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Abstract—Vegetation Management is a significant preventive
maintenance expense in many power transmission and distribu-
tion companies. Traditional Vegetation Management operational
practices have proven ineffective and are rapidly becoming
obsolete due to the lack of frequent inspection of vegetation
and environmental states. The rise of satellite imagery data
and machine learning provides an opportunity to close the loop
with continuous data-driven vegetation monitoring. This paper
proposes an automated framework for monitoring vegetation
along power lines using high-resolution satellite imagery and
a semi-supervised machine learning algorithm. The proposed
satellite-based vegetation monitoring framework aims to reduce
the cost and time of power line monitoring by partially replacing
ground patrols and helicopter or drone inspection with satellite
data analytics. It is implemented and demonstrated for a power
distribution system operator (DSO) in the west of Norway. For
further assessment, the satellite-based algorithm outcomes are
compared with LiDAR survey data collected by helicopters.
The results show the potential of the solution for reducing the
monitoring costs for electric utilities.

Index Terms—Satellite imagery, Vegetation management,
Power systems, Electric grid monitoring, Semi-supervised seg-
mentation

I. INTRODUCTION

POWER transmission and distribution networks spread
across countries and pass through forests, over various

terrain, and cities on their journey to electricity consumers.
Whenever vegetation interferes with power lines, it brings
safety, economic, and environmental risks. Vegetation, com-
bined with severe weather conditions, is the predominant
reason for outages in power systems that put millions of people
in darkness and bring billions of dollars in economic damage
[1]. In areas with severe drought, vegetation encroachment in
power lines’ right-of-way (ROW) can cause massive wildfires
with high fatality rate [2], [3]. Vegetation monitoring and
management is becoming ever more important in the wake
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of climate change and the increasing frequency and duration
of extreme weather events [4].

Utilities traditionally take a time-based approach with a
fixed cycle to vegetation monitoring by sending ground-based
patrol for visual line inspection and flying helicopters or
drones for optical and LiDAR surveys of the power lines. Due
to the vast size of service territories, the length of power lines,
and the line inspection costs, vegetation monitoring’s typical
cycle varies between one to ten years for different electric
utilities [5]. For example, the US electrical grid has more
than 200,000 miles of high-voltage transmission lines and 5.5
million miles of local distribution lines [6].

Existing literature on vegetation monitoring mostly uses
LiDAR surveys performed by helicopters or drones [7], [8].
LiDAR data provide an accurate 3D representation of an envi-
ronment. However, LiDAR data acquisition and processing are
extremely pricey and time-consuming. If LiDAR-based line
monitoring is performed for a large transmission or distribution
company, it is often done infrequently at an interval of once
every 5 to 10 years to scan the whole service area [9].

In recent years, the drop in launching costs and the growing
number of satellites and mini-satellites in orbit with high-
quality sensors has significantly reduced the cost of satellite
imagery [10]. Commercial satellite providers can offer high-
resolution images (0.25 or 0.5 meters/pixel) with frequent
revisiting time that covers most of the world. Consequently,
it brings the opportunity to combine scale, frequency, and
cost efficiency to enhance situational awareness regarding
vegetation encroachment in power lines’ right-of-way using
high-resolution satellite imagery [11], [12]. Therefore, vegeta-
tion management can be changed from traditional time-based
monitoring to risk-based monitoring.

Some studies [13], [14], [15] made use of multispectral
stereo pairs of satellite images for each specific area to
identify trees along power lines. However, stereo images are
challenging to capture and are costly for large scale areas [16].
This paper proposes a machine learning-based algorithm for
vegetation detection using a single satellite image, which is
more cost-effective.

Vegetation detection from single monocular images is also
a well-studied topic, particularly in the forest management of
agriculture and urban areas using classic image processing
tools for vegetation detection [17], [18], [19], [20]. However,
such approaches have been developed to work well where trees
are easily distinguishable, i.e., in low-density vegetation areas
[21] or when the trees are regularly spaced from each other in
orchids, which is not the case in the vast majority of power
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lines’ ROW [22].
Nowadays, Convolution Neural Networks (CNNs), have

become the leading machine learning methodology in many
fields due to their effectiveness at extracting feature repre-
sentations from images for classification and segmentation
purposes [23], [24]. For example, [25] proposed a semantic
segmentation-based deep learning method to classify vege-
tation (tree, shrub, and grass) using only RGB images. In
a similar work, [26] used a U-Net architecture for analyz-
ing high-resolution satellite images to map forests. However,
deep learning methods are generally supervised approaches
and need massive labeled datasets for the training, which
is extremely scant and expensive for satellite imagery and
remote sensing applications. Weakly-supervised methods are,
in general, more practical [27].

This paper proposes a framework to monitor vegetation
proximity to power lines using high-resolution satellite images.
From a methodological point of view, it is a semi-supervised
approach for vegetation detection that is a combination of
a deep unsupervised architecture and a supervised machine
learning algorithm. Being unsupervised, the first layer of the
proposed framework does not need any training data and takes
advantage of deep learning to capture meaningful patterns
in satellite images automatically. Nevertheless, it lacks the
semantic information about the physical meaning of the dif-
ferent clusters. On the other hand, the second supervised layer
contains the semantic knowledge of the vegetation patterns in
a satellite image, and it can be trained with minimal training
data. The proposed approach’s outcome is a geolocation map
for vegetation-related threats along power lines that provides
updated situational awareness to vegetation management teams
in electric utilities. The vegetation threat map is based on the
density and proximity of vegetation encroachment in power
lines’ right-of-way. The proposed framework is implemented
and validated in a vegetation management system for a power
distribution company in the western part of Norway. The
vegetation detection results from satellite images showed high
matching with the available LiDAR survey data which has
been used as the ground truth for the use case area.

II. USE CASE AND DATA DESCRIPTION

The study has been performed in collaboration with a power
distribution system operator (DSO) located in the western part
of Norway. The study area is a 22kV sub-transmission network
in a rural region that includes fields, sparse and dense forests,
and water streams. Power lines’ right-of-way is 20 meters
on each side which forms a 40 meter corridor (see Fig. 1).
Different datasets relative to the study area have been acquired
as further described in the following.

A. Satellite imagery
Two commercial high-resolution multispectral satellite im-

ages were used for the study area. The first is a Worldview-
2 8-channel image provided by Maxar and acquired in May
2018. The second is a Pleiades-1 4-channel image provided
by Airbus and acquired in September 2017, (see Fig. 2). Both
images contain separate channels ranging from visible to near-
infrared with a 0.5 meter/pixel spatial resolution.

Fig. 1: Study area located on the western coast of Norway

(a)

(b)

Fig. 2: RGB satellite image for the study area. The figure highlights the
regional power line (red) and sub-regional power line (green).

B. LiDAR point clouds

We also use LiDAR data in our study as a benchmark to
validate our satellite-based vegetation detection. The available
LiDAR data are grouped into different categories (vegetation,
buildings, roads, stones, poles), see Fig. 3.

The heights of 22kV overhead lines in the study area in
the western part of Norway are at a minimum of 7.8 meters
with an average of 10.8 meters. Trees should have at least
a 2.0 m distance to the conductors considering the catenary
curvature of wires [28], [29]. In this study, we used LiDAR
data provided by our electric utility partner as the ground truth
for trees’ location in the vicinity of power lines’ right-of-way.
However, the acquisition time for the available LiDAR data
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(a) 3D point clouds

(b) 2D projection

Fig. 3: Examples of LiDAR data used in the study

(Sep 2019) is different from the satellite imagery data we have
(Sep 2017 and May 2018) for the study area. To resolve the
time difference among data from LiDAR and both satellite
images, we assume that trees with a height higher than 2.5
meters in 2019, as observed in LiDAR data, are probably
older than two years old based on growth rate of trees in
this region. Therefore, the trees taller than 2.5 meters in 2019
are observable in satellite images from 2018 and 2017 at the
same location along the power lines’ ROW.

III. METHODOLOGY

The satellite image is analyzed using the proposed algo-
rithm, within a sliding window covering the power line right-
of-way. In this study, we use windows of 40 by 40 meters (80
× 80 pixels). The algorithm sweeps the whole length of the
electric power line in the study area.

Then, a segmentation map is created to show whether each
pixel is a part of a tree or not. The proposed machine learning
framework for satellite image processing is an ensemble of two
different algorithms to enhance the overall performance. The
first one is a supervised segmentation approach based on hand-
crafted features, while the second one is a fully unsupervised
algorithm developed for image segmentation tasks [30]. The
output of the proposed machine learning framework is used
for mapping vegetation risk along the power lines. Different
blocks of our proposed framework, as shown in Fig. 4, are
explained as follows.

A. Data Pre-processing Block

To develop a learning algorithm for tree detection, we need
to have labeled data for training and testing. Such labeled data
are a collection of binary images (for example ”1” for tree and

”0” for non-tree) that include the ground truth with the correct
location of trees. In this paper, we create the first labeled
dataset with the open-source raster graphics editor GIMP.
A second set of labeled data is created automatically using
LiDAR point-clouds for the same region. The 3D point clouds
are projected in 2D at Nadir and converted into gray-scale.
The resultant gray-scale binary image is smoothed through a
dilation operation (using a 3× 3 kernel).

The satellite image that we use is ortho-rectified and pan-
sharpened [31]. Ortho-rectification enables the correction of
potential defaults that exist due to satellite tilt or terrain
distortions in cases where the satellite on-board sensor is not
pointing directly at the Nadir direction. Pan-sharpening, on
the other hand, increases the natively low-resolution parts of
a multispectral image by combining them with the higher res-
olution panchromatic pixels. The image is in GeoTiff format,
which includes geo-references for each pixel, allowing for
proper location in real-world coordinates.

B. Supervised Image Segmentation Block

Specific features are extracted at pixel-level, directly from
the multi-channel images, and grouped into a vector associated
with each pixel. A machine learning classifier [32] is then
trained. In this paper, we use spectral features, texture features,
and a Gaussian kernel as follows:

1) Spectral Features: First, we extract the pixel values
coming from the different bands of a multispectral satellite
image. Furthermore, we use the Normalized Difference Vege-
tation Index (NDVI) [33] to recognize vegetation. NDVI is a
commonly used tool in remote sensing for vegetation detection
and defined as:

NDV I =
ρnir − ρred
ρnir + ρred

(1)

where ρred and ρnir stand for the spectral reflectance measure-
ments acquired in the red (visible) and near-infrared regions,
respectively.

2) Texture Features: Texture patterns are useful in identi-
fying objects that may appear very similar to each other in
an image from a color-based perspective (for example, trees
and green fields). We convolute the gray-scale image obtained
from the RGB components with a set of filter banks composed
by Gabor filters to generate pixel responses at different scales
and orientations [34].

As additional texture information, we also use the Gray
Level Co-Occurrence Matrix (GLCM) [35]. From such a
matrix, specific texture operators [36] can be extracted. Al-
though a large number of operators exist, most of them are
correlated, as explained in [37]. Therefore, we decided to use
only contrast and correlation operators.

3) Gaussian Kernels: The next feature we use in this study
is a Gaussian kernel. The Gaussian kernel (with variance equal
to 1) is convolved with a gray-scale image derived from the
RGB components. Such a kernel acts as a low-pass filter
leading to a slightly blurred image. The Gaussian low pass
filters are becoming more common in image processing to
cancel the noise [38].
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Fig. 4: Overview of the proposed vegetation monitoring framework

4) Supervised Machine Learning Algorithm for Vegetation
Segmentation: The computed features values are stacked into
a vector and we use the AdaBoost ensemble technique [39] to
train a classifier. Such a classifier will assign a probability of
being part of a tree, Ptree, to each pixel in the image. Finally,
we use an energy minimization algorithm solved via graph cuts
[40] to turn the probabilistic map into a binary segmentation
map.

C. Unsupervised Image Segmentation Block
The unsupervised segmentation block is composed of a fully

convolutional neural network (FCN) [41] to extract features
and a superpixel refinement process [42] for self-training of
the model. Fig. 5 illustrates the architecture of this network.

Convolution Relu
Batch 

Nornalization

Features Extraction

Superpixel
refinement

Softmax Loss

Argmax
classification

Arg max

𝐱

𝒚

𝒄

෤𝒄

Fig. 5: Diagram of the unsupervised segmentation block

We compute the feature map x from the image I through
M (equal to 4 in our study) convolutional blocks consisting

each of a 2D convolution with a 3×3 kernel, a relu activation
function, and a batch normalization step. Then, a response
map is calculated through an additional convolution as y =
Wcx+bc where Wc, bc are, respectively, the weights and biases
of the last convolutional layer. Finally, we obtain the cluster
label c for each pixel by selecting the dimension along the
vector y that has the maximum value.

In image segmentation, the clusters of image pixels should
be spatially continuous. Therefore, we first extract K fine
superpixels from the image. Then, we force all the pixels in
each superpixel to have the same cluster label c̃, defined as
the most frequent cluster in each superpixel.

The self-training procedure is done solving two sub-
problems alternately: a forward process of the network fol-
lowed by the superpixel refinement and a back-propagation
process based on stochastic gradient descent with a learning
rate of 0.01. The loss function is calculated as the cross-
entropy between the network response y and c̃. Algorithm
1 shows the pseudo-code of such an approach.

D. Combination Strategy

The aforementioned fully unsupervised approach can seg-
ment the image into different clusters. A cluster is a group
of pixels sharing common properties (color, texture pattern,
etc). However, the algorithm lacks the semantic knowledge
about the physical meaning of different clusters available in
an image. On the other hand, the supervised model has been
specifically trained to recognize trees. Therefore, we combine
the output of the supervised block presented in subsection
III-B with the output of the unsupervised block of subsection
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Algorithm 1 Unsupervised image segmentation
Input: Image I
Output: Segmented image S
(Wm, bm,Wc, bc) ← InitializeWeights()
Sk ← GetSuperPixels(I)
for t = 1 to N iterations do

x ← getFeatures(I;Wm, bm)|Mm=1

y ← forwardStep(x;Wc, bc)
c ← argmax{y}
for k=1 to K do

cmax ← argmax c, ∀c ∈ Sk

c̃ ← cmax, ∀pixel ∈ Sk

end for
L ← CrossEntropyLoss(y, c̃)
(Wm, bm,Wc, bc) ← Update(L)

end for

III-C. In this way it is possible to understand whether a cluster
should be considered as ”trees” or ”non-trees”. Algorithm 2
shows how this combination is performed.

Algorithm 2 Combination of the two blocks
Input1: Multi-class segmentation image from the unsupervised

block (U) = {U0, U1, U2, . . . }
Input2: Binary segmentation image from the supervised block

(S) = {S0 = trees, S1 = no-trees}
for each cluster Ui in (U) do

Check in which class of (S) the pixels of Ui are mapped into
if most of the pixels are mapped into S0 = 0 then

Assign the pixels of Ui to S0

end if
if most of the pixels are mapped into S1 then

Assign the pixels of Ui to S1 = 1
end if

end for

IV. RESULTS AND DISCUSSIONS

To validate the performance of the proposed framework
for vegetation detection, we implement it on a 22kV sub-
transmission power line in the western part of Norway with
26 km of lines. Two high-resolution satellite images have been
used, as explained in subsection II-A. The available LiDAR
survey for the same part of lines has been used as the ground
truth to cross-validate our satellite-based solution’s outcomes.

To start the validation, we test the supervised block to
compute the segmentation output accuracy by applying differ-
ent combinations of features. We use the manually-annotated
dataset for the satellite imageries. The training dataset consists
of five manually labeled 800x800 pixels images, where a
subset of 1.500.000 pixels has been selected to have balanced
classes. The validation dataset is made of ten 400x400 pixels
images.

We found out that the GLCM texture operator performs
better than the Gabor filter. Surprisingly, adding the NDVI
lowers the overall accuracy. NDVI is an indicator of the
chlorophyll richness, so it can be used to detect vegetation.
However, it fails to sufficiently distinguish between trees
and grassy fields. Furthermore, trees with small canopies or
otherwise sparse foliage might not be adequately detected
using NDVI. However, NDVI remains an important vegetation

detection index that may still be helpful in other scenarios with
different datasets.

The machine learning algorithm output is a black and white
segmented image that shows tree and non-tree in each part
of the line, (see the blue-colored zone in the middle of
the Fig. 4). For the sake of visualization, Fig. 6 shows a
comparison between the manually labeled satellite images and
the classifier’s output for three image samples. A comparison
between the proposed approach’s output and LiDAR’s ground
truth is shown in Fig. 7.

Fig. 6: From top to bottom: RGB image (first row), ground truth provided
by manual labeling (second row), probabilistic map showing Ptree for each
pixel (third row), and segmentation output (last row)

.

We create an easy-to-understand metric, called Tree Density
Index (TDI), to present and visualize our vegetation detection
algorithm’s outcome for grid maintenance teams. The pro-
posed metric can be used in mapping vegetation encroachment
to power lines right-of-way. The TDI quantifies the presence
of trees near power lines, especially the trees that encroach
into the lines’ ROW.

We multiply the segmented images M with a Gaussian
kernel G as a weighting function within the window W , as
described in Eq. (2). The weighting function’s choice (TDI) is
based on the distance of trees to power lines, since trees near
power lines pose more risk.

TDI =

∫
W

M ⊗Gdw ∈ (0, 1) (2)

The TDI values, in the range of [0,1], are divided into
different levels of vegetation status using the following criteria.
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(a) Tree coverage scanned by LiDAR

(b) Tree coverage detected by the algorithm

Fig. 7: Example of trees detected along the power grid by (a) LiDAR and (b)
the proposed classifier


Level 0 (Negligible): TDI ≤ 0.2

Level 1 (Minor): 0.2 < TDI ≤ 0.4

Level 2 (Moderate): 0.4 < TDI ≤ 0.8

Level 3 (Severe): TDI > 0.8

(3)

Using the Tree-Density Index from Eq. (2), it is possible to
create a heat map showing vegetation density and proximity
levels along the power grid. We calculate TDI values for the
entirety of the power lines in our study area using the two
satellite images and the LiDAR ground truth. Fig. 8 shows
an example of the resultant heat map for the study area.
The vegetation density heat map shows that most of the line
sections are safe (green colored and TDI < 0.2). It also shows
that our partner electric utility does not need to make an
immediate tree trimming action in those areas.

A confusion matrix is then used to show the comparison
results for detected trees’ location in satellite images and
LiDAR data. Fig. 9a and 9b show the confusion matrices
for Pleiades-1 and WorldView-2 imagery respectively. The
upper-triangular part of each confusion matrix corresponds to
locations where the predicted TDI is higher than the true value;
it means that we are overestimating the vegetation density.
Symmetrically, the lower-triangular part corresponds to areas
where the predicted TDI is lower than the real value; in other
words, it shows that we are underestimating the vegetation
density.

We make the assumption that all locations with TDI values
higher than 0.4 can cause a vegetation related threat to power
lines. From Eq. (3), values higher than 0.4 cover areas with

Fig. 8: Heat-map showing areas where there is more vegetation around power
lines
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(a) Pleiades-1 satellite image
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(b) WorldView-2 satellite image

Fig. 9: Confusion matrix from the levelized values of the TDI along the line
using the Pleiades-1 and WorldView-2 satellite image

moderate to high vegetation densities, and they need to be
monitored carefully for possible tree trimming and cutting
actions. In this way, we can compute how well the algorithm
detects a vegetation threat. For example, using Pleiades-1
satellite image, the algorithm detects non-threat vegetation
zones correctly by 98.2% and it detects the threat vegetation
zones by 84.6%.

From Fig. 9, we also see that there are very few cases
in which the algorithm underestimates the vegetation level.
For example, using Pleiades-1 there are zero cases in which a
location detected as negligible (level 0) is severe (level 3) in
reality.

In practice, this means that our algorithm has high confi-
dence in detecting areas with low vegetation density. In other
words, the vegetation management team can avoid inspecting
areas that the algorithm points to as ”safe” (green) or with-
out risky vegetation. Consequently, it brings the vegetation
management teams’ attention on areas with high vegetation
density or with risky vegetation (red). It reduces the power
line inspection time and cost accordingly.

V. PRACTICAL CONSIDERATIONS FOR ELECTRIC
UTILITIES

The combination of satellite-based data and artificial intelli-
gence gives electric utilities a unique opportunity to modernize
tasks that incorporated repetitive observation and inspection,
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especially over large areas. This paper introduces a platform
for monitoring vegetation encroachment into power lines’
right-of-way using high-resolution satellite imagery.

A. On the classic close-up asset monitoring and satellite
images

It is worth mentioning that the need for close-up inspection
of power line components using ground patrol, helicopters, or
drones to check the asset’s mechanical and structural health,
in addition to vegetation monitoring, remains the same. In
reality, classic close-up visual inspections for the whole grid
are performed once within a long period (up to 10 years) due
to their high costs and time constraints. This infrequent inspec-
tion over a long span of time can increase the probability of
failures and outages specifically for vegetation-related events
considering vegetation growth rates. Therefore, vegetation-
related inspections need to be executed more often and in peri-
ods between classic close-up asset inspections. Our proposed
satellite-based vegetation monitoring approach complements
the legacy asset management practice by providing low-cost
and frequent situational awareness for vegetation management
teams.

Consequently, vegetation management can be changed from
traditional time-based ROW inspection (periodic) to risk-based
ROW inspection by improving scale, frequency, and cost-
efficiency in ROW inspection.

B. On the cost-effectiveness of satellite images for vegetation
monitoring

Satellite imagery data is typically more cost-effective than
other image capture methods such as helicopter and drone,
especially as the inspection area increases [11], [12]. Com-
mercial satellite providers can offer high-resolution images
with a high revisiting time covering most of the world. A
survey performed in 2015 [43] showed that satellite imagery
for a specific region was up to 60 % cheaper than using drone
images.

Our study was performed under the GridEyeS project for
using satellite imagery for power system operation supported
by the European Space Agency [44]. We have surveyed 15
electric utilities in North America and Europe regarding their
typical practices and cost of vegetation monitoring during
our study. The line inspection cost using helicopters, light
airplanes, or drones varies from 60 to 1300 Euros per km of
the power line. The higher range of inspection costs belongs to
LiDAR scanning technologies. The high cost of power lines’
health condition monitoring (including vegetation encroach-
ment monitoring) and the vast size of service territories force
utilities to often cover the whole service area with a long
periodicity (typically 2 to 10 years) [5]. This leads to sub-
optimal revisiting frequency for each section of the line.

The use of high-resolution satellite imagery for vegetation-
related inspection costs is generally below 15 Euros, depend-
ing on commercial providers. This makes satellite-based solu-
tions economically attractive. The power line in our selected
study area is approximately 26 kilometers long. In total, 20
kilometers of the line are in a normal condition regarding

vegetation encroachment into power lines’ ROW. Using the
proposed platform, the vegetation management team has an
option to only focus on the 6 km of the line with a high
vegetation level, identifiable with the red color in Fig. 8.

The average cost of line inspection for our partner utility
using a helicopter or a drone is 1200 Euros per km, which
means an overall 26 x 1200 = 31200 Euros in the inspection
cost. Limiting vegetation-related inspections to only 6 km of
the red zone leads to inspection cost reduction depending on
the distribution of red spots across the entire line and the
number of helicopter or ground crew maneuvers to cover those
spots. This example aims to provide an idea of saving potential
for vegetation monitoring rather than a detailed cost-benefit
analysis.

C. On the selecting the appropriate satellite images for veg-
etation monitoring

From a practical point of view, remote sensing applications’
accuracy, including vegetation detection, is highly influenced
by different aspects.

• A major factor in the quality of vegetation detection is the
resolution of the satellite images. In this study, we used
50 cm resolution satellite images, which are one of the
best resolution available from commercial providers. For
example, there are no-cost to low-cost satellite images
with 10 meters resolution from Sentinel satellites under
the Copernicus program provided by the European Space
Agency [45]. However, such low-resolution images can
not provide the level of details needed to detect and
measure vegetation’s density in the vicinity of power
lines. Moreover, the high-resolution satellite images also
provide insights on vegetation type, growth rate, vege-
tation health, environmental impacts, and the quality of
trimming activities by using data from multiple satellite
images of the same area over time. Figure 10 shows how
the different resolution of some available products can
dramatically affect the detection quality.

(a) 10 meter resolution satellite
image

(b) 0.5 meter resolution satel-
lite image

Fig. 10: Visual comparison of the same area from two different popular
satellite providers

• Another important aspect is the acquisition date. As
shown in the Results section, Pleiades-1 provided slightly
better accuracy. A possible explanation is that in early
May, trees are not yet completely developed, especially
in Norway. Therefore, the algorithm has more difficulties
in precisely detecting trees, particularly deciduous ones.
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Fig. 11 shows a comparison between two image samples
from different seasons. Note that the foliage of some trees
are not as fully developed in May compared to the canopy
cover in September. It is worth mentioning that there
can be periods more suitable for vegetation monitoring.
Power companies should prioritize monitoring in specific
months rather than in other months (in summer, for
example) to generate the best results, taking geographical
location and growing seasons into consideration.

(a) WorldView-2: May (b) Pleiades-1: September

Fig. 11: Visual comparison between two images before and after summer. Note
how the canopy of some trees are not fully developed yet in May compared
to September

• Cloud coverage is also another factor that affects all
remote sensing applications which are based on opti-
cal imagery. Prior to our analytics, we tried to pick
proper satellite images that have less cloud coverage over
the target area. Nowadays, commercial satellite image
providers are launching more satellites to orbit using
private companies such as Space-X. More satellites in
the space means more frequent revisit for any location in
the world. Consequently, the recent increase in satellite
revisit frequency will make it easier to acquire a cloud-
less image for a specific area with a short waiting time.

VI. CONCLUSIONS

This paper presents a framework to monitor vegetation
along power lines using high-resolution satellite images and
machine learning. Satellite imagery data introduce a new
paradigm for power transmission and distribution companies
with the potential to reduce the time and cost of ground inspec-
tions. We propose a semi-supervised approach that combines a
supervised classifier with a deep learning-based unsupervised
architecture for image segmentation. This enables the detection
of vegetation close to power lines and thus pose a risk to power
line infrastructure. The proposed framework has the potential
to aid operators of power-line infrastructure with vegetation
management. We validated the image segmentation approach
for a power grid in western Norway using airborne LiDAR.
Initial results indicate that this approach can correctly identify
vegetation risk areas with 84% accuracy for this particular
area. Areas of no risk are identified correctly in 92% of cases.
These initial results demonstrate the potential promise of this
satellite-based framework. The future work is toward further
improving the detection accuracy.
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