, Berichte aus
der Informatik, Shaker, 1996.

[42] E. Biermann, H. Ehrig, C. Ermel, U. Golas, G. Taentzer, Parallel Indepen-
dence of Amalgamated Graph Transformations Applied to Model Transfor-
mation, in: Graph Transformations and Model-Driven Engineering - Essays
Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, 2010, pp.
121–140. doi:10.1007/978-3-642-17322-6_7.

[43] J. de Lara Jaramillo, C. Ermel, G. Taentzer, K. Ehrig, Parallel Graph
Transformation for Model Simulation applied to Timed Transition Petri
Nets, Electron. Notes Theor. Comput. Sci. 109 (2004) 17–29. doi:10.

1016/j.entcs.2004.02.053.

[44] Y. Lamo, F. Mantz, A. Rutle, J. de Lara, A declarative and bidirectional
model transformation approach based on graph co-spans, in: 15th Inter-
national Symposium on Principles and Practice of Declarative Program-
ming, PPDP ’13, Madrid, Spain, September 16-18, 2013, 2013, pp. 1–12.
doi:10.1145/2505879.2505900.

[45] A. Rossini, A. Rutle, Y. Lamo, U. Wolter, A formalisation of the copy-
modify-merge approach to version control in MDE, J. Log. Algebr. Pro-
gram. 79 (7) (2010) 636–658. doi:10.1016/j.jlap.2009.10.003.

[46] J. Almeida, A. Rutle, M. Wimmer, Preface to the 6th international work-
shop on multi-level modelling (MULTI 2019), in: 22nd ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems
Companion, MODELS Companion 2019, Munich, Germany, September 15-
20, 2019, IEEE, 2019, pp. 64–65. doi:10.1109/MODELS-C.2019.00015.

52

224 Paper D

[47] J. P. A. Almeida, A. Rutle, M. Wimmer, T. Kühne, The MULTI Process
Challenge, MULTI @MODELS Available at https://bit.ly/2JeDEYi.

[48] E. Gamma, Design patterns: elements of reusable object-oriented software,
Pearson Education India, 1995.

[49] J. de Lara Jaramillo, C. Ermel, G. Taentzer, K. Ehrig, Parallel Graph
Transformation for Model Simulation applied to Timed Transition Petri
Nets, Electron. Notes Theor. Comput. Sci. 109 (2004) 17–29. doi:10.

1016/j.entcs.2004.02.053.

[50] L. Bettini, Implementing domain-specific languages with Xtext and Xtend,
Packt Publishing Ltd, 2016.

[51] T. Degueule, B. Combemale, A. Blouin, O. Barais, J.-M. Jézéquel, Melange:
A meta-language for modular and reusable development of dsls, in: Pro-
ceedings of the 2015 SLE Conference, ACM, 2015, pp. 25–36.

[52] J. Jézéquel, B. Combemale, O. Barais, M. Monperrus, F. Fouquet, Mashup
of metalanguages and its implementation in the Kermeta language work-
bench, Software and Systems Modeling 14 (2) (2015) 905–920. doi:

10.1007/s10270-013-0354-4.

[53] J.-M. Bruel, B. Combemale, E. Guerra, J.-M. Jézéquel, J. Kienzle,
J. de Lara, G. Mussbacher, E. Syriani, H. Vangheluwe, Comparing and
classifying model transformation reuse approaches across metamodels, Soft-
ware and Systems ModelingDoi: 10.1007/s10270-019-00762-9.

[54] G. Perrouin, M. Amrani, M. Acher, B. Combemale, A. Legay, P. Schobbens,
Featured model types: towards systematic reuse in modelling language en-
gineering, in: Proceedings of the 8th International Workshop on Modeling
in Software Engineering, MiSE@ICSE 2016, Austin, Texas, USA, May 16-
17, 2016, 2016, pp. 1–7. doi:10.1145/2896982.2896987.

[55] M. E. Kramer, J. Klein, J. R. H. Steel, B. Morin, J. Kienzle, O. Barais,
J. Jézéquel, Achieving Practical Genericity in Model Weaving through Ex-
tensibility, in: Theory and Practice of Model Transformations - 6th Inter-
national Conference, ICMT 2013, Budapest, Hungary, June 18-19, 2013.
Proceedings, 2013, pp. 108–124. doi:10.1007/978-3-642-38883-5_12.

[56] J. Whittle, P. K. Jayaraman, A. M. Elkhodary, A. Moreira, J. Araújo,
MATA: A unified approach for composing UML aspect models based on
graph transformation, LNCS Trans. Aspect Oriented Softw. Dev. 6 (2009)
191–237. doi:10.1007/978-3-642-03764-1_6.

[57] F. Durán, A. Moreno-Delgado, F. Orejas, S. Zschaler, Amalgamation of
domain specific languages with behaviour, Journal of Logical and Algebraic
Methods in Programming 86 (2017) 208–235. doi:https://doi.org/10.

1016/j.jlamp.2015.09.005.

53

Paper D 225

[58] A. Rensink, J. Kuperus, Repotting the Geraniums: On Nested Graph
Transformation Rules, ECEASST 18. doi:10.14279/tuj.eceasst.18.

260.

[59] D. Balasubramanian, A. Narayanan, S. Neema, F. Shi, R. Thibodeaux,
G. Karsai, A Subgraph Operator for Graph Transformation Languages,
ECEASST 6. doi:10.14279/tuj.eceasst.6.72.

54

226 Paper D

Appendix A. Complete process management multilevel hierarchy

Process
EClass 1-*-*

Task

3-* beginDate : string
3-* endDate : string
2-2 expectedDuration : int
2-2 isCritical : boolean

EClass 1-2-*

Actor
EClass 1-*-2

AbstractRole
EClass 1-2-*

Gateway
EClass 1-2-*

Sequence
EClass 1-2-*

AndSplit
EClass 1-2-*

AndJoin
EClass1-2-*

OrSplit
EClass 1-2-*

OrJoin
EClass 1-2-*

Artifact
EClass 1-2-*

InitTask
EClass 1-2-*

FinalTask
EClass 1-2-*

SeniorRole
EClass 1-2-*

Role
EClass 1-2-*

CombinedRole
EClass 1-2-*

contains@1-*-*

EReference

hasRole@1-*-*

EReference

executes@1-2-*
EReference

performs@3-*-*

EReference

creates@2-*-*

EReference

uses@1-2-*

EReference

produces@1-2-*

EReference

source@1-2-*
EReference

target@1-2-*

EReference

initialTask@1-2-* EReference

finalTask@1-2-*

EReference

includes@1-2-*

EReference

(a) process

SEArtifact
Artifact 1-1-*

SEActor
Actor 2-*-1

responsibleActor@2-*-*

EReference

AnalystRole
Role@2 1-1-*

InitialTask
InitTask@2 1-1-*

Seq1
Sequence@2 1-1-*

RequirementsAnalysisTask
Task@2 1-1-*

AndSplit1
AndSplit@2 1-1-*

DesignTask
Task@2 1-1-*

Seq2
Sequence@2 1-1-*

TestDesignerRole
Role@2 1-1-*

SeniorAnalystRole
SeniorRole@2 1-1-*

ChiefTesterRole
CombinedRole@2 1-1-*

TestCaseDesignTask
Task@2 1-1-*

Seq3
Sequence@2 1-1-*

TestCaseArtifact
SEArtifact 1-1-*

DeveloperRole
Role@2 1-1-*

CodingTask
Task@2 1-1-*

ProgLangArtifact
SEArtifact 1-1-*

ReqSpecificationArtifact
SEArtifact 1-1-*

CodeArtifact
SEArtifact 1-1-* TestDesignReviewTask

Task@2 1-1-*

AndJoin1
AndJoin@2 1-1-*

TestingTask
Task@2 1-1-*

TesterRole
Role@2 1-1-*

TestReportArtifact
SEArtifact 1-1-*

Seq4
Sequence@2 1-1-*

FinalTask
FinalTask@2 1-1-*

seq1_s@1-1-*
source@2

seq1_t@1-1-* target@2

analyst_ex@1-1-*

executes@2

produces@1-1-*

produces@2

split1_s@1-1-*

source@2

split1_t2@1-1-*

target@2

split1_t1@1-1-*

target@2 i_td@1-1-*

includes@2

i_sa@1-1-*

includes@2

ct_perf@1-1-*

executes@2
seq2_s@1-1-*

source@2

seq2_t@1-1-*
target@2

uses@1-1-*

uses@2

dev_ex@1-1-*

executes@2

produces@1-1-*

produces@2

produces@1-1-*
produces@2seq3_s@1-1-*

source@2

seq3_t@1-1-*
target@2

join1_s1@1-1-*

source@2
join1_s2@1-1-*

source@2join1_t@1-1-*

target@2

produces@1-1-*

produces@2

tester_ex@1-1-*

executes@2

seq4_s@1-1-*
source@2

seq4_t@1-1-*

target@2

(b) software-engineering

(c) Acme-software-engineering

(d) Acme-configuration

Alex
SEActor@2 0-0-0

Analyst
AnalystRole 0-0-0

alex_role@1-1-*
hasRole@3

Figure A.41: Process management multilevel hierarchy

55

Paper D 227

Appendix B. Amalgamated MCMT rules computed in MultEcore

r u l e CreateTaskUndertakeActivity{
meta{

//Nodes level 1 - Process
Role : $proce s s [1] ! Role
Actor : $proce s s [1] ! Actor
Task : $proce s s [1] ! Task
//Nodes level 1 - Human
Human: $human [1] ! Human

Human. stamina : In t eg e r
Act iv i ty : $human [1] ! Ac t iv i ty

Act iv i ty . impact : In t eg e r
//Edges level 1 - Process
hasRole : $proce s s [1] ! Actor . hasRole
performs : $proce s s [1] ! Actor . performs
executes : $proce s s [1] ! Role . executes
//Edges level 1 - Human
does : $human [1] ! Human . does
//Nodes l e v e l 2 − Process
R1 : p roce s s [2] ! Role
T1 : p roce s s [2] ! Task
//Nodes level 2 - Human
Worker : human [2] ! Human

Worker . p r o f i t : I n t eg e r
Assignment : human [2] ! Ac t iv i ty

Assignment . value : I n t eg e r
//Edges level 2 - Process
e : p roce s s [2] ! Role . executes
//Edges level 2 - Human
undertakes : human [2] ! Human . does
//Source.edge = Target

[Actor . hasRole = Role]
[Actor . performs = Task]
[Role . executes = Task]
[Human . does = Act iv i ty]
[R1 . e = T1]
[Worker . undertakes = Assignment]

}
from {

act1work1 : Actor , Worker
act1work1 . stamina = #s#
act1work1 . p r o f i t = #p#

r1 : R1
task1as1 : EClass , Assignment

task1as1 . impact = #i#
task1as1 . value = #v#

a1ro l e : hasRole

[act1work1 . a1 ro l e = r1]
}
to {

act1work1 : Actor , Worker
act1work1 . stamina = #s − i#
act1work1 . p r o f i t = #p + v#

r1 : R1
task1as1 : T1 , Assignment

task1as1 . impact = #i#
task1as1 . value = #v#

a1ro l e : hasRole
a1pu : performs , undertakes
r1e : e

[act1work1 . a1 ro l e = r1]
[act1work1 . a1pu = task1as1]
[r1 . r1e = task1as1]

}
}

Figure B.42: Full CreateTaskUndertakeActivity MCMT rule computed in MultEcore. It corre-
sponds to the MCMT rule depicted in Figure 33

56

228 Paper D

r u l e ProduceArte factkUndertakeAct iv i ty{
meta{

//Nodes level 1 - Process
Actor : $proce s s [1] ! Actor
Task : $proce s s [1] ! Task
Ar t i f a c t : $proce s s [1] ! A r t i f a c t
//Nodes level 1 - Human
Human: $human [1] ! Human

Human. stamina : In t eg e r
Act iv i ty : $human [1] ! Ac t iv i ty

Act iv i ty . impact : In t eg e r
//Edges level 1 - Process
performs : $proce s s [1] ! Actor . performs
produces : $proce s s [1] ! Task . produces
//Edges level 1 - Human
does : $human [1] ! Human . does
//Nodes level 2 - Process
SEActor : p roce s s [2] ! Actor
SEArt i fact : p roce s s [2] ! A r t i f a c t
//Nodes level 2 - Human
Worker : human [2] ! Human

Worker . p r o f i t : I n t eg e r
Assignment : human [2] ! Ac t iv i ty

Assignment . value : I n t eg e r
//Edges level 2 - Process
r e spons ib l eAc to r : p roce s s [2] ! EReference
//Edges level 2 - Human
undertakes : human [2] ! Human . does
//Nodes level 3 - Process
T1 : p roce s s [3] ! Task
A1 : p roce s s [3] ! SEArt i fact

//Edges level 3 - Process
p1 : p roce s s [3] ! Task . produces

//Source.edge = Target
[Actor . performs = Task]
[Task . produces = Ar t i f a c t]
[Human . does = Act iv i ty]
[SEArt i fact . r e spons ib l eAc to r = SEActor]
[Worker . undertakes = Assignment]

[T1 . p1 = A1]
}
from {

act1work1 : SEActor , Worker
act1work1 . stamina = #s#
act1work1 . p r o f i t = #p#

task1as1 : T1 , Assignment
task1as1 . impact = #i#
task1as1 . value = #v#

a1pu : performs , EReference

[act1work1 . a1pu = task1as1]
}
to {

act1work1 : SEActor , Worker
act1work1 . stamina = #s − i#
act1work1 . p r o f i t = #p + v#

task1as1 : T1 , Assignment
task1as1 . impact = #i#
task1as1 . value = #v#

ar1 : A1
a1pu : performs , undertakes
t1pr : p1
r : r e spons ib l eAc to r

[act1work1 . a1pu = task1as1]
[task1as1 . t1pr = ar1]
[ar1 . r = act1work1]

}
}

Figure B.43: Full ProduceArtefactUndertakeActivity MCMT rule computed in MultEcore. It
corresponds to the MCMT rule depicted in Figure 34

57

Paper D 229

PAPER E
EXECUTION AND ANALYSIS OF MULTECORE
MULTILEVEL MODELLING LANGUAGES USING
MAUDE

Alejandro Rodríguez, Francisco Durán, Lars Michael Kristensen

In International Journal on Software and Systems Modeling, Springer Nature, 2020. (Sub-
mitted)

Noname manuscript No.
(will be inserted by the editor)

Execution and Analysis of MultEcore Multilevel Modelling
Languages using Maude

Alejandro Rodríguez1 · Francisco Durán2 · Lars Michael Kristensen1

Received: date / Accepted: date

Abstract Multilevel Modelling (MLM) approaches
make it possible for designers and modellers to
work with an unlimited number of abstraction levels
when specifying domain-specific modelling languages
(DSMLs). Even though there exists plenty of work in
the literature to support MLM solutions from a struc-
tural point of view, there is no consensus on how to
specify the behaviour of such models. In this paper,
we present a functional infrastructure that allows mod-
ellers to define the structure and the operational se-
mantics of multilevel modelling hierarchies that can be
later simulated and analysed. Using the MultEcore tool,
one can design and distribute the models that com-
pose the language family in a multilevel hierarchy, and
specify their behaviour by means of multilevel transfor-
mation, so-called Multilevel Coupled Model Transfor-
mations (MCMTs). This work extends these MCMTs
to describe the behaviour of MLM systems with basic
support for attribute manipulation, rule conditions, and
possibly nested boxes to handle submodel collections.
We give a rewrite logic semantics to MLM, on which we
have based our automated transformation from Mult-
Ecore to the rewriting logic language Maude. Then, we
rely on Maude to simulate/execute MultEcore models
and to exploit different analysis techniques supported

� Alejandro Rodríguez
arte@hvl.no

Francisco Durán
duran@lcc.uma.es

Lars Michael Kristensen
Lars.Michael.Kristensen@hvl.no

1 Western Norway Univ. of Applied Sciences, Bergen, Norway
2 ITIS Software, University of Málaga, Málaga, Spain

by Maude, like reachability analysis, bounded and un-
bounded model checking of invariants and LTL formu-
las on systems with both finite and infinite reachable
state spaces using equational abstraction. We illustrate
our developed techniques on a DSML family for Petri
nets.

Keywords Multilevel Modelling · Domain-specific
modelling languages · Model transformations ·
Verification · Rewriting logic · Maude

1 Introduction

Multilevel Modelling (MLM) is a notable research area
where models and their specifications can be organised
into several levels of abstraction [4]. Indeed, the MLM
community has shown that MLM is a favourable ap-
proach in domains such as process modelling and soft-
ware architecture [6,8]. Although there exist diverse ap-
proaches for MLM (see [32,2,61,64] for some of them),
they all share a common idea: lift the restriction on not
limiting the number of levels that designers can use to
specify modelling languages.

This restriction is present in traditional Model-
Driven Software Engineering (MDSE) approaches
which are based on the Object Management Group
(OMG) [44] 4-layer architecture such as the Unified
Modelling Language (UML) [63] and the Eclipse Mod-
elling Framework (EMF) [59,45]. Like in traditional
MDSE approaches, MLM uses abstractions and mod-
elling techniques to tackle the continually increasing
complexity of software by considering models as pri-
mary artefacts in each phase of the software engineer-
ing life-cycle [11]. Using MLM, modellers are no longer
forced to fit their modelling language specifications
within two levels of abstraction: one for (meta)models

Paper E 233

2 Rodríguez, Durán and Kristensen

and one for their instances. This might be too restrictive
for certain situations where the language is large and/or
complex, and even more when defining behavioural
domain-specific modelling languages (DSMLs). DSMLs
that are, for instance, variations on general purpose
languages, i.e., to specify different refinements aimed
at specific domains, would require further concretisa-
tions of the metamodels. Moreover, these limitations
may lead to complications like model convolution, ac-
cidental complexity, and mixing concepts belonging to
different domains (see, e.g., [34,6,7] for discussions on
these issues).

One of the most prominent applications of MDSE
is the construction of DSMLs [45]. These are modelling
languages that are tailored to a concrete application
area [28] which bridges the gap between software en-
gineers and domain experts. DSMLs are usually built
on top of a more abstract modelling language, which re-
quires well-defined infrastructures to handle the separa-
tion of different abstraction levels. Furthermore, MLM
techniques are excellent for the creation of DSMLs, es-
pecially when focusing on behavioural languages, since
behaviour is usually defined at the metamodel level
while it is executed (at least) two levels below at the
instance level [33,3,39]. The reason is that behaviour is
reflected in the running instances of the models which
in turn conform to their metamodel.

The approach for MLM proposed by the tool Mult-
Ecore [38,56], formally specified in [37], rests on the
premise that one must be able to specify models (dis-
tributed along tree-like hierarchies) which are both
generic and precise [39]. Even though various ap-
proaches have been proposed for the definition and
simulation of behavioural models based on reusable
model transformations (e.g., [49,35,51]), these rely
on traditional two-level modelling hierarchies. Fur-
thermore, modelling the behaviour through multilevel
model transformations [3] and performing execution or
analysis in MLM has not been widely explored yet.

Having a hierarchical organisation of the models
that are in fact separate artefacts which altogether pre-
cisely capture the desired system facilitates future ex-
tensions and modifications. This applies not only in the
existing levels, but also for adding or removing models
to the existing multilevel hierarchy. Therefore, it can
help to prevent pollution of models where specialisation
of concepts would have to be done in the same model
(even if they naturally fit in different levels of abstrac-
tion). Furthermore, this enhances modularisation and
facilitates extendibility [57].

To cope with execution/simulation of models within
the MLM context, Multilevel Coupled Model Transfor-
mations (MCMTs) were formally introduced in [39] as

a multilevel transformation language that bridges the
gap for the execution of multilevel modelling hierar-
chies. MCMTs are meant to achieve reusable multi-
level model transformations for the specification of be-
haviour. In this work, we have improved the expressive
capabilities of MCMTs by extending them with basic
support for attributes, the specification of conditions to
block their execution, and the possibility of expressing
multiple patterns through the use of nested parametric
boxes.

Even though the potential of the MCMTs has been
illustrated in several examples, its practical applicabil-
ity was limited. Indeed, the proposal in [39] was only
theoretical and no proper implementation was avail-
able. We show here how we have turned the MultEcore
editing facilities into a complete development environ-
ment in which we can, not only edit our MLM models,
but also experiment with them through their simula-
tion and execution, and analyse them by giving access
to advanced verification and model checking tools.

We have provided such capabilities for simulation
and analysis thanks to a formal specification of Mult-
Ecore models in rewriting logic [40,42], and specifically
by providing a model-to-model transformation into the
rewriting logic language Maude [15,17]. As we will see
in the rest of the paper, the syntactical facilities of
Maude have allowed us to use a representation of MLM
hierarchies and MCMT rules very close to that of Mult-
Ecore. Indeed, this minimal representation distance has
facilitated the automation of the bidirectional trans-
formation between them. These transformations give
MultEcore users access to the Maude execution engine,
which is possibly the most efficient engine for rewriting
modulo (combinations of) associativity, commutativity
and identity [21,18]. In addition, it also gives access to
Maude’s formal tool environment, which includes, e.g.,
tools for reachability analysis, model checking, and con-
fluence and termination analysis.

In summary, the contributions of this paper, which
extend preliminary work presented in [55], are:

– The MCMTs version described in [39,55] had some
practical problems and expressivity limitations. We
extend and improve them introducing three main
features: (i) attribute definition and manipulation,
which brings additional expressivity to the speci-
fication of behaviour; (ii) rule conditions that add
extra requirements for a rule to be applied; and (iii)
nested boxes to handle submodel collections, im-
proving expressiveness and reducing the prolifera-
tion of rules. A preliminary and very limited version
of these boxes was presented in [55,57]. We present
here a fully-operational full-fledged version of them,
where boxes may appear in both sides of the rules,

234 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 3

boxes may be nested, and each of them may have an
explicit cardinality specified. Basic support for the
Object Constraint Language (OCL) [13] has been
added for the manipulation of attribute values and
for the specification of conditions, which greatly im-
proves the expressiveness of the tool.

– We present in this paper a rewriting logic semantics
of MLM hierarchies and MCMT rules through their
representation in Maude. This formal representation
of MultEcore models allows us to execute and anal-
yse such models using Maude’s formal tools.

– A bidirectional transformation between MultEcore
MLM models and Maude specifications has been
developed. This functional infrastructure connects
MultEcore to Maude, allowing us, not only to de-
sign our multilevel modelling hierarchy and spec-
ify its MCMTs, but also to simulate the specified
systems and analyse and verify them using several
techniques. Within our infrastructure, we encapsu-
late Maude as a background process that handles
the instructions and return the execution and anal-
ysis results, given by the interface that the user uses
to interact.
While there was some basic infrastructure in [55],
this is now a mature tool, not only more efficient
and configurable, but covering all the features of
the language. Although as we discuss in the conclu-
sions section there is much work ahead of us, the
MultEcore editor and the transformation between
MultEcore and Maude is completely operational.

– The application of the complete infrastructure to a
case study for a multilevel DSML for Petri nets,
from the design phase to the final execution of
the system that we later verify through reachabil-
ity analysis and model checking techniques. While
the case study is described in this paper, we re-
fer the reader to [54] for the complete MultEcore
and Maude specifications, including additional de-
tails on their analysis.

Outline: We describe in Section 2 the features
that characterise our MLM approach using a multi-
level DSML for a Petri nets multilevel hierarchy. We
level-wise explore each model comprising the hierar-
chy, from both the structural and behavioural points
of views. Section 3 provides an overview of the infras-
tructure that transforms the multilevel DSML defined
in MultEcore into a Maude specification. This section
provides details of the generated Maude specification.
We demonstrate the use of such an infrastructure with
a case study in Section 4, where we perform execution
and analysis of a Petri net model of a gas station. In
Section 5 we discuss related work. Finally, Section 6

concludes the paper and outlines directions for future
work.

2 Multilevel Modelling of Petri nets

The MultEcore tool is designed as a set of Eclipse plu-
gins, giving access to its mature ecosystem (integration
with EMF) and incorporating the flexibility of MLM.
In the MultEcore approach [39], the abstract syntax is
provided by MLM models and the behaviour is pro-
vided by Multilevel Coupled Model Transformations
(MCMTs) [39,37]. Using the MultEcore tool, modellers
can (i) define MLM models using the model graphi-
cal editor; (ii) define MCMTs using its rule editor; and
(iii) execute and analyse specific models. The execu-
tion of MultEcore models rely on a transformation of
the models into Maude [15] specifications. When we de-
sign a multilevel DSML, we first define its syntax/struc-
ture with multilevel modelling hierarchies. Then the be-
haviour is specified via our multilevel transformation
language.

For implementation reasons, MultEcore prescribes
the use of Ecore [59] as root graph at level 0 in all ex-
ample hierarchies. Models are distributed in multilevel
modelling hierarchies. A multilevel modelling hierarchy
in our context is a tree-shaped hierarchy of models with
a single root typically depicted at the top of the hierar-
chy tree. Thus, hierarchies enclose a set of models con-
nected via typing relations. Levels are indexed with in-
creasing natural numbers starting from the uppermost
one, having index 0.

To illustrate the different concepts and techniques
discussed in this paper, we use as case study a DSML
for Petri nets. In the next sections, we describe each
of the models that constitute the Petri net multilevel
hierarchy. We depict in Appendix A (Figure 19) the
complete developed PNs multilevel hierarchy (where we
omit Ecore at the top).

2.1 Petri nets metamodel

Petri nets (PNs) is a well-established formalism to
model concurrent systems [46,47]. There is a rich body
of theoretical results enabling analysis of PNs, and an
enormous set of supporting tools.

A PN is a directed bipartite graph, in which the
nodes represent transitions (i.e., events that may occur,
represented by rectangles/bars) and places (i.e., states,
represented by circles). For example, Figure 1 shows a
Petri net model using a well-known concrete syntax. In
it, we find places p1. . . p4 and transitions tr1 and tr2,
where p1 and p2 are connected to tr1 via input arcs, p3

Paper E 235

4 Rodríguez, Durán and Kristensen

p1

p2

tr1
2

p3

p4

3

2

1

5

tr2

Fig. 1 Simple Petri net model

is connected to tr1 through an output arc and to tr2 via
an input arc, and finally p4 is an output place of tr2.

The nodes and arcs constitute the static structure
of a PN. The dynamic behaviour of the net is given
by the token game, representing various states of the
system. This token game is based on the firing of tran-
sitions that lead to the consumption/production of to-
kens; each fired transition produces a new model state.

A particular state is a snapshot of the system’s be-
haviour. The state of a place is called itsmarking, repre-
sented by the presence or absence of tokens (commonly
represented as black dots), in the places. In the exam-
ple shown in Figure 1 there are three tokens in p1 and
two tokens in p2. The current state of the modelled sys-
tem (marking) is given by the number of tokens in each
place.

The increasing complexity of systems has promoted
a proliferation of Petri nets variants and extensions dur-
ing the last decades, as often classical Petri nets are too
basic to capture the needs of certain environments. A
brief comparison of different kind of Petri nets can be
found in [9]. Although our hierarchy could include other
types of PNs, here we only include classical or regular
PNs and reset/inhibitor nets [65].

We show in Figure 2 a PN metamodel aimed to
capture the abstract concepts of Petri nets. This meta-
model represents the level 1 of the hierarchy (Fig-
ure 19(a)). The purpose of this model is merely struc-
tural. In other words, subsequent levels below it should
define the concrete semantics of the PN language(s) (as
we show in this section). A PN contains nodes, which
can be either a Place or a Transition, and Arcs. The tool
MultEcore allows us to make use of the inheritance rela-
tion and to mark Node as an abstract class, which can-
not be instantiated (note the italics). As shown in the
figure, the type of a node, provided by some element in
an upper level metamodel, is indicated in an (light blue)
ellipse at its top left side, e.g., EClass is the type of PN,
Node, Transition, Place, and Arc. The type of an arrow
is written near the arrow in italic font type, e.g., ERef-
erence for arcs, nodes, source, target, inArcs and outArcs.
We support attribute declarations that can be currently
typed by one of the four basic Ecore types, namely In-
teger, Real, Boolean and String. These attributes can be

instantiated in a lower level with a value, as illustrated
in Section 2.4. For the manipulation of attribute val-
ues, and the specification of rule conditions, a subset of
OCL [66,13,12] is currently supported.1

The annotations displayed as three numbers in a
(red) box at the top right of each node, and concate-
nated to the name after “@” for every reference, spec-
ify their potencies. Potency in attributes is displayed
as two numbers as an attribute does not have depth,
since first it is declared, and eventually in a level be-
low it is instantiated. The two numbers are specified
in front of the attribute name. Potency [29] is a well-
known concept in MLM and it is used on elements as a
way of restricting the levels at which this element may
be used to type other elements. By using potencies on
elements, we can define the degree of flexibility/restric-
tiveness we want to allow on the elements of our mul-
tilevel hierarchy. The first two values, start and end,
specify the range of levels below, relative to the current
level, where the element can be directly instantiated.
The third value, depth, is used to control the maximum
number of times that the element can be transitively
instantiated, or re-instantiated, regardless of the levels
where this occurs. For instance, the potency specified
for Arc, Node, Transition and Place is 1-2-3, which means
that an element can be directly instantiated one and
two levels below (levels 2 or 3 in the hierarchy), and
such instances can be re-instantiated up to 3 additional
times. This depth is therefore dependent on the value
of the type, and the depth of an element must always
be strictly less than the depth of its type.

2.2 Regular Petri nets

The regular Petri nets that we consider in this paper
are not restricted to the so-called Ordinary Petri Nets
where input and output arcs consume or produce, re-
spectively, only a single token [25]. We allow natural
numbers on arcs so that more than one token can be
added/removed at a time. Following the PNs conven-
tion, we denote this number as the weight of the arc.

2.2.1 A metamodel for regular Petri nets

Figure 3 displays the regular-petri-nets model. It is lo-
cated at level 2 of the hierarchy (Figure 19) where we
instantiate the concepts defined at level 1. Thus, in this

1 OCL was chosen since it has been part of UML for several
years, is one of the most used languages in EMF-based applica-
tions, and it is consider a standard in the MDSE community. A
full description of the supported subset of OCL, as well as the
adaptation of OCL to the multilevel modelling context, will be
published elsewhere.

236 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 5

PN

1-* name : string

EClass 1-*-*

Node

1-* name : string

EClass 1-2-3

Arc

1-* name : string

EClass 1-2-3

Transition
EClass 1-2-3

Place
EClass 1-2-3

target@1-2-3

EReference

source@1-2-3
EReference

nodes@1-*-*

EReference

arcs@1-*-*
EReference

inArcs@1-2-3
EReference

outArcs@1-2-3
EReference

1..1 1..1

Fig. 2 Conceptual Petri nets metamodel (also shown in Figure 19(a))

InputArc

1-* weight : int

Arc 2-2-1

RegularPlace

1-* numTokens : int

Place 1-2-2
RegularTransition

Transition
1..1

1..1

1..1 1..1

1-2-2

OutputArc

1-* weight : int

Arc 2-2-1
Token

EClass 2-2-1

source@2-2-1
source

target@2-2-1

target

target@2-2-1

target
source@2-2-1

source

tokens@2-2-1

EReference

inRegularArcs@1-2-1
inArcs

outRegularArcs@1-2-1
outArcs

Fig. 3 Regular Petri nets metamodel (also shown in Figure 19(b))

model, we provide the structural basis for the modeller
to be able to define further Petri nets instance mod-
els. InputArc and OutputArc connect regular places and
regular transitions. A RegularPlace controls how many
tokens it is holding via the numTokens attribute2. The
weight of arcs is represented as attributes weight of type
int in classes InputArc and OutputArc.

2.2.2 Operational semantics of regular Petri nets

The multilevel transformation language that MCMTs
define allows us to exploit multilevel capabilities and is
powerful enough to specify behavioural descriptions in
an operational way. Transformation rules can be used
to represent actions that may happen in the system. A
rule has the form of LHS⇒ RHS if C, where LHS is a
multilevel model pattern (which may contain variables),
and RHS is model pattern in which we can use the
variables already appearing in LHS.

2 Please, note that the number of tokens may be calculated
with the OCL expression rp.tokens->size(). The attribute is
however used to speed up calculations and to illustrate the use
of attributes.

C is a boolean condition, in which we can use vari-
ables from LHS. Given a model M that represents a
state of the system, we say that there is a match of
LHS on M if there is a submodel M|p of M such that
for some assignment σ of the variables in LHS, we have
LHSσ = M|p, where LHSσ denotes the application of
the assignment σ to LHS. Given a match of LHS on
M, for some assignment σ and the submodel M|p, the
condition Cσ is evaluated, where, similarly, Cσ denotes
the application of the assignment σ to the condition C.
If it evaluates to true, then the application of the rule
consists in the replacement of the submodel M|p of M
by RHSσ, which we denote M[RHSσ]p. In other words,
if there is a match of the rule on the model, and its
condition is satisfied, then the matched submodel is re-
placed by the model specified in the right-hand side of
the rule.

The way to express the behaviour of systems using
transformation rules is by specifying rules modelling
each of the possible actions that may occur. In PNs,
actions occur when transitions are fired. In a regular
PN, we only have regular arcs connecting places with
transitions. Although transitions can have an arbitrary
number of input and output places, such an action can

Paper E 237

6 Rodríguez, Durán and Kristensen

source

target

META
FROM TO

Node Arc

numTokens : int

Place
RegPlace

Token
weight : int

Arc
InpArc

weight : int

Arc
OutArc

Transition
RegTrans

EClass
rptk

EReference

inparcs

sou
rce

outarcttarget

inarct
target

outarcs
source

tk1 p1
numTokens=p1nt

a1
weight=a1c

tr

Token RegPlace InpArc

po ao
weight=aoc

OutArc

p1tk
rptk

[tr.inRegularArcs->size()]

[a1c]

RegTrans

[tr.outRegularArcs->size()]

tr.inArcs->size() = tr.inRegularArcs->size()
tr.outArcs->size() = tr.outRegularArcs->size()

p1
numTokens=p1nt - a1c

a1
weight=a1c

ao
weight=aoc

tko
Token

potk
rptk

[aoc]

numTokens=pont

po
numTokens=pont + aoc

Conditions

inArcs
outArcs

outRegularArcs

out
Arc
s

inRegularArcs
inArcs

[tr.inRegularArcs->size()]

[tr.outRegularArcs->size()]

trRegPlace
RegPlace

RegPlace

RegTrans

InpArc

OutArc

a1s
inparcs

a1t
inparct

a1s
inparcs

a1t
inparct

aos
outarcsaot

outarct

aos
outarcsaot

outarct

Fig. 4 Rule Fire regular transition: It removes tokens in the input places and creates new ones in the output places

be specified with the MCMT rule called Fire regular
transition depicted in Figure 4. Specifically, this rule
models a transition being fired, taking into account the
information of the input places (arcs connected to it)
and the output places (arcs where new information is to
be produced). The FROM and TO blocks describe the
left pattern and the right pattern of the rule, respec-
tively. The META block depicts a multilevel pattern al-
lowing us to locate types at any level that can be used
as individual types for the items in the FROM and TO
blocks, respectively. Notice that the META facilitates
the definition of an entire multilevel pattern, therefore,
we can specify several META levels within the block.

At the top level of Figure 4, we mirror parts of the
petri-nets-concepts model (depicted in Figure 2), defin-
ing elements like Node, Arc, Transition, Place, source,
target, inArcs and outArcs as constants — constant ele-
ments have their names underlined and their types are
not specified, either via ellipses for nodes or italics text
for references. We depict in the META block those el-
ements and their relationships that are useful for the
specification of the FROM and TO patterns.

In the second META level (below the red horizontal
line), we capture elements to serve as types to scope the

execution of regular PNs. In this level we find elements
as variables such as Token which type is denoted in the
ellipse right above it (EClass), RegPlace of type Place,
and the reference rptk of type EReference. Similarly, we
express attributes (such as numTokens) that later are
going to be used in the levels below.

Please note that the horizontal lines do not enforce
consecutiveness between the levels specified in the rule
with respect to the hierarchy. This leads to a more nat-
ural way of defining that a type is defined at some level
above, without explicitly stating at which level. In fact,
this also promotes flexibility in case of future modifica-
tions of the number of branches (horizontal dimension)
and the depth (vertical dimension) of hierarchies. For
instance, the three levels depicted in the rule in Figure 4
would match to levels 1, 2 and 4 in the multilevel hier-
archy depicted in Figure 19. As the aim of the running
PNs multilevel hierarchy is not to highlight the hori-
zontal/vertical flexibility, we refer the interested reader
to [55, Section 4.2] for details on this.

We specify in the FROM block what elements must
be found in the model in order to be able to fire a tran-
sition. As one can observe, dashed boxes are specified
around certain parts of the FROM model. A key point

238 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 7

when defining model transformation rules is to make
them as reusable as possible. Furthermore, in a PN,
there might not only be as many input/output places
connected to a transition as one requires, but also an
arbitrary number of tokens residing within each of these
places. Clearly, it is not practical to define one rule per
possible combination of these connections, as the num-
ber of rules would rapidly blow up. MCMTs allow the
use of nesting boxes to define patterns where its unfold-
ing would result in a collection of elements. As seen in
the rule, boxes may appear in both sides, and they can
be nested.

The blue dashed box in Figure 4 encapsulates the
nodes tk1, p1 and a1, as well as the references p1tk,
a1s and a1t, covering all the potential input places con-
nected to the transition (matched to tr) in the model.
The number of instances of this pattern submodel is
given by the OCL expression tr.inRegularArcs→size(),
which represents the number of incoming arcs, i.e., the
size of the collection of incoming regular arcs of the
transition tr.

In OCL, the size() operator calculates the size of
the collection it is applied on. The tr.inRegularArcs ex-
pression returns the collection of edges whose source
is tr and its type is inRegularArcs. Note, however, that
the way in which types are used in MLM is a bit dif-
ferent than for standard OCL. This allows transitive
typing, which as we will see below, may be very use-
ful. If instead, as in the condition of the rule, we use
tr.inArcs, then we get the collection of edges of type
inArcs or any of its instances. Note that the expres-
sion tr.inArcs→size() = tr.inRegularArcs→size() checks
whether all the incoming arcs of a given transition
tr are of type inRegularArcs. This means that the rule
is only applicable on transitions whose arcs are all reg-
ular. The number of total input (resp. output) arcs,
inArcs (resp. outArcs), must be equal to the number of
input (resp. output) regular arcs, inRegularArcs (resp.
outRegularArcs).

Analogously, and using the OCL expression
tr.outRegularArcs→size(), a second (red) dashed box al-
lows us to specify a number of output places (and cor-
responding arcs) connected to the transition.

Note the (green) nested box in the FROM part, in-
side the (blue) one we were just referring to for the
incoming arcs. This inner box allows us to take an ar-
bitrary number of tokens from the input place. For a
specific instantiation of the rule, the cardinality of the
box is matched to the variable a1c that takes the value
of the weight attribute of arc a1. Indeed, given these
boxes, a transition may have multiple incoming arcs,
and for each incoming place-arc, multiple tokens.

There are also boxes on the TO part. Notice that
the input and output arcs are left unmodified, but the
appropriate number of tokens are added to the corre-
sponding output places. The number of tokens to put
in an output place is provided by the weight attribute
of the outcoming arc. The nested (green) box in the
TO part, inside the (red) box, indicates that the num-
ber of tokens (tko) to be added to each output place
po connected to tr via ao, is given by the value aoc
of the weight of the arc ao. Finally, note the use of
OCL expressions for the manipulation of attributes. In
this case, the numTokens attributes of places p1 and po
are correspondingly updated: each input place p1 from
which some tokens are removed and each output place
po that receives tokens, gets its numTokens attribute,
respectively, decreased (numTokens = p1nt - a1c) or
increased (numTokens = pont + aoc) with the corre-
sponding number of tokens.

In summary, the rule can be executed if the unfolded
number of elements is found during the matching pro-
cess, and all the conditions are satisfied. If this happens,
the model in the TO part is produced. In this case, the
execution of the rule removes all the tokens present in
each of the input places as specified in the boxes, and
creates new tokens on the output places.

2.3 Reset/inhibitor Petri nets

A reset/inhibitor PN [65] is a PN that in addition to
regular arcs may also have reset and inhibitor arcs. A
reset arc is an input arc that connects a place to a
transition and that removes all the tokens of the place
when the transition is fired. This is useful as a “cleaning
mechanism” in models that capture, e.g., certain envi-
ronments where messages might be retransmitted and
buffers could accumulate old messages. An inhibitor arc
is an input arc which is used to reverse the logic of an in-
put place. With an inhibitor arc, the absence of a token
in the input place is what enables the connected transi-
tion (not its presence). For instance, inhibitor arcs can
be used to delay certain actions until a system is idle,
or to wait until the end of a loop.

Figure 5 shows a very simple example of a reset/in-
hibitor PN in which we have one arc of each type. In
this example, p1 is connected to tr1 via a regular input
arc (defined in Figure 3), p2 via a reset arc (denoted
with double arrow heads) and p3 via an inhibitor arc
(distinguished with a small circle instead of an arrow
head). Thus, this transition could be fired according to
the semantics of each of the arcs: since (i) p1 has 3 to-
kens and its regular input arc requires 2; (ii) p2 does
not block the firing of the transition, but it will be emp-

Paper E 239

8 Rodríguez, Durán and Kristensen

tied by its connected reset arc; and (iii) p3 has 0 tokens
which fulfils the enabling semantics of the inhibitor arc.

p1

p2

p3

tr12
p4

p5

3

2

Fig. 5 Concrete syntax of a reset/inhibitor Petri net example

2.3.1 A metamodel for reset/inhibitor Petri nets

Figure 6 shows the model reset-inhibitor-petri-nets,
placed at level 3 of the hierarchy (see Figure 19(c)).
The model captures rules extended with the so-called
reset arcs and inhibitor arcs. As in the model at level
2, the refined Transition in Figure 6 keeps track of the
inhibitor and reset arcs connected to it (through ref-
erences inInhibitorArcs and inResetArcs, respectively).
While ExtendedPlace and ExtendedTransition are typed
by elements in the level right above, ResetArc and In-
hibitorArc nodes are typed directly by Arc, which is lo-
cated two levels above (as denoted by the @2 after the
type).

One could argue that these elements that hold spe-
cialisation semantics can be realised using inheritance
in the metamodel, which indeed is a valid alternative.
However, this would lead to a single bigger metamodel
where specialisations on elements (e.g., Arc) that belong
to different domains are put together and further exten-
sions in each domain would have to be handled in the
same metamodel. Although a more detailed discussion
may be found, e.g., in [34,6,7], note that, by having this
“physical” separation, the modeller has more control on
the individual artefacts and therefore the subsequent
modifications would be done easier (enhancing reusabil-
ity). Furthermore, there might be extra horizontal ex-
tensions when considering alternative domains, which
can be more naturally achieved by promoting this level
separation. Note that even we might separate elements
within different levels, we do not necessarily make this
separation because such elements are related through
“type-instance” relationships.

In our approach, we follow the so-called abstraction
semantics to organise elements within the multilevel hi-
erarchy based on how abstract they are. Thus, for us,
organising elements in different models is a feature that
primarily enhances modularisation and promotes sepa-
ration of concerns [6]. In other words, we do not encour-

age the level segregation principle [30], which establishes
that level organisational semantics should be unique,
i.e., aligned to one particular organisational scheme,
such as classification or generalisation. Nonetheless, we
do encourage the level cohesion principle [30], that is,
we recommend to organise elements that are semanti-
cally close (by means of potency and level organisation).

2.3.2 Behaviour for reset/inhibitor Petri nets

Reset/inhibitor Petri nets have additional semantics
that have to be properly managed. The MCMT rule
Fire reset/inhibitor transition is depicted in Figure 7.
Please, compare this rule with the Fire regular tran-
sition rule shown in Figure 4. The rule Fire reset/in-
hibitor transition handles the case in which a transition
has any number of arcs of any of the three types (reg-
ular, reset or inhibitor), but in particular, if there are
only regular arcs, it behaves as the Fire regular transi-
tion rule. Observe that the rule in Figure 7 includes a
third META level, where we capture variable elements
such as ExtPlace (of type RegPlace), InhArc (represent-
ing inhibitor arcs), ResArc (denoting reset arcs) and
ExtTrans. As in the levels above, we determine inRe-
setArcs and inInhibitorArcs references with ExtTrans as
source, which can be later used in the OCL expressions
for the boxes/conditions.

In the FROM block, we need to specify that we
might find any number instances of each of the three
kinds of arcs. We do it by encapsulating patterns for
each of the arc types into a separate box. Correspond-
ing boxes in the right-hand side specify the correspond-
ing action to take on such an arc and its corresponding
place. Notice that boxes for regular and reset arcs have
corresponding nested boxes specifying the appropriate
number of instances. These boxes are described as fol-
lows:

Regular arcs: The boxes handling regular arcs are
exactly as those depicted in the Fire regular transi-
tion rule, where the box in the FROM block with
cardinality tr.inRegularArcs→size() captures each
regular arc a1 connecting a place p1 to the tran-
sition tr, and removes the number of tokens of each
place as given by the weight a1c on the arc. The
corresponding number of tokens is then put in the
corresponding output places in the TO block.

Reset arcs: The box in the FROM block with cardi-
nality tr.inResetArcs→size() captures the reset arcs
a2 that connect input places p2 to the transition
tr. To remove all the tokens tk2 present in the con-
nected place p2, the number of tokens in the place is
used as cardinality of the inner box. Note that these

240 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 9

ResetArc
Arc@2 1-1-1

ExtendedPlace
1-1-1

1..1

1..1

1..1

1..1

ExtendedTransition

RegularTransition 1-1-1

InhibitorArc
Arc@2 1-1-1

source@1-1-1
source@2

source@1-1-1

source@2

target@1-1-1

target@2

target@1-1-1

target@2

inResetArcs@1-1-1
inArcs@2

inInhibitorArcs@1-1-1
inArcs@2

RegularPlace

Fig. 6 Reset/inhibitor Petri nets metamodel (also shown in Figure 19(c))

META
FROM TO

RegPlace
ExtPlace

Arc
InhArc

Arc
ResArc

RegTrans
ExtTrans

inharcs

source

resarcssource

inharct
target

resarct
source

tk1 p1
numTokens=p1nt

a1
weight=a1c

tr

Token ExtPlace InpArc

po ao
weight=aoc

tk2 p2
numTokens=p2nt

a2
Token ResArc

p3 a3

p1tk
rptk

a1s
inparcs

p2tk
rptk

a2s
resarcs

a2t
resarct

a1t
inparct

a3s
inharcs

a3t
inharct

aos
outarcs

aot
outarct

[a1c]

ExtTrans

[tr.inResetArcs->size()][p2nt]

[tr.inInhibitorArcs->size()]

a1
weight=a1c

tr

ao
weight=aoc

p2
numTokens=0

a2

p3 a3

tko
Token

potk
rptk

[aoc]

tr.inArcs->size() = tr.inRegularArcs->size() + tr.inResetArcs->size() + tr.inInhibitorArcs->size()
tr.outArcs->size() = tr.outRegularArcs->size()

numTokens=pont

p1
numTokens=p1nt - a1c

po
numTokens=pont+aoc

numTokens=0 numTokens=0

Conditions

source

target
Node Arc

inArcs
outArcs

inResetArcs

inArcs

inInhibitorArcsinArcs

[tr.inRegularArcs->size()] [tr.inRegularArcs->size()]

[tr.inResetArcs->size()]

[tr.inInhibitorArcs->size()]

[tr.outRegularArcs->size()]

[tr.outRegularArcs->size()]

numTokens : int

Place
RegPlace

Token
weight : int

Arc
InpArc

weight : int

Arc
OutArc

Transition
RegTrans

EClass
rptk

EReference

inparcs

sou
rce

outarcttarget

inparct
target

outarcs
source

outRegularArcs

out
Arc
s

inRegularArcs
inArcs

ExtPlace

ExtPlace

ExtPlace

ExtPlace

ExtPlace

ExtPlace

ExtPlace

InpArc

OutArc

OutArc

ResArc

InhArc
InhArc

ExtTrans

a1s
inparcs

a1t
inparct

aos
outarcs

aot
outarct

a2s
resarcs

a2t
resarct

a3s
inharcs

a3t
inharct

Fig. 7 Rule Fire reset/inhibitor transition: modelling the firing of transitions with regular, reset and inhibitor arcs

Paper E 241

10 Rodríguez, Durán and Kristensen

tokens do not appear in the corresponding box in
the TO block. In this way, all of them are removed.

Inhibitor arcs: A third box with cardinality
tr.inInhibitorArcs→size() captures inhibitor arcs.
Since for the transition to be enabled the number
of tokens of each place connected via an inhibitor
arc must be 0, we simply specify this directly in p3,
where it is stated that the attribute numTokens has
value zero.

The rest of the rule looks very similar to what
we have already seen. The condition tr.inArcs→size()
= tr.inRegularArcs→size() + tr.inResetArcs→size() +
tr.inInhibitorArcs→size() checks that the total number
of input arcs is the sum of the number of regular in-
put arcs, the reset arcs and the inhibitor arcs. The
condition tr.outArcs→size() = tr.outRegularArcs→size()
checks that the total number of output arcs is the num-
ber of regular output arcs. These conditions would be
key for further extensions of the current PN hierarchy.

If the FROM block of the rule matches a submodel of
the PN and the conditions are satisfied, the application
of the rule results in the removal of the corresponding
tokens from the places connected either via regular or
reset arcs, and the creation of new tokens in the output
places. Notice that the attributes on the places that
keep track of the number of tokens get updated.

2.4 Petri nets examples

With the hierarchy described along Sections 2.1–2.3,
we can now define models of regular PNs and mod-
els of reset/inhibitor PNs. This is possible, as potency
specifications allow us to design the hierarchy in a way
where deep instantiation [5] can be achieved, being able
to instantiate elements residing in any level above.

To illustrate how PNs are represented using the
given hierarchy, we show a first example using a con-
crete syntax for Petri nets and then its corresponding
one using the MultEcore (abstract) syntax. Figure 8
shows a simple example using regular PNs where four
places (two input and two output) and one transition
are depicted. To the left we can see that p1 and p2 carry
three and two tokens, respectively. Firing tr1 transition
would remove 2 tokens from p1 and 1 from p2, and

p1

p2

tr1
2

p3

p4

3

21

Fig. 8 Concrete syntax of a regular Petri net example

would create 3 and 2 tokens in p3 and p4, respectively,
as expressed by the weight in the arcs.

The MultEcore representation of the PN in Figure 8
is shown in Figure 9. Since we consider this model at
the instance level, we use potency 0-0-0 in the elements.
This is used to enforce that elements at the bottom level
(in this case level 4) are used purely as instances, which
cannot be refined further at levels below it.

As a second example, the MultEcore representa-
tion of the PN depicted in Figure 5 is depicted in Fig-
ure 19(d).

3 Execution of Multilevel DSMLs using Maude

Maude [14,15,17] is a specification language based on
rewriting logic [41], a logic of change that can naturally
deal with states and non-deterministic concurrent com-
putations. A rewrite logic theory is a tuple (Σ;E;R),
where (Σ;E) is an equational theory that specifies the
system states as elements of the initial algebra T(Σ;E),
and R is a set of rewrite rules that describe the one-
step possible concurrent transitions in the system. Σ is
a signature that specifies the type structure (e.g., sorts
and subsorts) and operations, and E is the collection of
equations and memberships declared in the functional
module. Rewrite specifications thus described are exe-
cutable, if they satisfy restrictions such as termination
and confluence of the equational subspecification, and
coherence of equations and rules.

Maude provides support for rewriting modulo asso-
ciativity, commutativity and identity, which perfectly
captures the evolution of models made up of objects
linked by references as in graph grammars. In summary,
Maude provides, among others, the following useful fea-
tures:

Formal specification. The Maude specification of
multilevel hierarchies and MCMTs represents a for-
mal semantics of MultEcore models in rewriting
logic. Based on such formalisation, the transforma-
tion MultEcore ←→ Maude has been automated.

Execution of the specification. The Maude specifi-
cation obtained from MultEcore models using the
above transformation is executable, and therefore
it can be used to simulate our MultEcore models in
Maude. The versatile rewriting engine is not only ef-
ficient, but also provides functionalities to customise
the way we go through the execution steps. We can
simulate our systems by letting Maude choose the
path to follow, or we can specify a concrete path
specifying it step by step, or by means of execution
strategies.

242 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 11

p1

numTokens=3

RegularPlace@2 0-0-0

p2

numTokens=2

RegularPlace@2 0-0-0

p3

numTokens=0

RegularPlace@2 0-0-0

p4

numTokens=0

RegularPlace@2 0-0-0

tr1
Transition@2
Regular

0-0-0

tk1
Token@2 0-0-0

tk2
Token@2 0-0-0

tk3
Token@2 0-0-0

tk4
Token@2 0-0-0

tk5
Token@2 0-0-0

a1

weight=2

InputArc@2 0-0-0

a2

weight=1

InputArc@2 0-0-0

a3

weight=3

OutputArc@2 0-0-0

a4

weight=2

OutputArc@2 0-0-0

tk1@0-0-0

tokens@2

tk2@0-0-0

tokens@2

tk3@0-0-0

tokens@2

tk4@0-0-0
tokens@2

tk5@0-0-0

tokens@2

a1s@0-0-0
source@2

a1t@0-0-0

target@2

a2s@0-0-0

source@2

a2t@0-0-0

target@2

a3s@0-0-0

source@2

a3t@0-0-0
target@2

a4s@0-0-0

source@2
a4t@0-0-0

target@2

a1in@0-0-0

inRegularArcs@2

a2in@0-0-0

inRegularArcs@2

a3out@0-0-0

outRegularArcs@2
a4out@0-0-0

outRegularArcs@2

Fig. 9 MultEcore syntax of a regular Petri net example

MLM Structure
(Functional module)

MLM
Hierarchy

(Functional module)

MCMT
Rules

(System module)

Transformer

MultEcore

Maude

MultEcore Maude process

System

execution

(rewrite engine)

Safety/Liveness

analysis

(reachability

analysis)

Guided

simulation

(rewrite engine

controlled by

strategies)

LTL property

verification

(model checking)

petri-nets-concepts

...

Fire
regular
transition

Fire
extended
transition

M
u
lt
ile

ve
l
h
ie

ra
rc

h
y

M
C
M

T
 r

u
le

s

FROM

META-1

META-2

TO

CONDITIONS

FROM

META-1

TO

CONDITIONS

regular-petri-nets

level 3

reset-inhibitor-petri-nets

level 2

level 1

level 4 - instance

gas-station-petri-net

Fig. 10 Infrastructure for the execution and analysis of multilevel modelling hierarchies

Formal environment. Once the rewriting logic spec-
ification of a MultEcore model is available, we can
use the tools in Maude’s formal environment to
analyse it. For example, we can check properties
such as confluence or termination of our specifica-
tions, and can also perform reachability analysis,
model checking or theorem proving.

The overall MultEcore-Maude infrastructure is
sketched in Figure 10. The left-hand side shows the

MultEcore part, where we specify multilevel DSMLs by
providing a Multilevel Hierarchy and a set of MCMT
rules. The Transformer MultEcore ←→ Maude has been
developed as a bidirectional transformation that takes
MultEcore textual specifications and automatically
generates Maude specifications, and then takes the
XML output files that Maude produces as result of
performing execution and analysis, and automatically

Paper E 243

12 Rodríguez, Durán and Kristensen

translates them into MultEcore models graphically dis-
played.

To grasp an intuition of how the transformation
works, each MultEcore object (including both a hier-
archy and its MCMTs) is mapped into a corresponding
Maude object. References and conditions are handled
in exactly the same way, by using references as names,
and using the same set of expressions (types and oper-
ators) for conditions. The rewriting modulo associativ-
ity, commutativity and identity available in Maude cap-
tures quite naturally the intended operational seman-
tics of MCMTs. The major challenges were the handling
of boxing and the performing of the rewriting on multi-
level hierarchies. The support for OCL is based on the
Maude semantics of OCL proposed in [58].

The right-hand side of Figure 10 shows the Maude
process perspective. The transformer produces a func-
tional module with the equational theory used to rep-
resent MLM hierarchies, the MLM Hierarchy, and a sys-
tem module with rewrite theory that represents the
MCMT Rules. The representation of MLM hierarchies
and MCMTs is presented in Sections 3.1 and 3.2-3.3, re-
spectively. We illustrate in Section 4.1 some of the pos-
sibilities for execution and analysis of the models on a
case study. As we will see in this section, MultEcore en-
capsulates the interaction with the Maude tools, which
are hidden to the user. The Maude specification is how-
ever available to the user, who can interact directly
with the Maude environment to get full access to all
its features. The complete MultEcore description (both
the hierarchy and the MCMTs), the corresponding full
Maude specification and the experiments and proper-
ties verified can be found in [54].

3.1 Multilevel hierarchies in Maude

In Maude, object-oriented systems can be specified by
object-oriented modules in which classes and subclasses
are declared, with the usual support for inheritance,
and dynamic binding. A class is declared with syn-
tax class C | a1: S1,. . . , an: Sn, where C is the name
of the class, ai are attribute identifiers, and Si are
the sorts of the corresponding attributes. The objects
of a class C are record-like structures of the form
< O : C | a1: v1, . . . , an: vn >, where O is the identi-
fier of the object, and vi are the current values of its
attributes.

To represent multilevel metamodels we have intro-
duced declarations to represent multilevel hierarchies as
collections of objects each of which represents one of the
level models. Specifically, in our approach, a multilevel
hierarchy is represented as a structure of sort System of

the form

{ model1 model2 . . . modeln }

where each modeli is an object of class Model that rep-
resents a model in the hierarchy.

Figure 11 shows an excerpt of the Maude specifica-
tion obtained from the MultEcore Petri net multilevel
hierarchy — notice the ellipses added for space reasons.
Since levels are numbered starting from 0 (Ecore), the
object representing level i’s model uses level(i) as iden-
tifier. Such an object uses attributes to share the name
of the model (name), the name of its immediate meta-
model (om), its collection of nodes (elts), and a collec-
tion of the relations between these nodes (rels). Ele-
ments and relations are themselves represented as ob-
jects, of classes Node and Relation, respectively. Each
node has attributes to store its name (name), type
(type) and its own attributes (attributes). These at-
tributes are again represented as objects with attributes
to keep, depending on the level, its name or value
(nameOrValue) and its type (type). A relation object has
attributes to store its source (source), target (target),
and multiplicities, provided by the two usual values
(min-mult and max-mult). To avoid name clashes be-
tween levels, object identifiers are represented using the
operator oid, and nodes and relations using the opera-
tor id. Both operators take the level number in which
they are defined as first argument, and either a unique
number or a string with its actual name.

For instance, the object in lines 1–6 represents
level 0, the Ecore model, which has one node with
name and type id(0, "EClass") (line 4) and one re-
lation EReference (lines 5–6). Notice how the source
and target of this relation refer to the names of the
source and target nodes, respectively, which in this
case is the same id(0, "EClass"). The petri-nets-concepts
model in lines 7–14 represents the model in Figure 2
(also Figure 19(a)). Lines 10–12 show the representa-
tion of node Node, of type EClass, which has several
attribute, among which we can see its attribute with
name name of type String. The instance model at level
4 is shown in lines 16–28. Note that among its nodes,
there is one with name id(4, "p1") (in lines 20-21), of
type id(3, "ExtendedPlace") — a node in its metamodel
— which has an attribute of type id(2, "numTokens")
with value 0.

3.2 Box-free MCMTs in Maude

In Maude, object-oriented systems are axiomatised by
equational theories describing their states as algebraic

244 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 13

1 { < level(0) : Model |
2 name : "Ecore",
3 om : "Ecore",
4 elts : (< oid(0, 1) : Node | name : id(0, "EClass"), type : id(0, "EClass"), attributes : none >),
5 rels : (< oid(0, 2) : Relation | name : id(0, "EReference"), type : id(0, "EReference")),
6 source : id(0, "EClass"), target : id(0, "EClass"), ... > >
7 < level(1) : Model |
8 name : "petri-nets-concepts",
9 om : "Ecore",

10 elts : (< oid(1, 1) : Node | name : id(1, "Node"), type : id(0, "EClass"),
11 attributes : (< oid(1, 2) : Attri | nameOrValue : id(1, "name"),
12 type : id(1, "String") >)>)>
13 ...),
14 rels : (...) >
15 ...
16 < level(4) : Model |
17 name : "reset-inhibitor-petri-net-example",
18 om : "reset-inhibitor-petri-nets",
19 elts : (...
20 < oid(4, 12) : Node | name : id(4, "p1"), type : id(3, "ExtendedPlace"),
21 attributes : (< oid(4, 13) : Attri | nameOrValue : 0, type : id(2, "numTokens") >) >
22 ...
23 < oid(4, 28) : Node | name : id(4, "tk1"), type : id(2, "Token"), attributes : none >
24 ...),
25 rels : (...
26 < oid(4, 36) : Relation | name : id(4, "tk1"), type : id(2, "tokens"),
27 source : id(4, "p1"), target : id(4, "tk1"), ...>
28 ...) > }

Fig. 11 Excerpt of the Petri net multilevel hierarchy in Maude representation

data types and collections of conditional rewrite rules
specifying their behaviour. Rewrite rules are written as

crl [l] : T => T ′ if C

where l is the rule’s label, T and T ′ are terms, and
C is its guard or condition. As MultEcore’s MCMTs,
Maude rules describe the local, concurrent transitions
that are possible in the system, i.e., when a part of the
system state fits the pattern T , then it can be replaced
by the corresponding instantiation of T ′. Also as for
MCMTs, the guard C acts as a blocking precondition:
a conditional rule can only be fired if its condition is
satisfied. Rules may be given without label or condition.

Given the representation of multilevel hierarchies
presented in the previous section, the transformation
of MCMT rules without boxes is straightforward. Ba-
sically, since the META section does not change, its
corresponding representation appears in both left- and
right-hand sides. The left-hand side of the rule is com-
pleted with the representation of the FROM block,
and the representation of the TO block is added to its
right-hand side. Variables in MCMTs are represented as
Maude variables, and conditions are placed in the con-
ditions as such. Since we restrict conditions to basic
types, basic operators and certain selected OCL op-
erations, the expressions can be handled directly by
Maude. The last issue to consider is new names and
identifiers in right-hand sides. As we explained above,
identifiers are represented using the id and oid opera-
tors, which take the level in which the object is created
and a unique number as arguments. Such numbers are

generated using a Counter object, whose value attribute
gets increased every time a new identifier is created.

Let us illustrate this general procedure on a specific
example. Consider the rule Fire regular transition de-
picted in Figure 4, but let us assume first that it has
no boxes in it, that is, let us assume that it takes one
single token from the unique input place of a transition
and moves it to its unique output place. If this were the
case, the corresponding generated Maude rule would be
the one shown in Figure 12. Again, notice the ellipses.

The left- and right-hand sides of the rule are given
in lines 16–34 and 39–58, respectively. The correspond-
ing condition is in lines 61–62. The META section is
represented in lines 2–15 and 37–38. The three objects
representing the META section are replicated in both
sides. They provide the appropriate context for the rule,
but it is in the FROM and TO sections where the ac-
tual change is modelled. Notice the use of variables to
identify the levels (L1, L2 and L3). These are used to
match any specific levels in the hierarchy on which the
rule is applied. They do not need to be consecutive lev-
els, the only restriction is given in the condition, where
it is checked that L1 < L2 < L3 (line 61). Notice that
the Maude rule represents quite closely the correspond-
ing MultEcore MCMT. For instance, constants in the
MCMT rules are mapped into Maude constants and
ground terms. Variables are used both to represent free
elements in the rules and also any other elements not
explicitly specified. The condition of the MCMT rule
is written as such in line 62. Finally, notice the use
of the Counter object, which in the left-hand side has
some value N (line 35) and in the right-hand side has

Paper E 245

14 Rodríguez, Durán and Kristensen

1 crl [Fire-1-to-1-Regular-Arcs] :
2 { < level(L1) : Model | name : M,
3 elts : (< O01 : Node | name : id(L1, "Arc"), type : id(0, "EClass"), Atts01 >
4 < O02 : Node | name : id(L1, "Node"), type : id(0, "EClass"), Atts02 >
5 < O03 : Node | name : id(L1, "Transition"), type : id(0, "EClass"), Atts03 >
6 < O04 : Node | name : id(L1, "Place"), type : id(0, "EClass"), Atts04 >
7 Elts),
8 rels : (
9 < O05 : Relation | name : id(L1, "inArcs"), type : id(0, "EReference"), source : id(L1, "Transition"), Atts05 >

10 < O06 : Relation | name : id(L1, "outArcs"), type : id(0, "EReference"), source : id(L1, "Transition"), Atts06 >
11 < O07 : Relation | name : id(L1, "source"), type : id(0, "EReference"), source : id(L1, "Arc"), Atts07 >
12 < O08 : Relation | name : id(L1, "target"), type : id(0, "EReference"), source : id(L1, "Arc"), Atts08 >
13 Rels),
14 Atts >
15 < level(L2) : Model | ... >
16 < level(L3) : Model | name : M’’’,
17 elts : (< O26 : Node | name : tr_1, type : id(L2, "Transition"), Atts26 >
18 < O27 : Node | name : ao_1, type : id(L2, "OutputArc"),
19 attributes : (< O28 : Attri | nameOrValue : 1 , type : id(L2, "weight"), Atts28 > Attri27), Atts27 >
20 < O29 : Node | name : po_1, type : id(L2, "Place"),
21 attributes : (< O30 : Attri | nameOrValue : pont , type : id(L2, "numTokens"), Atts30 > Attri29), Atts29 >

22 < O31 : Node | name : tk1_1, type : id(L2, "Token"), Atts31 >
23 < O32 : Node | name : a1_1, type : id(L2, "InputArc"),
24 attributes : (< O33 : Attri | nameOrValue : 1 , type : id(L2, "weight"), Atts33 > Attri32), Atts32 >
25 < O34 : Node | name : p1_1, type : id(L2, "Place"),
26 attributes : (< O35 : Attri | nameOrValue : p1nt , type : id(L2, "numTokens"), Atts35 > Attri34), Atts34 >
27 Elts’’’),
28 rels : (< O36 : Relation | name : a1t_1, type : id(L2, "target"), source : a1_1, target : tr_1, Atts36 >
29 < O37 : Relation | name : p1tk_1, type : id(L2, "tokens"), source : p1_1, target : tk1_1, Atts37 >
30 < O38 : Relation | name : a1s_1, type : id(L2, "source"), source : a1_1, target : p1_1, Atts38 >
31 < O39 : Relation | name : aos_1, type : id(L2, "source"), source : ao_1, target : tr_1, Atts39 >
32 < O40 : Relation | name : aot_1, type : id(L2, "target"), source : ao_1, target : po_1, Atts40 >
33 Rels’’’),
34 Atts’’’ >
35 < counter : Counter | value : N >
36 Conf }
37 => { < level(L1) : Model | ... > ---- as in the left-hand side
38 < level(L2) : Model | ... > ---- as in the left-hand side
39 < level(L3) : Model | name : M’’’,
40 elts : (< O26 : Node | name : tr_1, type : id(L2, "Transition"), Atts26 >
41 < O27 : Node | name : ao_1, type : id(L2, "OutputArc"),
42 attributes : (< O28 : Attri | nameOrValue : 1 , type : id(L2, "weight"), Atts28 > Attri27), Atts27 >
43 < O29 : Node | name : po_1, type : id(L2, "Place"),
44 attributes : (< O30 : Attri | nameOrValue : pont + 1 , type : id(L2, "numTokens"), Atts30 > Attri29), Atts29 >
45 < O31 : Node | name : a1_1, type : IA_1,
46 attributes : (< O32 : Attri | nameOrValue : 1 , type : id(L2, "weight"), Atts32 > Attri31), Atts31 >
47 < O33 : Node | name : p1_1, type : id(L2, "Place"),
48 attributes : (< O34 : Attri | nameOrValue : p1nt - 1 , type : id(L2, "numTokens"), Atts34 > Attri33), Atts33 >

49 < oid(L3, N) : Node | name : id(L3, N + 1), type : id(L2, "Token"), attributes : none >
50 Elts’’’),
51 rels : (< O36 : Relation | name : a1t_1, type : id(L2, "target"), source : a1_1, target : tr_1, Atts36 >
52 < O38 : Relation | name : a1s_1, type : id(L2, "source"), source : a1_1, target : p1_1, Atts48 >
53 < O39 : Relation | name : aos_1, type : id(L2, "source"), source : ao_1, target : tr_1, Atts39 >
54 < O40 : Relation | name : aot_1, type : id(L2, "target"), source : ao_1, target : po_1, Atts40 >
55 < oid(L3, N + 2) : Relation | name : id(L3, N + 3), type : id(L2, "tokens"),

56 source : po_1, target : id(L3, N + 1), min-mult : 1, max-mult : 1 >
57 Rels’’’),
58 Atts’’’ >
59 < counter : Counter | value : N + 4 >
60 Conf }
61 if L1 < L2 /\ L2 < L3
62 /\ tr . inArcs -> size() = tr . inRegularArcs -> size() /\ tr . outArcs -> size() = tr . outRegularArcs -> size() .

Fig. 12 Excerpt of the Maude rewrite rule corresponding to the box-free version of the Fire regular transition MCMT rule

246 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 15

value N + 4 (line 59) since four new identifiers are in-
troduced.

The model changes applied by the rule have been
framed to ease its comprehension. Specifically, given
a transition tr_1 (line 17) with only one place (no-
tice the weight 1 of the input arc in lines 23–24), and
given one of the tokens in it (the token is specified in
line 22 and the relation associating it to the place in
line 29), the rule removes such a token and creates a
new one (lines 49 and 55–56). The number of tokens
in the input place is decremented (lines 26 and 48) and
the number of tokens in the output place is incremented
(lines 21 and 44). Finally, the created token and relation
objects (lines 49 and 55–56) have identifiers oid(L3,N),
oid(L3,N+1), oid(L3,N+2), and oid(L3,N+3).

3.3 MCMTs in Maude

As illustrated with the rules depicted in Figures 4 and 7,
boxes allow us to express very general situations in a
quite intuitive way. However, Maude does not provide
any mechanism similar to that of MCMT boxes, and
therefore the transformation is not as simple. To han-
dle boxes in a generic and efficient way, we use Maude’s
meta-programming capabilities to unfold boxes at run-
time as needed.

If we look at the Fire regular transition rule in Fig-
ure 4, this time considering its boxes, we know that
each time the rule is applied, depending on the specific
situation, there will be a number of replicas of each
of the boxes. Actually, notice that we may have multi-
ple boxes in both sides, with different cardinalities, and
we can have nested boxes, as many times as needed.
Note also that these cardinalities are explicitly spec-
ified, otherwise, for example, a given transition could
be applied taking an arbitrary number of tokens from
several of the available input places. These cardinali-
ties could be provided as OCL expressions, which need
to be evaluated to get the corresponding value at the
time it is required. In this particular case, the transition
has tr.inRegularArcs->size() input regular arcs, each of
which has a weight a1c which specifies the number of to-
kens to be removed from it when the transition is fired.
Similarly, the transition has tr.outRegularArcs->size()
out regular arcs, which tell us the number of output
places, each of which has a weight that indicates the
number of tokens to be created on that place.

The only assumption that we make to handle boxes
is that their cardinality must be greater than zero. In
case we want to consider the possibility of zero repli-
cations of a box, we need to provide the corresponding
rule without such a box. This is the case for the rule in
Figure 7. The cases in which we have transitions with no

reset, inhibitor or regular arcs must be handled in differ-
ent Maude rules. Although these cases can be handled
by automatically creating the zero-case corresponding
rule, we focus here on the general case.

An MCMT rule with boxes produces two Maude
rules (plus the corresponding ones for the zero-
cardinality cases). Excerpts of the two rules for the
MCMT rule Fire regular transition in Figure 4 are
shown in Figures 13 and 14. The first one of the rules
has a left-hand side as if there were no boxes in it. That
is, the left-hand side of the rule in Figure 13 is exactly
as the left-hand side of the rule in Figure 12. In its con-
dition, the boxes are expanded in a copy of the rule in
accordance with the actual match and its application
is attempted (lines 15-24 in Figure 13). If such an ap-
plication succeeds, the result is given as result of the
application of the rule, that is, it is used to replace the
current system (line 7). If the application in the con-
dition fails, the rule fails. To understand this rule, we
need to introduce some additional Maude machinery
and some auxiliary functions.

First, in addition to equality checks, Maude rule
conditions may include so-called matching equations
using the operator :=. Given a pattern term P (a canon-
ical term possibly with free variables) and a term T
which may use variables in the left-hand side of the
rule and also variables introduced in previous matching
conditions, the condition expression P := T evaluates
the term T and tries to match its result to the pattern
P. If P is a variable, it works like a let or where clause
to assign that value to the variable so that it can later
be used. If a more general pattern is used, the match
may result in the simultaneous assignment of values to
multiple variables. In the rule in Figure 13, we can see
how matching conditions are used several times. First,
it is used to refer to the left-hand side of the rules as
{ Conf’ } (in lines 9-13), then to refer to the match of
the rule as Subst, and finally to get the result of the
application of the unfolded rule (line 15).

In Maude, terms and modules have a metarepre-
sentation that we can manipulate as regular terms.
Up and down functions allow us to move terms and
modules between levels. For instance, given the mod-
ule GENERIC-PN in which these rules are defined, the
expression upModule(’GENERIC-PN, false) gives us its
metarepresentation. Similarly, upTerm({ Conf’ }) gives
us the metarepresentation of the term { Conf’ }, and
downTerm(T, { none }) moves down the result of the
application of the unfolded rule T. The built-in func-
tion metaApply(M,T,L,S,N) returns the Nth solution of
applying rule L in module M on term T using the sub-
stitution S to constraint the application of the rule.
Then, assuming that the makeModule function takes

Paper E 247

16 Rodríguez, Durán and Kristensen

1 crl [FireRegularArcs] :
2 { < level(L1) : Model | ... > ---- left-hand side as for the rule without boxes
3 < level(L2) : Model | ... >
4 < level(L3) : Model | ... >
5 < counter : Counter | ... >
6 Conf }
7 => downTerm(T, { none })
8 if (tr . outArcs -> size() = tr . outRegularArcs -> size()) /\ (tr . inArcs -> size() = tr . inRegularArcs -> size())
9 /\ Conf’ := < level(L1) : Model | ... >

10 < level(L2) : Model | ... >
11 < level(L3) : Model | ... >
12 < counter : Counter | ... >
13 Conf
14 /\ Subst := (...) ---- match of the rule
15 /\ { T, Ty, Subst’ } := metaApply(
16 makeModule(
17 upModule(’GENERIC-PN, false),
18 upTerm({ Conf’ }),
19 ’FireRegularArcsBoxes,
20 Subst),
21 upTerm({ Conf’ }),
22 ’FireRegularArcsBoxes,
23 Subst,
24 0) .

Fig. 13 Excerpt of the first of the Maude rewrite rule corresponding to the Fire regular transition MCMT rule

1 rl [FireRegularArcsBoxes] :
2 { < level(L1) : Model | ... > ---- as the left-hand side of the rule without boxes
3 < level(L2) : Model | ... >
4 < level(L3) : Model | ... >
5 boxes((tr . outRegularArcs -> size()]{ O27, O29, O39, O40 }, ---- box information
6 box[tr . inRegularArcs -> size()]{ O32, O34, O36, O38, box[a1c]{ O22, O29 } }))
7 < counter : Counter | value : N >
8 Conf }
9 =>

10 { < level(L1) : Model | ... > ---- as the right-hand side of the rule without boxes
11 < level(L2) : Model | ... >
12 < level(L3) : Model | ... >
13 boxes((box[tr . outRegularArcs -> size()]{ O27, O29, O39, O40, box[aoc]{ oid(L3, N), oid(L3, N + 2)} },
14 box[tr . inRegularArcs -> size()]{ O32, O34, O36, O38 }))
15 < counter : Counter | value : N + 13 > Conf } .

Fig. 14 Excerpt of the second of the Maude rewrite rule corresponding to the Fire regular transition MCMT rule

the module with the rules and expands the boxes of
the indicated rule as required, the call to metaApply
in the last matching condition in the rule in Figure 13
will apply the expanded rule on the current state of the
system using the original substitution, that is, forcing
the same match. The metaApply functions gives a triple
{T, Ty, Subst} as result, where T is the term resulting
from the application of the rule, Ty its type, and Subst
is the complete substitution used in the application.

The FireRegularArcsBoxes rule is shown in Figure 14.
It is similar to the rule without boxes explained in Sec-
tion 3.2, but notice that it also includes information on
the boxes and the level 3 object in the RHS which now
represents the TO part (line 12).

Boxes are specified as a collection of terms of the
form box[C]{OS}, with C being the cardinality of the
box and OS the set of identifiers of the objects (nodes
and relations) and nested boxes within the box. The
makeModule function is a metalevel function that op-
erates on the metarepresented module, expanding the
indicated rule by unfolding the boxes in it. It proceeds
recursively, removing one box level at a time. As we

have seen above, the cardinality of a box specifies the
number of replicas of that box that we need to generate.
After a box is expanded, the cardinalities of the next-
level boxes can be evaluated. The operation is repeated
until no further boxes are left. Once all boxes in a rule
are completely expanded, the application of the rule is
attempted in one single step.

Notice that boxes in right-hand sides may, and in
fact do in the FireRegularArcsBoxes rule in Figure 14,
contain identifiers of new objects. Notice also that the
counter object is updated according to the number of
objects being created, either inside or outside boxes.

4 Execution and Analysis of Models

The capability to execute MultEcore systems and use
the powerful tools Maude implements for reachabil-
ity and model checking of the multilevel models takes
our infrastructure to a next step. Furthermore, mod-
elling behavioural languages, such as Petri nets, gets
interesting if one can transfer simulation and analy-

248 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 17

sis onto the concrete system models. We use, as case
study to demonstrate these capabilities, a gas station
model adapted from [26]. We consider the whole mod-
elling cycle, where the modeller sketches and designs the
multilevel hierarchy that represents the system, then
specify the behaviour by means of transformation rules,
and then automatically transforms its setting to Maude
where simulation and execution can be done to later
verify and analyse the obtained system.

The concrete syntax of the model is depicted in Fig-
ure 15. This model would be located at level 4 of the PN
hierarchy, as an instance of the reset-inhibitor-petri-nets
model (Figures 6 and 19(c)). The PN model represents
a system in which car tanks get filled up at a gas sta-
tion. The station has a tank with a maximum capacity,
which can be evacuated for cleaning reasons and then
replenish. If there is no car in the station, a new car
can arrive and set its indicator on. Once the car’s tank
is filled, it leaves the station.

The initial marking of the model, depicted in Fig-
ure 15, has 4 tokens in the place Station Tank, which
is its full capacity. For a car tank to be refuelled, there
must be a token in the Fuel Indicator On place. This can
only happen if the transition Turn Fuel Indicator On has
been fired, and for this to happen, there cannot be any
token neither in the Car Tank place (the tank is empty)
nor in the Fuel Indicator On place (the indicator is off).
This is modelled by the two inhibitor arcs connected to
the Turn Fuel Indicator On transition. Then, once the
indicator has been turned on, we can only progress by
the firing Fuel Car transition, which makes the Car Tank
to be filled (i.e., gets one token). Ultimately, once the
car tank is full, the Leave Station transition can be fired,

Station
Tank

Evacuate

1

Disabled

Replenish

14

Fuel Car

1

Fuel
Indicator

On

1

Turn Fuel
Indicator On

1

Car Tank

Leave
Station

1

Outside
Station

11

Fig. 15 Gas station model with initial marking

leading the car to exit the station by putting a token
into the Outside Station place.

4.1 Execution and analysis using Maude

Given a model with an initial marking, we can simulate
it. In fact, we have two ways of doing so. We can let
the default strategy choose the rules to apply, and the
way in which to apply them, or we can force a specific
sequence of rule applications.

Rule rewriting is a highly non-deterministic process,
and in general, at every step many rules could be ap-
plied. Moreover, since a rewrite system may be non-
terminating, as is the case of the gas station example,
a maximum number of rewriting steps to be taken may
be specified.

A finer control on rule application may sometimes
be desirable. In MultEcore, we may specify the se-
quence of rules to be applied, which can be selected
from a list of possible ones. Let us show an example.
But first, as we said in Section 3.3, for any rule with
boxes, several Maude rules are generated, correspond-
ing to the different combinations of boxes with cardi-
nality zero. Thus, for the Fire reset/inhibitor transi-
tion rule in Figure 7, seven rules are generated, for
transitions with no regular arcs (FireResetInhibitorArcs),
for transitions with no inhibitor and no reset arcs
(FireRegularArcs), for transitions with no reset and no
regular arcs (FireInhibitorArcs), etc. Then, we can spec-
ify the strategy with which we desire to rewrite our
initial marking model by indicating the corresponding
sequence of rule labels. For example, we can guide the
execution from an initial marking given the following
sequence:

FireInhibitorArcs --------- Fuel Indicator On
FireRegularArcs ----------- 1st car fuelled (Car Tank)
FireRegularArcs ----------- 1st car leaves (Outside Station)
FireInhibitorArcs --------- Fuel Indicator On
FireRegularArcs ----------- 2nd car fuelled (Car Tank)
FireRegularArcs ----------- 2nd car leaves (Outside Station)
FireResetInhibitorArcs ---- Disabled
FireRegularArcs ----------- Station tank filled

The comments on the right indicate the corresponding
effect on the model. The MultEcore integration with
Maude allows us to specify sequence of rules to au-
tomatically generate the desired model state and get
its graphical representation right away. A screenshot of
the MultEcore tool is depicted in Figure 17, in which
we can see how rule labels are selected from a list cor-
responding to, the above sequence of rules. Note that
the MultEcore syntax of the initial state (depicted in
Petri nets syntax in Figure 15) is in the background

Paper E 249

18 Rodríguez, Durán and Kristensen

Station
Tank

Evacuate

1

Disabled

Replenish

14

Fuel Car

1

Fuel
Indicator

On

1

Turn Fuel
Indicator On

1

Car Tank

Leave
Station

1

Outside
Station

11

Fig. 16 Resulting Gas station state

of Figure 17. Pressing Finish on such a wizard auto-
matically provides the model state in the MultEcore
syntax, shown in Figure 18, where we have four tokens
(token19211. . . token19214) in the Station Tank place,
representing that the station tank has been replenished
(highlighted at the top-left of Figure 18), and four to-
kens in the Outside Station place, representing that 4
cars have left the station (highlighted at the bottom-
right of Figure 18).

4.2 Reachability analysis

To perform a more exhaustive verification of the model,
we can perform reachability analysis and bounded
model-checking of invariants, with which we can check
safety properties. Specifically, we can study the reacha-
bility of given states using the search command, where
the states to check can be specified both using pat-
terns or conditions on the states. The search command
explores the reachable state space following a breadth-
first strategy.

To carry on a search, we need to provide: (i) the
model from which to initiate the search, (ii) the maxi-
mum depth of the search (even for terminating systems,
a search may take a long time), (iii) the pattern model
to be reached (a model with variables), and (iv) an op-
tional property that has to be satisfied by the reached
state. Since the structure of the PN does not change
along the execution, we can specify our pattern model
leaving as variables the tokens in each place. Then, the
condition to satisfy at the target state may be specified
as an OCL expression. As result, MultEcore will deter-
mine whether such a state is reachable, in the specified

number of steps, and if so, it may provide the specific
path leading to the state found.

Let us see how we can use the search command to
verify properties on the gas station example. For exam-
ple, we can verify that, starting from the marking de-
picted in Figure 15, that the system can reach a mark-
ing where four cars have left the station and the station
tank is again full to continue fuelling further cars. To do
that, we just need to select the initial model, the target
pattern model, and write, for example, the following
OCL boolean expression:

id(4, "Station Tank").tokens->size() = 4
and id(4, "Outside Station").tokens->size() = 4

MultEcore responds positively, and provides the se-
quence of rule names leading to such a solution:

FireInhibitorArcs
FireRegularArcs
FireRegularArcs
FireInhibitorArcs
FireRegularArcs
FireRegularArcs
FireInhibitorArcs
FireRegularArcs
FireRegularArcs
FireInhibitorArcs
FireRegularArcs
FireRegularArcs
FireResetInhibitorArcs
FireRegularArcs

Notice that this is the path to one of the possible states
satisfying this condition, which, like in this case, may
be not unique.

We can also check whether certain miss-behaviours
may occur. Below we list properties we have verified in
order to assure the correctness of the model:

– Property 1. It is not possible to find a state where,
simultaneously, the places Station Tank and Disabled
contain the tokens. This would imply that either
Evacuate or Replenish transition could be fired more
than once in a row, which is not the behaviour we
expect for this specific system. We can check this
property using the same initial and pattern mark-
ings as before together with the following property:

id(4, "Station Tank").tokens->size() > 0
and id(4, "Disabled").tokens->size() > 0

Since the system is not terminating, and we expect
not to find it, we specify a bound, for example, of
20. The answer from MultEcore is ‘false’, indicating
that such a state cannot be reached within the given
depth.

– Property 2. It is not possible to find a state where
either the Fuel Indicator ON, Car Tank, and Disabled
places have more than one token. In other words,

250 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 19

Fig. 17 MultEcore screenshot for sequence of rules-based execution

A6

weight=1

OutputArc@2 1-1-*

token15711
Token@2 1-1-*

A4

weight=4

OutputArc@2 1-1-*

token13611
Token@2 1-1-*

A8

weight=1

OutputArc@2 1-1-*

A10

weight=1

OutputArc@2 1-1-*

Replenish
ExtendedTran... 1-1-*

Disabled

numTokens=0

ExtendedPlace 1-1-*

FuelIndicatorON

numTokens=0

ExtendedPlace 1-1-*

OutsideStation

numTokens=4

ExtendedPlace 1-1-*

FuelCar
ExtendedTransition 1-1-*

A13
InhibitorArc 1-1-*

StationTank

numTokens=4

ExtendedPlace 1-1-*

A1
ResetArc 1-1-*

LeaveStation
ExtendedTran... 1-1-*

A11

weight=1

InputArc@2 1-1-*

token19211
Token@2 1-1-*

token19213
Token@2 1-1-*

A3

weight=1

InputArc@2 1-1-*

A9
InhibitorArc 1-1-*

Evacuate
ExtendedTransition 1-1-*

A7

weight=1

InputArc@2 1-1-*

A5

weight=1

InputArc@2 1-1-*

A12
InhibitorArc 1-1-*

token19214
Token@2 1-1-*

TurnFuelIndicatorON
ExtendedTransition 1-1-*

CarTank

numTokens=0

ExtendedPlace 1-1-*

token11511
Token@2 1-1-*

A2

weight=1

OutputArc@2 1-1-*

token17811
Token@2 1-1-*

token19212
Token@2 1-1-*

a6s@1-1-*

source@2

a6t@1-1-*

target@2

a4t@1-1-*

target@2

a4s@1-1-*
source@2

a8t@1-1-*
target@2

a8s@1-1-*
source@2

a10s@1-1-*
source@2

a10t@1-1-*
target@2

a3in@1-1-*

inRegularArcs@2

a4out@1-1-*

outRegularArcs@2

tokens13611@1-1-*

tokens@2

token11511@1-1-*

tokens@2

token15711@1-1-*

tokens@2

token17811@1-1-*
tokens@2

a11in@1-1-*
inRegularArcs@2

a6out@1-1-*
outRegularArcs@2

a5in@1-1-*

inRegularArcs@2

a13s@1-1-*

source

a13t@1-1-*
target

tokens19311@1-1-*

tokens@2

tokens19312@1-1-*

tokens@2

tokens19313@1-1-*

tokens@2

tokens19314@1-1-*

tokens@2

a1t@1-1-*
target

a1s@1-1-*
source

a8out@1-1-*

outRegularArcs@2
a7in@1-1-*

inRegularArcs@2
a11t@1-1-*
target@2

a11s@1-1-*
source@2

a3t@1-1-*

target@2 a3s@1-1-*

source@2

a9t@1-1-*
target

a9s@1-1-*
source

a2out@1-1-*
outRegularArcs@2

a13in@1-1-*
inInhibitorArcs

a1in@1-1-*

inResetArcs

a7t@1-1-*

target@2a7s@1-1-*

source@2

a5s@1-1-*
source@2

a5t@1-1-*
target@2

a12t@1-1-*
target

a12s@1-1-*
source

a12in@1-1-* inInhibitorArcs

a10out@1-1-*

outRegularArcs@2
a9in@1-1-*
inInhibitorArcs

a2t@1-1-*

target@2

a2s@1-1-*

source@2

Fig. 18 MultEcore syntax of the Gas station model state after execution

Paper E 251

20 Rodríguez, Durán and Kristensen

the indicator is either ON or OFF, the car tank is
either full or not, and we cannot disable the station
consecutively two times. This property can be ver-
ified as the previous one using the following OCL
expression:

id(4, "Fuel Indicator ON").tokens->size() > 1
or id(4, "Car Tank").tokens->size() > 1
or id(4, "Disabled").tokens->size() > 1

Again, for a bound of 20, the answer fromMultEcore
is ‘false’.

– Property 3. We can find a state where 5 cars have
successfully exited the station. If 5 cars can exit the
station, then any number of cars can leave as well.

id(4, "Outside Station").tokens->size() > 5

The answer obtained is positive, and the path to the
first found solution is provided.

All the properties listed above have provided the
expected results, which further validates our model.

4.3 System abstraction for unbounded analysis

In the previous section we have carried out bounded
model checking of several behavioural properties. Al-
though limited to a maximum depth, the verification
of the properties checked using the search command
greatly increase the confidence in the correctness of the
system. However, bounded model checking is an incom-
plete procedure, since a counterexample could exist at
greater depth. The problem in this case is that the state
space is infinite, and therefore, we cannot complete the
analysis in this way. One way to fully verify the sys-
tem is using a finite-state abstraction of it, that is, on
an appropriate quotient of the original system whose
set of reachable states is finite. The method proposed
in [43] creates an abstraction of the original system by
adding a set of equations to collapse the infinite set
of reachable states into a finite set. The specification,
extended with these equations, need to still satisfy the
usual executability conditions — the equations must be
ground Church-Rosser and terminating, and the rules
should be ground coherent with them — but the proce-
dure is quite simple, and the abstraction is then correct
by construction. The method is valid both for the ver-
ification of invariants and LTL formulas with an addi-
tional deadlock-freedom requirement. Indeed, an auto-
matic procedure to complete specifications so that the
requirement is satisfied has been given in [15].

The key idea about abstraction for invariant ver-
ification is that if we can verify an invariant on the
abstracted specification — the specification with the

equations defining the abstraction — then it also holds
in the original specification. The implication, however,
only works in one direction, if we find a counterexample
in the abstracted system it does not necessarily mean
that a counterexample exists for the original system.

Let us apply the technique to our example. There
are several reasons why our Petri nets system is infinite.
On the one hand, we have that tokens get accumulated
in the Outside Station place, since every time a car gets
its tank filled, the car leaves the station and a new to-
ken is added to the place. On the other hand, since we
are representing tokens as objects, every time a new
token is created it gets a new unique identifier. Thus,
even though from the Petri nets point of view, tokens
are anonymous dots in a place, in our representation
tokens are objects that have names and identifiers, and
the counter object keeps getting its value attribute in-
creased. We may, however, abstract from this informa-
tion, since neither the tokens’ names nor identifiers are
relevant, nor are we really concerned about the number
of tokens we have in the Outside Station place. For the
operation of the Petri net, the number of tokens in the
other places is not relevant either. Specifically, since all
arc weights are one, the analysis would be the same if
having four or three tokens in the Station Tank place.

We introduce equations that abstract the Petri net
system is the following way: (1) The Outside Station
place gets its number of tokens decremented if it is big-
ger than one, (2) the number of tokens in the Station
Tank place becomes 3 if it gets 4 tokens, (3) names
and identifiers of token objects are reset into a range
of values not used by the counter object, and (4) the
counter object gets its value attribute restarted to its
initial value. Notice that when we eliminate or rename
a token, we also act on the relation object associating
it to the place in which it is located. In this way, we not
only make all places to have either zero or one tokens
in them, but names and identifiers are reused from a
small set of possible values.

This abstraction makes the state space finite. And
we can use it to verify LTL formulas on the abstracted
model. Temporal logic allows the specification of safety
properties (something bad never happens) and liveness
properties (something good eventually happens), which
are related to the infinite behaviour of a system. How-
ever, we need a few additional definitions first.

Kripke structures are the natural models for propo-
sitional temporal logic. We need to understand how
a Kripke structure is associated to the rewrite the-
ory specified by a Maude system module. Basically, a
Kripke structure is a (total) transition system to which
we have added a collection of unary state predicates on
its set of states. Therefore, since the models of rewrit-

252 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 21

ing logic are also transition systems, we need to make
explicit the type of each of the states (System in our
specification) and the atomic propositions on which we
define our state predicates. In our case, again, we use
OCL boolean expressions as basic propositions, associ-
ating to each state those boolean expressions that are
satisfied in such a state. For example, we may check the
following properties

– Property 1. To check the property stating that it
is always true that eventually the system gets to a
state in which there is a token on either the Disabled
or the Outside Station place can be checked using the
following LTL formula:

[] <> (id(4, "Disabled").tokens->size() > 0
\/ id(4, "Outside Station").tokens->size() > 0)

In this case, the answer obtained is positive.
– Property 2. The following LTL formula states that

if we reach a state in which there is a token in the
Fuel Indicator On place, then eventually a state in
which there is a token in the Outside Station place
is reached.

[] (id(4, "Fuel Indicator ON").tokens->size() > 0
-> []<> id(4, "OutsideStation").tokens->size() > 0)

In this case the response is negative. Indeed, it may
happen that the Petri net loops in the upper part,
evacuating and replenishing the station tank over
and over again. As usual, if the formula is not true,
the model checker gives a counterexample, in the
form of a sequence of states.

The interested reader can find the complete outputs
in [54], together with the source files used to reproduce
the execution.

5 Related Work

Even though there exist a plethora of MLM approaches
and tools, only a few of them support DSML be-
haviour specification and execution. Melanee [2] is one
of the most advanced tools for MLM. The tool sup-
ports a variant of OCL with deep semantics (Deep-
OCL) which has been integrated with the Atlas Trans-
formation Language (ATL) for model transformations.
Lange shows in [31] how this tool can be used to check
constraints spanning multiple classification levels which
can be defined and executed. Although Melanee itself
is not natively supporting tools for simulation/execu-
tion through the specification of the execution seman-
tics, i.e., (multilevel) transformation rules, there are
some works on top of it that aims to achieve this (see,
e.g., [3]). In that work, the model execution mechanism

is based on a service API and a plug-in mechanism, and
the communication between the modelling and the exe-
cution environments is realised using socket-based com-
munication. We provide in our approach the whole set
of tools necessary to directly be able to define the struc-
ture of the multilevel hierarchy, specify the multilevel
model transformation rules (MCMTs), execute/simu-
late the models, and analyse the system.

The MetaDepth tool [32] is a well-known framework
within the MLM community. It is integrated with the
Epsilon languages [20], which permits using the Ep-
silon Object Language (EOL) as an action language
to define behaviour for metamodels, as well as the Ep-
silon Validation Language (EVL) for expressing con-
straints. Both EOL and EVL are extensions of OCL.
The approach implements the interface of the connec-
tivity layer in a way to make EOL aware of the multiple
ontological levels providing it with a multilevel nature.
However, the authors of [32] state that MetaDepth can
be used as a normal two-level meta-modelling environ-
ment when it comes to the execution of behaviour of
the models. Thus, for the actual execution they would
have to flatten their multilevel language to a two-level
version in order to run the models. To the best of our
knowledge there is not yet a MLM tool that supports
or integrates model checking and analysis capabilities
within its MLM tool-set.

Other authors have attempted to handle pattern
identification and specification to define reusable model
transformation rules. There exist a diverse set of ap-
proaches that bring solutions to pattern definition and
application in the context of graph transformations.
In [24], Guerra and de Lara explore recursion as a
graph transformation mechanism. They provide dou-
ble pushout (DPO) rules with base and recursive con-
ditions, together with mechanisms to pass the match-
ing between successive recursion steps. Lindqvist et
al. [36] propose the star operator, which is suited to find
repetitive occurrences of a specific modelling pattern.
However, the star operator is only defined for match-
ing model extracts, and not to perform transforma-
tions. In [23], Grønmo, Krogdahl, and Møller-Pedersen
present a collection operator for graph transformation
and show its usage to a variety of Coloured Petri nets.
Using this operator, it is possible to match several sim-
ilar structures within the model. They theoretically de-
fine how nesting would work by producing an ad-hoc
rule that would fit to the specific case. We follow a sim-
ilar approach by defining the rule in a generic way and
then the transformation engine provides also a generic
version in the Maude specification. The advantage of
our approach with respect to the collection operator is
that we do not physically produce an unfolded rule, but

Paper E 253

22 Rodríguez, Durán and Kristensen

it is dynamically unfolded and used at run-time. It is
during the matching at run-time when the rule is un-
folded guided by the cardinalities provided in the rule.
In [50], Rensink and Kuperus propose a transformation
language that uses an amalgamation scheme for nested
graph transformation rules, where pattern elements are
combined with universal and existing quantifiers. The
transformation language is used in the GROOVE tool.
Henshin [60] is an in-place model transformation lan-
guage for the EMF. Among other features, it imple-
ments a rule-nesting mechanism [1] that provides a for-
each operator for rules. In nested rules, the outer rule
is referred to as kernel rule and the inner rule as multi
rule. During execution of a nested rule, the kernel rule
is matched and executed once. Afterwards, the match
is used as a starting point to match the multi-rule as
often as possible and execute it for each match.

There are several traditional MDSE approaches that
deal with execution and verification that are somehow
related to our proposal. In [52], Rivera et at. use Maude
to represent 2-level models to be able to simulate and
perform formal analysis and model checking on them.
Such work served us as inspiration and starting point.
We were considering either implementing ourselves an
execution engine within MultEcore or using an exist-
ing tool where to rely on. Studying some works where
Maude was used and analysing how the language could
be customised together with its plethora of existing ca-
pabilities made us to follow such a path. We also anal-
ysed other mature tools in the context of model execu-
tion via operational semantics, e.g., Henshin [60] or the
GEMOC Studio [16,10], which helped us to understand
how the user could interact with the execution tools
from an Eclipse-based application. In the context of
verification, GROOVE (GRaph-based Object-Oriented
VErification) [48,22] is a tool for software model check-
ing of object-oriented systems. It can be used for mod-
elling, analysis and verification and integrates all these
functionalities in an easy to use interactive GUI. While
we already integrate into MultEcore some Maude func-
tionalities for execution and verification, we still have
to work in this direction to ease the process to the mod-
eller. We see GROOVE as a good influence to achieve
a better usability degree in MultEcore.

6 Conclusions and Future Work

In this paper have presented an infrastructure for exe-
cution and analysis of multilevel modelling languages.

To make this possible, we have integrated Maude
into our tool MultEcore, making it possible not only
to define our multilevel hierarchy (language) and spec-
ify the behaviour by means of MCMTs, but also carry

on simulation and further model checking and analysis
techniques. However, Maude is used as a backend tool,
hidden to the user such that the interaction is entirely
done with MultEcore, making the modeller unaware of
the Maude details. Although in the last years several
traditional two-level tools have provided support for the
whole cycle of behavioural DMSLs (from design to sim-
ulation and verification), to the best of our knowledge
this is the first work where a MLM tool incorporates
capabilities to perform model checking and other for-
mal analyses. We believe that the work presented in
this paper can open new doors to the MLM field, as
this tool can be used to define behavioural multilevel
DSMLs, execute them, and verify them.

Apart from the major improvements in the infras-
tructure itself, we have improved and extended the
MCMTs capabilities, by allowing nested boxes to repre-
sent collections, incorporated attribute manipulations,
and specification of conditions. Basic support for OCL
is also provided, which is very useful for the manipula-
tion of attributes, the specification of box cardinalities,
the specification of rule conditions, and the specifica-
tion of expressions and conditions to be used in the
formal checks, including LTL formulas.

To validate and demonstrate that our infrastructure
works and that actual execution and analysis can be
carried on, we have provided a case study where a Petri
net model that captures a gas station is simulated ap-
plying consecutively the MCMT rules defined in Mult-
Ecore. The goal of this case study has been to evaluate
the usability and practicability of the developed infras-
tructure. We are already considering how to evaluate
our tool against other MLM approaches that allow the
modeller to perform execution on models by defining
in-place model transformations. We have validated and
verified the modelled system using reachability analysis
and model checking techniques on an abstracted version
of the model. We refer the reader to the main MultEcore
webpage [53] for further details and examples.

We plan to integrate into MCMTs the capabilities
that a programming language brings such as reason-
ing about functions, expressions, type specifications,
and data manipulations. Our current implementation
of certain OCL functions represents a step towards this
goal. We are already working on adapting the complete
mOdCL (Maude + OCL) [19] to our Multilevel infras-
tructure so we can make use of the full power of OCL in
a Multilevel context. This would allow us, for instance,
to specify Coloured Petri nets [27] which combine clas-
sical Petri nets with a programming language [62].

While MCMTs are flexible with respect to further
horizontal/vertical extensions, we identify a key point
of improvement as being able to reuse META levels on

254 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 23

MCMTs into other rules. This would improve our ap-
proach with a higher degree of modularity and reusabil-
ity. Ultimately, we plan to further advance on the inter-
face that connects MultEcore to Maude, bringing more
advanced functionalities such as an interactive editor, a
smoother experience to the user with the graphical ed-
itor and additional Maude capabilities to, for instance,
customise the strategy language and have more control
on the execution and analysis.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer,
G.: Henshin: Advanced Concepts and Tools for In-Place
EMF Model Transformations. In: 13th International Con-
ference on Model Driven Engineering Languages and Sys-
tems (MODELS 2010)., pp. 121–135 (2010). DOI 10.1007/
978-3-642-16145-2_9

2. Atkinson, C., Gerbig, R.: Flexible Deep Modeling with
Melanee. In: S. Betz, U. Reimer (eds.) Modellierung 2016,
LNI, vol. 255, pp. 117–122. Gesellschaft für Informatik,
Bonn (2016)

3. Atkinson, C., Gerbig, R., Metzger, N.: On the Execution
of Deep Models. In: 1st International Workshop on Ex-
ecutable Modeling co-located with ACM/IEEE 18th In-
ternational Conference on Model Driven Engineering Lan-
guages and Systems (MODELS 2015)., pp. 28–33 (2015)

4. Atkinson, C., Kühne, T.: Processes and products in a multi-
level metamodeling architecture. International Journal of
Software Engineering and Knowledge Engineering 11(06),
761–783 (2001)

5. Atkinson, C., Kühne, T.: The Essence of Multilevel Meta-
modeling. In: «UML» 2001 - The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools, pp. 19–
33 (2001). DOI 10.1007/3-540-45441-1_3

6. Atkinson, C., Kühne, T.: Reducing accidental complexity
in domain models. Software & Systems Modeling 7(3),
345–359 (2008)

7. Atkinson, C., Kühne, T.: In defence of deep modelling. Inf.
Softw. Technol. 64, 36–51 (2015). DOI 10.1016/j.infsof.
2015.03.010

8. Atkinson, C., Kühne, T.: On Evaluating Multi-level Mod-
eling. In: Proceedings of MULTI @ MODELS, pp. 274–277
(2017)

9. Bernardinello, L., de Cindio, F.: A survey of basic net mod-
els and modular net classes. In: Advances in Petri Nets
1992, The DEMON Project, pp. 304–351. Springer (1992).
DOI 10.1007/3-540-55610-9_177

10. Bousse, E., Wimmer, M.: Domain-level observation and
control for compiled executable dsls. In: M. Kessentini,
T. Yue, A. Pretschner, S. Voss, L. Burgueño (eds.) 22nd
ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, MODELS 2019, Mu-
nich, Germany, September 15-20, 2019, pp. 150–160. IEEE
(2019). DOI 10.1109/MODELS.2019.000-6

11. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Soft-
ware Engineering in Practice. Synthesis Lectures on Soft-
ware Engineering. Morgan & Claypool Publishers (2012).
DOI 10.2200/S00441ED1V01Y201208SWE001

12. Cabot, J., Gogolla, M.: Object constraint language (OCL):
A definitive guide. In: M. Bernardo, V. Cortellessa,
A. Pierantonio (eds.) Formal Methods for Model-Driven

Engineering - 12th International School on Formal Meth-
ods for the Design of Computer, Communication, and
Software Systems, SFM 2012, Bertinoro, Italy, June 18-
23, 2012. Advanced Lectures, Lecture Notes in Computer
Science, vol. 7320, pp. 58–90. Springer (2012). DOI
10.1007/978-3-642-30982-3_3

13. Clark, T., Warmer, J.: Object Modeling With the OCL:
The Rationale Behind the Object Constraint Language,
vol. 2263. Springer (2003)

14. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet,
N., Meseguer, J., Quesada, J.F.: Maude: Specification and
programming in rewriting logic. Theoretical Computer Sci-
ence 285(2), 187–243 (2002)

15. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet,
N., Meseguer, J., Talcott, C.L. (eds.): All About Maude -
A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic, Lecture
Notes in Computer Science, vol. 4350. Springer (2007).
DOI 10.1007/978-3-540-71999-1

16. Combemale, B., Barais, O., Wortmann, A.: Language en-
gineering with the GEMOC studio. In: 2017 IEEE Inter-
national Conference on Software Architecture Workshops,
ICSA Workshops 2017, Gothenburg, Sweden, April 5-7,
2017, pp. 189–191. IEEE Computer Society (2017). DOI
10.1109/ICSAW.2017.61

17. Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer,
J., Rubio, R., Talcott, C.L.: Programming and symbolic
computation in Maude. J. Log. Algebraic Methods Pro-
gram. 110 (2020). DOI 10.1016/j.jlamp.2019.100497. URL
https://doi.org/10.1016/j.jlamp.2019.100497

18. Durán, F., Garavel, H.: The rewrite engines competitions:
A rectrospective. In: D. Beyer, M. Huisman, F. Kor-
don, B. Steffen (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 25 Years of TACAS:
TOOLympics, Held as Part of ETAPS 2019, Proceedings,
Part III, Lecture Notes in Computer Science, vol. 11429, pp.
93–100. Springer (2019). DOI 10.1007/978-3-030-17502-3_
6. URL https://doi.org/10.1007/978-3-030-17502-3_
6

19. Durán, F., Roldán, M.: Validating OCL constraints on
Maude prototypes of UML models. Tech. rep., Universi-
dad de Málaga (2012)

20. The Epsilon Object Language (EOL).
https://www.eclipse.org/epsilon/doc/eol/

21. Garavel, H., Tabikh, M., Arrada, I.: Benchmarking imple-
mentations of term rewriting and pattern matching in al-
gebraic, functional, and object-oriented languages - the 4th
rewrite engines competition. In: V. Rusu (ed.) Rewriting
Logic and Its Applications - 12th International Workshop,
WRLA 2018, Held as a Satellite Event of ETAPS, Proceed-
ings, Lecture Notes in Computer Science, vol. 11152, pp.
1–25. Springer (2018). DOI 10.1007/978-3-319-99840-4_1.
URL https://doi.org/10.1007/978-3-319-99840-4_1

22. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E.,
Zimakova, M.: Modelling and analysis using GROOVE. Int.
J. Softw. Tools Technol. Transf. 14(1), 15–40 (2012). DOI
10.1007/s10009-011-0186-x

23. Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A col-
lection operator for graph transformation. Software and
Systems Modeling 12(1), 121–144 (2013). DOI 10.1007/
s10270-011-0190-3

24. Guerra, E., de Lara, J.: Adding Recursion to Graph Trans-
formation. ECEASST 6 (2007). DOI 10.14279/tuj.eceasst.
6.56

25. Halder, A., Venkateswarlu, A.: A study of petri nets mod-
eling analysis and simulation. Department of Aerospace

Paper E 255

24 Rodríguez, Durán and Kristensen

Engineering Indian Institute of Technology Kharagpur, In-
dia (2006)

26. Hee, van, K., Leurs, M., Post, R.: Yasper : Yet another
smart process editor (poster). In: 2005 Symposium on Ver-
ification and validation of software systems (VVSS 2005)
(2005)

27. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri
Nets and CPN Tools for modelling and validation of con-
current systems. International Journal on Software Tools
for Technology Transfer 9(3), 213–254 (2007). DOI
10.1007/s10009-007-0038-x

28. Kelly, S., Tolvanen, J.: Domain-Specific Modeling - En-
abling Full Code Generation. Wiley (2008)

29. Kühne, T.: Exploring Potency. In: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, MODELS, pp. 2–12
(2018). DOI 10.1145/3239372.3239411

30. Kühne, T.: A story of levels. In: Proceedings of MULTI @
MODELS, pp. 673–682 (2018)

31. Lange, A.: dACL: the deep constraint and action lan-
guage for static and dynamic semantic definition in Mela-
nee (2016). URL https://madoc.bib.uni-mannheim.de/
43490/. Unpublished

32. de Lara, J., Guerra, E.: Deep meta-modelling with
MetaDepth. In: Objects, Models, Components, Patterns,
lncs, vol. 6141, pp. 1–20. springer (2010). DOI 10.1007/
978-3-642-13953-6_1

33. de Lara, J., Guerra, E.: Generic Meta-modelling with Con-
cepts, Templates and Mixin Layers. In: Model Driven
Engineering Languages and Systems - 13th International
Conference, MODELS, pp. 16–30 (2010). DOI 10.1007/
978-3-642-16145-2_2

34. de Lara, J., Guerra, E., Cuadrado, J.S.: When and how to
use multilevel modelling. ACM Transactions on Software
Engineering and Methodology (TOSEM) 24(2), 12 (2014)

35. de Lara, J., Vangheluwe, H.: AToM 3: A Tool for Multi-
formalism and Meta-modelling. In: International Confer-
ence on Fundamental Approaches to Software Engineering,
pp. 174–188. Springer (2002)

36. Lindqvist, J., Lundkvist, T., Porres, I.: A Query Language
With the Star Operator. ECEASST 6 (2007). DOI 10.
14279/tuj.eceasst.6.55

37. Macías, F.: Multilevel modelling and domain-specific lan-
guages. PhD thesis, Western Norway University of Applied
Sciences and University of Oslo (2019)

38. Macías, F., Rutle, A., Stolz, V.: Multilevel Modelling with
MultEcore: A Contribution to the MULTI 2017 Challenge.
In: Proceedings of MULTI @ MODELS, pp. 269–273 (2017)

39. Macías, F., Wolter, U., Rutle, A., Durán, F., Rodriguez-
Echeverria, R.: Multilevel Coupled Model Transformations
for Precise and Reusable Definition of Model Behaviour.
Journal of Logical and Algebraic Methods in Programming
106, 167–195 (2019). DOI 10.1016/j.jlamp.2018.12.005

40. Meseguer, J.: Conditional rewriting logic as a unified model
of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992).
DOI 10.1016/0304-3975(92)90182-F

41. Meseguer, J.: Conditioned rewriting logic as a united model
of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992).
DOI 10.1016/0304-3975(92)90182-F

42. Meseguer, J.: Twenty years of rewriting logic. J. Log. Al-
gebr. Program. 81(7-8), 721–781 (2012). DOI 10.1016/j.
jlap.2012.06.003

43. Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational
abstractions. Theor. Comput. Sci. 403(2-3), 239–264
(2008). DOI 10.1016/j.tcs.2008.04.040. URL https://doi.
org/10.1016/j.tcs.2008.04.040

44. Meta Object Facility (MOF) specification 2.5.1.
https://www.omg.org/spec/MOF

45. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernández,
M.A., Nordmoen, B., Fritzsche, M.: Where does model-
driven engineering help? Experiences from three industrial
cases. Software & Systems Modeling 12(3), 619–639 (2013)

46. Murata, T.: Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE 77(4), 541–580 (1989)

47. Reisig, W.: Understanding Petri Nets - Modeling Tech-
niques, Analysis Methods, Case Studies. Springer (2013).
DOI 10.1007/978-3-642-33278-4

48. Rensink, A.: The GROOVE simulator: A tool for state
space generation. In: J.L. Pfaltz, M. Nagl, B. Böhlen (eds.)
Applications of Graph Transformations with Industrial
Relevance, Second International Workshop, AGTIVE 2003,
Charlottesville, VA, USA, September 27 - October 1, 2003,
Lecture Notes in Computer Science, vol. 3062, pp. 479–485.
Springer (2003). DOI 10.1007/978-3-540-25959-6_40

49. Rensink, A.: The GROOVE simulator: A tool for state
space generation. In: International Workshop on Applica-
tions of Graph Transformations with Industrial Relevance,
pp. 479–485. Springer (2003)

50. Rensink, A., Kuperus, J.: Repotting the Geraniums: On
Nested Graph Transformation Rules. Electronic Communi-
cation of the European Association of Software Science and
Technology 18 (2009). DOI 10.14279/tuj.eceasst.18.260

51. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical ap-
proach for modeling time-dependent behavior of DSLs. In:
Visual Languages and Human-Centric Computing, 2009.
VL/HCC 2009. IEEE Symposium on, pp. 51–55. IEEE
(2009)

52. Rivera, J.E., Durán, F., Vallecillo, A.: Formal Specifi-
cation and Analysis of Domain Specific Models Using
Maude. Simulation 85(11-12), 778–792 (2009). DOI
10.1177/0037549709341635

53. Rodríguez, A., Durán, F., Kristensen, L.M.: MultEcore
webpage (2021). URL https://ict.hvl.no/multecore/

54. Rodríguez, A., Durán, F., Kristensen, L.M.: Petri
nets experiment resources: MultEcore and Maude files
(2021). URL https://bitbucket.org/phdalejandro/no.
hvl.multecore.examples.sosym.petrinets

55. Rodríguez, A., Durán, F., Rutle, A., Kristensen, L.M.:
Executing Multilevel Domain-Specific Models in Maude.
Journal of Object Technology 18(2), 4:1–21 (2019). DOI
10.5381/jot.2019.18.2.a4

56. Rodríguez, A., Macías, F.: Multilevel Modelling with Mult-
Ecore: A Contribution to the MULTI Process Challenge.
In: Proceedings of MULTI @ MODELS, pp. 152–163
(2019). DOI 10.1109/MODELS-C.2019.00026

57. Rodríguez, A., Rutle, A., Kristensen, L.M., Durán, F.:
A Foundation for the Composition of Multilevel Domain-
Specific Languages. In: MULTI@ MoDELS, pp. 88–97
(2019). DOI 10.1109/MODELS-C.2019.00018

58. Roldán, M., Durán, F.: Dynamic validation of OCL con-
straints with mOdCL. Electron. Commun. Eur. Assoc.
Softw. Sci. Technol. 44 (2011). DOI 10.14279/tuj.eceasst.
44.625

59. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.:
EMF: Eclipse Modeling Framework. Pearson Education
(2008)

60. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T.,
Ohrndorf, M., Tichy, M.: Henshin: A Usability-Focused
Framework for EMF Model Transformation Development.
In: 10th International Conference, ICGT 2017, pp. 196–208
(2017). DOI 10.1007/978-3-319-61470-0_12

256 Paper E

Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude 25

61. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,
Van Mierlo, S., Ergin, H.: AToMPM: A Web-based Model-
ing Environment. In: MODELS-JP 2013, CEUR Workshop
Proceedings, vol. 1115, pp. 21–25 (2013)

62. Ullman, J.D.: Elements of ML programming. Prentice-Hall,
Inc. (1994)

63. The Unified Modelling Language (UML) specification 2.5.1.
https://www.omg.org/spec/UML

64. Van Mierlo, S., Barroca, B., Vangheluwe, H., Syriani, E.,
Kühne, T.: Multi-level modelling in the Modelverse. In:
MULTI@ MoDELS, CEUR Workshop Proceedings, vol.
1286, pp. 83–92 (2014)

65. Verbeek, H.M.W., Wynn, M.T., van der Aalst, W.M.P.,
ter Hofstede, A.H.M.: Reduction rules for reset/inhibitor
nets. J. Comput. Syst. Sci. 76(2), 125–143 (2010). DOI
10.1016/j.jcss.2009.06.003

66. Warmer, J., Kleppe, A.: The Object Constraint Language
Second Edition: Getting Your Models Ready for MDA.
Addison-Wesley Educational Publishers (2003)

Paper E 257

26 Rodríguez, Durán and Kristensen

A Petri nets multilevel hierarchy

level 1

level 2

(a) petri-nets-concepts

(b) regular-petri-nets

level 3

(c) reset-inhibitor-petri-nets

(d) reset-inhibitor-petri-net-example

le
vl

e
4
 -

 I
n
st

an
ce

p1

numTokens=3

ExtendedPlace 0-0-0

p2

numTokens=2

ExtendedPlace 0-0-0

p3

numTokens=0

ExtendedPlace 0-0-0

p4

numTokens=0

ExtendedPlace 0-0-0

p5

numTokens=0

ExtendedPlace 0-0-0

tr1
Transition
Extended 0-0-0

tk1
Token@2 0-0-0

tk2
Token@2 0-0-0

tk3
Token@2 0-0-0

a1

weight=2

InputArc@2 0-0-0

a4

weight=3

OutputArc@2 0-0-0

a5

weight=2

OutputArc@2 0-0-0

a2
ResetArc 0-0-0

a3
InhibitorArc 0-0-0

tk4
0-0-0Token@2

tk5
0-0-0Token@2

tk1@0-0-0
tokens@2

tk2@0-0-0

tokens@2

tk3@0-0-0

tokens@2

a1s@0-0-0
source@2

a1t@0-0-0

target@2

a2s@0-0-0

source

a2t@0-0-0

target

a3s@0-0-0

source

a3t@0-0-0
target

a4s@0-0-0

source@2

a4t@0-0-0

target@2

a5t@0-0-0

target@2

a5s@0-0-0

source@2

a1in@0-0-0

inRegularArcs@2

a2in@0-0-0
inResetArcs

a3in@0-0-0

inInhibitorArcs

a4out@0-0-0
outRegularArcs@2

a5out@0-0-0

outRegularArcs@2

tk5@0-0-0

tokens@2

tk4@0-0-0
tokens@2

PN

1-* name : string

EClass 1-*-*

Node

1-* name : string

EClass 1-2-3

Arc

1-* name : string

EClass 1-2-3

Transition
EClass 1-2-3

Place
EClass 1-2-3

target@1-2-3

EReference

source@1-2-3
EReference

nodes@1-*-*

EReference

arcs@1-*-*
EReference

inArcs@1-2-3
EReference

outArcs@1-2-3
EReference

1..1 1..1

InputArc

1-* weight : int

Arc 2-2-1

RegularPlace

1-* numTokens : int

Place 1-2-2
RegularTransition

Transition
1..1

1..1

1..1 1..1

1-2-2

OutputArc

1-* weight : int

Arc 2-2-1
Token

EClass 2-2-1

source@2-2-1
source

target@2-2-1

target

target@2-2-1

target
source@2-2-1

source

tokens@2-2-1

EReference

inRegularArcs@1-2-1
inArcs

outRegularArcs@1-2-1
outArcs

ResetArc
Arc@2 1-1-1

ExtendedPlace
1-1-1

1..1

1..1

1..1

1..1

ExtendedTransition

RegularTransition 1-1-1

InhibitorArc
Arc@2 1-1-1

source@1-1-1
source@2

source@1-1-1

source@2

target@1-1-1

target@2

target@1-1-1

target@2

inResetArcs@1-1-1
inArcs@2

inInhibitorArcs@1-1-1
inArcs@2

RegularPlace

Fig. 19 Petri nets multilevel hierarchy

258 Paper E

PAPER F
MULTILEVEL MODELLING WITH MULTECORE:
A CONTRIBUTION TO THE MULTI-LEVEL
PROCESS CHALLENGE

Alejandro Rodríguez and Fernando Macías

In Enterprise Modelling and Information Systems Architectures Journal The German Infor-

matics Society, 2021. (Submitted)

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 1

Multilevel Modelling with MultEcore: A contribution to the
Multi-Level Process Challenge

Alejandro Rodríguez*,a, Fernando Macíasb
a Western Norway University of Applied Sciences, Bergen, Norway
b IMDEA Software Institute, Madrid, Spain

Abstract. The MULTI Challenge is intended to encourage the Multilevel Modelling research community to
submit solutions to the same, well described problem. This paper presents one solution in the context of
process management, where universal properties of process types along with task, artefact and actor types,
together with possible particular occurrences for scoped domains, are modelled. We discuss our solution,
detailing how we handle each requirement and explain how we use the different features that the MultEcore
tool supports to construct the proposed Process case study. We not only focus on the structural dimension
of the proposed system where the different models that define the language are provided, but also explore
the specification of the static semantics to verify structural constraints and dynamic semantics that refer to
the behavioural aspect of the modelled system.

Keywords. Multilevel Modelling • Semantics •Model Transformations

1 Introduction

Research in Multilevel Modelling (MLM) is con-
tinuously increasing and MLM approaches and
tools are getting more mature and varied. The
MULTI challenge was created to enhance discus-
sion and facilitate the contributions within the
MLM community. Encouraging researchers to
submit solutions to a common challenge makes
it possible to compare them and fosters improve-
ments towards the same set of common goals. In
this paper, we use the MultEcore tool (Macías
et al. 2016) to create models by applying various
multilevel constructions, which are key to fulfil the

* Corresponding author.
E-mail. arte@hvl.no
This work has been partially supported by Comunidad de
Madrid as part of the project 49/520608.9/18 (MADRIDF-
LIGHTONCHIP) co-funded by ERDF Funds of the European
Union.
Note: This work is based on and extends our previous
publication to the MULTI 2019 workshop: Multilevel Mod-
elling with MultEcore: A contribution to the MULTI Process
challenge.

criteria established for the MULTI Process chal-
lenge (João Paulo A. Almeida et al. 2019, 2021).
MultEcore enables multilevel modelling through
the Eclipse Modelling Framework (EMF) (Stein-
berg et al. 2008), and therefore allows reusing the
existing EMF tools and plugins. The MultEcore
tool is available on its webpage1 and the Eclipse
projects which contain all the artefacts of our solu-
tion to this challenge can be downloaded from a
GitHub repository2 .
With MultEcore, modellers can create flexible

multilevel structures of models that can in turn be
composed with each other to include additional
aspects. This process is mainly done by defining
multilevel hierarchies, where usually the main one
is called application hierarchy and the additional
ones are called supplementary hierarchies. Us-
ing a parallelism to Software Product Lines, an
application hierarchy could be understood as the

1MultEcore website: https://ict.hvl.no/multecore/
2 GitHub repository with all the artefacts of the MultEcore
solution: https://github.com/MultEcore/no.hvl.multecore.
examples.emisa.process2021

Paper F 261

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

2 Alejandro Rodríguez, Fernando Macías

base language module in the context of a language
product line (Méndez-Acuña et al. 2016). Sup-
plementary hierarchies can therefore be used to
add new dimensions to the application one, with
concepts that are not part of the latter’s domain.
An application hierarchy can include several sup-
plementary hierarchies which can also be removed
without introducing inconsistencies or affecting
the integrity of the models.
We also take advantage in this paper of the

newest features in MultEcore, some of which
are part of our current development efforts. In
particular, we discuss the specification of con-
straints (static semantics) and behaviour (dy-
namic semantics) of the models by applying Mult-
Ecore’s model transformation language, which
we call Multilevel Coupled Model Transforma-
tions (MCMTs) (Macías 2019; Macías et al. 2019;
Rodríguez et al. 2019a). The key aspects of our
framework which have been applied to solve the
challenge are summarised as follows:

• The definition of multilevel hierarchies in a
flexible way has allowed us to create tree-like
structures where the commonalities of the lan-
guage are defined once, and the branches can
be separately specified and instantiated in a con-
trolled manner by using the notion of potency,
which restricts the levels at which an element
can be used to type other elements. Moreover,
we use our three-valued definition of potency,
which is able to unify consistently the kinds of
potency defined, among others, in Atkinson and
Gerbig (2016a) and Lara and Guerra (2010).

• Being able to define supplementary hierarchies
helped us with one of the requirements of the
challenge (time-stamping nodes).

• The combination of inheritance (i. e. special-
isation) and typing (i. e. instantiation) relations,
which can be used together consistently in our
approach, has been exploited to address certain
requirements.

• We benefited from the two main applications
of MCMTs to both check the structural correct-
ness of the modelled hierarchies and to specify

behavioural descriptions of the bottom-most
models.

• An infrastructure that connects MultEcore with
theMaude system (Clavel et al. 2007) allowed us
to execute our models applying the behavioural
MCMT rules.

In this edition, the challenge concerns the do-
main of process management, which pertains both
the particular instantiations of elements (e. g., pro-
cess instances, task occurrences), and the univer-
sal aspects of the domain (e. g. process definitions,
task types). Note that we use British English
throughout the paper, however, we use the ori-
ginal US English of the challenge description for
quotations and for the names of our elements in
the models. For example the reader may find
artifact being used instead of artefact in some con-
texts. Respondents to the challenge are required
to define, first, universal concepts for process man-
agement, and second, an application of such a
conceptualisation in the scope of a particular soft-
ware engineering process. Optionally, they can
also capture a different scope for the insurance
domain. In order to demonstrate the flexibility
of our framework, we have defined a multilevel
hierarchy where both domains are included.
The rest of this paper is organised according to

the structure recommended on the challenge de-
scription, as follows. We describe in Section 2 the
technological aspects of MultEcore. In Section 3
we analyse the challenge description and clarify
all the assumptions and decisions that we have
made in order to fulfil the proposed requirements.
We detail in Section 4 all the specific elements
which conform the multilevel hierarchies of our
solution, presenting both the software engineering
and the insurance domains. We also discuss how
we handle cross-level constraints and the opera-
tional semantics. In Section 5 we discuss each
requirement and describe how we addressed it in
our solution. In Section 6 we assess the choices
we have made and describe how certain asp as-
pects of our approach facilitate the resolution of
the requirements. We discuss in Section 7 related
work with respect to other solutions made in past

262 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 3

editions of the challenge, both in terms of the
approaches used and the solutions developed. Fi-
nally, we summarise and conclude the paper in
Section 8.

2 Technology

Our solution has been entirely modelled using the
MultEcore tool (Macías et al. 2017; Rodríguez
and Macías 2019), formally specified in Macías
(2019) and Wolter et al. (2019). The MultEcore
tool is designed as a set of Eclipse plugins, giving
access to its mature tool ecosystem (through integ-
ration with EMF) and incorporating the flexibility
of MLM. In the MultEcore approach (Macías et al.
2019), the abstract syntax is provided by a set
of models that compose the language. The se-
mantics in MultEcore (behaviour and constraints)
can be specified by using Multilevel Coupled
Model Transformations. Using the MultEcore
tool modellers can: (i) define multilevel hierarch-
ies using the model graphical editor; (ii) define
MCMTs using the textual DSL for rule edition; and
(iii) execute and analyse specific models. The exe-
cution ofMultEcore models rely on a bidirectional
transformation of the models into Maude (Clavel
et al. 2007) specifications. When we design a mul-
tilevel DSML, we first define its syntax/structure
through a multilevel modelling hierarchy and then
we specify its semantics via the MCMTs.

2.1 Levels
MultEcore is a level-adjuvant approach (Atkin-
son et al. 2014; Kühne 2018a) where levels are
explicitly used to organise models and the ele-
ments inside them. For implementation reasons,
MultEcore prescribes the use of Ecore (Steinberg
et al. 2008) as root model (graph) at level 0 in
all example hierarchies. Models are distributed
in multilevel modelling hierarchies. A multilevel
modelling hierarchy in our context is a tree-shaped
arrangement of models with a single root at the
top of the hierarchy tree. Levels are indexed with
increasing natural numbers starting from the up-
permost one, having index 0. All our inter-level
relationships betweenmodels, nodes and edges are

represented via typing relations with the “instance-
of” meaning. We use levels as an organisational
tool, where the main rationale for locating ele-
ments in a particular model is based on how they
could potentially define an independent modular
artefact. In this regard, we encourage the level co-
hesion principle (Kühne 2018a), that is, we recom-
mend to organise elements that are semantically
close (by means of potency and level organisa-
tion). On the contrary, we do not promote the level
segregation principle, which establishes that level
organisational semantics should be unique, i. e.,
aligned to one particular organisational scheme,
such as classification or generalisation. Still, we
generally use typing relations with classification
semantics, and the typing relation still implies
that a node defines which attributes its instances
can instantiate and which relations they can have
to other nodes. Furthermore, the MultEcore tool
checks correct potency and typing safeness. Typ-
ing safeness is checked via internal constraints
that forbid relations to be circular, reversed or in-
consistent neither vertically, i. e., within the same
hierarchy, nor horizontally, i. e., if we consider
more than one hierarchy.

2.2 Supplementary hierarchies
Frequently, we denote a multilevel hierarchy as
themain or default one and call it application hier-
archy, since it represents the main language being
designed. An application hierarchy can optionally
include an arbitrary number of supplementary hier-
archies which add new aspects to the application
one. Adding or removing supplementary hier-
archies is made possible by the incorporation or
extraction of additional typing chains (see Wolter
et al. 2019 for the formal details). For instance, we
might have different hierarchies (physically separ-
ated, e. g., different projects in the MultEcore tool)
that we want to use together. Such a result can
be achieved by assigning the role of application
hierarchy to one of them and adding the rest as
supplementary ones. In this paper, the Process
Hierarchy acts as application hierarchy and the
Timestamp Hierarchy is a supplementary one (see
Figure 1 and Section 4).

Paper F 263

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

4 Alejandro Rodríguez, Fernando Macías

2.3 Instance Characterisation
MultEcore allows for deep characterisation (Atkin-
son and Kühne 2001) which means that the ele-
ments of amodel can be instantiated not only in the
model immediately below it, but also further down
in the hierarchy. It is common in level-adjuvant ap-
proaches to use the so-called potency mechanism
to control the deep instantiation. Potency (Kühne
2018b) is a well-known concept in MLM and it is
used on elements as a way of restricting the levels
at which this element may be used to type other
elements. By using potencies, we can define the
degree of flexibility and restrictiveness that we
want to allow on the instantiation of the elements
of a multilevel hierarchy. Our potency specific-
ation is composed by three values on nodes and
edges and by two values on attributes. The first
two values, start and end, specify the range of
levels below, relative to the current level, where
the element can be directly instantiated. The third
value, depth, is used to control the maximum num-
ber of times that the element can be transitively
instantiated, or re-instantiated, regardless of the
levels where this occurs. Since attributes can be
instantiated only once as it does not make sense
to create an instance of such instance, the depth
on attributes is always 1 and it is not modifiable.
Hence, in practical terms, only the first two values
(start and end) of the potency are available to the
user.
It is worth mentioning that in some parts of

this paper, for abbreviation purposes, we use the
X:Y@n notation to represent that X is an instance
of Y. The optional@n represents the n number of
levels in which Y is located above (to which we
informally refer as reverse potency), with respect
to X. Note that the default case is @1, which is
omitted.

3 Analysis

In this section we discuss our interpretation of the
case description, clarifying the assumptions and
additions that we have considered to the original
description.

First, the challenge description states that
‘domain-specific concepts may be defined in their
dedicated branches of a hierarchy of models
without polluting the general terminology of pro-
cess management, allowing domain-specific beha-
viour to be defined for each branch of the hierarchy
while allowing for the reuse/enforcement of com-
mon structure/behaviour’. This is precisely the
way in which we have organised the required con-
cepts: in a hierarchy with a top model for the
generic elements related to processes (Figure 1,
top), from which two branches span. The first
branch (Figure 1, right) refines these concepts
for the (sub)domain of software engineering pro-
cesses. The second branch (Figure 1, left) does
the same for the domain of insurance processes,
since we have also included this optional set of
concepts in our submission. Based on the sugges-
ted refinements (instantiation) of concepts in both
branches, the software branch has one more level,
since intermediate refinements (e. g. SEActor) are
required.
Second, the description also requests that ‘sub-

mitted solutions should include bottom-level in-
stances, at least for key types, exemplifying all
attributes mentioned in the challenge description’.
So both of our branches include a bottom-most
model which illustrates the instantiation of the
nodes, edges and attributes to define a specific
state of a process. The result is a five-level, two-
branch hierarchy, where each level accounts for
a different degree of abstraction in the challenge
description. The four user-defined levels (ignoring
level 0 with Ecore) are closely aligned with the
ones proposed by de Lara et al. in the original
process case study (Lara and Guerra 2018, Figure
4).
Third, we assume that when we declare a

concept—usually represented with a node—as
a meta-concept that will be used to later define
actual realisations of it, the former is clearly acting
as a type. For instance, the challenge description
states the need to define ‘actor types’ so that we
can define ‘actors’. Hence, we consider that nam-
ing the meta-concept ActorType is redundant,
and therefore we choose to simply name it Actor.

264 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 5

Consequently, all the generic elements such as
actor type, task type and process type, are named
Actor, Task and Process in our solution. It is
worth mentioning at this point that we also use
a naming convention for relations among nodes,
in which verbs are always used in third singular
person.
Fourth, we understand that the relation between

actors (people) and the duties they can fulfil (roles)
is an N:M relationship. That is, one person may
have more than one purpose in a process, and one
purpose may be shared between several people. If
we were to model this situation with actors being
connected via a relation to tasks, we would be
forced to explicitly model all NxM permutations
of people allowed to do tasks, creating too much
redundancy. In order to avoid this issue, we
created a distinction between actor and role, and
created the actor - role - task triangle of concepts,
which addresses P5, P9 and P14 (see Section 5).
This also allows us to easily apply a composite
pattern (Gamma 1995) for combined roles, which
are suggested in P15. More importantly, these
elements do not affect the general semantics of the
models or the alignment with the requirements of
the challenge.
Finally, as discussed in Section 5, requirement

P19, we chose to create a secondary hierarchy
to support the requirement for time stamps in a
minimally invasive manner. We also argue that
this scenario is a perfect fit to such kind of aspect
orientation techniques forMLM that are supported
in MultEcore.

4 Model presentation

Figure 1 shows the overview of the system architec-
ture we have constructed. We first detail the (main)
application hierarchy that captures both domains
described in the challenge. This is represented
within the dashed central box in the figure, under
Process Hierarchy. We describe each level in a
subsection and start from level 1 (process).
We also describe howwe use the supplementary

dimension (dashed box to the right) Timestamp
Hierarchy to address one of the requirements of

the challenge. Note that supplementary hierarchy
is not bound to a specific level but it is orthogonal
to the application hierarchy, which means that
several models within the Process Hierarchy can
make use of the types and attributes defined, in
this case, in the unique timestamp model. We
further describe this supplementary hierarchy in
Section 4.3.3.
We only display the cardinalities on edges in

those cases where it is not the default one (0..*).
Also, we do not show the Ecore model located at
level 0, but start from level 1 as shown in Figure 1.

4.1 Level 1 - Process
The first model in level 1 contains the concepts
concerning universal processes (see Figure 2) and
corresponds to the process item placed at the top
in Figure 1.
A Process contains an arbitrary number of

Tasks. As shown in the figure, the type of a node,
provided by some element in an upper metamodel,
is indicated in a blue ellipse at its top left side, e. g.,
EClass is the type of Process. Notice the second
green ellipse at the right of Process that provides
it with a supplementary TimeStamp type. Even

process

Process Hierarchy

xsure
insurance
process

software
engineering

process

acme
software

engineering
process

xsure
insurance
process

configuration

acme
software

engineering
process

configuration

level 1

le
ve

l
2

le
ve

l
4

tim
estam

p

level 1

Timestamp
Hierarchy

le
ve

l
3

Figure 1: High-level system overview

Paper F 265

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

6 Alejandro Rodríguez, Fernando Macías

though we further discuss this in Section 5, it is
worth mentioning that this second type enables us
to instantiate the lastUpdated attribute on any
node of the process hierarchy. Note that all the
elements within the process hierarchy that are illus-
trated in this section instantiate the lastUpdated
attribute with value 26-Apr-21. Note also that
the only elements that have been double-typed are
the ones with the second ellipse specified in the
process model. The rest of the elements in levels
below can still instantiate the attributes since they
are ultimately typed by nodes that incorporate the
supplementary type at level 1.
The type of an arrow is written near the arrow

in italic font type, e. g., EReference for contains.
We support attribute declarations that can be typed
by one of the four basic Ecore data types, namely
Integer, Real, Boolean and String. For instance,
Task has declared four attributes, beginDate and
endDate of type string, expectedDuration of
type int and isCritial as a boolean. Nodes can
have at the same time declared and instantiated
attributes, as illustrated in Task, that has the four
declared attributes commented above, and the las-
tUpdated instantiated attribute. The annotations
displayed as three numbers in a red box at the top
right of each node, and concatenated to the name
after @ for every edge, specify their potencies.
Potency in attributes is displayed as two numbers
as an attribute’s depth is always 1, since first it is
declared, and it can be instantiated only once in a
level below. For instance, the potency specified
for Task is 1-2-2, which means that an element
can be directly instantiated one and two levels
below (levels 2 or 3 in the hierarchy), and such
instances can be re-instantiated up to 2 additional
times. This depth is therefore dependent on the
value of the type, and the depth of an element
must always be strictly less than the depth of its
type.
Each process must have one and only one Ini-

tial Task ([1..1] cardinality in initialTask edge)
and can have one or more Final Tasks ([1..*]
cardinality in finalTask edge). The MultEcore
tool allows us to make use of the inheritance

relation. The inheritance (i. e. specialisation) re-
lation is a special type of arrow among any two
nodes within the same level, which imposes on
the child node the same typing and potency as
the parent node. Moreover, the inheritance rela-
tion gives the child node access to the incoming
and outgoing arrows of the parent node together
with its attributes, while still allowing the child
node to define additional attributes or arrows. For
instance, InitialTask and FinalTask are children
nodes of Task. In MultEcore we can also mark a
node, e. g., Gateway, as an abstract node, which
cannot be instantiated (indicated by the name in
italics). This means that a Gateway must al-
ways be instantiated using one of its five children,
namely, AndSplit, AndJoin, Sequence, OrJoin
or OrSplit (right side of Figure 2). They can con-
nect one or more tasks, depending on the gateway,
as indicated in the multiplicity in the source and
target relations.
A Task might use and/or produce Artifacts,

and such tasks are created and performed by
Actors. We define actor types as Roles (as dis-
cussed in Section 3). The edge hasRole between
Actor and AbstractRole models this. We ap-
ply to roles the Composite pattern from object-
orientation (Gamma 1995). We define Abstract-
Role as an abstract node. Normal roles are defined
asRole and further special rolesmight inherit from
it, for instance, SeniorRole inherits from Role.
Furthermore, we use CombinedRole to define
roles than can be composed by simple roles (the
2..* cardinality in the includes edge ensures that
there are at least two roles combined). Finally,
certain roles can perform certain tasks, which is
covered by the executes edge fromAbstractRole
to Task.

4.2 Software engineering process domain

In this section we disclose the domain-specific as-
pects for the software engineering process which
corresponds to the right hand branch of the ap-
plication hierarchy (see Figure 1).

266 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 7

Process
EClass

TimeStamp
1-2-2

Task

2-3 beginDate : string

2-3 endDate : string

1-2 expectedDuration : int

1-3 isCritical : boolean

EClass 1-2-2

Actor
EClass 1-2-2

AbstractRole
EClass 1-2-2

Gateway
EClass 1-2-1

Sequence
EClass 1-2-1

AndSplit
EClass 1-2-1

AndJoin
EClass 1-2-1

OrSplit
EClass 1-2-1

OrJoin
EClass 1-2-1

Artifact
EClass 1-2-3

InitialTask
EClass 1-2-2

FinalTask
EClass 1-2-2

SeniorRole
EClass 1-2-2

Role
EClass 1-2-2

CombinedRole
EClass 1-2-2

contains@1-2-2

EReference

hasRole@1-3-1

EReference

executes@1-2-2
EReference

performs@2-3-1

EReference

creates@1-2-1

EReference

uses@1-2-2

EReference

produces@1-2-2

EReference

source@1-2-1
EReference

target@1-2-1

EReference

initialTask@1-2-2

EReference

finalTask@1-2-2

EReference

includes@1-2-1

EReference

[1..1]

[1..*]

[2..*]

[1..*]

[1..*]

TimeStamp

TimeStamp

TimeStamp TimeStamp

TimeStamp

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

Figure 2: Level 1: Process model

4.2.1 Level 2 - Software engineering
process

This level concerns the refinement of concepts
from general processes that apply to any software
engineering domain. It is represented in Figure 3
and it corresponds to software engineering pro-
cess in Figure 1.
The creation of this level facilitates the resolu-

tion of multiple requirements which are discussed
in Section 5. Every software engineering artifact
(SEArtifact, which is typed by Artifact (placed
at level 1, Figure 2) must have a responsible
software engineering actor (responsibleActor
relation with multiplicity [1..1] to SEActor). The
specification of SEArtifact and SEActor forces

SEArtifact

2-2 versionNumber : string

Artifact 1-1-2
SEActor

Actor 1-2-1

responsibleActor@2-2-1

EReference [1..1]
lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

Figure 3: Level 2: Software engineering process model

the definition of any artifact or actor within the
software engineering domain to be typed by SEAr-
tifact or SEActor instead of the generic Arti-
fact or Actor, respectively. Also, each concrete
SEArtifact must be assigned a version number
(versionNumber attribute). Note the potency 2-
2, as the instance level of the software engineering
domain is placed at level 4 (acme software en-
gineering process configuration at the bottom
of Figure 1).

4.2.2 Level 3 - Acme software engineering
process

We now discuss the aspects related to the Acme
software engineering process. This model cor-
responds to the acme software engineering
process component in Figure 1. We show in Fig-
ure 4 selected parts of the model (right-hand side)
in order to compare it with the graphical repres-
entation in concrete syntax given in the Challenge
description (left-hand side of Figure 4). The com-
plete model that fulfils all the requirements and

Paper F 267

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

8 Alejandro Rodríguez, Fernando Macías

specifications can be found in Appendix A. From
this point, the elements we describe refer to the
right-hand side of Figure 4.
At this level, we specify the types that belong to

the Acme software engineering domain. Note that
some of the types of the elements, e. g., InitialTask,
Sequence1, RequirementsAnalysis, etc. are
allocated two levels above, which is specified,
for nodes, in the ellipses where the type is given
concatenated with@2, and for the edges, in the

RequirementsAnalysis
Task@2 1-1-1

Design
Task@2 1-1-1

TestCaseDesign

isCritical=true

Task@2 1-1-1

Coding
Task@2 1-1-1

TestDesignReview
Task@2 1-1-1

Testing

expectedDuration=9

Task@2 1-1-1

AndSplit1
AndSplit@2 0-0-0

InitialTask
InitialTask@2 1-1-1

Sequence1
Sequence@2 0-0-0

Sequence2
Sequence@2 0-0-0

Sequence3
Sequence@2 0-0-0

Sequence4
Sequence@2 0-0-0

FinalTask
FinalTask@2 1-1-1

AndJoin1
AndJoin@2 0-0-0

sequence1_s@0-0-0
source@2

sequence1_t@0-0-0
target@2

andsplit1_s@0-0-0
source@2

andsplit1_t1@0-0-0
target@2

andsplit1_t2@0-0-0 target@2

sequence2_s@0-0-0
source@2 sequence3_s@0-0-0

source@2

sequence2_t@0-0-0
target@2

sequence3_t@0-0-0
target@2

andjoin1_s2@0-0-0
source@2

andjoin1_t@0-0-0
target@2

sequence4_s@0-0-0
source@2

sequence4_t@0-0-0
target@2

andjoin1_s1@0-0-0
source@2

Requirements
Analysis

Design Test Case
Design

Coding Test Design
Review

Testing

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21
lastUpdated=26-Apr-21

lastUpdated=26-Apr-21lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

Figure 4: Level 3: Selected parts of the Acme soft-
ware engineering process model (right-hand side) to
compare it with the graphical schema given in the
Challenge description João Paulo A. Almeida et al.
2021

types with italic font. One can observe, comparing
it with the left-hand side representation, that all
the information is accurately reproduced and easy
to track.
Note that the potency of some elements, such

as Sequence1, AndSplit1, Sequence2, Se-
quence3, AndJoin1 and Sequence4, is 0-0-0.
These values are due to the fact that those elements
cannot be further instantiated, which clearly in-
dicates that they belong to this level where the
general Acme workflow is represented. Also,
notice that we instantiate some attributes here
apart from lastUpdated, for example isCritical,
which is set to true in TestCaseDesign node,
and expectedDuration=9 in Testing node.

4.2.3 Level 4 - Acme software engineering
process configuration

In this section we describe the aspects related
to a specific application of the concepts defined
on the Acme software development process. In
this branch (software engineering domain) this
model represents a state (i. e. a potential execu-
tion) of a process. This model is depicted in
Figure 5 and corresponds to the acme software
engineering process configuration element in
Figure 1. The nodes and relations displayed in this
model have been reconstructed using information
provided along the software engineering domain
requirements (S1, S2, etc.) from the challenge
description (João Paulo A. Almeida et al. 2021).
Notice that all nodes and relations at this level have
as potency 0-0-0, since this is the bottom-most
model and cannot be further instantiated. We
discuss the elements of this model from left to
right on Figure 5.

JohnDoe (typed by SEActor@2) is re-
sponsible of the concrete artifacts COBOL
(typed by ProgrammingLanguage, with
versionNumber=1.3) and COBOLCode.
This responsibility is indicated by the in-
coming cobol_responsibleactor and cobol-
code_responsibleactor edges. Also, CO-
BOLCode is written (the type of the edge
cobolcode_written) in COBOL. Besides, Codin-
COBOL:Coding task uses COBOL and produces

268 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 9

COBOL

versionNumber=1.3

ProgrammingLanguage 0-0-0
CodingCOBOL

Coding 0-0-0

COBOLCode

versionNumber=3.1

Code 0-0-0
AnnSmith

SEActor@2 0-0-0

COBOLDeveloper
Developer 0-0-0

JohnDoe
SEActor@2 0-0-0

cobolcode_written@0-0-0
written

codingcobol_codinguses@0-0-0

coding_uses

codingcobol_codingproduces@0-0-0

coding_produces

coboldeveloper_developerexecutes@0-0-0

developer_executes

annsmith_hasrole@0-0-0

hasRole@3

annsmith_performs@0-0-0

performs@3

cobol_responsibleactor@0-0-0

responsibleActor@2

cobolcode_responsibleactor@0-0-0
responsibleActor@2

lastUpdated=26-apr-21

lastUpdated=26-apr-21

lastUpdated=26-apr-21

lastUpdated=26-apr-21 lastUpdated=26-apr-21

lastUpdated=26-apr-21

Figure 5: Level 4: Acme software engineering process configuration model

COBOLCode. These two relations are captured
by codingcobol_codinguses and codingco-
bol_codingproduces relations, respectively.
Finally, AnnSmith:SEActor@2 is an

actor that has assigned, via the anns-
mith_hasrole:hasRole@3 relation, the CO-
BOLDeveloper role. AnnSmith performs
CodingCOBOL, which the COBOLDeveloper
role is allowed to execute. Notice that certain
types of the elements aforementioned (e. g., De-
veloper or ProgrammingLanguage) are not
explicitly shown in the excerpt on Figure 4, whose
full version is detailed in Appendix A.

4.3 Insurance process domain
In the challenge description it is described the
so-called insurance domain. Even though re-
spondents are encouraged to focus on the software
engineering domain, with the insurance part used
‘for illustrative purposes only’, we have construc-
ted it in a separate branch and used all the inform-
ation obtained from analysing the PX rules and
specifications given in Section 2.2 of the challenge
description document. As one can observe in the
left-hand side of the Process Hierarchy in Fig-
ure 1, the branch is composed by two models (if
we ignore process at level 1) rather than three as
in the software engineering domain. The demands
of this domain do not require the creation of a
model that is equivalent to software engineer-
ing processmodel (level 2 in Figure 1). Instead,
the level 2 of the insurance branch directly corres-
ponds to the XSure company (xsure insurance
process model). This difference demonstrates
the flexibility of MultEcore, where the lengths

of the different branches of a hierarchy are not
required to be equal.

4.3.1 Level 2 - XSure insurance process
The xsure insurance process model, which
corresponds to the xsure insurance process
element in Figure 1 at level 2, represents the
workflow of the ClaimHandling process. For
illustrative purposes we show a fragment of the
model in Figure 6 and point the reader to Ap-
pendix B for the complete model.

ReceiveClaim

Task 1-1-1

AssesClaim
Task 1-1-1

Sequence2

Sequence 0-0-0

Sequence3
Sequence 0-0-0

BenBoss

Actor 1-1-1

ClaimHandlingManager

Role 1-1-1

AuthorizePayment
Task 1-1-1

FinancialOfficer

Role 1-1-1

ClaimAssessor

Role 1-1-1

Claim

Artifact 1-1-1

ClaimPaymentDecision

Artifact 1-1-1

sequence2_s@0-0-0
source

sequence2_t@0-0-0
target

sequence3_s@0-0-0
source

benboss_creates@0-0-0
creates

sequence3_t@0-0-0
target

chmanager_executes@1-1-1
executes

fofficer_executes@1-1-1
executes

claimassessor_executes@1-1-1
executes

assessclaim_uses@1-1-1
uses

assessclaim_produces@1-1-1
produces

ClaimHandling
Process 1-1-1

claimhandling_contains2@1-1-1
contains

lastUpdated=26-Apr-21

Figure 6: Level 2: XSure insurance process model

Paper F 269

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

10 Alejandro Rodríguez, Fernando Macías

We describe the model from top to bottom. A
ClaimHandling:Process is composed by all the
tasks depicted in the model. To facilitate read-
ability, we only show the containment relation
connected to AssesClaim, called claimhand-
ling_contains2 since it is used in the level below
that is described in Section 4.3.2. The reader can
find all the remaining containment relationships
in the appendix in Figure 15. A ReceiveClaim
precedes an AssesClaim task, which are connec-
ted via Sequence2. To proceed, an AssesClaim
uses aClaim:Artifact (to the top left of the figure)
and produces a ClaimPaymentDecision. Also,
AssesClaim is created (via benboss_creates
relation) by BenBoss, who is an Actor.
Furthermore, ClaimAssessor is a Role which

is allowed to execute AssesClaim tasks. As-
sesClaim leads to the following task, Authorize-
Payment, connected by the Sequence3 gateway.
Finally, both ClaimHandlingManager and Fin-
ancialOfficer roles are allowed to execute Au-
thorizePayment tasks.

4.3.2 Level 3 - XSure insurance process
configuration

As stated before, the xsure insurance process
configuration model placed at level 3 (see Fig-
ure 1) represents the instance level in this partic-
ular branch, i. e., represents a concrete scenario
and therefore a non-instantiable model (notice
the 0-0-0 potencies). The model is depicted in
Figure 7.
An instance of the process ClaimHandling,

named HandlingClaim123, is defined at this
level, and could be interpreted as the concrete
implementation of the claim assessment process
of the XSure company for a claim with id 123. It
contains, via the handlingclaim123_chcont2 re-
lation, the task AssessingClaim123 that instanti-
ate the two attributes beginDate=01-Jan-19 and
endDate=02-Jan-19. Also, XSureAssessor is
a ClaimAssessor role that both PaulAlter and
JohnSmith actors have assigned. Even though
they share that specific role, they have a second
role each of them, respectively, XSureManager
for PaulAlter and XSureLeader for JohnSmith.

XSureAssessor

ClaimAssessor 0-0-0

AssessingClaim123

beginDate=01-Jan-19
endDate=02-Jan-19

AssesClaim 0-0-0

XSureManager

SeniorManager 0-0-0

XSureLeader

ProjectLeader 0-0-0

JohnSmith

Actor@2 0-0-0

PaulAlter
Actor@2 0-0-0

HandlingClaim123

ClaimHandling 0-0-0

johnsmith_hasrole2@0-0-0

hasRole@2

johnsmith_hasrole1@0-0-0
hasRole@2

paulalter_hasrole1@0-0-0
hasRole@2

paulalter_hasrole2@0-0-0

hasRole@2

handlingclaim123_chcont2@0-0-0
claimhandling_contains2

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

Figure 7: Level 3: XSure insurance process configura-
tion model

This way we display that an actor might have more
than one role assigned (as stated by one of the
requirements).

4.3.3 Supplementary hierarchies
In this subsection we discuss how we make use
of one of the key features that characterises Mult-
Ecore. The process hierarchy, which includes
both the insurance and the software engineering
branches in Figure 1, is the application hierarchy
in this case. As mentioned earlier, an applica-
tion hierarchy can optionally include an arbitrary
number of supplementary hierarchies which add
new aspects to the application one. The sup-
plementary hierarchy notion has been applied in
previous work in different ways: (i) for the runtime
verification of properties of an executable work-
flow (Macías et al. 2018); (ii) to complement a
main language with additional non-functional fea-
tures, for instance, data types (Rodríguez et al.
2018) or additional information to augment the

270 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 11

data of a node (Rodríguez and Macías 2019); and
(iii) to power up instance elements, where compos-
ition of application and supplementary hierarchies
could be carried on (Rodríguez et al. 2019c).

TimeStamp

1-* lastUpdated : string

EClass 1-1-*

Figure 8: TimeStamp node

As illustrated in Figure 1, we have created a
supplementary hierarchy that can provide a last
updated value to ideally any node defined in the ap-
plication hierarchy. The supplementary hierarchy,
called Timestamp Hierarchy in Figure 1 consists
of a single model, called timestamp which has
one single node called TimeStamp, as shown in
Figure 8. This node has declared the lastUpdated
attribute of type string. It is worth reminding that
elements from supplementary hierarchies can be
used in an orthogonal manner. The advantages
of our solution by defining this feature as supple-
mentary is that any node, in any of the models
distributed along the Application Hierarchy in
both branches can instantiate the instantiate las-
tUpdated to give it a concrete value (we use the
same for all the nodes, lastUpdated=26-Apr-
21). The only requirement is to double-type core
elements in the process model at level 1, such
as Task and Gateway. The result is that any
node residing in one of the models depicted in
Figures 2, 3, 4 (and its full version in 14), 5, 6
(and its full version in 15) and 7, can instantiate
the attribute.

4.4 Cross-level constraints
As introduced in Section 2, MCMTs can be used
to specify the dynamic semantics for the definition
of behavioural descriptions (as we will see in Sec-
tion 4.5). In previous workwe have shown that this
sort of semantics can be executed by using Maude
to evolve models with the infrastructure we have
built in Rodríguez et al. (2019a). However, the
specification and verification of static semantics,

i. e., constraints to check some structural correct-
ness of the constructed multilevel hierarchy is
explored in this section.
The usual application of the MCMTs when

describing behaviour is as endogenous in-place
model transformation rules (Mens andGorp 2006).
In this context, the transformation rules represent
actions that may happen in the system. These
model transformations (MTs) are rule-based modi-
fications of a source model (specified in the left-
hand side of the rule) resulting in a new state of
such a model (determined by the right-hand side).
The left-hand side (LHS) takes as input (a part of)
a model and it can be understood as the pattern we
want to find in our original model. The right-hand
side (RHS) describes the desired modifications
that we want to perform in our model and thereby
the next state of the system. There is a match when
what we specify in the LHS is found in our source
model and the execution of the rule represents a
single transition in the state space.
These transformations work fine when we want

to find a match, and then produce a new state of the
model. Still, this mechanism does not completely
align with the one we require to define constraints.
In order to be able to verify that certain constraints
are satisfied we propose a check mode that behaves
differently than conventional MTs. In this mode,
the goal is to find a correspondence in the models
through a two-step procedure. Instead of having a
model that evolves or change to a new state as it is
done for specifying the behaviour (LHS→ RHS),
now, for the model to pass or to be correct with
respect to the constraint, both situations (what is
being specified in the LHS and the RHS) must be
found in the multilevel hierarchy. The fact that the
two conditions do not match (or only one of them)
results in a constraint violation.
Let us analyse, for instance, the requirement

P17: ‘An actor who performs a task must be au-
thorized for that task. Typically, a class of actors
is automatically authorized for certain classes of
tasks.’ Figure 9 shows an MCMT rule in check
mode to satisfy such a constraint, with a graph-
ical notation instead of the textual one used in
the tool to simplify the explanation. The META

Paper F 271

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

12 Alejandro Rodríguez, Fernando Macías

block allows us to locate types in any level of the
hierarchy, and can be used in the FROM and TO
blocks (separated by a black horizontal line). It
is worth pointing out that the two levels specified
(the one for the META and the one for the FROM
and TO) in this rule are not required to be consec-
utive and they would match on levels 1 and 4 of
the right-hand branch on Figure 1, respectively. In
the case of the insurance domain, this rule would
match with levels 1 and 3, respectively, being the
rule reusable for both domains.
At the META level, we mirror part of the pro-

cess metamodel, defining elements like Actor,
Task and Role nodes and performs, hasRole and
executes edges that are used directly as types in
the levels below in the rule. These are constants,
which is indicated by underlining the name of the
element. A constant in an MCMT rule can only
match to an element with the exact name in the
corresponding model that has been matched.
For variables (i. e. non-constants), we allow

the type on the elements to be indirect, meaning
that there can be intermediate types in the actual
hierarchy where the MCMT is matched. We see
variables in the FROM block, where a first correct
match of the rule comes when an element, coupled
together with its type, fits an instance of a:Actor
that has a relation p:performs to an instance of

performs

META
FROM TO

Actor

Role

Task

hasRole executes

a
Actor

t
Task

r
Role

e
executes

p
performs

[t.executedBy->size()]

[a.performs->size()]

a
Actor

t
Task

r e
executes

p
performs

[t.executedBy->size()]

[a.performs->size()]

Role
h

hasRole

executedBy

Figure 9: Constraint satisfying requirement P17

t:Task. Also there must exist an instance of r:Role
that is linked to t:Task via the e:executes relation.
Note that there are two dashed boxes surrounding
certain elements. One must take into account
that in different scenarios there could an arbitrary
number of tasks connected to an actor that can
perform them, and that several roles can also be
allowed to execute a certain task. To cover all
the permutations with a single rule, we use a box-
based mechanism that allows us to automatically
replicate the contained elements at runtime. Boxes
may appear in both sides of the rules, they can
be nested, and each of them may have an explicit
cardinality specified. Basic support for the Object
Constraint Language (OCL) (Clark and Warmer
2003) is incorporated into the MCMTs for: (i)
the computation of the cardinality of a box, i. e.,
the number of times it has to be replicated; (ii)
for the manipulation of attribute values (not used
in this rule); and (iii) for the specification of
conditions (not used in this rule), which greatly
improves the expressiveness of the tool. Note
that while the support for OCL is very basic, we
plan to extend it in future work. For instance, the
expression used in the outer box [a.performs-
>size()] is using the size operation. In OCL, the
size() operator calculates the size of the collection
it is applied on. The a.performs expression
returns the collection of edges whose source is
a and its type is performs. Note, however, that
the way in which types are used in MLM is a
bit different than for standard OCL. This grants
transitive typing, which allows for the matching
candidate to have any type that is either performs
itself or (in intermediate levels) other elements
which are ultimately typed by performs. In
practical terms, the [a.performs->size()] means
that the size of the collection is given by the
number of tasks connected to thematched actor (a)
via edges of type performs. Similarly, the inner
box that encapsulates r:Role and e:executeswith
the [t.executedBy->size()] expression would
count the number of edges (which types ultimately
match executedBy) the element t has. Note that
executedBy relation is not defined in the process
model (Figure 2) since this rule is yet theoretical.

272 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 13

Once all the boxes have been unfolded for the
FROM part of the rule, and there has been a
match of all the (unfolded) variables, this partial
matching is saved and reused in the TO block, to
check whether its contents can also be matched.
In the case of the TO block, for each task that an
actor is performing, and given that a certain role
can execute such a task, there must exist a relation
h of type hasRole between the actor and some of
the roles that are allowed to execute the task. The
two consecutive and successful matches would
verify that the multilevel hierarchy satisfies the
constraint.

4.5 Operational semantics
The challenge description does not comment on
the possibility of describing the operational se-
mantics of processes, which can also be done quite
naturally through model transformations. We find
this fact surprising, given that MT is one of the
pillars of Model-Driven Software Engineering in
general, and has been already tackled by several
authors within the MLM community apart from
ourselves (Atkinson et al. 2012, 2009; Kühne and
Schreiber 2007; Lara and Guerra 2010; Lara et al.
2015; Rossini et al. 2014). We believe that ex-
ploring the possibilities of MT for this challenge
could enrich the submissions, debate within the
community and further editions of the multilevel
challenge. Moreover, the process domain of this
challenge is a good candidate for specifying op-
erational semantics through MT rules, since the
concept of processes being executed already im-
plies some sort of evolution through time of the
models that represent them. So, in this subsection
we focus on a simplified proposal of MT rules to
model the way in which gateways are triggered to
create the next tasks of a process once the previous
ones are completed.
For a more realistic and comprehensive collec-

tion of rules that could fully animate the models,
a new version of the challenge would be required
where MTs are taken into account to create a
more complete and unambiguous description of
the operational semantics of the elements on the
domain.

We have explained how MCMTs could be used
to specify cross-level constraints that check the
structural correctness of the multilevel hierarchy
(Section 4.4). Now we describe how MCMTs can
be used to specify the behavioural descriptions of
the modelled system bymeans of model transform-
ations. MCMTs have been widely improved since
their initial proposal inMacías et al. (2019). While
MCMTs are powerful enough to describe many
behavioural aspects, it is necessary to have an
engine that can execute them against a multilevel
hierarchy to have an actual execution mechanism
capable of evolving the models. To do so, we
rely on the Maude System (Clavel et al. 2007;
Durán et al. 2020), a specification language based
on rewriting logic (Meseguer 1992), which can
naturally deal with states and non-deterministic
concurrent computations. A preliminary version
of the infrastructure we have implemented (still
under development) was presented in Rodríguez
et al. (2019b). In that version, the multilevel hier-
archy and the set of MCMT rules was transformed
into a functional Maude representation that could
be executed using theMaude console environment.
The results had to be brought back manually one
by one, which had some practical and usable lim-
itations. Also, the MCMTs expressive power was
rather limited in that version compared to the
capabilities they offer nowadays.
Since the goal of this paper is to demonstrate

howMultEcore can be used to model the proposed
challenge, we do not enter into the Maude spe-
cification details. Still, all the produced Maude
files can be found in our GitHub repository. The
current state of the infrastructure that connects
MultEcore with Maude relies on a bidirectional
transformation that takes the entire MultEcore rep-
resentation (both the multilevel hierarchy and the
associated MCMT rules) and automatically gener-
ates Maude specifications. Then, this transformer
takes the XML output files that Maude produces
as result of performing execution, and automatic-
ally translates them back into MultEcore models
that are graphically displayed. The Maude part
is handled by a background process which makes

Paper F 273

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

14 Alejandro Rodríguez, Fernando Macías

the underlying Maude transformations transparent
to the user.
To show the potential of theMCMTswe provide

now an example of how they can be used to sys-
tematically create parts of the models based on
the information allocated within the process hier-
archy. Therefore, as an illustrative example and
to open this line for future Multilevel Modelling
challenges, we have sketched five simple MCMT
rules that involve the creation of new tasks at the
bottom-most levels (level 3 for insurance and level
4 for software engineering) through the informa-
tion of corresponding gateways connected to the
tasks on the levels above. This set of rules handles
several cases regarding the different gateways and
the initial and final tasks. In the following, we
describe one of the rules, but the remaining ones
can be found in their textual form with the rest of
the artefacts in our solution to the challenge on
GitHub.
We show in Figure 10(a) an MCMT rule to

create several output tasks from an input task
where their types are connected via an and-split
gateway. Similarly to the rule shown in Figure 9

in Section 4.4, we define at the topmost level of
the MCMT constant elements such as AndSplit
that inherits from Gateway that is connected to
Task via source and target relations. The second
META level defines variable elements, such as T1
and T2 of type Task and AS of type AndSplit
that connects with the former two via source1
and target1, respectively. These will be matched
with elements in level 3 of the software engin-
eering branch, and with elements in level 2 for
the insurance branch. In the FROM block, we
identify a single t1 task whose type (T1) would
be the input of the corresponding and-split gate-
way. Then, in the TO block, we remove the
matched t1 and create the new t2 tasks which
types are the outputs of the and-split. Note that
each particular process can establish an arbitrary
number of output tasks for different instantiations
of AndSplit. To make a generic rule that works
for any number of output tasks, we define boxes
around target1 and T2 from the META block and
around t2 from the TO block. Note that the
possibility to establish cross-level boxes is a new
feature which we have introduced in MultEcore

source

META
FROM TO

Gateway

AndSplit

Task

t1
T1

[AS.target->size()]

target

T2
Task

AS
AndSplit

T1
Task

source1
source

target1
target

t2
T2

(a) AndSplit MCMT rule
(b) Matched elements in
software engineering branch

Gateway Task
target

source

AndSplit

Level 1

AndSplit1
AndSplit@2

Requirements
Analysis

Task@2
andsplit1_s

source@2

Design
Task@2

TestCaseDesign
Task@2

andsplit1_t1
target@2

andsplit1_t2
target@2

Level 3

requirements
analysis

Requirements
Analysis

design

Design

testcasedesign
TestCaseDesign Level 4

Figure 10: (a) MCMT rule to create new tasks based in their types connected via and-join gateways. (b) Matched
elements in the Software engineering branch

274 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 15

to be able to handle the current case. The OCL
expression [AS.target->size()] counts howmany
target tasks are connected to the matched and-split
gateway. Note that the cross-level box is needed
because the gateway information is not given at
the instance level, but a level above. Therefore,
the three elements must come together into the
same box, so when it is unfolded at runtime, the
type of each produced t2 is paired correctly with
the information located in the level above.
Figure 10(b) shows the corresponding matched

elements in the software engineering branch. We
can observe in this example the vertical flexibility

of the MCMT rules, since the matched elements
are distributed within level 1, level 3 and level
4 for the three levels specified in the rule. Even
though there exists an intermediate level in the
software engineering branch (level 2), it is not a
problem for the rule to ignore it and match the
appropriate elements in the correct models. At
the bottom of Figure 10(b) we see, divided by
a vertical line, the two parts of the model that
would match the FROM and the TO blocks. In this
case, requirementsanalysiswould match t1 and
design and testcasedesign the two replicated
t2 variables.

initialtask

InitialTask

requirementsanalysis101

RequirementsAnalysis0-0-0 0-0-0

testcasedesign101

TestCaseDesign

design101

Design

coding101

Coding

testcasedesign101

TestCaseDesign

testdesignreview101

TestDesignReview

coding101

Coding

testing101

Testing

finaltask101

FinalTask

acme-execution-step-1 acme-execution-step-2 acme-execution-step-3 acme-execution-step-4

acme-execution-step-5 acme-execution-step-6 acme-execution-step-7

0-0-0 0-0-0 0-0-0 0-0-0

0-0-00-0-00-0-00-0-0

Sequence1 AndSplit1 Sequence2

Sequence3 AndJoin1 Sequence4

Figure 11: Acme software engineering obtained states by applying subsequent MCMT rules

initialtask

InitialTask 0-0-0 0-0-0

xsure-execution-step-1 xsure-execution-step-2

Sequence1

Sequence3 Sequence5

ReceiveClaim

receiveclaim101

0-0-0

xsure-execution-step-3

AssesClaim

assesclaim101

0-0-0

xsure-execution-step-4

AuthorizePayment

authorizepayment101

0-0-0

xsure-execution-step-5

paypremium101

PayPremium 0-0-0

xsure-execution-step-6

finaltask101

FinalTask

Sequence2

Sequence4

Figure 12: Xsure insurance claim handling process model states obtained by applying subsequent MCMT rules

Paper F 275

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

16 Alejandro Rodríguez, Fernando Macías

TheMaude integrationwithinMultEcore allows
us to use all the available tools for Maude. For
execution, we allow the modeller to specify a
number of steps to be executed (being each step
the application of one of the available rules) or
directly customise the execution by stating which
rules and in which order should they be applied.
To demonstrate the application of different rules,
we have created two basic instance models, one
for the insurance domain and one for the software
engineering domain, each of them with a single
element named initialTask. The fiveMCMT rules
specified allow us to reach a finalTask based on
each of the workflows defined in Figures 14 and 15.
Note that the executions are only concerned about
tasks and gateways, and do not consider other
elements such as artefacts or actors.
Figure 11 shows the models for each of the

seven execution steps that have been obtained by
applying each corresponding MCMT rule on the
software engineering domain. At the top left, we
have the initial model acme-execution-step-1
with the initialTask node. To its right, obtained
by applying the rule that triggers the Sequence1
gateway we have the acme-execution-step2
with the requirmenetsanalysis101 node. Note
that the number appended to the name is generated
using a Counter object that is used in the Maude
representation, whose value gets increased every
time a new identifier is created. This counter
allows us to create fresh elements avoiding name
duplication. The name below each curved arrow
between model states (instances) does not repres-
ent the name of the executed MCMT rule, but the
gateway that is matched in the level above where
the workflow is represented (see Appendix A).
One can observe at the bottom right of Figure 11
how we finally reach an instance finaltask101
representing the end of the workflow.
Likewise, and demonstrating the horizontal flex-

ibility of the MCMTs, Figure 12 represents six
model states produced by the execution engine by
applying the same set of rules to the insurance
domain. Similarly, the workflow established in the
corresponding level above (the XSure insurance
claim handling process) is defined in Appendix B.

The process is quite similar as for software engin-
eering, where there exists an initial task (top left of
Figure 12) in the initial model xsure-execution-
step-1. Then, by applying rule by rule we get
new elements in new model instances, such as re-
ceivclaim101, assesclaim101, . . . and finally
finaltask101.

5 Satisfaction of Requirements
In this section, we explain how our solution ad-
dresses all the requirements in the challenge de-
scription. First, we discuss the ones related to
the more abstract concepts of processes, tasks,
actors and artefacts (João Paulo A. Almeida et
al. 2021, Section 2.2.). We preserve their ori-
ginal name format (PX, with X being a number)
for easy traceability and reproduce their text for
self-containment.
P1
‘A process type (such as claim handling) is defined
by the composition of one or more task types
(receive claim, assess claim, pay premium) and
their relations.’
This requirement is addressed with the defin-

ition of the nodes Process and Task, and the
containment relationship from the former to the
latter. They are contained in model process at the
top of the hierarchy (see Figures 1 and 2). The sug-
gested instances (claim handling, receive claim,
etc.) have been also used to create the optional in-
surance (sub)domain in the corresponding branch
of the hierarchy, as presented in Section 4.3.
P2
‘Ordering constraints between task types of a pro-
cess type are established through gateways, which
may be sequencing, and-split, or-split, and-join
and or-join.’
We understand from the way the requirement

is written that the set of gateways is fixed and
not likely to change. Also, we consider that,
semantically speaking, they belong to the same
level of abstraction than task, process, etc. This
decision is reinforced by the fact that the same
gateways are common to all processes. Hence, we
choose to define Gateway as an abstract node in

276 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 17

the process model, and include the four kinds
of gateways as children of it—i. e. related via
inheritance, exploiting the fact that MultEcore
also allows this kind of relation, as explained
in Section 4.1. The rationale behind declaring
Gateway as abstract is that all processes must use
one of its children types for defining sequencing
of tasks, but it does not make sense to create
an instance of the parent. Finally, it should be
noted that, while inheritance is a less flexible
construction than typing, adding new kinds of
gateways (e. g. xor-split and xor-join) could still
be achieved by adding them as new children of
Gateway. We refer the reader to Section 4.5 for
a discussion on how the operational semantics
of these gateways could be easily specified with
Multilevel Coupled Model Transformations.

P3
‘A process type has one initial task type (with
which all its executions begin), and one or more
final task types (with which all its executions end).’
This requirement is also addressed using inher-

itance relations in the processmodel, following a
similar rationale as in the previous one. Therefore,
we include the nodes InitialTask and FinalTask,
and define specialised containment relations from
node Process into them, instead of reusing the
one for intermediate tasks. More importantly,
these two relations define different cardinalities
to enforce a unique initial and at least one final
task per process, as per the requirement. We
do not define inheritance relations among these
different containment relations since that kind of
construction is not supported in MultEcore.

P4
‘Each task type is created by an actor, who will
not necessarily perform it. For example, Ben Boss
created the task type assess claim.’
This requirement entails in our solution the

definition of the Actor node and the creates
relation from it into Task. The other relation
performs hinted in this requirement is discussed
in the following one. The example instances
mentioned in the requirement are also used in

the lower model of the insurance branch of the
hierarchy (see Section 4.3).

P5
‘For each task type, one may stipulate a set of
actor types whose instances are the only ones
that may perform instances of that task type. For
example, in the XSure insurance company, only
a claim handling manager or a financial officer
may authorize payments.’
First, we include another relation from Actor

to Task, called performs. However, this is not
enough to model which types of actor can execute
which types of tasks. As pointed out before in
Section 4.1, we split the concept of actor as an
actual person (e. g. Ben Boss) and as a specific
role that a person may play (e. g. claim handling
manager) to allow for the flexibility of several
people being able to play the same role, and also
for the same person to perform more than one role.
Therefore, apart from the Actor node discussed in
the previous requirement, we create the different
Role nodes, some of which appear as a response
to following requirements. For the purpose of
fulfilling this requirement, the way we model the
semantics that an actor is allowed to perform a task,
is by checking that it has a role which can execute
that task. Therefore, we create the aforementioned
nodes, plus the hasRole and executes relations,
so that the semantics are encoded in the Actor –
Role – Task triangle.

P6
‘A task type may alternatively be assigned to a
particular set of actors who are authorized (e. g.,
John Smith and Paul Alter may be the only actors
who are allowed to assess claims).’
A naive way to address this requirement could

consist of the creation of yet another relation
(called assigned or something similar) between
Actor and Task. But since we define the Role
nodes to fulfil other requirements, we can simply
take advantage of the triangle mentioned in the
previous one, and create a role that is assigned to
both actors. In such a way, we cover this require-
ment without needing to define any new elements.

Paper F 277

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

18 Alejandro Rodríguez, Fernando Macías

We argue that, besides being a flexible construc-
tion, this way of modelling the requirement makes
sense from a semantic point of view: there should
be some common ability, permission or status that
makes those people suitable to perform the task,
and we allow modelling it explicitly. Again, the
examples used in the requirement are created as
instances on the insurance branch, and we also
attach plausible roles to those actors to complete
the model.
P7
‘For each task type (such as authorize payment)
one may stipulate the artifact types which are used
and produced. For example, assess claim uses a
claim and produces a claim payment decision.’
This requirement is tackled by simply defining

the Artifact node and the uses and produces
relations. Again, the examples mentioned in the
requirement are used to construct the optional
insurance branch in our solution.
P8
‘Task types have an expected duration (which is not
necessarily respected in particular occurrences).’
We just need to add the expectedDuration

attribute of type Integer to the Task node to
complete this requirement.
P9
‘Critical task types are those whose instances are
critical tasks; each of the latter must be performed
by a senior actor and the artifacts they produce
must be associated with a validation task.’
Once again, we can take advantage of the separ-

ation of actors and roles to avoid creating a child
node of Task for critical tasks. Instead, we add
a simple Boolean attribute isCritical to Task, so
that a similar constraint to the one defined in Sec-
tion 4.4 can be used to ensure that critical tasks
are only performed by senior actors. But since in
our solution the information about what an actor
can do is not stored in Actor itself but in Role, we
create a child node of the latter called SeniorRole.
That is, the actor which performs a task marked as
critical, must have at least one senior role, which
must be able to execute such task, as indicated
by the executes relation. In this case we do not

use an attribute to distinguish roles from senior
roles since we latter use combined roles through a
composite pattern, which is more easily illustrated
using inheritance relations.
Regarding the fact that ‘the artifacts they pro-

duce must be associated with a validation task’,
we include an instance of the uses relation which
connects TestDesignReview to TestCase. We
think that creating an specific child node of Task
in process for validation tasks is not a good altern-
ative in this case, as it would pollute that model
with software-specific concepts—other kinds of
processes may not have validation tasks.

P10
‘Each process type may be enacted multiple times.’
This requirement is trivially addressed in our

solution since we allow for multiple instantiations
of a process, as our hierarchy shows.

P11
‘Each process comprises one or more tasks.’
The contains relation specified for P1 from

Process to Task, and the way they are instantiated,
already covers this requirement.

P12
‘Each task has a begin date and an end date. (e.g.,
Assessing Claim 123 has begin date 01-Jan-19
and end date 02-Jan-19).’
Both attributes have been declared in Task,

and are instantiated in the corresponding node, at
the lower model of the insurance branch in our
hierarchy.

P13
‘Tasks are associated with artifacts used and pro-
duced, along with performing actors.’
This requirement is addressed by creating two

new relations in the process model: uses and
produces from Task to Artifact. The performs
relation that we discuss in earlier requirements is
also used to satisfy this one.

P14
‘Every artifact used or produced in a task must
instantiate one of the artifact types stipulated for
the task type.’

278 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 19

Thanks to the waywemodel the structure of this
elements in the process model, this requirement
is trivially solved by instantiating Artifact, Task
and the uses and produces relations between
them appropriately. We show how this can be
achieved in the example instance models at the
bottom of both branches in our hierarchy.

P15
‘An actor may have more than one actor type (e.g.,
Senior Manager and Project Leader.)’
Thanks to the separation of actors and their

roles in our solution, this requirement can be eas-
ily addressed. The hasRole relation has a 0..*
cardinality, so an actor can have several roles by
default. But in order to improve the reusability
of roles, we choose to include the concept of
CombinedRole, which realises the composite
pattern (Gamma 1995). In such a way, a com-
bination of roles that several actors share can be
defined just once as an instance of Combined-
Role and related to several actors. Apart from
the aforementioned advantages, using this con-
struction we also remove the need for multiple
typing, which is a controversial topic in MLM.
Moreover, using multiple typing within the same
hierarchy in MultEcore is not allowed. Using
MultEcore’s supplementary hierarchies (see Sec-
tion 2.2) as a means to add additional types did not
make sense in this context in any case, since there
are no differentiated domains that justify such a
construction.

P16
‘Likewise, an artifact may have more than one
artifact type.’
Same aswe did for roles, we can use a composite

pattern to address this requirement. In such a
way, instead of using multiple typing (which, as
argued before, is neither desirable nor a possible
alternative in MultEcore), we could join simple
artifacts into combined artifacts, and use the latter
as replacements of multiple typing. We choose not
to include this construction in our solution to keep
the processmodel as simple as possible. Besides,
none of the other requirements entails defining an
instance of Artifact with multiple types.

P17
‘An actor who performs a task must be author-
ized for that task. Typically, a class of actors is
automatically authorized for certain classes of
tasks.’
Once again, the triangle construction of actors,

tasks and roles allows us to fulfil this requirement
without adding any new elements to the models,
but defining a constraint over them. First, we
explicitly represent in our models that an actor
performs a task and also has a series of roles, some
of which are allowed to execute certain types of
tasks. Then, when instances of Role and Task are
created in lower levels, it can be checked that they
instantiate the corresponding relations in order to
verify this requirement, using the constraint from
Figure 9.

P18
‘Actor types may specialize other actor types in
which case all the rules that apply to instances of
the specialized actor type must apply to instances
of the specializing actor type. For example, if a
manager is allowed to perform tasks of a certain
task type, so is a senior manager.’
The nature of inheritance in MultEcore allows

us to easily model this requirement. Since we
use distinction between actors and roles, this re-
quirement actually affects the latter in our solution,
according to our understanding: a role can spe-
cialise another role, but it does not make sense
for an actual person to inherit from another in
this context. That is, an actor can have a role,
and a separate actor a second role which inherits
from the first. In such a way, the specialising
role (child) would inherit its executes relation
to a task from the specialised role (parent), and
any actor having the specialising role would be
allowed to perform that task too. However, since
this requirement also mentions the possibility of
“senior” versions of the different roles (initially
mentioned in P9), we also include a specialisation
of Role into SeniorRole, which can be directly
instantiated in order to recognise those special-
ised roles involving seniority. The consequence
here is that an X:Role can be specialised into a

Paper F 279

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

20 Alejandro Rodríguez, Fernando Macías

SeniorRole
1-2-2

Role
EClass 1-2-2 EClass

Analyst

Role@2 1-1-1

SeniorAnalyst
SeniorRole@2 1-1-1

...

Figure 13: Fragment of the process multilevel hierarchy
showing the P18 requirement fulfilment

Y:SeniorRole, which is allowed by MultEcore. In
general, a node can inherit from another as long
as their potencies match and their types are the
same, or alternatively the specialising node’s type
is itself a specialisation of the specialised node’s
type. An excerpt of our models illustrating this
scenario is shown in Figure 13. Finally, the con-
straint that enforces that only actors with the right
role might execute a particular task also ensures
that this requirement is fulfilled (Figure 9).

P19
‘All modeling elements, at all levels, must have a
last updated value of type time stamp. This feature
should be defined as few times as possible, ideally
only once. Respective definitions are exempt from
the requirement to have a last updated value.’
The key to fulfilling this requirement is defining

a lastUpdated attribute with the loosest potency
possible (1-*) in such a way that it can be instan-
tiated no matter how the hierarchy grows—be it
in depth, in width or in number of elements in
a model—without forcing the modeller to add
neither more definitions of that same attribute,
nor typing or inheritance relations to previously
defined elements, nor any othermechanism that en-
tails accidental complexity (Atkinson and Kühne
2008). With this goal in mind, we considered four
alternative constructions that were possible in our
solution. First, we could naively add a copy of
the attribute to every node without a parent in the
processmodel. But this solution would forbid the
actual elements in that model from instantiating

the attribute, so it is not a perfectly valid option.
Second, we could add an extra model on top of
process (displacing all models in the hierarchy
one level lower) for the definition of a single node
TimeStamp which contains the aforementioned
attribute definition, and type every node in the
process model by it. This alternative would give
us the desired effect, but does not make any sense
semantically. Besides, it is an ad-hoc solution
which could cause trouble if we eventually need
that level on top for other purposes. The last two
options are based on the use of our supplementary
typing mechanism to separate concerns, since we
can consider time-stamping an aspect that could
be included in many domains without being an
integral part of any of them. In such a away,
we can define a supplementary hierarchy with a
single model (two, if we count Ecore on level
0), which contains the TimeStamp node with
the lastUpdated attribute with 1-1 potency and
1..1 multiplicity, since the requirement states that
nodes must instantiate it. So, the third option we
considered consisted of adding this TimeStamp
as a supplementary type to every other node in
the application hierarchy. However, this option is
far from ideal, since every new node that we add
to the hierarchy needs to be double-typed with
this supplementary type to be able to instantiate
the attribute. So, finally, the fourth option which
we actually implement in our solution is an im-
provement of the previous one: we change the
attribute potency to 1-* and only add TimeStamp
as a supplementary to Process, Task, Gateway,
AbstractRole, Actor and Artifact; since the rest
of the nodes in model process are children of one
of them. With this construction, we only define
the attribute once, we “link” it six times (through
supplementary typing) and it is already available
everywhere thanks to inheritance (in the process
model) and potency (in the rest of the hierarchy).
Moreover, it would still be available in any new
branches, any new models in the existing branches
and any new node that we define in the existing
models using the types of process. It would
only be required to add TimeStamp as a supple-
mentary type by hand if we were to instantiate

280 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 21

EClass. So we believe that our solution contains
a nearly-optimal solution for this requirement.
To sum up the discussion of the PX require-

ments, Table 1 summarises whether they have
been tackled in our solution and how.
Secondly in this section, we discuss the require-

ments which are specific for software engineering
processes (Section 2.3. in the challenge descrip-
tion). We begin by reproducing in MultEcore
the diagram shown in Figure 1 in the description,
both of which are included in our Figure 4 for a
side-by-side comparison3 . Using this figure as
a starting point, we add the different nodes and
edges that we require to fulfil those requirements.
The full model is depicted in the appendix, in
Figure 14. Again, we refer to them with their
original names of the form SX, and summarise
the following discussion at the end of this section,
in Table 2.
S1
‘A requirements analysis is performed by an ana-
lyst and produces a requirements specification.’

RequirementsAnalysis is present in the de-
scription’s figure and is therefore included already
in the initial version of the model in Figure 4.
To that same model—acme software engin-
eering process, which we refer to as just
acme process in the remainder—we add the
nodes Analyst:Role and RequirementsSpecific-
ation:SEArtifact, plus the corresponding rela-
tions, according to the process model (Figure 2).
The usage of SEArtifact instead of Artifact as
type in the latter node is due to requirement S10,
and we refer the reader to that discussion for a
justification of this choice. This same remark also
applies to some of the following requirements.
S2
‘A test case design is performed only by senior
analysts and produces test cases.’
We have simplified the wording of this require-

ment while maintaining its meaning. To fulfil it,
we include SeniorAnalyst:SeniorRole and the
corresponding instance of the executes relation

3 Note that each instance of Sequence is depicted as a node,
plus the two arrows which indicate its source and target tasks.

in model acme process. We indicate that Seni-
orAnalyst is an specialised version of Analyst
through an inheritance relation, as an example
of the construction discussed in P18. We also
include TestCase:SEArtifact and instantiate the
produces relation to indicate that it is a product
of test case design. Note that the senior analyst
role does not need to be connected to an actor for
this model to be correct. Hence, we choose not to
overload the models with additional details beyond
the ones enforced by the requirements, in order to
simplify their description and visualisation in this
paper.
S3
‘An occurrence of coding is performed by a de-
veloper and produces code. It must furthermore
reference one or more programming languages
employed.’
To address this requirement we add to acme

process the nodes Developer:Role, and two
instances of SEArtifact: Code and Program-
mingLanguage. We connect these nodes to
the coding task by instantiating, respectively, the
relations executes, produces and uses.
S4
‘Code must reference the programming lan-
guage(s) in which it was written.’
In order to represent that a code is written in

a programming language, we create a relation
written between these two artifacts. Since this
relation only pertains two software-specific ar-
tifacts, it does not have a type in the process
model. For such scenarios, MultEcore always
allows to create direct instances of an EClass or
EReference through potency, and in this case we
use the latter as the type of written. Although
this construction differs conceptually from lin-
guistic extensions (Atkinson and Kühne 2001), its
practical usage is quite similar to it.
S5 and S6
‘Coding in COBOL always produces COBOL
code.’ ‘All COBOL code is written in COBOL.’
We group together these two requirements since

they pertain the same part of the model and have
common elements. Coding in COBOL, as an

Paper F 281

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

22 Alejandro Rodríguez, Fernando Macías

Table 1: Summary of PX requirements

Req. Addressed? Comments
P1 + —
P2 + Using inheritance
P3 + Using inheritance
P4 + —
P5 + Modelled as a triangle between the nodes Actor, Role and Task
P6 + Does not require new modelling constructs
P7 + —
P8 + —
P9 + Using a constraint, and creation of ValidationTask dismissed
P10 + Trivially addressed
P11 + Addressed in P1
P12 + —
P13 + Partially addressed earlier
P14 + Trivially addressed
P15 + Trivially addressed, but improved with composite pattern
P16 + Using composite pattern, but not actually modelled
P17 + Using a constraint
P18 + Using inheritance and an existing constraint
P19 + Using a supplementary hierarchy

instance of the Coding task, belongs naturally in
a level below the model acme process, since
the latter deals with coding as a generic concept,
as the original figure in the challenge descrip-
tion shows. Therefore, the new node Coding-
COBOL:Coding is declared in the bottom-most
model of the software branch of our hierarchy:
acme software engineering process config-
uration, which we call acme configuration for
short and is depicted in Figure 5. This same reas-
oning can be applied to COBOLCode:Code and
COBOL:ProgrammingLanguage. To complete
the model, the relevant instances of the relations
coding_uses, coding_produces andwritten are
used to connect those three nodes to each other,
modelling the semantics of both requirements.

S7
‘Ann Smith is a developer; she is the only one
allowed to perform coding in COBOL.’
The fulfilment of this requirement implies creat-

ing an instance of Actor in the acme configura-
tionmodel. Due to the refinement of Actor (from

process model) into SEActor (from software
engineering process model, called software
process for short) that S10 entails, the nodeAnnS-
mith that we create is an instance of SEActor.
Note that our implementation allows us to cre-
ate instances of SEActor in both levels 3 and 4
of the software branch of the hierarchy. Hence,
we include AnnSmith:SEActor@2 in the bottom
model, and instantiate the performs relation from
process (which relates actors to tasks) to indicate
that she carries out the task coding in COBOL.
As already explained, our solution distinguishes
between actors (as actual people) and the roles
they perform, so we also create a special type of
developer that is allowed to code in COBOL, i. e.
COBOLDeveloper:Developer. Ann Smith is
connected to this role via an instantiation of the
hasRole relation. Finally, even though there is
already an instantiation of executes between De-
veloper and Coding in the acme processmodel,
we think that it is appropriate to instantiate it again
in this model, between COBOLDeveloper and

282 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 23

CodingCOBOL. We believe that this repetition
provides clarity to the model and simplifies the
definition of the constraint presented in 4.4.
S8
‘Testing is performed by a tester and produces a
test report.’
The node Testing is already present, so we

add the nodes Tester:Role@2 and TestRep-
ort:SEArtifact to the model acme process. We
instantiate the relations executes and produces
(from two levels above) in order to connect each
node to Testing, respectively.
S9
‘Each tested artifact must be associated to its test
report.’
At first glance, it could be argued that this re-

quirement can be satisfied in the model software
process in level 2 of the software branch. How-
ever, we believe that it actually pertains to model
acme process, since it is only related to Test-
ing, which is declared on that model. Moreover,
Testing may not be defined or used in the same
way in different software processes which could
be defined in other hypothetical software com-
panies. With this choice, we also avoid the need
for a constraint that would check that Testing is
associated with only some specific instances of
SEArtifact. Therefore, we include inmodelacme
process a node TestReport:SEArtifact that is
connected to the existing nodes Testing and Code
via two relations isTested:EReference and test-
ing_produces:produces@2, respectively. As
explained in S4, we exploit the fact that MultEcore
allows creating direct instances of EReference
anywhere for the typing of isTested. We choose
to only create isTested for Code, but there is no
obstacle if one wants to create more relations like
it from other instances of SEArtifact to other test
reports—or even the same one, if one wanted to
model a test report that contains info about several
tested artefacts.
S10
‘Software engineering artifacts have a responsible
actor and a version number. This applies to
requirements specification, code, test case, test

report, but also to any future types of software
engineering artifacts.’
We hinted in the discussion of previous require-

ments that this one entails, to our understanding,
the creation of the intermediate model software
process for the software branch, that does not
have a counterpart in the insurance branch. In this
new model, we need to refine generic artefacts
into software engineering artefacts which contain
more information. Hence, in the model in level 2
we create Artifact:SEArtifact, which defines the
required attribute versionNumber of type String
that should be instantiated in the bottom-most
level of the branch—i. e. model acme configur-
ation in level 4. The potency that we require
for the attribute is therefore 2-2 (recall that the
depth for attributes is always 1 and consequently
not displayed). The cardinality of this attribute,
not displayed, is 1..1, so that the attribute must
be instantiated, according to the requirement. In
such a way, any X:Y:SEArtifact in model acme
configuration needs to instantiate the attribute, as
COBOL and COBOLCode illustrate. To fulfil the
rest of the requirement, we also need to model that
instances of SEArtifact have a special relation to
actors. Since MultEcore does not allow for cross-
level relations, we need to create a corresponding
SEActor:Actor in software process so that we
can then define responsibleActor:EReference
among them. Using the same rationale as for
the attribute, the potency of responsibleActor
is 2-2-1 and its cardinality is 1..1. Examples
of instances of this relation are those connecting
COBOL and COBOLCode to JohnDoe in model
acme configuration.

S11
‘Bob Brown is an analyst and tester. He has
created all task types in this software development
process.’
We interpret that ‘this software development

process’ refers to a specific instance of a soft-
ware process. That is, the model in Figure 1 in
the challenge description, which corresponds to
model acme process in our solution. Hence, we
include in that model a node BobBrown:SEActor

Paper F 283

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

24 Alejandro Rodríguez, Fernando Macías

and instantiate the creates relation from it towards
every instance of Task in this model, e. g. Design.
This includes the initial and final tasks that every
process must have. It is worth pointing out again
that our solution allows for the creation of direct
instances of actors in two different levels, both in
the insurance branch (as instances of Actor) and
in the software branch (instantiating SEActor).
This construction is necessary since the two lower
levels in both branches of our hierarchy (levels 2
and 3 on insurance branch; 3 and 4 in software)
may need to define actors in order to adhere to
the requirements, e. g. Bob Brown needs to ap-
pear in model acme process and Ann Smith in
acme configuration. In contrast, roles can be
simply instantiated and re-instantiated in those
levels, since the domain naturally requires so, e. g.
COBOLDeveloper:Developer:Role@2. While
this construction for actors might seem undesir-
able at first, we argue that it removes the need for
cross-level relations and that it neither requires any
additional elements to be defined nor enforces an
artificial re-instantiation of actors—which would
be done in a similar manner as we do for roles.
The only shortcoming that we see in our solution
is that the same actor may appear twice in two
models in adjacent levels. For example, if Ann
Smith would be responsible for creating tasks that
appear in acme process, she would also have to
appear there along Bob Brown, and hence would
be a duplicate of the Ann Smith that is already
present in acme configuration. However, if
some practical application of our models—like
code generation—were affected by such duplica-
tion, we could simply identify both nodes based
on the fact that they share the same name, type
and potency.

S12
‘The expected duration of testing is 9 days.’

Testing in model acme process instantiates
the expectedDuration integer attribute to 9 to
fulfil this requirement.

S13
‘Designing test cases is a critical task which must
be performed by a senior analyst. Test cases must
be validated by a test design review.’
We instantiate the isCritical Boolean attribute

to true in TestCaseDesign, in model acme
process. We connect the node SeniorAnalyst to
that instance of Taskwith an instance of executes.
For the sake of simplicity, we do not relate this
role to any actor, although it would be reasonable
to do so eventually. The fact that a test design
review validates the test case design is already
represented in the original workflow as a sequence
of the two tasks.

6 Assessment of the Modeling Solution

In this section, we discuss the advantages and
shortcomings of the choices we made in our solu-
tion to the challenge. We also point out whether we
were forced to make any compromises or whether
our solution presents any deficiencies.

6.1 Basic modelling constructs
MultEcore is graph-based from a theoretical point
of view, and this fact reflects on the EMF-based im-
plementation. All models use nodes and relations
as the basic building blocks, which are contained
in models. Attributes are formally nodes, as ex-
plained in Macías (2019), but in practise they
behave as commonly expected: they are defined
inside a node and instantiated in the instances of
that node. The rationale for the separation of these
elements in different models is to make them as
independent from each other as possible, so that
they can be connected to each other only by typing
relations. This eases the addition and removal
of intermediate models. For example, software
process could be removed from our hierarchy,
and the types of the elements in the models below
just be replaced by the type of the removed types,
e. g. SEActor to Actor and responsibleActor
to EReference. To achieve this separation, po-
tency plays an important role, as discussed later in
this section. Furthermore, combining inheritance
with typing also allows us to choose whichever

284 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 25

Table 2: Summary of SX requirements

Req. Addressed? Comments
S1 + —
S2 + —
S3 + —
S4 + Creating a direct instance of EReference through potency
S5 + Addressed in new model acme configuration
S6 + Addressed in new model acme configuration
S7 + Using roles
S8 + —
S9 + Addressed in acme process, not in software process
S10 + Addressed in new model software process
S11 + May entail actor duplication
S12 + —
S13 + —

construction is more flexible, understandable and
aligned with the requirements, e. g. the composite
pattern that we present for roles.

6.2 Levels
Levels are used as an organisational tool in Mult-
Ecore, as explained in Section 2.1. This rationale
entails that the typing relations—from nodes to
nodes and from relations to relations—have the
meaning of my type defines my structure, in the
sense of which relations can be defined and to
which other nodes, which attributes can be instan-
tiated, which nodes can inherit from which other
nodes, etc. Due to potency, these typing relations
can jump over levels, but still levels serve as a
default organisation of models and the elements
they contain. We also mentioned already in Sec-
tion 2.1 that these typing relations among levels
do not necessarily adhere to classification with all
its implications, since we prioritise flexibility and
conciseness, but is in general quite aligned with
the concept.

6.3 Number of levels
As stated before, hierarchies in MultEcore are
unbounded, so the hierarchy we present could
grow downwards as much as necessary. We chose
to add an intermediate level for refinements related
to software processes (e. g. SEActor), which could

perhaps have been done with inheritance in model
process. However, this alternative would pollute
the model, which is supposed to be generic and
unaffected by the particularities of any subdomain.
Conversely, we did not force a similar intermediate
level in the insurance branch just to keep the
hierarchy symmetric since it was not necessary,
but of course it could be included if required at
a later point in time. To sum up, we designed
our solution to be as flexible as possible, and
used levels to create, to our understanding, clearly-
defined partitions of the domain: processes in
general, software processes, the software process
of a particular company, and the state of such
process at a specific point in time (and a similar
partition for the insurance subdomain).
Actually, any of the models in the intermediate

levels can be considered a DSML which is used
to define the level(s) below it, using the types
they define in a structurally coherent manner and
satisfying the given constraints. The bottom-most
models represent a specific state of the process,
e. g. Ann Smith, who is a COBOL Developer, is us-
ing COBOL version 1.3 to implement version 3.1 of
a particular piece of COBOL code. These bottom-
most models could be used for different purposes,
like logging the different tasks performed by the

Paper F 285

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

26 Alejandro Rodríguez, Fernando Macías

actors and the generated artefacts, or for monit-
oring purposes, by representing the current state
of the process. If the models were enhanced with
further details, one could even consider the execu-
tion of simulations prior to the actual enactment
of the process in the real world. In such a way, it
would be possible to asses whether the specified
process, task distribution, workload, etc. are likely
to succeed or will probably lead to time and budget
overruns.

6.4 Cross-level relationships
Cross-level relations go against modularity, and
therefore would disfavour some benefits of our ap-
proach, e. g. flexibility and reusability. Moreover,
they are purposely not supported by our current
formalisation (Wolter et al. 2019). Hence, our
solution does not employ them, but we have not
identified any case in which they are more desir-
able than an alternative construction.

6.5 Cross-level constraints
The expressive power of MCMTs allows us to
use them to define different kinds of semantics,
which have been illustrated in this paper. We can
specify dynamic semantics to describe the beha-
vioural aspect of the modelled system and also
define static semantics that check the structural
correctness of the multilevel hierarchy. As dis-
cussed in Section 4.5, the dynamic semantics are
applied following the traditional in-place model
transformations rules manner where the match of
the left-hand side of the rule leads to the modi-
fications specified on the right-hand side. The
cross-level constraints would be executed in a so-
called check mode where the left-hand side and
the right-hand side specify two multilevel sub-
hierarchy patterns that have to be found for the
constraint to be satisfied (see Section 4.4).

6.6 Integrity mechanisms
This discussion is twofold: integrity mechanisms
which prevent incorrect constructions and repair-
ing mechanisms if such a construction is made.
For the first group, both the formalisation and the
implementation of MultEcore has mechanisms to

avoid cyclic inheritance, cyclic typing, potency-
violating typing, invalid inheritance, multiplicity
violations for relations and attributes, duplication
of elements and incorrect typing relations for all
kinds of elements. Repairing actions like the ones
required for the co-evolution of models, metamod-
els and MTs are not part of MultEcore. However,
the tool does include some basic repairing mech-
anisms, e. g. fixing the potency of an element to
0-0-0 if any of the three values becomes 0 or cor-
recting depth of an element to the depth of its type
minus one, if a higher or equal value is specified.
Additionally, more advanced repair mechanisms
are planned in future releases, such as changing
the type of an element to the type of its type if the
former is removed.

6.7 Deep characterisation
Our solution makes intensive use of potency, with
no element using MultEcore’s default potency
of 1-1-*. The reasons for this are two. First,
the presented scenario clearly defines a bottom-
most level for model instances (i. e. enactments)
of specific processes, and it does not make sense
to create further instances of such models. Hence,
the value of depth is always bounded. And second,
the way in which elements most in the top models,
especially process, are expected to be used, forces
us to use end values higher than 1. In some cases,
even the start value differs from 1 to prevent them
from being instantiated in the level below, e. g. the
performs relation in process.

6.8 Generality
We believe that our solution performs very well
regarding its generality, and the reusability that
it entails. We have managed to create a solu-
tion with minimal redundancy in most cases, the
only exceptions being the potential duplication of
actor in two adjacent levels and the several supple-
mentary typing relations in process to enable the
instantiation of the attribute lastUpdated in all
nodes. Moreover, we illustrated the reusability of
the process model and the related MCMT rules
by modelling the optional insurance domain, and
including an example execution of this process

286 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 27

in our solution. In general, we believe that the
software process model can be used for other
software-related companies that may implement
different processes than Acme. Likewise, the
acme process model one level below could both
be instantiated for other points in time of the same
enactment (as illustrated by our MCMT-based
execution) or enacted differently for other depart-
ments of the same company that adhere to the
same process.

6.9 Extensibility
Our solution already illustrates how some exten-
sions can be performed when new requirements
appear. For example, the discussions regarding
senior actors and validation tasks in P9. Similar
extensions through inheritance are always avail-
able and simple to perform, since they only add
new information to the models, therefore not com-
promising their integrity or semantics. Moreover,
we have shown how model (or level) insertion can
be performed by introducing an intermediate level
in the software branch (motivated by S11) which
has no counterpart in the insurance branch of our
hierarchy.
We finalise this section by discussing two of

the topics that are recommended in the challenge
description.
First, we would like to remark that MultEcore

is not only the supporting tool for our approach
that we have used to fully create the models
and MTs presented in this challenge. The ap-
proach also includes a detailed formalisation based
on Graph Theory and Category Theory which
provides a framework of reference for the tool’s
behaviour (Wolter et al. 2019).
And second, although we already stated that

the verification of our models can be performed
through integrity mechanisms (Section 6.6), there
are additional checks. For example, the standard
validators of EMF for Ecore models and their XMI
instances can be still used with MultEcore, since
the tool reflects multilevel changes on both facets
for the models in each level, using a mechanism
called sliding window presented in Macías (2019,
Section 4.1). This validator can be used to check

that obligatory attributes are correctly instantiated
or that the multiplicities of relations are respected,
among others. However, these checks have some
caveats due to the way in which multilevel aspects
are represented in those models, so a full integra-
tion that does not display multilevel constructions
as errors is still a matter of future work.

7 Related Work

The MULTI challenge has received several re-
sponses by the community in order to bring in-
sights on howMLMcan be applied to solve the sug-
gested scenarios. We first discuss other solutions
related to the Process Challenge in 2019 (João
Paulo A. Almeida et al. 2019).
Jeusfeld’s solution (see Jeusfeld 2019b) is im-

plemented in DeepTelos (Jeusfeld 2019a; Jeusfeld
and Neumayr 2016) that extends Telos and that
allows to define hierarchies of level objects (called
most-general instances). DeepTelos is developed
by just creating the DeepTelos objects with addi-
tional rules/constraints in ConceptBase (Jarke et
al. 1995). Note that the core idea of DeepTelos is
to exploit the powertype pattern (Odell 1994) and
therefore is a level-blind approach (Henderson-
Sellers et al. 2013), which means that it does not
express an explicit notion of level, even though
they are intuitively derived by analysing the solu-
tion implementation. This powertype-based solu-
tion allows them to naturally deal with cross-level
relationships, feature that we do not support in
MultEcore. On the other hand, Jeusfeld argue that
certain requirements, such as P17 can no be com-
pletely fulfilled as they would have to extend their
specification by Telos rules. Conversely, our mul-
tilevel transformation language (MCMTs) allows
us to specify multilevel constraints. The most-
general instances idea replaces the well-known
potency mechanism present in level-adjuvant ap-
proaches. In concrete, our three-value potency
specification allows us to be both generic and pre-
cise depending on the particular needs. Such level
of precision remains a bit blurry to us regarding
the solution in Jeusfeld (2019b), where they also
have to make the explicit separation between Task

Paper F 287

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

28 Alejandro Rodríguez, Fernando Macías

and TaskType, which we deem unnecessary in a
multilevel context.
Somogyi et al. (Somogyi et al. 2019) also con-

tributed with their solution by using their tool
DMLA (Theisz et al. 2019; Urbán et al. 2018).
DMLA is a self-validating metamodelling formal-
ism relying on gradual model constraining through
its interpretation of the classical instantiation rela-
tion. DMLA is self-described, and it also provides
so-called fluid metamodelling, which means that it
is not required to instantiate all entities of a model
at once. Models in DMLA are stored in tuples,
referencing each other, and thus, forming an en-
tity graph. It is also a level-blind approach that
naturally supports the specification of cross-level
relationships. Being a level-blind approach where
all entities can reference any other entity (the fluid
nature), it is easier for the modeller to construct
invalid models, which is more difficult in other ap-
proaches where the hierarchy of models is clearly
constructed, like ours. Furthermore, the sanity
checks that potency gives facilitates the modeller
to always be sure that the model under construc-
tion is correct. Also, DMLA does not explicitly
supports some features, such as inheritance (even
though authors argue that it can be simulated).
While MultEcore naturally supports inheritance,
Somogyi et al. had to simulate inheritance which
resulted in an artificial workaround to solve some
of the requirements.
The two solutions discussed above were the

only ones published along with our MultEcore
response in 2019. Even though in 2018 there
was another challenge case, namely the Bicycle
Challenge4 , we find interesting to discuss the
work presented by Lange and Atkinson (Lange
and Atkinson 2018). Note that Mezei et al. (Mezei
et al. 2018) also presented a solution using DMLA,
for which we do not enter into more details as the
relevant aspects have already been discussed in
the previous paragraph.

4 Bicycle Challenge 2018: https://www.wi-inf.
uni-duisburg-essen.de/MULTI2018/wp-content/uploads/
2018/03/MULTI2018-BicycleChallenge.pdf

Lange and Atkinson’s solution (Lange and
Atkinson 2018) was constructed using the ma-
ture tool Melanee (Atkinson and Gerbig 2016b).
Melanee is one of the most advanced tools based
in OCA (Atkinson and Kühne 2005) for deep mod-
elling which supports modelling through deep,
multi-format, multi-notation, user-defined lan-
guages. The Melanee solution is closer to what
our solution with MultEcore looks like as it is a
level-adjuvant approach that also distribute mod-
els according to the ontological classification of
its elements and uses (a different form of) potency.
Like in MultEcore, Melanee does not allow cross-
level relationships so models are organised into
clear abstraction levels. While this has some ad-
vantages, it also has some drawbacks, for instance,
the creation of additional nodes in certain levels
to make the connections. An example reflected in
our solution is the fact that an actor may appear in
two different abstraction levels. If we take as a ref-
erence the right branch of the multilevel hierarchy
depicted in Figure 1, while an actor can create
tasks in level 3 of this branch (see, for example,
BobBrown on the right side of Figure 14) it can
also perform concrete tasks such as CodingCO-
BOL, performed by AnnSmith (see bottom right
of Figure 5).
Finally, regarding our own submission to the

challenge in 2019 (see Rodríguez and Macías
2019) we have made improvements and exten-
sions both to the solution and to the MultEcore
tool. The multilevel hierarchy presented in the
previous work was modelled so it was symmetric,
i. e., both branches (insurance and software engin-
eering) had the same length. This forced us to
include an intermediate model for the insurance
domain that did not really capture any of the re-
quirements stated in the challenge description. In
the current version presented in this article this
model has been avoided, which helped us demon-
strate a flexibility aspect of MultEcore where the
different domains do not need to have the same
length as they are fully independent from each
other. Moreover, as demonstrated, the MCMT
rules are still applicable to both domains due to
their vertical and horizontal flexibility (for more

288 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 29

details on this, we refer the reader to Rodríguez
et al. 2019b, Section 4.2). The composite pattern
was already implemented for roles in the solution
submitted in 2019. MultEcore’s facilities such
as the use of inheritance and the potency custom-
isation capabilities allowed us to exploit such a
pattern within the multilevel context. Thus, we
have also used this construction to discuss how to
model the artefact situation (P16), and the scen-
ario on Figure 13. Furthermore, we explore in
this paper the operational semantics of process
challenge. We have shown in Section 4.5 how
we can execute models and evolve them by ap-
plying MCMT rules that describe the behaviour.
This part was not examined in our submission
in Rodríguez and Macías (2019). We have also
included some minor enhancements which we
previously overlooked, like the values of some
potencies or making the node Gateway abstract.
Finally, we have improved theway inwhich supple-
mentary attributes can be instantiated to develop
a nearly-optimal solution for requirement P19.

8 Conclusions and Future work

In this paper, we have presented an extended solu-
tion based on our initial contribution (Rodríguez
and Macías 2019) to the Process Challenge pro-
posed at the MULTI workshop (João Paulo A.
Almeida et al. 2021). Our multilevel modelling
hierarchy has a total of five abstraction levels,
two branches and 7 models (more if we take into
account all the model states generated during
the execution, shown in Section 4.5). Such hier-
archical distribution covers the generic domain
of process description and its refinement for the
software engineering and the insurance domains.
Each level can be understood as a potential can-
didate for the generation of software artefacts, like
domain-specific editors (graphical and/or textual)
to specify processes at any level of abstraction,
or for the simulation of processes through model
transformations at the bottom levels. Our solution
is based on the MultEcore tool and the infrastruc-
ture that connects its to Maude which allows us
to perform simulation/execution. MultEcore is

built on top of EMF which allows us to use all the
EMF capabilities boosted with multilevel capabil-
ities. For instance, this facilitates the usage of the
rich ecosystem of EMF such as using editors with
Sirius for graphical results and Xtext for custom
specification languages.
From a more conceptual standpoint, one of our

ambitions with respect to MultEcore is to make it
an approach that enhances flexibility and reusab-
ility. This has allowed us to create an elegant,
concise and correct multilevel hierarchy for the
given domain of process modelling where, for
example, the branches are independent between
them and their lengths are different. We believe
that this solution can be an interesting contribu-
tion for the challenge and be used to foster fruitful
discussions within the MLM community. Further-
more, we have gone one step ahead by exploring
behavioural aspects, and we believe that including
this dimension as part of future challenge propos-
als would bring engaging results from the MLM
community.
We have presented preliminary results regard-

ing execution by showing some examples of model
evolution by applying operational semantics via
MCMT rules. Currently we are actively working
onMultEcore-Maude infrastructure to improve the
execution and further verification of the specified
multilevel hierarchies. Also, we are studying
how to improve the MCMTs flexibility, by taking
advantage of inheritance to reuse some MCMT
rules with common behaviour. While MCMTs are
flexible with respect to horizontal and vertical ex-
tensions, we identify a key point of improvement
as being able to reuseMETA levels onMCMTs into
other rules. Another important aspect that we plan
to work on, is the implementation in Maude and
the integration into MultEcore of the check mode
of MCMTs for the validation of the multilevel
hierarchy with respect to structural constraints (as
shown in Section 4.4).
We conclude this paper by answering the ques-

tions that the challenge description explicitly asks
respondents to address.
‘Does the submission address the established

domain as described in Section 2 and demonstrate

Paper F 289

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

30 Alejandro Rodríguez, Fernando Macías

the use of multi-level features?’ We believe that
our solution contains all the required concepts and
constructions required in the challenge descrip-
tion. In most cases, these constructions do not
require workarounds or additional concepts, and
we discuss and justify our choices in the few cases
where we need them. Furthermore, our solution
prominently makes use of multiple levels, three-
valued potency specification and double typing
(through a supplementary hierarchy). All of these
concepts are important multilevel features that this
submission showcases.
‘Does it evaluate/discuss the proposed mod-

eling solution against the criteria presented in
Section 3?’ The whole Section 6 in this paper
is dedicated precisely to the discussion of those
criteria, in the same order that they are enumer-
ated in João Paulo A. Almeida et al. 2019, so that
we can make sure that this question is properly
addressed. We also included the recommended
discussion aspects suggested by the challenge de-
scription.
‘Does it discuss the merits and limitations of

the applied MLM technique in the context of the
challenge? Authors may suggest further require-
ments that clearly demonstrate the utility of their
chosen approach.’ We have thoroughly discussed
the advantages of MultEcore and the few scen-
arios where we found limitations all throughout
Sections 2, 5, 6 and 7. We have also suggested
including new requirements regarding the oper-
ational semantics of the challenge’s domain for
upcoming editions in Section 4.5.

References

Almeida J. P. A., Rutle A., Wimmer M., Kühne
T. (2019) The MULTI Process Challenge. In:
Burgueño L., Pretschner A., Voss S., Chaudron
M., Kienzle J., Völter M., Gérard S., Zahedi
M., Bousse E., Rensink A., Polack F., Engels
G., Kappel G. (eds.) 22nd ACM/IEEE Interna-
tional Conference on Model Driven Engineering
Languages and Systems Companion, MODELS
Companion 2019, Munich, Germany, September
15-20, 2019. IEEE, pp. 164–167

Almeida J. P. A., Rutle A., Wimmer M., Kühne T.
(2021) The MULTI Process Challenge. In: Enter-
prise Modelling and Information Systems Archi-
tectures Available at https://bit.ly/3b3cQZV

Atkinson C., Gerbig R. (1st Jan. 2016a) Flexible
Deep Modeling with Melanee. In: Betz S., Re-
imer U. (eds.) Modellierung 2016. LNI Vol. 255.
Gesellschaft für Informatik, Bonn, pp. 117–122

Atkinson C., Gerbig R. (1st Jan. 2016b) Flexible
Deep Modeling with Melanee. In: Betz S., Re-
imer U. (eds.) Modellierung 2016. LNI Vol. 255.
Gesellschaft für Informatik, Bonn, pp. 117–122

Atkinson C., Gerbig R., Kühne T. (2014) Compar-
ing multi-level modeling approaches. In: Atkinson
C., Grossmann G., Kühne T., de Lara J. (eds.) Pro-
ceedings of the Workshop on Multi-Level Mod-
elling co-located with ACM/IEEE 17th Interna-
tional Conference on Model Driven Engineering
Languages & Systems (MoDELS 2014), Valen-
cia, Spain, September 28, 2014. CEURWorkshop
Proceedings Vol. 1286. CEUR-WS.org, pp. 53–61

Atkinson C., Gerbig R., Tunjic C. (2012) Towards
Multi-level Aware Model Transformations. In: Hu
Z., de Lara J. (eds.) Theory and Practice of Model
Transformations - 5th Intl. Conf., ICMT 2012.
LNCS Vol. 7307. Springer, pp. 208–223

Atkinson C., Gutheil M., Kennel B. (2009) A
Flexible Infrastructure for Multilevel Language
Engineering. In: IEEE Trans. Software Eng. 35(6),
pp. 742–755

Atkinson C., Kühne T. (2001) The Essence ofMul-
tilevel Metamodeling. In: Gogolla M., Kobryn C.
(eds.) «UML» 2001 - The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools,
4th International Conference, Toronto, Canada,
October 1-5, 2001, Proceedings. Lecture Notes in
Computer Science Vol. 2185. Springer, pp. 19–33

Atkinson C., Kühne T. (2005) Concepts for Com-
paring Modeling Tool Architectures. In: Briand
L. C., Williams C. (eds.) Model Driven Engin-
eering Languages and Systems, 8th International
Conference, MoDELS 2005, Montego Bay, Ja-
maica, October 2-7, 2005, Proceedings. Lecture

290 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 31

Notes in Computer Science Vol. 3713. Springer,
pp. 398–413

Atkinson C., Kühne T. (2008) Reducing accidental
complexity in domain models. In: Software &
Systems Modeling 7(3), pp. 345–359

Clark T., Warmer J. (2003) Object Modeling With
the OCL: The Rationale Behind the Object Con-
straint Language Vol. 2263. Springer

Clavel M., Durán F., Eker S., Lincoln P., Martí-
Oliet N., Meseguer J., Talcott C. L. (eds.) All
About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify
Systems in Rewriting Logic. Lecture Notes in
Computer Science Vol. 4350. Springer

Durán F., Eker S., Escobar S., Martí-Oliet N.,
Meseguer J., Rubio R., Talcott C. L. (2020) Pro-
gramming and symbolic computation in Maude.
In: J. Log. AlgebraicMethods Program. 110https:
//doi.org/10.1016/j.jlamp.2019.100497

Gamma E. (1995) Design patterns: elements of
reusable object-oriented software. Pearson Educa-
tion India

Henderson-Sellers B., Clark T., Gonzalez-Perez C.
(2013) On the Search for a Level-Agnostic Model-
ling Language. In: Salinesi C., NorrieM.C., Pastor
O. (eds.) Advanced Information Systems Engineer-
ing - 25th International Conference, CAiSE 2013,
Valencia, Spain, June 17-21, 2013. Proceedings.
Lecture Notes in Computer Science Vol. 7908.
Springer, pp. 240–255

Jarke M., Gallersdörfer R., Jeusfeld M. A., Staudt
M. (1995) ConceptBase - A Deductive Object
Base for Meta Data Management. In: J. Intell. Inf.
Syst. 4(2), pp. 167–192

Jeusfeld M. A. (2019a) DeepTelos Demonstration.
In: 22nd ACM/IEEE International Conference
on Model Driven Engineering Languages and
Systems Companion, MODELS Companion 2019,
Munich, Germany, September 15-20, 2019. IEEE,
pp. 98–102

Jeusfeld M. A. (2019b) DeepTelos for Concept-
Base: A Contribution to the MULTI Process Chal-
lenge. In: 22nd ACM/IEEE International Confer-
ence on Model Driven Engineering Languages
and Systems Companion, MODELS Companion
2019, Munich, Germany, September 15-20, 2019.
IEEE, pp. 66–77

Jeusfeld M. A., Neumayr B. (2016) DeepTelos:
Multi-levelModelingwithMostGeneral Instances.
In: Comyn-Wattiau I., Tanaka K., Song I.-Y.,
Yamamoto S., Saeki M. (eds.) Conceptual Mod-
eling - 35th International Conference, ER 2016,
Gifu, Japan, November 14-17, 2016, Proceedings.
Lecture Notes in Computer Science Vol. 9974,
pp. 198–211

KühneT. (2018a)A story of levels. In: Proceedings
of MODELS 2018 Workshops: ModComp, MRT,
OCL, FlexMDE, EXE, COMMitMDE, MDE-
Tools, GEMOC, MORSE, MDE4IoT, MDEbug,
MoDeVVa, ME, MULTI, HuFaMo, AMMoRe,
PAINS co-located with ACM/IEEE 21st Interna-
tional Conference on Model Driven Engineering
Languages and Systems (MODELS 2018), Copen-
hagen, Denmark, October, 14, 2018., pp. 673–
682 http://ceur-ws.org/Vol-2245/multi%5C_
paper%5C_5.pdf

Kühne T. (2018b) Exploring Potency. In:
Wasowski A., Paige R. F., Haugen Ø. (eds.) Pro-
ceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 2018, Copenha-
gen, Denmark, October 14-19, 2018. ACM, pp. 2–
12

Kühne T., Schreiber D. (2007) Can programming
be liberated from the two-level style: multi-level
programming with DeepJava. In: ACM SIGPLAN
Notices 42(10), pp. 229–244

Lange A., Atkinson C. (2018) Multi-level mod-
eling with MELANEE. In: Hebig R., Berger T.
(eds.) Proceedings of MODELS 2018 Workshops,
Copenhagen, Denmark, October, 14, 2018. CEUR
Workshop Proceedings Vol. 2245. CEUR-WS.org,
pp. 653–662

Paper F 291

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

32 Alejandro Rodríguez, Fernando Macías

de Lara J., Guerra E. (July 2010) Deep meta-
modelling with MetaDepth. In: Objects, Models,
Components, Patterns. LNCS Vol. 6141. Springer,
pp. 1–20

de Lara J., Guerra E. (2018) Refactoring Multi-
Level Models. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 27(4),
p. 17

de Lara J., Guerra E., Sánchez Cuadrado J. (2015)
Model-driven engineering with domain-specific
meta-modelling languages. In: Software & Sys-
tems Modeling 14(1), pp. 429–459

Macías F. (2019) Multilevel modelling and
domain-specific languages. PhD thesis, Western
Norway University of Applied Sciences and Uni-
versity of Oslo

Macías F., Rutle A., Stolz V. (2016) MultEcore:
Combining the Best of Fixed-Level and Multilevel
Metamodelling.. In: MULTI@ MoDELS, pp. 66–
75

Macías F., Rutle A., Stolz V. (2017) Multilevel
Modelling with MultEcore: A Contribution to
the MULTI 2017 Challenge. In: Proceedings of
MULTI @ MODELS, pp. 269–273 http://ceur-
ws.org/Vol-2019/multi%5C_9.pdf

Macías F., Rutle A., Stolz V., Rodríguez-
Echeverría R., Wolter U. (2018) An Approach
to Flexible Multilevel Modelling. In: Enterprise
Modelling and Information Systems Architectures
13, 10:1–10:35

Macías F., Wolter U., Rutle A., Durán F.,
Rodriguez-Echeverria R. (2019) Multilevel
Coupled Model Transformations for Precise and
Reusable Definition of Model Behaviour. In:
Journal of Logical and Algebraic Methods in
Programming

Méndez-Acuña D., Galindo J. A., Degueule T.,
Combemale B., Baudry B. (2016) Leveraging
Software Product Lines Engineering in the devel-
opment of external DSLs: A systematic literature
review. In: Computer Languages, Systems&Struc-
tures 46, pp. 206–235

Mens T., Gorp P. V. (2006) A Taxonomy of Model
Transformation. In: Electron. Notes Theor. Com-
put. Sci. 152, pp. 125–142

Meseguer J. (1992) Conditioned Rewriting Logic
as a United Model of Concurrency. In: Theor.
Comput. Sci. 96(1), pp. 73–155

Mezei G., Theisz Z., Urbán D., Bácsi S. (2018)
The bicycle challenge in DMLA, where validation
means correct modeling. In: Hebig R., Berger T.
(eds.) Proceedings of MODELS 2018 Workshops,
Copenhagen, Denmark, October, 14, 2018. CEUR
Workshop Proceedings Vol. 2245. CEUR-WS.org,
pp. 643–652

Odell J. (1994) Power Types. In: J. Object Oriented
Program. 7(2), pp. 8–12

Rodríguez A., Durán F., Rutle A., Kristensen L. M.
(2019a) Executing Multilevel Domain-Specific
Models in Maude. In: Journal of Object Techno-
logy 18(2), 4:1–21

Rodríguez A., Durán F., Rutle A., Kristensen L. M.
(2019b) Executing Multilevel Domain-Specific
Models in Maude. In: Journal of Object Techno-
logy 18(2), 4:1–21

Rodríguez A., Macías F. (2019) Multilevel Mod-
elling with MultEcore: A Contribution to the
MULTI Process Challenge. In: Proceedings of
MULTI @ MODELS, pp. 152–163

Rodríguez A., Rutle A., Durán F., Kristensen
L. M., Macías F. (2018) Multilevel modelling
of coloured petri nets. In: Hebig R., Berger T.
(eds.) Proceedings of MODELS 2018 Workshops,
Copenhagen, Denmark, October, 14, 2018. CEUR
Workshop Proceedings Vol. 2245. CEUR-WS.org,
pp. 663–672

Rodríguez A., Rutle A., Kristensen L. M., Durán F.
(2019c) A Foundation for the Composition of Mul-
tilevel Domain-Specific Languages. In: MULTI@
MoDELS, pp. 88–97

Rossini A., de Lara J., Guerra E., Rutle A., Wolter
U. (2014) A formalisation of deep metamodelling.
In: Formal Aspects of Computing 26(6), pp. 1115–
1152

292 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 33

Somogyi F. A., Mezei G., Urbán D., Theisz Z.,
Bácsi S., Palatinszky D. (2019) Multi-level Mod-
eling with DMLA - A Contribution to the MULTI
Process Challenge. In: 22nd ACM/IEEE Interna-
tional Conference on Model Driven Engineering
Languages and Systems Companion, MODELS
Companion 2019, Munich, Germany, September
15-20, 2019. IEEE, pp. 119–127

Steinberg D., Budinsky F., Merks E., Paternostro
M. (2008) EMF: Eclipse Modeling Framework.
Pearson Education

Theisz Z., Bácsi S., Mezei G., Somogyi F. A., Pal-
atinszky D. (2019) By Multi-layer to Multi-level
Modeling. In: 22nd ACM/IEEE International Con-
ference on Model Driven Engineering Languages
and Systems Companion, MODELS Companion
2019, Munich, Germany, September 15-20, 2019.
IEEE, pp. 134–141

Urbán D., Theisz Z., Mezei G. (2018) Self-
describing Operations for Multi-level Meta-
modeling. In: Hammoudi S., Pires L. F., Selic
B. (eds.) Proceedings of the 6th International
Conference on Model-Driven Engineering and
Software Development, MODELSWARD 2018,
Funchal, Madeira - Portugal, January 22-24, 2018.
SciTePress, pp. 519–527

Wolter U., Macías F., Rutle A. (Nov. 2019) The
Category of TypingChains as a Foundation ofMul-
tilevel Typed Model Transformations. 2019-417.
University of Bergen, Department of Informatics

Paper F 293

International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

34 Alejandro Rodríguez, Fernando Macías

A Complete model of Acme software engineering process

RequirementsAnalysis

Task@2 1-1-1

Design

Task@2 1-1-1
TestCaseDesign

isCritical=true

Task@2 1-1-1

Coding

Task@2 1-1-1
TestDesignReview

Task@2 1-1-1

Testing

expectedDuration=9

Task@2 1-1-1

AndSplit1

AndSplit@2 0-0-0

InitialTask

InitialTask@2 1-1-1

Sequence1

Sequence@2 0-0-0

Sequence2

Sequence@2 0-0-0

Sequence3

Sequence@2 0-0-0

Sequence4

Sequence@2 0-0-0

FinalTask

FinalTask@2 1-1-1

AndJoin1

AndJoin@2 0-0-0

Analyst

Role@2 1-1-1

RequirementsSpecification

SEArtifact 1-1-1

TestCase

SEArtifact 1-1-1

SeniorAnalyst

SeniorRole@2 1-1-1

Developer

Role@2 1-1-1

Code

SEArtifact 1-1-1

ProgrammingLanguage

SEArtifact 1-1-1

Tester

Role@2 1-1-1

TestReport

SEArtifact 1-1-1

BobBrown

SEActor 0-0-0

AcmeProcess

Process@2 1-1-1

sequence1_s@0-0-0

source@2

sequence1_t@0-0-0

target@2

andsplit1_s@0-0-0
source@2

andsplit1_t1@0-0-0

target@2

andsplit1_t2@0-0-0

target@2

sequence2_s@0-0-0

source@2

sequence3_s@0-0-0

source@2

sequence2_t@0-0-0

target@2

sequence3_t@0-0-0
target@2

andjoin1_s1@0-0-0

source@2

andjoin1_s2@0-0-0

source@2

andjoin1_t@0-0-0

target@2

sequence4_s@0-0-0

source@2

sequence4_t@0-0-0

target@2

analyst_executes@1-1-1

executes@2

reqanalysis_produces@1-1-1

produces@2

testcasedesign_produces@1-1-1

produces@2

senioranalyst_executes@1-1-1

executes@2

coding_produces@1-1-1

produces@2

developer_executes@1-1-1

executes@2

coding_uses@1-1-1

uses@2

written@1-1-1

EReference

tester_executes@1-1-1

executes@2

testing_produces@1-1-1

produces@2

isTested@1-1-1

EReference

bobbrown_creates1@0-0-0
creates@2

bobbrown_creates2@0-0-0

creates@2

bobbrown_creates3@0-0-0

creates@2

bobbrown_creates4@0-0-0

creates@2

bobbrown_creates5@0-0-0

creates@2

bobbrown_creates6@0-0-0

creates@2

bobbrown_creates7@0-0-0

creates@2

bobbrown_creates8@0-0-0

creates@2

bobbrown_hasrole1@0-0-0

hasRole@2

bobbrown_hasrole2@0-0-0

hasRole@2

acmeprocess_initialtask@1-1-1

initialTask@2

acmeprocess_contains1@1-1-1

contains@2

acmeprocess_contains4@1-1-1

contains@2

acmeprocess_contains5@1-1-1

contains@2

acmeprocess_contains2@1-1-1

contains@2

acmeprocess_contains3@1-1-1

contains@2

acmeprocess_contains6@1-1-1

contains@2

acmeprocess_finaltask@1-1-1

finalTask@2

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21
lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

testdesignreview_uses@1-1-1

uses@2

Figure 14: Level 3: Complete Acme software engineering process model

294 Paper F

Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
Multilevel Modelling with MultEcore 35

B Complete model of XSure insurance Claim Handling process

ClaimHandling
Process 1-1-1

ReceiveClaim
Task 1-1-1

AssesClaim
Task 1-1-1

PayPremium
Task 1-1-1

Sequence1
Sequence 0-0-0

Sequence2
Sequence 0-0-0

InitialTask
InitialTask 1-1-1

FinalTask
FinalTask 1-1-1

Sequence3
Sequence 0-0-0

Sequence5
Sequence 0-0-0

BenBoss
Actor 1-1-1

ClaimHandlingManager
Role 1-1-1

Sequence4
Sequence 0-0-0

AuthorizePayment
Task 1-1-1

FinancialOfficer
Role 1-1-1

ClaimAssessor
Role 1-1-1

Claim
Artifact 1-1-1

ClaimPaymentDecision
Artifact 1-1-1

SeniorManager
SeniorRole 1-1-1

ProjectLeader
Role 1-1-1

sequence1_s@0-0-0

source

sequence1_t@0-0-0

target

sequence2_s@0-0-0

source

sequence2_t@0-0-0

target

sequence3_s@0-0-0

source

sequence5_s@0-0-0

source

sequence5_t@0-0-0

target

claimhandling_initialtask@1-1-1

initialTask

claimhandling_contains1@1-1-1

contains

claimhandling_contains2@1-1-1

contains

claimhandling_contains4@1-1-1

contains

claimhandling_finaltask@1-1-1

finalTask

benboss_creates@0-0-0

creates

sequence3_t@0-0-0

target

sequence4_s@0-0-0
source

sequence4_t@0-0-0

target

claimhandling_contains3@1-1-1

contains
chmanager_executes@1-1-1

executes

fofficer_executes@1-1-1

executes

claimassessor_executes@1-1-1

executes

assessclaim_uses@1-1-1
uses

assessclaim_produces@1-1-1

produces

lastUpdated=26-Apr-21 lastUpdated=26-Apr-21 lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

lastUpdated=26-Apr-21

Figure 15: Level 2: XSure insurance Claim Handling process model

Paper F 295

	Dedication
	Preface
	Acknowledgments
	Abstract
	Sammendrag
	I Overview
	Introduction
	Modelling
	Model-Driven Software Engineering
	Multilevel modelling
	Composition
	Execution and verification
	Coloured Petri nets
	Research questions
	Research method
	Summary of papers
	Paper A: Formal Modelling and Incremental Verification of the MQTT IoT Protocol
	Paper B: Verification of the MQTT IoT Protocol Using Property-Specific CTL Sweep-Line Algorithms
	Paper C: Executing Multilevel Domain-Specific Models in Maude
	Paper D: Composition of Multilevel Domain-Specific Modelling Languages
	Paper E: Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude
	Paper F: Multilevel Modelling with MultEcore: A contribution to the Multi-Level Process Challenge

	Contributions
	Outline
	Supplementary material

	Multilevel Modelling
	The MOF Architecture
	The beginning of Multilevel Modelling
	Aspects of Multilevel Modelling
	Levels
	Instance characterisation

	Multilevel Modelling approaches
	Multilevel Modelling languages
	Multilevel Modelling tools
	Classifying Multilevel Modelling approaches

	Multilevel Modelling in MultEcore
	Structure
	Semantics

	Language Composition
	Composition in MDSE
	Structure composition
	Merge operator
	Weaving operator
	Inheritance operator
	Linguistic extension

	Behaviour composition
	Acting on model transformations
	Acting on behavioural models

	Composition in MultEcore
	Composition of Multilevel Hierarchies
	Amalgamation of MCMTs

	Execution and verification
	Model transformations
	Execution semantics
	Denotational and Translational semantics
	Operational semantics
	Axiomatic semantics

	Model execution
	Model verification
	Execution and Verification in MultEcore

	The Coloured Petri nets case study
	Coloured Petri nets
	The CPN modelling language
	Coloured Petri nets in MultEcore
	Petri nets concepts
	Regular Petri nets
	Coloured Petri nets

	Behaviour of Coloured Petri nets
	Composition of Petri net languages

	Related work, conclusions and future Work
	Related work
	Multilevel Modelling
	Composition
	Execution and verification

	Research Questions revisited
	Summary of contributions
	Contributions to Coloured Petri nets
	Contributions to Multilevel Modelling
	Case studies

	Future work
	Coloured Petri nets
	Multilevel Modelling

	Conclusions

	Bibliography

	II Articles
	Formal modelling and incremental verification of the MQTT IoT protocol
	Verification of the MQTT IoT Protocol Using Property-Specific CTL Sweep-Line Algorithms
	Executing Multilevel Domain-Specific Models in Maude
	Composition of Multilevel Domain-Specific Modelling Languages
	Execution and Analysis of MultEcore Multilevel Modelling Languages using Maude
	Multilevel Modelling with MultEcore: A contribution to the Multi-Level Process Challenge

