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ABSTRACT

Inmodel-driven software engineering, models are used in all phases of the development
process. These models must hold a high quality since the implementation of the
systems they represent relies on them. Models may get broken due to various editions
throughout their life-cycle, and preserving their quality is crucial. Several existing tools
reduce the burden of manually dealing with issues that affect models’ quality, such
as syntax errors, model smells, and inadequate structures. However, the same issues
might not have the same solutions in all contexts due to different user preferences and
business policies. Personalizationwould enhance the usability of automatic repairs
in different contexts while reusing the experience from previous repairs would avoid
duplicated calculations when facing similar issues. In addition, the variety of model
types together with the variety of potential issues require model repair tools and
approaches which are flexible, extendible, and customizable.

To this end, this thesis will focus on investigating the application of machine

learning (ML) for repairing models. Our aim is to build a model repair approach that
(i) provides automatic model repair, (ii) allows for user personalization, and (iii) may
be extended to support the repair of different types of models which possess different
kinds of issues. As a result, this thesis contains theoretical and practical contributions
regarding the application of ML in model repair and the design of a personalizable

and extensible model repair framework.
Applying ML in model repair is not a straightforward process, as most ML algo-

rithms require a large amount of labeled data which is still unavailable in the modeling
field. Hence, we propose the use of reinforcement learning (RL) algorithms, which
can learn to solve a problem by directly interacting with it, without needing to train
on labeled data. To improve the performance by reusing experience from previous
repairs, we also implement a transfer learning (TL) approach.

In order to provide personalizable and extensible model repair, we have designed a
modular framework: PARMOREL, wherewe integrate our RL andTL implementations.
In PARMOREL, users can specify their repair settings before or after the repair and
change the repair result by giving feedback to the framework. We extend and evaluate
PARMOREL’s modules through a series of implementations. The results show that
we achieve automatic and personalized model repair and that PARMOREL supports
different configurations of types of models, issues, actions, preferences, and learning
algorithms.





SAMMENDRAG

I modelldrevet programvareutvikling brukes det modeller i alle faser av utviklingspros-
essen. Disse modellene representerer programvare systemer, dermed er kvaliteten
til disse systemene avhengige av kvaliteten til modellene. Det kan oppstå feil og
mangler i disse modellene, ofte på grunn av uunngåelige endringer som må gjen-
nomføres som del av utviklingsprosessen. Reparasjon av disse feilene er avgjørende
for å bevare kvaliteten til systemene de representerer. Flere eksisterende verktøy
reduserer den byrden som er knyttet til manuell håndtering og reparasjon av feil i
modeller. Men automatisering alene er ikke tilstrekkelig siden de samme feilene kan
ha forskjellige løsninger i ulike sammenhenger avhengig av brukerpreferanser. Person-
alisering forbedrer derfor brukervennligheten til automatiske reparasjonsprosesser,
samtidig er det viktig å gjenbruke erfaringer fra tidligere reparasjoner for å unngå
duplisering av beregninger spesielt når mann står overfor lignende feil. I tillegg er flek-
sible og utvidbare modellreparasjonsverktøy meget viktige for å løse feil i forskjellige
modelltyper.

For å oppnå personalisering, automatisering, utvidbarhet og fleksibilitet i modell-
reparasjon, vil vi i denne avhandlingen anvende maskinlæring (ML). Vårt mål er å
utvikle en tilnærming som (i) sørger for automatisk modellreparasjon, (ii) tillater bruk-
ertilpasning, og (iii) kan utvides for å støtte reparasjon av forskjellige typer modeller
som innehar forskjellige typer feil.

Denne avhandlingen inneholder teoretiske og praktiske bidrag vedrørende anven-
delse av ML i modellreparasjon og utforming av et personlig tilpasset og utvidbart

modellreparasjonsrammeverk som vi kaller PARMOREL—Personalized and Auto-
matic Repair of Models using Reinforcement Learning.

Å bruke ML i modellreparasjon er ikke en enkel oppgave ettersom de fleste
ML-algoritmer krever en stor mengde data, noe som emmå ikke er tilgjengelig i model-
leringsfagfeltet. Derfor har vi valgt å bruke forsterket læring (RL— Reinforcement
Learning) algoritmer, som kan lære å løse problemer uten å trene på merkede data.
For å bruke RL til å reparere modeller, formaliserer vi først modellreparasjonsprob-
lemet som en Markov beslutningsprosess (MDP—Markov Decision Process). Deretter
definerer vi teorien for å løse MDP ved hjelp av RL. For gjenbruk av erfaringer fra
tidligere reparasjoner, har vi også implementert en tilnærming for å overføre læring
(TL—Transfer Learning).

I vårt rammeverk PARMOREL, hvor vi integrerer og anvender RL og TL, kan bruk-
erne spesifisere sine reparasjonsinnstillinger før eller etter reparasjonen, og endre
reparasjonsresultatet ved å gi tilbakemeldinger til rammeverket. Vi evaluerer PAR-
MORELs moduler gjennom en rekke utvidelser og eksperimenter. Resultatene viser at
vi oppnår automatisk og person tilpasset reparasjon av modeller, og at PARMOREL
støtter forskjellige konfigurasjoner av modelltyper, feiltyper, handlinger, preferanser
og læringsalgoritmer.
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Part I

OVERVIEW





Don’t do anything that’s been done before.
—Hiroshi Yamauchi

CHAPTER 1
INTRODUCTION

Since the end of the 20th century, society has entered an era where computing has
gradually become an essential part of daily life, to the point where the digital merges
with the fabric of the real world. As computation adoption grows, so does its complexity.
To manage this ever-increasing complexity, computing experts have created different
mechanisms to ease the development of software systems and to assure the correctness
in their design and operation. These mechanisms often focus on abstracting software
development from low-level code. By adding abstraction layers, software development
has evolved frombinary code instructions to softwaremodels. In addition to abstraction,
these models may be used to automatically generate (parts) of the software, to analyse
the software’s properties before implementation, and for communication purposes.

When designing models, developers may introduce various issues which corrupt
the models and reduce their overall quality. The chances of corrupting a model
increase along with the size of the development teams and the number of software
requirements. Also, the lack of coordination, misunderstanding, and mishandled
collaborative projects can lead to the corruption of models [90]. These issues may lead
to severe challenges in the later phases of the development process. Hence, solving
these issues is essential in modeling, which is the focus of the model repair field.

One of the main challenges in model repair is that, for any given set of issues, there
(possibly) exists an overwhelming number of repair actions that resolve them [62].
Hence, finding the appropriate actions to repair a model is not a trivial process.

As a consequence, a variety of approaches to model repair has been proposed over
the last decades [61, 72, 75]. Most of the approaches focus on a specific type of issues
existing in a specific kind of models. Additionally, as stated before, issues might have
multiple repair solutions that do not satisfy all modelers’ preferences. This situation
has been tackled from two perspectives: on the one hand, the modeling community
has developed a series of metrics and characteristics that can be used to get a measure
of the quality of the solution, such as analyzability, adaptability, and understandability
[20, 59], model distance [4, 89] or coupling [94]; on the other hand, the approaches in
the literature offer some degree of personalization in the repair process [32, 61, 75].

Depending on the degree of personalization offered, some approaches work as
support systems where the repair choice is fully left to the user’s criteria [75], automatic
approacheswith some degree of interaction (before, during, or after the repair) [32], and
fully automatic, non-interactive model repair [61]. Each approach presents advantages
and disadvantages. Support systems that personalize the repair process provide
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tailor-made solutions, however, they are time-consuming since they require close
interaction from the modeler and are hard to scale for repairing a wider range of
models. Automatic solutions improve repair time, however, they have the drawback
of providing the same solutions for the same errors although different modelers may
have different preferences for repairing the same model. A desirable solution should
provide a balance between automation and personalization of repair [62], facilitating
the use of both approaches’ advantages.

In this direction, cognifying model repair [30] could be a solution to establish a
balance between automation and personalization. Cabot et. al define cognification as
"the application of knowledge to boost the performance and impact of a process, (...) including
the combination of past and current human intelligence". Currently, cognification is mostly
achieved by applying machine learning (ML) algorithms.

Over the last years, ML has risen as a disruptive trend that is bringing a new era for
how we design and maintain technology. ML brings the potential to automate complex
tasks and replicate human behaviour in more and more domains, including software
engineering processes. ML’s ability to recognize patterns and learn how to deal with
them allows automating repetitive tasks such as bug fixing and code repair [85], testing
[34], quality assurance [33, 63], or verification [44]. Despite ML’s potential to provide
automatic model repair, there is not much research done in this direction.

Applying ML within modeling has already been identified as a challenge for the
community by authors in [28, 30, 70]. The main challenge for ML adoption in modeling
in general, not only in model repair, is about data availability [29, 45]. Most well-known
ML algorithms depend on large amounts of data to learn how to repair a problem [66].
Due to this lack of data, the type of ML algorithms feasible to apply to model repair is
reduced to those that do not require large amounts or labeled data to solve a problem.

In this thesis, the research idea is to study how reinforcement learning (RL), an ML
branch that does not require labeled data to solve a problem, can be applied to enhance
model repair. In order to deal with the different possible repair solutions that may exist
for an issue, we develop an automatic approach, using RL, that allows users to influence
the repair results—personalizing them to their requirements. Furthermore, we design
a framework with enough flexibility to handle the above-mentioned variations in the
model repair problem; i.e., types of models, issues, repair preferences, and actions.

1.1 Research questions

In this thesis, we focus on applying RL to model repair and developing an approach
that achieves personalized and extensible model repair. Specifically, we focus on the
following research questions (RQs):

• RQ1: How can RL algorithms improve model repair? How can we apply RL
algorithms in model repair?

• RQ2: How can we keep a human in the loop when performing model repair?
How well can human intervention improve results?

• RQ3: How can a model repair framework be designed to tackle the variety of
repair situations existing in the model repair field?

4 Chapter 1



1.2 Outline

RQ1 is concerned with the investigation of RL algorithms, how they can be applied
into model repair and how useful they can be in solving current model repair chal-
lenges. RL offers a series of features that could solve model repair challenges, such as
the ability to solve a wide range of problems without following a tailor-made approach,
offering equilibrium between automation and a manual approach, and abstracting how
modelers can deal with the model repair process. Therefore, the goal of our research
in RQ1 is to identify current challenges in the model repair field that can be solved by
using RL, to study which RL algorithms these challenges can be addressed with, and
to build the theoretical foundation that allows to apply the identified algorithms into
the model repair problem.

RQ2 aims to explore and identify which mechanisms are most beneficial to keep a
human in the loop while repairing models and how this interaction affects the final
results. We will show how that can be done with the help of RL, creating an equilib-
rium between automation and personalization. To this end, we will allow users to
introduce their repair preferences so that the system can learn how to automatically
repair models following those preferences. Hence, the goal of RQ2 is to research how
human knowledge can be incorporated into the RL algorithm when repairing.

RQ3 focuses on researching how the outcomes ofRQ1 andRQ2 can be incorporated
into a model repair framework. The existence of tailor-made solutions has already
been identified as a challenge in the modeling field by the authors in [27]. Within
model repair, implementing tailor-made tools to deal with the wide range of existing
elements in the field is time and resources consuming. Hence, the goal of RQ3 is the
implementation of a unifying framework for model repair that addresses the problems
of tailor-made approaches.

1.2 Outline

This thesis is organized into two parts. Part I motivates our research, provides back-
ground about modeling, model repair, ML, presents our contributions, and discusses
the state of the art and future work. The outline of Part I is organized as follows:

Chapter 2: Modeling background

This chapter introduces the necessary background for understanding the terminology
and main concepts used throughout the thesis. We start with a brief explanation of
models and model types. Then, we continue by presenting different model issues and
model measurement techniques.

Chapter 3: Machine learning background

This chapter presents background of ML, presenting different algorithms and ML-
related concepts. Specifically, we focus on explaining RL, Markov decision process
(MDP), and transfer learning (TL).

Chapter 1 5
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Chapter 4: Solving the model repair problem

This chapter describes our theoretical contribution, presenting how we have adapted
MDP, RL, and TL concepts to solve the model repair problem. Furthermore, we intro-
duce part of our practical contribution by explaining how we have implemented RL
and TL in our approach.

Chapter 5: The PARMOREL framework

This chapter presents the remaining part of our practical contribution: PARMOREL,
an extensible and personalizable model repair framework powered by RL. Here, we
motivate and discuss the modular architecture of the framework and the extensions of
each of its modules.

Chapter 6: Research method

This chapter discusses the research methodology we have followed for developing this
thesis. We also discuss our evaluation plan and present how we have selected the data
used in our experiments.

Chapter 7: Contributions

This chapter presents the contributions of our thesis. We start with a summary of
the papers written and the experiments conducted during the development of this
thesis. Then, we present an overview and discussion of the results obtained. Lastly, we
introduce the limitations and threats to the validity of our work.

Chapter 8: Related work

In this chapter, we discuss related work. We classify existing model repair approaches
by the technique they use to perform repair, distinguishing between non-ML and ML
approaches. We put our work in context by relating each presented approach with
PARMOREL.

Chapter 9: Conclusions and future work

This chapter re-visits our RQs and provides a summary of the main contributions of
this thesis. We also outline several future research directions based on the work under-
taken for this thesis and current ML challenges.

Part II consists of a collection of papers produced during the development of this
thesis: five published and peer-reviewed articles [9, 11, 13, 18, 49] (papers A - E). The
outline of Part II is organized as follows:

Paper A: Improving model repair through experience sharing

6 Chapter 1



1.3 Suplementary material

Paper B: Model repair with quality-based reinforcement learning

Paper C: A comparative study of reinforcement learning techniques to repair models

Paper D: An extensible framework for customizable model repair

Paper E: Addressing the trade off between smells and quality when refactoring class
diagrams

1.3 Suplementary material

In addition to the articles included in the Part II of this thesis, we have published
three workshop articles and a short paper presenting initial and alternative research
directions, which results overlap with later papers. Furthermore, we have submitted
two articles to an international journal, which are in the second round of the reviewing
process at the moment of writing this thesis.

1. The paper [14], presented at the Workshop on Analytics and Mining of Model
Repositories (AMMoRe) inOctober of 2018. This paper presents an early prototype
of how ML could be applied to model repair, reflecting on its benefit on repair
time.

2. The paper [15], presented at the Workshop on Artificial Intelligence and Model-
driven Engineering (MDEIntelligence) in September of 2019. This paper shows an
early prototype of PARMOREL where it is applied to repair conformance issues
in a group of mutant models.

3. The paper [16], presented at the Jornadas de Ingeniería del Software y Bases de
Datos (JISBD) in September of 2019, is a short paper that presents the idea to
produce repaired models of higher quality than the original ones.

4. The paper [10] was accepted at the 14th Workshop on Models and Evolution
(ME), co-located at the Models Conference in October 2020. In this paper, we
present a dataset of 2420 models, which has been collected for experimenting
with different approaches conceived by the authors, mostly coming from GitHub
and the ATL zoo [5]. Additionally, we present a tool-chain to analyze datasets of
models, obtaining which issues (if any) are present in each model and measuring
quality characteristics. Some of the models in the dataset and the measurement
of quality characteristics are used in later papers.

5. Thepaper [12]was submitted to the International Journal on Software andSystems
Modeling (SoSyM) in March 2021, as an extension of Paper D and including
the results of Paper E. This paper goes beyond these previous papers, exploring
PARMOREL’s full extensible potential, detailing its modules and submodules,
and including new extensions that we detail in the Appendix.

Chapter 1 7
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6. The paper [17] was submitted to the SoSyM journal in April 2021. In this paper,
we explore the state of the art in the intersection between artificial intelligence (AI)
and model repair, the AI-powered model repair field. From existing literature
in this field, we identify a series of challenges which the modeling community
needs to overcome to extend the adoption of AI in the model repair field.

The papers [10, 12, 14–17] are not formally part of this thesis and will hence not be
discussed further. The models used as dataset and the implementation of PARMOREL
can be found on our project’s website [2].
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CHAPTER 2
MODELING BACKGROUND

In this chapter, we provide background information necessary to understand the mod-
eling field. We focus on those modeling aspects relevant to this thesis, explaining
concepts such as models and details of some types of models (class and sequence
diagrams), different kinds of issues that might appear in models (conformance is-
sues, smells, and inter-model inconsistencies), and a couple of model measurement
techniques (quality characteristics and model distance).

2.1 Models

Models allow to represent a part of reality in a simplified way, making them useful
artefacts for documentation, communication, and supporting the development of a
project. In software engineering, models are used to tackle the complexity of software
systems by abstracting and hiding their underlying technology as much as possible.

There exist different types of models based on their purposes and modeling
languages, (e.g. Ecore [88], the Unified Modeling Language (UML) [82], the Business
Process Model and Notation (BPMN) [37], etc). In this thesis, we focus on Ecore class
diagrams and UML class and sequence diagrams. The terminology we use is taken
from the Eclipse Modeling Framework (EMF) [88]. The purpose of this section is not to
give the complete syntax and semantics of class and sequence diagrams, but to give
enough information to understand our examples used later in the thesis.

2.1.1 Class diagrams

Class diagrams show the static structure of a system, the elements that exist (classes),
and their relationships (references) [1]. We use as an example the class diagram in Fig.
2.1, representing students, books, and how they relate to each other.

• Class: A class represents a concept within the system being modeled. Classes
have attributes, operations, and references to other classes. A class is typically
represented as a box with a name. Two classes appear in Fig. 2.1: Student and
Book.

– Attribute: A class-associated property used to hold knowledge about the
class. To be correctly defined, attributes must have a name and a data type
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(e.g., String, Integer, etc). In Fig. 2.1, within the class Student, there are two
attributes: name and agewhich types are String and Integer, respectively.

– Operation: An operation represents a functionality supported by the class.
They work as placeholders for methods in the object-oriented paradigm. In
Fig. 2.1, within the class Student, there is the operation readBook().

• Reference: A reference represents a relationship between two classes, where
one of the classes is the source and the other one is the target of the reference.
The multiplicity of a reference is a constraint indicating how many objects may
participate in the relationship. In Fig. 2.1, the classes are related with two
references which establish that a book is owned by exactly 1 student and that each
student owns at least one book.

Student

 name: String

 age: Integer

 readBook()

Book

 title: String

 pages: Integer
1..1

1..*owns

owned by

Fig. 2.1: Sample class diagram representing students, books and their relationship

:Student :Book

readBook()

Fig. 2.2: Sample sequence diagram representing how a student interacts with a book

2.1.2 Sequence diagrams

Sequence diagrams represent interactions in a system [1]. The main elements in a
sequence diagram are lifelines and messages. We use as an example the sequence
diagram in Fig. 2.2, representing how a student interacts with a book.

• Lifeline: A lifeline represents an object which participates in an interaction.
Classes in class diagrams have their corresponding lifelines in sequence diagrams.
In Fig. 2.2 we represent two lifelines: Student and Book.

• Message: A message defines a communication between the lifelines of an
interaction. A message represents an invocation of an operation on a target
lifeline (see readBook() in Fig. 2.2).
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2.2 Model issues

In this thesis, we refer to anything that might be considered as wrong or improvable
within a model as issue. Issues might be of different types depending on their nature
and the context where they appear. In this section, we focus on the types of issues
relevant to this thesis.

2.2.1 Conformance issues

Models are defined using modeling languages, which may be represented by metamod-
els. A metamodel is again a model that specifies the concepts and the relationships of
the modeling language. The metamodel defines constraints that any model created
from it needs to conform to for being valid. In addition, the metamodel often contains
extra constraints in a formal language that models also need to conform to. Thus, there
is a conformance issue when a model violates one or more constraints imposed by the
metamodel and the formal language.

In this thesis, we focus on conformance issues with respect to the Ecore metamodel
[88]. An example of these issues is when an attribute does not have a data type,
violating the typed attribute constraint of the Ecore metamodel.

2.2.2 Smells

Smells in code [22] are not bugs or errors but instead, can be considered as violations
of the fundamentals of developing software that decrease the quality of code. In a
similar way, smells in models [24] are indicators that there might be issues within the
model design. Examples of smells in models would be classes that are isolated from
the rest of the model and redundant relationships between classes.

Smells may severely affect the maintenance and evolution of the models. Therefore,
their early identification and removal are crucial to assure the final quality of the
models. There are many smells defined in the literature [22, 68] and detecting and
removing them is far from trivial, as their removal may have a negative impact on the
overall model quality. In this thesis, we focus on selective removal of smells to avoid
deteriorating the models’ quality.

2.2.3 Inter-model consistency

Multiple models might be needed to represent software systems from different per-
spectives. In this case, models need to be consistent with respect to each other [42]. For
example, one could use various UML models to describe different aspects of software:
class diagrams to describe the structure and sequence diagrams to define (parts of)
the interaction between the elements of the software (e.g., see figures 2.1 and 2.2). An
issue might arise if, for example, the operations in the class diagram do not match the
messages in the sequence diagram [92]. Since both diagrams describe the same system,
they should be kept consistent with each other. In this thesis, we consider inter-model
consistency between UML class and sequence diagrams [92].

Chapter 2 11
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2.3 Model measurement

Finding the best solution for a given issue in a model is not a trivial task since there
might be multiple repair solutions that a modeler could choose, while there might not
exist an objectively best solution to satisfy all modelers.

However, the modeling community has developed a series of measurement tech-
niques that can be used to get a measure of a model’s quality. This measurement can be
used to determine which repair option might be more satisfactory for modelers with
interests in specific aspects of the model. In this section, we present two measurement
techniques relevant to this thesis.

2.3.1 Quality characteristics
In [19, 20, 59, 94] different works propose quality characteristics specifically conceived
to measure the quality of models and other modeling artifacts. In these works,
characteristics like maintainability, usability, coupling, and cohesion are introduced.
Some of these characteristics measure the general quality of the model, such as
maintainability, and others measure specific parts of them, such as the coupling of a
class, measuring the degree of interdependence between the classes of a model.

Multiple quality characteristics may be combined andmeasured in order to evaluate
qualitative aspects of the models. These aspects are particularly relevant in the activity
of model repair since the actions chosen to repair issues could produce valid models,
but with low-quality characteristics. By using these characteristics, it would be possible
to choose repair actions that boost quality aspects chosen by the modelers. In this
thesis, we focus on the following quality characteristics: maintainability, reusability,
understandability, complexity, and coupling.

2.3.2 Model distance
Model distance is a measurement technique that counts the differences in the structure
of several models. The more similar the models, the closer the distance between
them. Within model repair, model distance can be considered to preserve the original
model structure while repairing, measuring the distance between the original model
and its repaired versions. Actions that make the least changes in the model can be
chosen following this technique, hence prioritizing a conservative repair. With this
technique, undesired side-effects of the repair actions can be minimized, which can
help in maintaining the model’s quality [52, 58, 90].

The task of measuring the distance between two or more models can be managed
by specific distance metrics, inspired by distances between words and graphs [43]
or by matching algorithms [57]. In this thesis, we make use of two model distance
implementations based on matching algorithms, inspired by the Levenshtein edit
distance formula [57].
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CHAPTER 3

MACHINE LEARNING BACKGROUND

In this chapter, weprovide backgroundonML, discussingdifferent algorithms classified
by the way they learn: supervised learning, unsupervised learning, and RL. This
is followed by a more detailed discussion about RL concepts and algorithms since
they are the focus of this thesis. Furthermore, we discuss other ML concepts that are
relevant in this thesis, such as MDP and TL.

ML is a subfield of AI that allows machines to learn from data without being
programmed explicitly, achieving automated detection of meaningful patterns in data.
ML focuses on the use of the strengths and special abilities of computers to complement
human intelligence, often performing tasks that fall way beyond human capabilities
(e.g., processing a great amount of information in a tiny timespan).

There exist multiple ML algorithms, which can be classified depending on how
they learn from data [86]. Figure 3.1 summarizes this classification, including the data
requirements for each type of algorithm and their usefulness. In the following, we
briefly explain these three groups.

Machine
learning

Reinforcement
learning

Unsupervised
learning

Supervised
learning

           Requires: Large amounts of
pre-labeled data

Large amounts of
non-labeled data

Environment, 
actions and rewards

           Useful for: Classification and
regression Clustering Interactive tasks

Fig. 3.1: ML algorithms classified by learning type, including their data requirements
and usefulness
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3.1 Supervised learning

Supervised learning algorithms learn a function that maps an input to an output based
on example input-output pairs. They infer a function from pre-labeled training data
consisting of a set of training examples [66]. Supervised learning algorithms usually
require large amounts of pre-labeled data in order to learn how to solve a problem.
This sort of algorithms is suitable for tasks like classification and regression.

In classification, the algorithm takes an input and returns either a specific label or
a number specifying the confidence score for a particular label [31]. An example of
a classification task would be distinguishing pictures of cats and dogs. Even though
all cats and dogs are unique, we are still usually able to tell them apart. For this to be
supervised learning, we need some training data describing color, shape, distinguishing
features, etc, and a label specifying the correct prediction (e.g., whether the picture
contains a cat or a dog). A successful algorithm should be able to recognize previously
unseen cats and dogs after training on this data.

In regression (also called prediction), the algorithm takes an input and returns a
number as output [6]. An example of a regression task would be to predict the price of
housing in ten years. The algorithm could train on data containing attributes such as
the size of the houses, initial value, evolution during the years, quality of the materials,
etc. Then, the algorithm would fit a function to this data to predict the output price.

3.2 Unsupervised learning

Unsupervised learning is a type of algorithm that learns patterns from unlabeled
data. These algorithms search for recurrent patterns in the input data [86]. Then, as
output, unsupervised algorithms group the introduced data, displaying which data
points in the input data are more related to each other. The more data, the better
these algorithms work. The most common application of unsupervised learning is
clustering.

Clustering is a task for finding clusters/groups within the input data [6]. An
example application is image compression, where the objective is to reduce the file
size of the image. The input is the pixels that make up the image, and each pixel is
represented by an RGB value. The algorithm will find all the pixels related to a specific
color (e.g., red), calculate the average color, and set it for all the pixels of that color.
This will slightly reduce the details of the image, although in an undetectable way for
the human eye, and save storage space.

3.3 Reinforcement learning

As stated in Chapter 1, the lack of modeling data makes it difficult to apply most ML
algorithms, especially those within supervised and unsupervised learning. Hence, we
focus and provide more information about RL, an ML branch of algorithms that do not
require data to solve a problem.

RL consists of algorithms able to learn by themselves how to interact in an envi-
ronment without existing pre-labeled data, only needing a set of available actions and
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Action

Agent Environment

State

Reward

Fig. 3.2: Agent-environment interaction in RL, © 2019 IEEE

rewards for each of these actions [91]. By using rewards, these algorithms can learn
which are the best actions to interact with an environment. The learning process of RL
comes from the interaction between an agent (the intelligence in the algorithm) and an
environment (the problem to solve). Figure 3.2 displays this interaction.

For example, if the environment is a road, the agent is a self-driving car, the action is
turning one meter to the right and the state the current position of the car in the road,
then, the new state would be the car’s new location: one meter to the right with respect
to the previous position. If the action is positive for the car (avoiding an obstacle), it
receives a reward, contrarily (stepping on a wall) it is penalized. The agent will continue
performing actions trying to get the highest reward until it reaches its ultimate goal;
e.g., arriving to the car’s destination.

In the following, we present some concepts important to understanding RL:

1. State space: Set of states, observable situations, that can happen in a system.
Every system has an initial state (how it starts) and a final state. It is important to
differentiate between a state and the actual system. A state is what is observable
by the agent and it might not contain all details about the system, because they
might not be necessary or available to the agent.

2. Action space: The set of actions that can modify the system, leading to new states.

3. Reward: A numerical value that tells the agent how good is the action it applies.

4. Step: A step corresponds to the application of one action in the system.

5. Episode: Each episode corresponds to one iteration in which the algorithm
has successfully reached the final state using the available actions. Hence, an
episode ends when the final state is reached. The number of episodes is finite;
the algorithm is provided with a maximum number of episodes to run. A good
number of episodes is when the algorithm has sufficient time to find the optimal
sequence of actions to reach the final state. It is not straightforward to conclude
what number of episodes is the right one in a given context [91] and hence, it
needs to be defined empirically through experimentation.

RL is a wide field with many different algorithms, in this thesis, we focus on tabular
algorithms, such as Q-Learning and Q(λ) [91]. These algorithms are called "tabular"
because they store the knowledge acquired about how to solve a problem in a table
structure. This structure is referred to as Q-Table. The Q-table stores pairs of states and
actions together with a Q-value. The Q-value is calculated using the rewards and it
indicates how good each pair is, that is, how good an action is for a given state. More
details about these algorithms can be found in Paper C.
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3.4 Markov decision process

MDPs are mathematical models used to solve sequential decision-making problems
[69]. At specified points in time, a decision agent observes the state of a system and
chooses an action. The action choice and the state make the system transition to a
new state at a subsequent discrete point in time. The agent receives a reward signal at
each transition. The goal of the MDP is to find a policy, or sequence of actions, that
maximizes the rewards accumulated over time. The MDP concepts of state, action, and
reward are abstract and must be defined in order to apply an MDP to solve a specific
problem. RL algorithms such as Q-Learning and Q(λ) are used to solve MDP problems.

MDPs are defined in terms of a finite set of states and a finite set of actions. State
transitions must depend only on the current state and the action chosen. The MDP is a
theoretical framework and its concepts can be used to solve different problems. Each
problem might require a different definition of the MDP concepts to be solved (e.g., a
state could be a position in a maze, the score in a videogame, etc). Additionally, the
same problem could be solved with different definitions of the same MDP concepts.
For example, in the self-driving car problem, so far we have defined the state space as
each position of the car in the road, but this is not the only state definition that could
solve the problem, the state could for example be the history of the trajectory of the car.

3.5 Transfer learning

TL is a research line in ML that focuses on storing knowledge gained while solving one
problem and applying it to a different but related problem to solve it faster. TL allows
reusing experience when the rewards change from one scenario to another [77]. For
example, in the self-driving car problem, there might be roads with different obstacles
to be avoided or with traffic signals in different locations.

TL differs from traditional ML in the fact that, instead of learning how to solve
a problem from zero, it reuses experience gained in solving a source task (a known
problem) to accelerate the solution of a new target task (an unknown problem). The
benefits of TL are that it can speed up the time it takes to develop and train an ML
system by reusing already developed solutions.

There exist many techniques within TL. The most common ones are starting-point
and imitation methods [93]. Starting-point methods use the solution found in the
source task to set the initial experience in a target task. Imitation methods use parts
of the source task experience to influence the solution of the target task. Applied
to Q-Learning and Q(λ), following starting-point methods the whole Q-table from a
previous problem would be reused in a new one while following imitation methods
only some parts of the source Q-table would be copied to the new problem.
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CHAPTER 4
SOLVING THE MODEL REPAIR PROBLEM

In this chapter, we present how we have formalized the model repair problem as an
MDP. Then, we present how we have adapted and implemented RL and TL concepts to
model repair. The contents of this chapter are further detailed in papers A and C.

4.1 The model repair problem as a Markov decision process

In this section, we formalize the model repair problem as an MDP. As stated in Section
3.4, MDPs aremathematical models used to solve sequential decision-making problems.
In the following, we revisit the concepts introduced in Section 3.3, redefining them to
solve the model repair problem:

1. State space: The state space is defined by the set of issues present in the model.
The initial state corresponds with the issues present in the model when the repair
starts. Each state is hence defined by a set of model issues. This set is updated
after each step with the current issues present in the model. The final state has
an empty set of errors, i.e, it stands for a repaired model. An example of a state
would be: {The typed element X must have a type, There may not be two classifiers
named X, A class may not be a superclass of itself }.

2. Action space: The set of editing actions able to repair a model. Actions might
come from an external tool, be defined by users, or be obtained from a modeling
framework such as EMF [88], as we will see in the next chapter. For each state,
actions are filtered, so that only actions capable of repairing at least one issue
in the state are considered. Some examples of these actions, when dealing with
conformance issues, are delete, setName, setType, setContainment, etc.

3. Reward: In every non-final step (not the last step in an episode) the reward
will be 0. When the final state is reached, at the end of an episode, the reward
will be given by an external tool used to measure some characteristics of the
provisional repaired model generated in that episode. Rewards can be adapted
to align with user preferences to personalize the repair result. Since rewards
indicate how good actions are, the only requirement for user preferences is that
they can be quantified (e.g., preserve the original model structure by minimizing
the model distance metric or boost quality characteristics by optimising quality
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characteristics). Users can choose their preferences before the repair process
starts.

4. Step: A step corresponds with the application of one action to solve an issue or
set of issues in the model.

5. Episode: An episode corresponds with an iteration in which the RL algorithm has
successfully repaired the model, leaving no issues unsolved. Hence, an episode
ends when the final state is reached.

4.2 Reinforcement learning applied to model repair

Once we have a formalization of the model repair problem as an MDP, we need to
adapt and implement the concepts of RL to solve the problem. In this section, we
present our implementation of how to apply RL to repair models. We have used tabular
RL algorithms, such as Q-Learning and Q(λ) [91]. As we saw in Chapter 3, tabular
algorithms store the knowledge acquired about how to solve a problem in a table
structure, the Q-table. This table stores pairs of states and actions together with a
Q-value [((State, Action), Q-value)]. The Q-value is calculated using the rewards, and it
indicates how good a pair is, that is, how good an action is for a state where the action
is applied.

Now, we will go through how the model repair process works step by step with
the help of Fig. 4.1. As we can see, the repair process receives as input the input model
to repair and user preferences. Then, the repair process starts with the action Extract
issues, which extracts issues from the input model. Following the arrow filter, the action
Obtain actions obtains available editing actions. For each of these actions, following the
arrow actions, Check Q-table checks whether a pair with the current state and action
exists already in the Q-table. If it does not exist, following the arrow if pair (state-action)
does not exist, Add to Q-table is triggered, adding the pair to the Q-table. This way, the
Q-table will contain a pair for every available editing action and the current state of the
model.

Next, following the arrow Q-table or if the pair already existed in the Q-table,
following the arrow if pair (state-action) exists, Select action is triggered and one of the
actions stored in the pairs of the Q-table is selected to be applied in the model. Since
we follow an ε-greedy strategy, actions will be selected either by having the highest
Q-value or randomly in 30% of the cases (value of ε of 0.3, this value provided the best
results according to our experiments in Paper C). This combination of exploitation and
exploration allows to pick repair actions that otherwise might have never been selected.

Then, following the arrows action, the actions Apply action in model and Store action
in the ith episode sequence are triggered, applying the selected action in the model and
storing it in a sequence of actions belonging to the current episode i. After applying
the action, if there still are issues in the model, following the arrow if issues left, reward
= 0, the action Update Q-table is triggered, updating the Q-table with a reward of 0 for
the pair of the current state and selected action. Then, following the arrow if issues left,
use as input, the algorithm starts again, receiving as input the model with the actions
applied so far. This process of applying an action to address a set of issues constitutes
a Step.
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However, if there are no issues left in the model, following the arrow if no issues
left, the action Obtain reward is triggered and, following the arrow reward, the pair will
be updated in the Q-table receiving a reward according to the preferences chosen by
the user. Also following the arrow if no issues left, the action Create ith episode model
creates a repaired version of the model with all the actions applied during the episode.
Following the arrows ith episode model and ith episode sequence, the action Store as results
is triggered, storing the repaired model and the sequence of selected actions obtained
during the current Episode (the steps performed so far until no more issues are left in
the model). With this, an episode finishes and a new one starts.

With the start of a new episode, the input model with its original issues is recovered
and the repair process starts again, repeating the process inside the box Repair process,
aiming to find new sequences of repair actions and getting further testing on the ones
already found. The more an action is applied, the more trustiness will have its Q-value,
as it will receive more rewards and hence the Q-value will be more accurate of how
good that action was for the state it was applied to. To avoid reaching the maximum
number of episodes needlessly (as security, we use between 1000 and 5000 episodes as
maximum), we run the process with an early-stopping criteria. The process will stop
once the maximum Q-value of the pairs including the initial state remains unchanged
for 25 episodes (this value provided the best results according to our experiments in
Paper C).

When all episodes finish, or the early-stopping criteria has been activated, following
the arrow input, the action Select best result is triggered and the repair sequencewith the
highest Q-values will be selected. Lastly, following the arrow output, the corresponding
provisional repaired model is saved as the Repaired model.

Additionally, for those situations where automatic repair or selecting preferences
prior to the repair might not be enough for the users, they can manually select which
sequence of actions they prefer among the repair sequences found in the episodes,
following the arrow optional feedback. By doing this, extra rewards will be provided to
the selected actions. This way, users can correct and influence how the RL algorithm
behind the model repair process learns.

4.3 Transfer learning in model repair

In model repair, the value of each pair in the Q-table may depend on multiple rewards
since it might involve several user preferences, e.g., a user might want to boost both the
maintainability and reusability of a model. Introducing user preferences complicates
reusing the experience acquired by the RL algorithm since what is a good repair for
one user might not be acceptable for another one.

Working with the same Q-table in different repair scenarios is useful as long as
user preferences remain unchanged. However, it is not convenient to directly reuse the
Q-table (as in starting-point methods, see Section 3.5) when choosing new preferences,
since the repair process would use the Q-values calculated with the old preferences and
this could lead to repair decisions unaligned with the new ones. Following imitation
methods would not be convenient either since we would still copy some of the Q-values
from an old Q-table calculated with old preferences.

To overcome the limitations of both methods, we apply our own version of the
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Fig. 4.1: Summary of the repair process using RL
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starting-point method by copying all Q-table pairs of state-action without their Q-
values, so that the algorithm would not start with an empty Q-table. In addition, we
apply a variant of the imitation method in which instead of copying the Q-values
from the Q-table, we keep track of which preferences were used to produce the Q-
values, accumulate their values, and reuse those which are aligned with the new user
preferences.

An example of applying TL to model repair is displayed in Fig. 4.2. In the left
part of the image, we show the Q-table of User1 once she finishes the repair process.
User1 chooses as preferences pref1 and pref2 to repair a model that contains two issues,
namely issue1 and issue2. Both issues can be repaired with actions action1 and action2.
Then, in the right part of Fig. 4.2 we show how the Q-table will look for User2 once
she starts repairing. This user chooses to repair with preferences pref1 and pref3. The
model to repair is different from the one repaired by User1, but since what is relevant
for PARMOREL are issues and actions, the Experience can be reused regardless of the
specific model to repair. Without TL, the Q-table will not exist and a new one will be
created, adding more time to the processing part of the learning algorithm. With TL,
every entry existent in the Experience is copied in the Q-table, and since pref1 is shared
with User1, the Q-table is initialized with the rewards provided from this preference
multiplied by a discount factor (0.2 in Fig. 4.2). By using a discount factor, we assure
previous repair processes influence the new repairs by jump-starting the repair process
but do not interfere with learning new repair sequences.

As a consequence, by using TL, when the repair process starts for User2, the time
spent in populating the Q-table is reduced and the learning algorithm will already
have an intuition of which actions are better for each issue. More details about how TL
works can be found in Paper A.

User1: pref1, pref2 User2: pref1, pref3

entry1:= issue1, action1
entry2:= issue1, action2
entry3:= issue2, action1
entry4:= issue2, action2

Total pref1 pref2
entry1:= issue1, action1
entry2:= issue1, action2
entry3:= issue2, action1
entry4:= issue2, action2

Total Without TLWith TL

10.42
10.97
12.06
11.27

7.91
4.65
8.32
5.64

2.51
6.32
3.74
5.63

x 0.2

1.58
0.93
1.66
1.12

Fig. 4.2: Transfer learning between 2 users with a shared preference
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CHAPTER 5
THE PARMOREL FRAMEWORK

In this chapter, we present our unified approach for model repair, the PARMOREL
framework. We integratewithin PARMOREL theRL andTL implementations presented
in the previous chapter. PARMOREL stands for Personalized and Automatic Repair of
softwareMOdels using REinforcement Learning. PARMOREL revolves around two
core ideas: personalization of results and extensibility.

PARMOREL can be used by modelers to repair models in everyday modeling
scenarios. Modelers can input their models in PARMOREL as they get broken. As
PARMOREL is powered by RL, no training data is needed and the repair can be
performed for a single model, without needing further input, or to as many models as
the user wants at once. Since the framework is extensible, modelers can adapt it to their
specific needs, repairing different types of models and issues. Moreover, modelers can
adapt the repair to align with their requisites. If the modeler deals with a changing
modeling environment, she can continue working with PARMOREL by adapting it,
without needing to change between several tools. In the following, we present the
modular architecture of PARMOREL and its modules’ extensions.

5.1 Architecture

PARMOREL’s architecture has been designed around three main concepts: issues to be
found in the models, actions to be applied in response to issues, and preferences that
the user can specify to customize how to address issues (see Fig. 5.1). The framework
contains an RL algorithm, following the concepts presented in Chapter 4, in charge of
learning and deciding which is the best action—among a set of available actions—to
address a set of issues, according to the user’s preferences.

The PARMOREL framework permits the issues, actions, preferences, and learning

issues

preferences

actions

Learning best action for
the given issuesalgorithm

Fig. 5.1: Simplified workflow in PARMOREL
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Fig. 5.2: PARMOREL’s modular architecture

algorithm to be modified or changed based on the type of models to repair and the
repair’s goal. PARMOREL is implemented as an Eclipse plugin, following a modular
architecture (see Fig. 5.2), and permits users to customize itsmodules through a series of
interfaces. In this section, we explain each of the constituting modules of PARMOREL.
PARMOREL’s implementation included in this thesis can be found on our project’s
website [2].

5.1.1 Modeling module

The modeling module is in charge of validating and manipulating the models. This
module is responsible for interacting with the models and providing information to
the learning module. It sends information about actions available to modify the model
and issues present in the model so that the learning module can learn what actions
should address the issues. With the selected actions, the modeling modulewill create
a temporary repaired model from which the preference module will extract rewards.
The modeling module is divided into two submodules, namely the issues submodule and
actions submodule, as showed in Fig. 5.2.

Issues submodule The issues submodule is in charge of identifying which issues are
present in the model and send them to the learning module so that it can learn how to
solve them. An issue could be a conformance issue, a smell, a violation with respect to
an architectural pattern or a specific constraint, an inconsistency between two or more
models, etc.

Actions submodule The actions submodule is in charge of sending to the learning
module which actions are available for modifying the model. Additionally, it is also
in charge of applying the actions chosen by the learning module to solve the issues
identified by the issues submodule.

24 Chapter 5



5.2 Extensions

The issues and actions submodules are tightly connected, as actions are defined as
an answer to the issues present in the model. Hence, for every extension of the issues
submodule, there is a corresponding actions submodule extension. For example, when
dealing with conformance issues (e.g., two classifiers with the same name), we will
need to provide PARMOREL with a set of editing actions that could solve the issues
(e.g., delete or rename).

5.1.2 Preferences module
Users can customize the results PARMOREL produces with their own preferences by
implementing the preferences module (see Fig. 5.2). A preference indicates which kind
of actions the user wants to apply in the models. When more than one action can be
applied to solve an issue, the preferences are used to choose which one is best for the
user. For example, if a user wants to produce models which are better with respect to a
particular quality characteristic, PARMOREL would choose actions that have a positive
impact on that characteristic. PARMOREL supports any type of preferences as long as
they can be translated into numeric values (e.g., the value of a quality characteristic).

PARMOREL will take these values as rewards that will guide the repair process.
These rewards will be used in the learning module to learn which action is the best to
repair each issue. PARMOREL will use the rewards to estimate how good or bad each
action is to satisfy the user’s preferences.

The preferences module is independent of the modeling module, thus, a specific
preference could be used regardless of the kind of issue being solved. For example, the
same quality characteristics could be taken into account both for solving conformance
issues and smells in the models. The only requirement is that they share the same
supported models—Ecore class diagrams in the previous example.

5.1.3 Learning module
The learning module is responsible for learning which actions are the best to repair the
issues in the models according to the preferences introduced by the users. It is also
responsible for storing experience that can be used to streamline following repairs. The
learning module is divided into two submodules, namely the algorithm submodule and
the experience submodule, as showed in Fig. 5.2.

Algorithm submodule The algorithm submodule is the core of the learning process in
PARMOREL and it contains the RL algorithm chosen for performing the repair. Within
this submodule the process described in Section 4.2 takes place.

Experience submodule This submodule is in charge of storing and sharing experience
in consecutive repairs by using TL, as explained in Section 4.3.

5.2 Extensions

In this section, we present the extensions we have created during the development of
this thesis for each of the PARMOREL modules. These extensions work as an example
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to explore what can be done with each module and to show the extensible potential of
PARMOREL. However, the framework is not limited to these extensions, as PARMOREL
is designed so that users can extend it to adapt it to their own repair requisites.

5.2.1 Modeling module - Issues submodule

We have developed the following extensions of the issues submodule: conformance
issues, smells, and inter-model inconsistencies (see Fig. 5.3). Next, we present each of
these extensions.

Conformance issues We have used the EMF diagnostician [88] to implement the
identification of conformance issues that violate certain constraints of the Ecore
metamodeling language [88] in Ecore class diagrams (e.g., the opposite of the opposite
of a reference must be the reference itself, classifiers must have different names, etc).
More details can be found in papers A, B and D.

Smells By using EMF [88] together with Edelta [23] we have implemented the issues
submodule to be able to identify user-defined smells in Ecore class diagrams. Edelta is a
model refactoring tool, based on a domain specific language (DSL) for defining Ecore
model evolutions and refactorings. The core features of Edelta and its DSL have been
detailed in [23]. By using the Edelta DSL, users can specify smells to be found in the
models. More details can be found in Paper E.

Inter-model inconsistencies In this extension, we have used SDMetrics [94] to
interact with UML models and implement a series of rules so that the issues submodule
can identify inter-model inconsistencies. SDMetrics is an object-oriented design quality
measurement tool for UMLmodels. We use SDMetrics to analyze the models’ structure
and detect inconsistencies. This extension as well as Repairs for inter-model inconsistencies
in Section 5.2.2 and Coupling in Section 5.2.3 are part of paper [12], which is in the
second round of reviewing process in the SoSyM journal at the moment of writing this
thesis (see Section 1.3). More details can be found in the Appendix.

5.2.2 Modeling module - Actions submodule

Wehave developed the following extensions of this submodule: repairs for conformance
issues, refactorings for smells, and repairs for inter-model inconsistencies (see Fig. 5.3).
Next, we present each of these extensions.

Repairs for conformance issues In order to repair conformance issues, we make
use of the actions available within EMF to modify Ecore class diagrams. These
actions implement operations of addition, removal, and updating of classes, references,
attributes, and operations in the models. Some examples of the actions which are
available in this extension are: setName(), setOppositeReference(), removeSuperType(), etc.
More details can be found in papers A, B, and D.
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Smells

Edelta

Inter-model
inconsistencies

Issues submodule

Conformance
issues

Actions submodule

Refactorings
for smells

Repairs for
inconsistencies

Repairs for 
conformance

issues

Modeling module

Edelta

Fig. 5.3: Modeling module with sample action and issues submodules

Refactorings for smells In this extension, we use the Edelta DSL [23] together
with EMF [88] to specify model refactorings. We define a smells resolver to resolve the
smells found in the models. For example, the resolution for a smell with duplicated
features can be managed by introducing a hierarchy (i.e., adding a super-class) and
moving the shared features up to the newly created super-class. Unlike conformance
issues, smells might be ignored and not removed since, sometimes, their removal might
worsen the model’s overall quality. Therefore, we also include an "ignore" action. More
details can be found in Paper E.

Repairs for inter-model inconsistencies We use the Java DOM libraries to ma-
nipulate the UML models’ structure as XML files. Unlike the previous issues, most
inconsistencies have a single action to restore them, but the actions might be applicable
in many different parts of the models. For example, if there is an operation in a class
diagram without a corresponding message in a sequence diagram, there might be mul-
tiple potential senders and receivers, depending on the references the class containing
the operation has to other classes. More details of this extension can be found in the
Appendix.

5.2.3 Preferences module

We have implemented this module to support the following preferences: hard-coded
preferences, quality characteristics, model distance, and coupling. Next, we present
each extension.
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Hard-coded preferences In initial versions of PARMOREL (see PaperA), weworked
with hard-coded preferences. These preferences simulated different requirements a
user might have about how to perform the repair, such as: avoid deletion of elements
from the model, reward the repair of issues individually or in batch, and punish or
reward modification of the original model structure.

For these preferences, the reward values were hard-coded by us. For example, some
preferences provided a reward of 10 or a punishment of -10, depending on whether
the applied action followed the chosen preference, multiplied by the number of times
the action provided a result aligned or unaligned with the preference (e.g., if a user
wanted to preserve the model original structure but an action created 5 new elements
in the model, that action would receive a -50 as punishment). For other preferences,
such as if the user preferred to repair issues individually, the actions would obtain a
positive reward with the percentage of remaining non-repaired issues after repairing a
single issue or a negative reward with the percentage of repaired issues.

These reward and punishment valueswere chosen according to our experimentation.
In later papers, we decided to work with preferences of higher-level of abstraction and
with a quantitative value associated, such as the rest of the preferences we present in
this section. By using quantitative preferences, we did not need punishments anymore,
as we got more diverse and accurate rewards, being higher the more a preference was
satisfied.

Quality characteristics In this extension, we use quality characteristics extracted
from the literature [25, 39, 76] as user preferences. PARMOREL integrates a quality
evaluation tool which is inspired by [19].

This quality evaluation tool not only provides an evaluation mechanism but also
supports the specification of custom quality characteristics. Calculation functions for
each characteristic are implemented with the Epsilon Object Language (EOL) [54],
an imperative programming language for creating, querying, and modifying EMF
models. So far, we have specified the following quality characteristics to be used as user
preferences: maintainability, understandability, complexity, and reusability. By using
this extension, PARMOREL can learn how to repair Ecore class diagrams, regardless of
the issues contained, in a way that the selected quality characteristics are improved.
For more details about these quality characteristics, we refer to Paper B.

Model distance In Paper D, we exemplify an extension of the preferences module by
using a model distance metric to guide the repair of Ecore class diagrams. PARMOREL
obtains the distancemetric from amodel distance calculator. By using thismetricwe can
reward the preservation of the original model structure when repairing, minimizing
undesired side-effects in the repaired model. This model distance calculation is
implemented as an Eclipse plugin, composed of a model matching algorithm specified
with a customizable script which is written in the Epsilon Comparison Language (ECL)
[53] script. More details can be found in Paper D.

Coupling By using the metrics offered in SDMetrics [94], we can define preferences
to guide the repair of UML models. As an example, we use the metrics MsgSent
(number of messages sent) andMsgRecv (number of messages received) [26] to calculate
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the coupling in UML sequence diagrams. By taking into account the number of
messages each lifeline in the sequence sends and receives, we can measure the degree
of interdependence between the lifelines in the sequence, then we add these values to
obtain the coupling of each lifeline. This way, users can decide to repair inconsistencies
between class and sequence diagrams in a way that coupling in the sequence diagram
remains as low as possible. More details about this extension can be found in the
Appendix.

5.2.4 Learning module - Algorithm submodule
RL is a broad field with many algorithms. In Paper C, we have implemented this
submodule to repair conformance issues in Ecore class diagrams while improving
their maintainability with the following algorithms: Q(λ), Monte Carlo, SARSA and,
SARSA(λ). As long as it implements the MDP concepts explained in Section 4.1, the
algorithm will be supported by this submodule.

In Paper C, we take Q-Learning as the reference since it was the algorithm used in
PARMOREL so far. In comparison, the algorithm that presented the best performance,
both in time and number of episodes is Q(λ). The rest of the algorithms, Monte Carlo,
SARSA(λ), and SARSA, perform worse than Q-Learning, being Monte Carlo the one
with a better performance from this group, and SARSA the worse by a big difference.
These results indicate the potential of Q(λ) for the model repair problem, while Monte
Carlo, SARSA, and SARSA(λ) might not provide the best solutions.

5.2.5 Learning module - Experience submodule
This submodule has been implementedwith ourTL approach formodel repair proposed
in Section 4.3. More details about this submodule can be found in papers A and D.

This extension has been applied to repair conformance issues and smells in Ecore
class diagrams, using as preferences quality characteristics and model distance metrics.
We use the rewards stored fromprevious repairs to initialize theQ-table in the following
repairs, reusing only those rewards relevant to the current user preferences. Previous
repair processes influence the new repairs by jump-starting the repair process but do
not interfere with learning new repair sequences. This way, the learning will converge
faster and fewer episodes will be required.
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CHAPTER 6
RESEARCH METHOD

In this chapter, we detail the research method we followed to develop this thesis.
Additionally, we discuss the evaluation plan we followed to evaluate our work and
how we selected the data for our experiments.

6.1 Constructive research

The research method followed during the development of this thesis has been con-
structive research [51, 60]. This method is a research procedure that aims at producing
novel solutions to practically and theoretically relevant problems. It follows a prag-
matic approach in which the ultimate goal is to achieve the solution of a problem by
the construction of an artefact. This artefact, which is a combination of theory and
practice, must be novel in its field. According to [48, 51] there are five main concepts
within constructive research. Figure 6.1 details our results according to these concepts:

1. Theory connection: The theoretical knowledge, background, or state of the art of
a field from which a problem or unexplored aspect in research can be identified.
It is the foundation that motivates the problem to solve.

2. Practical relevance: The practical relevance that both the identified problem and
the proposed solution will have to the field.

3. Construction: The novel artefact built during the research. This artefact provides a
solution for the identified problem. The construction is constituted by theoretical
and practical contributions.

(a) Theoretical contribution: The novel theory created to support the construc-
tion. It provides a theoretical framework to solve the identified problem.

(b) Practical contribution: The practical part of the construction. It focuses on
the developed infrastructure, architecture, or software to handle the solution
of the identified problem.

Following this research method, we started by studying the state of the art of
the model repair field to identify relevant research problems and build our theory
connection. The results of this research canbe found inChapter 2,wherewedetailmodel
background, and in Chapter 8, where we analyze existing model repair approaches.
After analyzing the current state and approaches within the field, we identified as
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Fig. 6.1: Summary of our constructive research method process and its results

relevant problems: (i) the need for balance between automated and personalized
approaches, (ii) the wide spectrum of issues, actions, and models existing within the
field, and the lack of a unified mechanism to deal with them, and (iii) the multiple
solutions that exist for repairing a single issue, needing some sort of user intervention
to choose the most adequate solution.

Having identified these problems, and with the intention of building an artefact
able to solve them, we started exploring the ML field, analyzing its existing approaches
and thus, further developing our theory connection. The decision of researching
ML methods was motivated due to our experience of working with ML before this
thesis. We knew that ML had the potential to provide automation, personalization,
and flexibility to address a wide variety of problems. From this research, we found
a new relevant problem: the lack of data in the modeling field. Within the existing
approaches in ML, we found we could solve this problem by using RL algorithms. The
results of this research can be found in Chapter 3, where we detail ML background.

During our research, we could not find any work within the model repair field
targeting these problems, nor applying tabular RL algorithms such as Q(λ). Hence,
we could use these concepts to build a novel model repair artefact for solving the
above-mentioned problems. First, we had to adapt the concepts of MDP, RL, and TL
to the model repair problem, as we saw in Chapter 4, which led to our theoretical
contribution.

On top of this theory, we built our practical contribution: implementations of
RL and TL and the PARMOREL framework, as we described in chapters 4 and 5.
For developing PARMOREL, we followed an iterative and incremental development,
resembling the process of developing a minimum viable product [81]. We started by
tackling the basics of our problems, such as achieving repair. This way, PARMOREL
started as an approach to deal with conformance issues in Ecore class diagrams with a
set of hard-coded user preferences. In further iterations, we evolved it by progressively
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adding more features, such as adding more types of preferences at higher-level, issues,
and types of models, and eventually providing the means so that users could add
their own types themselves. Lastly, PARMOREL became an extensible framework that
allowed personalized and automatic model repair. We could not find in the literature
any research dealing with the model repair problem as an MDP nor providing our
degree of customization. Some model repair approaches are independent of the
domain of the models or support different model types, however, we could not find any
approach presenting the degree of extensibility of our framework. Hence, PARMOREL
is a novel artefact in the model repair field.

During this development process, we evaluated PARMOREL through a series of
experiments in which we used different datasets. We consider these experiments and
datasets also a part of our practical contribution.

6.2 Evaluation plan

In order to test our solution, our evaluation plan was oriented towards proving that
our construction solved our identified relevant problems. This way, despite some other
RQs raised during each experiment, our focus was always on evaluating whether: (i)
the approach could provide automatic model repair, (ii) user preferences guided the
repair, leading to personalized results, and (iii) our approach could handle different
model repair elements, such as different types of models, issues, preferences, etc.

As mentioned in the previous section, our development process was iterative and
incremental, thus new theory and implementations were built on top of the previous
ones. This way, our evaluations followed a double-folded strategy, assessing whether
our constructed theory was correct by developing a new version of PARMOREL
which implemented new theory through new functionalities, and testing the correct
functioning of the new version of PARMOREL. These evaluations were internal, carried
in a controlled environment.

We followed a quantitative criteria for measuringwhether our experiments achieved
the objectives of our research. We analyzed if the repaired models were aligned with
user preferences by analyzing if the numerical values of these preferences improved.
Likewise, we addressed whether PARMOREL could support different types of models,
issues, preferences, etc, by measuring if the issues in the models could be solved,
counting how many of them were left in the models. Also, we performed scalability
and performance experiments in which we measured the impact of the size of the
models and the number of issues in the repair time.

6.3 Data selection

Since data is a crucial aspect of our experiments, we consider it relevant to state the
criteria we followed to select our data. Our main option was to use data depicting
real-world models, either coming from other existing works in the literature such as
[10, 73] or from open repositories like GitHub or the ATL Zoo [5]. Then, we analyzed
if these models contained the issues we were studying and if their formats were
supported by the tools we integrated into PARMOREL (e.g., for calculating quality
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characteristics).
In some cases, we needed to synthesize our own models, for which we used a

random mechanism such as a mutation tool like AMOR [7], which introduced issues
in Ecore models. For those situations where the format of the available models was
unsupported by our tools or there were no available mutation mechanisms for creating
the required issues, we opted tomanually create themodels, introducing issues inspired
by those available in repositories or the literature.
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CHAPTER 7
CONTRIBUTIONS

This chapter presents the contributions of our work. We start with a summary of the
papers included as a collection in the Part II of this thesis. Then, we continue with an
overview and discussion of the results obtained in the papers and conclude the chapter
with the overall limitations and threats to the validity of our work.

7.1 Summary of papers

This section presents a summary of the papers produced during the development of
this thesis. We present the papers in chronological order, as the research of each paper
builds on the results of the previous ones.

7.1.1 Paper A: Improving model repair through experience sharing

This paper [18] was accepted at the Journal of Object Technology published in July 2020.
In the paper, we emphasize that, although there are already approaches that provide
an automatic repair of models, the same issues might not have the same solutions in all
models due to different user preferences and business policies. Personalization would
enhance the usability of automatic repairs in different contexts, and by reusing the
experience from previous repairs we would avoid duplicated calculations when facing
similar issues.

Here, we focus on repairing conformance issues in Ecore class diagrams. The
main contribution of this paper is our TL proposal and an implementation to reuse
the experience learned from each model repair. We explore TL’s theory and adapt
it to apply it to the model repair problem. We validate our approach by repairing
models mutated with the AMOR tool [7] to include conformance issues in them. In
the evaluation, we use different sets of personalization preferences and study how the
repair time improved when reusing the experience from each repair.

We test our TL approach through two examples: first, we repair a broken model
with different sets of preferences, and then, we repair 30 randomly mutated models
obtained from 3 originals from GitHub. The objectives of this evaluation are to show
that PARMOREL can (i) store and reuse experience learned from different preferences
and (ii) improve the repair time when working with different models.

First, we simulate a set of seven users with different preferences to repair a single
model, combining preferences such as rewarding/punishing modification of the
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original model’s structure and preferring the repair of issues individually or in batches.
Some users have overlapping preferences (totally or partially) and opposite ones. This
diverse set of preferences allows us to evaluate whether PARMOREL is able to: (i) share
experience between users with unrelated preferences, (ii) successfully reuse experience
when preferences coincide completely or partially with the stored experience, and (iii)
achieve better performance when more parts of the experience are reused. The results
of this repair are an indicator that PARMOREL allows to automatically store and share
experience in different executions. Sharing is adapted depending on whether users
introduce preferences already stored in the experience or not. By using TL, the repair
time becomes faster when reusing more experience.

Then, to evaluate and test the generality and scalability of our approach, we repair
30 mutant models simulating 3 users with different preferences. The results of this
evaluation indicate that our TL approach accomplishes sharing the experience learnt
by repairing different models and streamlines the repair regardless of the chosen
preferences.

7.1.2 Paper B: Model repair with quality-based reinforcement learning

Paper B was accepted at the Journal of Object Technology published in July 2020. This
paper [49], is the first step in conceiving PARMOREL as an extensible framework. Here,
we propose the integration of a tool to measure the quality of Ecore class diagrams
based on different quality characteristics explored in the literature: maintainability,
reusability, complexity, reusability, and relaxation. These quality characteristics are
offered to users as preferences to guide the repair of the models, thus, a user may,
for example, prefer a repair that prioritizes the maintainability in a model over other
quality characteristics.

Unlike the previous paper (Paper A), here we evaluate the approach by repairing a
dataset of 107 real-world Ecore class diagrams extracted from the literature, without
using mutant models. In this paper, we study how the size of the models and the
number of issues affect the repair time with and without TL, testing the scalability of
PARMOREL. Also, we study if PARMOREL can select repair actions that boost the
selected quality characteristics in the models. As user preferences, we choose to boost
the maintainability of the models.

First, we configure PARMOREL to repair each model in 80% of the dataset. Our
results indicate that both the size of the models and the number of issues affect the
repair time logarithmically, although the influence of the latter is stronger. Then, we
proceed to repair the remaining 20% of the dataset directly after repairing the previous
80%. Finally, we repair again the 20% after resetting the Q-table, that is, deleting
the learning obtained from the 80% repair. By comparing the results from these two
rounds, we can conclude that PARMOREL streamlines the repair time of the new
models when it has learned from repairing other models.

The results of this evaluation indicate that PARMOREL is scalable and that it can
handle real-world broken models. Furthermore, it is able to produce models aligned
with the maintainability quality characteristic.
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7.1.3 PaperC:A comparative studyof reinforcement learning techniques
to repair models

This paper [13] was accepted at the 2nd Workshop on Artificial Intelligence and
Model-driven Engineering (MDEIntelligence), co-located at the ACM / IEEE 23rd
International Conference on Model Driven Engineering Languages and Systems
(MODELS) in October 2020. In this paper, we formalize our RL approach for model
repair as an MDP. Then, we revisit and improve our previous theoretical definitions of
RL applied to model repair. We compare our old definition and our new one, namely,
MDP-A andMDP-B by repairing a samplemodel. Our findings indicate that theMDP-B
definition provides better results, hence, it is the one we integrate into PARMOREL for
future repairs.

In previous papers (papers A and B), PARMOREL was powered by the Q-Learning
algorithm. Here, we present as an alternative several other RL algorithms selected
from [91]: Q(λ), Monte Carlo, SARSA, and SARSA(λ). We apply each algorithm to
repair a set of models and compare the results of each algorithm in terms of repair time
and episodes needed to complete the repair. Moreover, we measure if the repaired
models present better maintainability. As a dataset, we use a representative sample of
12 models from the dataset used in [73], filtered in order to get only corrupted Ecore
class diagrams.

Our results indicate the Q(λ) algorithm is the one that can repair with faster
performance, while Monte Carlo, SARSA, and SARSA(λ) might not provide the best
solutions. Moreover, with this experiment, we prove that PARMOREL can work with
different RL algorithms.

7.1.4 Paper D: An extensible framework for customizable model repair

This paper [11] was accepted at the MODELS Conference in October 2020. In this paper,
we present for the first time PARMOREL as an extensible model repair framework.
Briefly, we present and explain PARMOREL modules, focusing on the preferences
module.

Paper D presents an evaluation of PARMOREL focusing on the extensibility of user
preferences. As an example, we extend the framework by including as a preference a
model distance metric, which allows the user to choose a more or less conservative
repair. We focus on evaluating if, by further extending the preferences, the framework
is able to improve the precision in selecting better-repaired models. To achieve this,
we implement as user preferences two different versions of the model distance metric:
basic (coarse) and customized (fine-grained). We run PARMOREL first with the basic
implementation of the distance calculation and then the customized one. To measure
the impact that the two distance calculations have on the repair, we measure the
following quality characteristics in the models: reusability, maintainability, complexity,
and understandability. As dataset, we use the same models from Paper B.

With both distance calculations, the complexity improved or at least remained
unchanged in all the models, but better results were obtained with the customized
distance metric. Then, repairing the whole dataset, when using the customized metric,
maintainability, reusability, complexity, and understandability improved in 80% to
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100% of the models.
With the results of this evaluation, we can conclude that, by extending PARMOREL

preferences, the precision of the framework improves and it is able to produce repaired
models with higher quality characteristics.

7.1.5 Paper E: Addressing the trade off between smells and quality when
refactoring class diagrams

This paper was accepted at the Journal of Object Technology in April 2021. In this
paper [9], we demonstrate that PARMOREL can address different issues in models
beyond conformance issues. We extend the issues and actions submodules to support a
new type of issues and actions: smells and their corresponding refactorings. Removing
smells sometimes might have a negative impact on some models, since by refactoring
them the overall quality of the model could be worsened.

We implement the detection and selective refactoring of smells based on quality
characteristics to assure that only the refactorings with a positive impact on the models’
quality are applied. For the implementation, we select a representative sample of
smells from the literature with their corresponding refactorings [24]. Furthermore, we
present the changes we had to make to our RL approach to support smells detection
and removal. Then, we analyze a dataset obtained from the literature [96] containing
Ecore class diagrams, asserting that almost 90% of the models contained smells.

In this paper’s evaluation, we check whether PARMOREL can decide which
smells should be refactored in a model to maintain and, even improve, the quality
characteristics selected by the user. For this evaluation, we use as dataset [96] which
contains 555 Ecore class diagrams extracted from GitHub.

This evaluation indicates that, when taking into account the quality of the models,
the best solution is usually not to remove all the smells. PARMOREL is able to
refactor the models with a balance between which smells should be addressed without
degrading the quality of themodels and even improving it. Inmost cases, the refactored
model presents even higher quality in the characteristics selected by the user than the
original one. Furthermore, with this evaluation, we prove that PARMOREL is able to
support different types of issues.

7.2 Overview and discussion of results

In this section, we present an overview of and discuss the results of our work. In this
thesis, we have contributed to expand the modeling field by researching and applying,
as a novel approach, RL algorithms to solve the model repair problem. We could not
find any approach in the literature using the same algorithms and techniques as our
research, hence, we have explored and opened a new research path in the intersection
of ML and model repair.

PARMOREL presents a series of features we could not find in any other model
repair approach. By creating a modular framework instead of a tool designed to tackle
a specific problem, we have detached our approach from the problem to solve and
overcome the challenge of lack of generality that most model repair tools present
[71]. Our approach can be used to address the heterogeneity of stakeholders and
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requirements existing in themodel repair field by further extending its modules. Hence,
PARMOREL could serve as a starting point for other researchers in the field to study
different model repair scenarios with different learning algorithms.

Through the experiments in the above-mentioned papers, we have demonstrated
that:

• Our approach provides automatic model repair applying concrete repair actions,
such as renaming or deleting model elements. When the repair finishes, a
repaired version of the original model is provided to the user as output.

• PARMOREL provides faster repair when facing issues already faced in other
models due to the learning capability of RL. For example, in paper [15], we
obtained an improvement of the repair time of ≈ 30% when repairing models
previously repaired.

• By using TL, we can streamline the repair regardless of the preferences chosen
by different users. For example, in Paper A, we improved the repair time when
transferring learning between users with different preferences between ≈ 10%
and ≈ 60%.

• By coordinating user preferences with RL rewards, PARMOREL can select the
sequence of repair actions most aligned with the chosen preferences. As an exam-
ple, we have used hard-coded preferences (see Paper A), quality characteristics
(maintainability, reusability, understandability, complexity, and coupling) (see
Paper B), and two different versions of a model distance metric (see Paper D).

• As long as it implements our MDP concepts for model repair, PARMOREL
can work with different RL algorithms. As an example, we have tested the
performance of Q-Learning, Q(λ), Monte Carlo, SARSA, and SARSA(λ). Q(λ) is
the one that has provided better results when repairing models (see Paper C).

• By further refining user preferences, PARMOREL can produce higher-quality
results. We demonstrated this by working with two different model distance
metrics in Paper D.

• PARMOREL is able to repair different kinds of issues in the models. As an
example, we have repaired conformance issues (see papers A, B, C, D), a set
of smells extracted from the literature (see Paper E), and some inter-model
inconsistencies between class and sequence diagrams (see Appendix).

• Likewise, different types of models are supported. As an example, we have
workedwith Ecore (see papers in Part II), UML class diagrams, andUML sequence
diagrams (see Appendix).

With these results, we can conclude that PARMOREL is an automatic model repair
approach that works with a balance between automation and personalization. Users
not only can personalize the results of the repair but, since PARMOREL is designed
as a modular framework, users can also extend and implement different modules to
adapt the repair process to their requirements. PARMOREL allows users to (i) choose,
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add and modify repair preferences, (ii) work with different types of models, (iii) edit
which issues are detected, and (iv) with which actions they are addressed, as well as
(v) customize the learning algorithm of the framework.

By using RL, PARMOREL is not limited to providing repair, but learns from it,
which allows to improve the performance time the more models are repaired. And, by
using TL, performance can improve despite the repair preferences chosen by different
users.

PARMOREL is conceived as a framework that can be used by modelers to repair
models in everyday modeling scenarios. The repair can be provided for a single or
multiple models, without requiring any additional data beyond the models. Modelers
can adapt PARMOREL to their specific repair needs and, if these needs change
over time, modelers will not need to change to another tool, as they can extend
PARMOREL modules to match their needs. PARMOREL repair is automatic, and with
user intervention being optional beyond providing preferences before the repair, the
framework is suitable for modelers with different levels of expertise.

7.3 Threats to validity and limitations

In this section, we discuss potential threats that are associated with the validity of
our experiments. We distinguish between internal and external threats to validity.
We present general threats, as each paper in Part II includes detailed threats for its
experiments. Also, we discuss the limitations of our work.

7.3.1 Internal threats
Internal threats are factors influencing the outcomes of the performed experiments.
Most of our experiments rely on external tools to provide user preferences [12]. Our
smell detection and refactoring are also supported by an external tool [9]. In all these
tools, preferences (quality characteristics and model distance) and smells together with
their refactorings, are user-defined. To mitigate this threat, preferences, smells, and
refactorings were reused, when possible, from existing definitions in the literature.
Also, we represented the preferences and smells faithfully with the corresponding
models, DSL syntax, or formulas.

Furthermore, our implementation of the learning module relies on a series of RL
parameters (such as ε, α, λ, the maximum number of episodes, number of episodes
for the early-stopping criteria, etc) [13]. Likewise, our distance metric calculation is
parametric with respect to a match threshold [11]. Varying these parameters values
may return different results. We tuned these parameters with different values until our
experiments returned satisfactory results.

7.3.2 External threats
In this context, we discuss how the conducted experiments would still be valid outside
the used settings. Most external threats in our research are related to the datasets used.
For those experiments using mutant models, we rely on AMOR [15, 18] as an external
tool to introduce random mutations in the models. Despite this randomness, it has
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a predefined set of mutations, and the issues it produces might not be as complex as
issues introduced by a human. Still, it is realistic to think these issues could appear in
real modeling environments.

In some experiments, the amount of data used might not be considered large, but
we mitigate this aspect by the heterogeneity of their sources; these models have been
retrieved from different GitHub repositories and hence from different modelers or
inspired by real-world models. Additionally, in most experiments, we rely on datasets
used in other experiments in the literature, such as [73].

The models in the papers are based on Ecore and UML models (class and sequence
diagrams), but we firmly believe it should be possible to switch to other model types
by extending PARMOREL.

The set of preferences, types of issues, repair actions, and algorithms used in the
papers are a representative sample of what can be found in the model repair and ML
fields. Many other preferences could be measured in the models and, other issues
could be identified together with different repair actions. We consider the set of issues,
actions, and preferences representative enough since they are related to different
elements in the models, covering a wide range of structural changes in them. Likewise,
RL is a wide field with multiple algorithms. We have selected a set of five of them
based on their suitability to solve the model repair problem.

7.3.3 Limitations
In the following, we present the limitations of PARMOREL. We plan to address these
limitations as part of our future work.

Regarding personalization, no external users participated in the experiments.
Instead, we simulated some user preferences and implemented them into the reward
system.

At the moment, the experience submodule only supports dealing with Ecore
class diagrams. This is because the issues we have tackled so far in UML models
(inconsistencies between class and sequence diagrams) are more dependant on each
model structure (creating or moving messages in different parts of the sequence) and
their solutions are harder to generalize.

Currently, PARMOREL is limited to quantitative user preferences, as a numerical
value needs to be provided as a reward. Also, PARMOREL needs to detect issues in a
model in order to manipulate it, the approach cannot deal with models without issues
yet.

Lastly, PARMOREL needs to get a set of actions to modify the model. Our approach
works with the assumption that, for each issue in the model, between the actions
available, there is at least one able to repair the issue. If this is not the case, PARMOREL
will not be able to repair it, since, unlike other approaches, these actions cannot yet be
inferred from the issues in the models. In this situation, PARMOREL will ignore the
issue and continue with the repair process.
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In this chapter, we compare existing approaches for model repair with PARMOREL,
hence putting our work into context. Model repair is a field with many different
approaches and, since this thesis is about the intersection of ML and model repair,
we will first compare PARMOREL with the most common trends among non-ML
approaches, and then we will focus on those using ML.

We follow the same structure in all the subsections: first, we briefly mention the
technique used to repair the models, followed by some approaches using the technique;
then, we compare PARMORELwith the technique, and finally, we compare PARMOREL
with the approaches.

8.1 Non-ML approaches

In this section, we follow the feature-based classification introduced by Macedo et al.
[62] to present relevant model repair approaches. We classify approaches following the
Core feature from [62], in which approaches are classified by the underlying technique
they use for repairing models. According to Macedo et al., some approaches are hybrid,
and hence built over several of these features (e.g., rule-based approaches that rely on
search-based techniques to calculate repair plans from rules). Thus, the selection of
features from this group is not exclusive.

Next, we classify PARMOREL according to the Repair features from Macedo et
al. This classification and the claims we make throughout this section are true
for the experiments we have performed on our datasets. Modifying the setting of
our experiments might lead to different results. Following Macedo’s classification,
PARMOREL would be a search-based approach with domain-specific procedures. These
procedures allow for finer control on the generation of repairs. PARMOREL achieves
this by offering user preferences and allowing users to define their own actions.
The repair representation is operation-basedwith repair actions, using repair plans, and
applying concrete operations. In PARMOREL, repairs proposed to the user consist of a
sequential composition of concrete edit actions, which can be directly applied to the
model. These actions are customizable by users with the actions submodule. Regarding
enumeration (the mechanism through which repairs are selected and presented to
the user), the output can be multiple, presenting different repair options to the user
when feedback is provided. The order (the set of the returned repairs and the order in
which they are enumerated), is parametrizable and interactive. In PARMOREL, users can
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control the behavior of the repair through preferences or by interacting with the tool at
the end of the execution. Regarding semantics, as long as there exists actions able to
repair the issues present in a model, PARMOREL is total (for every user update that
results in an issue, PARMOREL is able to repair it), correct (when the repair is done,
the model is free of issues), well-behaved (it assures to not create any new issues while
repairing), improving (it reduces the number of issues in the model), and fully consistent
(the number of issues present in the model is reduced to the minimum possible). Also,
PARMOREL presents stability (it provides a null repair when there are no issues in
the model) and least change repairs (when users select as preference a model distance
metric, see Section 5.2.3).

In the following, we present rule-based, derivative, and search-based approaches,
together with some representative examples found in the literature for each group.
Then, we compare PARMOREL with these approaches.

8.1.1 Rule-based

Rule-based approaches rely on a set of pre-defined or extracted rules that are applied
whenever an issue is detected in a model. These rules specify how issues must be
solved.

In [72], Nassar et al. propose a rule-based approach that deals with violations
of model instances with respect to Ecore models, from which the repair rules are
automatically extracted. Using these rules, first, the approach checks if any parts of the
model instance need to be trimmed (due to duplication or unnecessary information),
and then, if there is any mandatory information missing (such as classes or attributes),
it completes the instance. Once this process is completed, a valid model instance is
generated. The authors have developed two Eclipse plugins, one for automatically
deriving the repair rules from a givenmodel, and another one with the repair algorithm
taking as input these rules. Both the rules extraction and the repair algorithm can be
executed automatically or interactively, with users being able to interrupt and guide
the process.

Another rule-based approach is presented in [41], where the authors provide
automated support for assisting designers in fixing issues in UML models. The
consistency rules considered focus on keeping conformance in inter-related UML
models. Here, users are not required to define repair rules, instead, the approach
follows a trial-and-error process to generate values the model elements should take to
solve the inter-model issues and where the issues should be solved. Both valid and
non-valid options are generated and then pruned by the system. To deal with the
scalability issues trial-and-error approaches usually present, the authors propose a
custom-tailor generation of repairs. The final result is a set of choices on how to repair
an issue that guarantees not to create any new issues in the model. The final repair is
not automatically performed by the approach, the set of repair choices is offered to the
user and it is up to her to choose which repair to apply. The approach is limited to
repairs that involve a change in a single location at a time and to issues whose solution
does not require introducing new model elements or new names. This approach is
integrated within the design tool IBM Rational Rose.

The authors in [83] present CARE, standing for Constraint-bAsed REpairing of
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ontological conformance relationships. CARE is based on the core concepts of Ecore
(classes, attributes, references, etc) but it can deal with other modeling languages such
as UML. The repair process is performed in three phases. First, CARE detects issues
based on the conformance between a model and its metamodel. Additionally, the
Object Constraint Language (OCL) and other user-defined constraints can be taken into
account. Then, CARE extracts rules for repairing the detected issues, by modifying or
deleting the faulty model elements. Finally, the extracted rules are ranked following
configurable rules, based on heuristics, in which the user can manually incorporate
structural as well as semantic knowledge. This ranking allows users to select the
best repair according to their constraints. CARE depends heavily on the structural
diversity of the classes in the metamodel. Consequently, if classes in the metamodel are
structurally similar, CARE suffers from having a large solution space which increments
the computational complexity of the repair process. Likewise, in certain cases, the
presence of OCL constraints may lead to an empty solution, if no repair actions for
OCL violations are present. Those repair actions have to be defined manually by the
user beforehand.

In rule-based approaches in general, using rules has the advantage of providing
full control over the resolution of issues achieving a tailor-made repair adapted to
the need of each user. However, rule-based approaches require users to specify rules
and constraints or select the source from which rules are extracted, requiring higher
expertise from the user. Furthermore, by having a fixed set of resolution rules the
flexibility of the approach is greatly reduced. When the repair rules are automatically
extracted from a default third source (e.g. the Ecore metamodel), the expertise required
from the user before the repair is reduced.

While rule-based approaches rely on a set of pre-defined or extracted rules that
are applied whenever an issue is detected in a model, in PARMOREL there might be
multiple actions that can potentially repair each issue. Hence, PARMOREL presents
more flexibility than rule-based approaches. Furthermore, PARMOREL is not limited
to repairing issues, as rule-based approaches are, but it is also able to learn how to
repair them and to reuse that learning when facing the same or similar issues in the
future.

Unlike rule-based approaches, PARMOREL does not offer a tailor-made repair, but
users can choose their preferences so that the learning algorithm picks the actions most
aligned with them. Moreover, users can provide feedback once the repair process is
finished. By providing interaction prior or posterior to the repair, less time is required
from the user than when defining rules or constraints. In rule-based approaches, the
repair is performed directly, while in PARMOREL a solution must be discovered, and
hence repair time will be longer initially. Using RL algorithms and TL compensates for
this by learning from each repair and streamlining the repair process in consecutive
repairs.

As in [72], users can interact with PARMOREL, but at the end of the repair process.
We provide the interaction at the end of the execution so that users can take into
account the consequences of each repair sequence in the model before choosing one of
them. Choices are ranked based on the rewards obtained from the user preferences,
similarly as ranking works in [83]. Approaches presented in [41] and [83] work as
support systems where the repair choice is left to the users. In PARMOREL, users can
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decide if they want an automatic or an interactive repair. PARMOREL is not tightened
to a single modeling language like the approach in [83].

8.1.2 Derivative

Derivative approaches are those that automatically derive repair plans by analysis of
the constraints imposed over a model (see Syntactic in [62]). Usually, repair plans in
these approaches are calculated at static-time and then instantiated to concrete model
instances at run-time when an issue is found.

In the literature, we can find derivative approaches like the one proposed by Xiong et
al. in [95], where the authors propose Beanbag, a language to support the development
of repair procedures. A Beanbag program defines and checks a consistency relation
similarly to OCL, but it offers also the possibility to be executed in a fixing mode,
taking user updates on the model and making the model satisfy the consistency
relation. Instead of deriving fixing procedures purely from consistency relations or
constraints, Beanbag allows users to define constraints and a fixing behavior at the
same time, achieving a more tailor-made result in exchange for greater effort from the
user. Beanbag is independent of the modeling language, as the authors test it with
Ecore and UML models. As a limitation, Beanbag assures correctness of the results,
but whether it produces or not an output depends on the procedures written by users.
Also, when dealing with inconsistent data, the fixing functions might become too
computationally expensive.

Another derivative approach can be found in [36], where Dam et al. present an
approach to support change propagation within inter-related UML models without
using hard-coded rules. Repair plans are generated when OCL constraints are specified
by the user. Constraints are translated into a set of repair plans by following a systematic
process defined by the authors. The repair is not performed automatically, as repair
plans are offered to the users for them to choose from. Using this tool, users save
time because they do not need to write repair rules and they only need to define OCL
constraints.

Some derivative approaches present the advantage that theymay be able to generate
repair updates without user input, hence reducing the time required from the user prior
to the repair but sacrificing personalization of repair. In this direction, PARMOREL
requires few interaction from the user and, in exchange, it provides personalized
results. As happened with rule-based approaches, PARMOREL goes beyond inferring
and applying repair plans thanks to its learning potential.

In derivative approaches, the number of generated repair plans may become
overwhelming for the user to choose from. In PARMOREL, unless the user wants to
manually select a sequence of repair actions once the repair process finishes, the repair
is guided by high-level preferences chosen prior to the repair. At the end of the repair
process, PARMOREL will provide the user with the sequence of repair actions that
satisfies the most her preferences.

Due to the number of repair plans generated, derivative approaches are not the best
option when dealing with multiple issues or models with large portions corrupted.
PARMOREL has no problem when dealing with multiple issues since although repair
time might be slower the first time it faces such a model, the RL algorithm will be able

46 Chapter 8



8.1 Non-ML approaches

to learn a solution and provide faster repair when facing the same issues again. With
respect to models with large portions corrupted, this is not a problem for PARMOREL
since, by using our concept of issue, PARMOREL is only aware of what has to be
repaired in the model and remains oblivious to the models’ structure.

Regarding Beanbag [95], PARMOREL also assures correctness of the repaired mod-
els, but PARMOREL will always produce an output, independently of the extensions
implemented by users. PARMOREL is also independent of the modeling language.
Concerning [36], this approach works as a support system where users need to choose
the repair to apply in the model, while in PARMOREL users can choose to do it this way
or to apply the best repair according to their preferences automatically. Both [95] and
[36] work with OCL constraints, hence repairing inconsistencies in model instances. In
PARMOREL we work one level above, repairing issues originated from conformance
issues between a model and its metamodel or from inter-model inconsistencies (see
sections 2.2.1 and 2.2.3).

8.1.3 Search-based

Search-based approaches tackle model repair as a model search problem. This is, a
problem defined by a set of states including a start and goal state, a boolean function
that tells us whether a given state is a goal state, and a successor function able to create
a mapping from a state to a set of new states. The start state in model repair will be the
model with issues and the goal state the repaired model.

In [35] the authors propose an approach for generating repair plans for UML
developers while they build their models. Plans are conformed by Praxis actions,
a Prolog engine developed by the authors to detect violations of structural and
methodological constraints specified on UML. In Praxis, it is assumed that model
issues are introduced by user’s actions that violate some of the model’s constraints or
by not executing actions required by these constraints. In order to generate a repair
plan to fix these issues, Praxis first detects the actions that caused issues, then explores
the possibilities for changing the inconsistent action, and finally generates a repair plan
from the list of possible ways of changing the model. To detect the inconsistent actions,
detection rules have to be manually defined in Praxis by the user. To deal with large
search spaces, the approach includes a parameter with which users can select how
much of the search space will be taken into account.

Another search-based approach is presented in [47], in which the authors focus
on complementing Domain-specific modeling languages (DSMLs) with quick-fixes
to maintain model consistency for complex language-specific constraints beyond the
DSMLs scope. They propose a domain-independent framework, applicable to a wide
range of DSMLs. The quick fixes are generated automatically, taking a set of domain-
specific constraints and model manipulation policies as input. The approach uses
graph transformation rules to specify the policies, which can be manually extended by
users. The approach finds sequences of operations that decrease the number of issues.
The authors test the approach in BPMNmodels.

In [61], Macedo et al. present Echo, a search-based approach to handle intra (such
as conformance issues between a model and its metamodel or constraints related
issues) and inter-model inconsistencies based on the relational model finder Alloy [50].
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Echo works with Ecore as modeling language and with OCL for defining constraints.
Inter-model consistency is specified by QVT Relations (QVT-R) or ATL transformation
languages. Echo proposes repairs minimizing the model distance between the repaired
model and the original one. The user is able to choose how to measure this distance:
either through graph edit distance or through an operation-based distance. Echo also
allows users to edit the repair actions. When the repair finishes, Echo presents all valid
solutions, allowing the user to select the desired one.

Some search-based approaches rely on off-the-shelf solvers to search for the goal
state [62]. These solvers are oblivious of the application domain and hencemay produce
unpredictable solutions. In contrast, other approaches rely on domain-specific search
procedures [78], like heuristics and available edit actions, which allow a finer-grained
control on the generation of repair updates. In general, search-based approaches are
able to automatically fully repair models but have the disadvantage of suffering from
scalability issues. Also, as an advantage, they are well-suited to fix issues that affect
large parts of the model.

PARMOREL is powered by RL algorithms, which can be considered a search-based
approach. The main difference between search-based and RL, apart from the learning
potential offered by RL, is that search-based methods usually depend on a complete
known problem. A complete known problem in terms of model repair means to know,
for every issue and repair action available, what will be the outcome of applying
the actions on each issue. This means, knowing beforehand which issues might be
created while solving others and how the model structure will change during the repair
process. When it comes to RL, usually the problem is partially unknown. There might
be situations where it is impossible to predict what will be the effect of an action on
an issue, as that may depend on other issues existing in the model and the model’s
elements. Likewise, in PARMOREL, the optimal actions chosen in each repair will vary
depending on the preferences selected by the user.

RL usually performs faster than other search-based methods, as sometimes not the
whole search-space is explored. The risk of not finding the optimal solution due to
this situation is mitigated by adding a random factor such as ε (see Section 4.2). RL
can be considered as an off-the-shelf solver, oblivious to the application domain and
hence, might lead to unpredictable solutions. However, since in PARMOREL we take
into account user preferences, the predictability of solutions increases, as they will be
aligned with the preferences, hence allowing coarse-grained control from the user.

As search-based approaches, RL might suffer from scalability issues when dealing
with very large models, however, although at first repair will be slower, in consecutive
repairs it will be streamlined, hence mitigating this problem [49].

Regarding the Praxis approach [35], PARMOREL can deal with different types of
models, while Praxis is limited to UML models. Praxis provides repairs by taking into
account the actions applied in a model that led to creating issues, instead of targetting
the issues directly as we do in PARMOREL. In Praxis, the detection rules are user-
defined. This is similar to extending the issues submodule, however, in PARMOREL
issues can be detected at a higher level byworking, for example, with Ecore conformance
issues by extending the issues submodule with the EMF diagnostician (see Section
5.2.1).

The work from [47] is different from PARMOREL, as this approach focuses on
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providing quick-fixes in DSMLs. This approach guarantees to find a sequence of actions
that decreases issues, but it does not deal with all issues present as PARMOREL does.
In this approach, users can extend the transformation rules from which repairs are
inferred, which is similar to extending the actions submodule in PARMOREL.

Echo is available for download at [46]. We have downloaded and tested Echo to
compare it with PARMOREL. As in Echo [61], users can customize repair actions by
extending the action submodule in PARMOREL. Likewise, both approaches provide
concrete repairs, although in Echo it is mandatory that users manually select one of
the repair options, and, in PARMOREL, this can be done without user intervention.
PARMOREL provides the user with a list of the issues detected in the model and how
each issue was addressed, while Echo does not provide any information to the user
beyond the repair solution. Echo provides repair based on minimizing the model
distance between the repaired and the original model. Although users can modify
the model distance metric, Echo does not support other types of preferences (such as
quality characteristics, coupling, or the definition of new preferences) as PARMOREL
does. In Echo, the repair is performed step by step with user interaction (select repair
preferences, decide where to apply the repair, and choose a repair solution), while in
PARMOREL users only need to provide an input model and their repair preferences
prior to the repair, with an optional interaction at the end of the repair process to choose
a solution. Similar to PARMOREL, Echo supports the repair of different types of models
as well as the restoration of intra and inter-model consistency. Finally, Echo has some
functionalities that PARMOREL does not, like model generation, consistency checking,
and model transformation, while Echo lacks the learning capability of PARMOREL.

8.2 ML approaches

AlthoughML can be considered an automated approach, not all automated approaches
are ML, depending on whether they were tailor-made for solving a specific task or
not. For example, rule-based [65, 72], graph-transformation [8, 64], and brute force
[41] approaches cannot be considered ML due to their lack of generalization. Some
rule-based approaches could be considered as rule-based ML when they are able to
identify, generate, or modify rules on their own, however, approaches in the literature
[55, 72] usually have as a pre-requisite some kind of definition or source of the rules.

In the following, we present an overview of the existing approaches of ML-powered
model repair. We also include model refactoring since model repair can be seen as
an activity that aims at resolving issues in models by refactoring them. The features
presented by Macedo et al. [62] do not include learning aspects and ML is never
mentioned in the classification. Hence, in this section, we follow our own classification
of relevant ML model repair approaches, grouping them by the kind of learning
algorithms they use.

Next, we compare PARMOREL with each of these approaches. Although some
branches of RL have been applied to model repair (automated planning and genetic
algorithms can be considered as RL), we could not find in the literature any approach
tackling the model repair problem as an MDP nor using tabular algorithms such as
Q-Learning or Q(λ).
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8.2.1 Tree learning

The most extended approach is to use decision trees to support the repair. Decision
trees are non-parametric supervised learning methods used for both classification and
regression tasks. This approach goes from observations about an item to conclusions
about the item’s target value.

Kretschmer et al. introduce in [55] an approach for discovering and validating
values for repairing issues automatically; they group alike these repair values if they
have the same effect, which impacts positively the scalability of the approach. Prior
to the validation, an input model with a set of consistency rules (such as OCL) is
required. For each issue, a validation tree is constructed. The tree identifies all model
elements involved (leaves) and shows how their values cause the issues. Then, using
different techniques, the values on the leaves are changed, which may or may not
solve the issues. Finally, by using boolean logic, the tree is analyzed to obtain which
modifications solved the issues. The modifications found are concrete and can be
executed automatically to repair the inconsistent model. Alike repairs are grouped
and presented to the user as repair options.

Also tree-powered, Model/Analyzer [80] is a tool that, by using the syntactic struc-
ture of constraints, determines which specific parts of a model must be checked and
repaired. A model with a series of constraints is required as input. The approach is
independent of modeling and constraint languages, but the authors test Model/Ana-
lyzer on UML models with OCL constraints. This tool deals with a large number of
repairs by focusing on what caused an issue and presenting repair actions as a linearly
growing repair tree. The tree takes into account the side-effects of solving each issue,
avoiding repairs that lead to new issues. At the end of the execution, issues are visual-
ized, showing information about what parts of the model contributed to causing the
issues and how to fix them. Knowing their origin may help users to solve the issues
and prevent them in the future.

Lastly, Khelladi et al. [52] present a model repair approach that ranks repairs
depending on the positive or negative side-effect they produce by using a validation
tree. They also identify alternative repair paths and cycles of repairs. The approach
works with UML models and OCL constraints. As output, a ranking of repairs is
produced. Rather than an automatic approach, this approach can be considered as a
guide and support system to assist modelers in solving model issues.

In tree approaches in general, as an advantage, the tree’s nature allows reducing
the state space size, hence optimizing the problem. Also, their structure makes them
easy to understand and interpret, they require little or no data pre-processing, and
unimportant features in the dataset will not influence the final result. However, trees
tend to over-fit, producing results too closely related to a specific dataset. Their
structure makes them unstable, as small changes in data can affect the structure of the
tree and the final prediction, and inflexible, in the sense that to add any new data the
tree should be retrained from scratch on the whole dataset.

RL and trees share the advantage of reducing the state space, making them suitable
for optimization problems. PARMOREL, as happens in tree learning, does not require
large amounts of data nor pre-processing in order to perform the repair, however, the
results produced by trees are closely related to the dataset, and once the data change
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they need to be retrained. By using RL, PARMOREL can work with different datasets
learning on the run and reuse what was learnt in previous repairs. Likewise, being
less dependent on the dataset, PARMOREL produces more stable results.

Due to their exploitation nature (probing a limited region of the search space),
trees tend to lead to the same solutions once and again. Differently, the RL algorithms
in PARMOREL include both exploitation and exploration, allowing to find new and,
sometimes, better solutions for a given issue.

Approaches using tree learning such as [52, 55, 80], usually work as support systems,
leaving the final repair decision to the user. While this provides a finer-grained control,
it requires more time from the user. PARMOREL is not designed to be a support system,
as we take advantage of the learning capabilities of RL to provide automatic repair.

8.2.2 Automated planning

Automated planning is an AI technique that focuses on the optimization of sequences
of actions. Unlike classical classification and control problems, planning solutions
are complex and have to be discovered and optimized in a multidimensional space.
Planning can be classified as a branch of RL [56]. By using automated planning, it is
possible to generate plans that lead from an initial state to a defined goal.

Puissant et al. present Badger in [78, 79], a tool based on automated planning. In
Badger, the initial state is the state of the model prior to the repair process. Each input
model is defined as a series of elementary operations which are needed to create the
model (e.g., create, addProperty, addReference, etc.). The operations include as parameters
the author of the operation and versioning information of the model. By using this
format, the elementary operations become metamodel independent, and they can be
used together with different kinds of structural metamodels. The defined goal is the
set of consistency rules that need to be satisfied in the input model. By default, Badger
chooses the minimum repair actions to reach the defined goal, however, users can
modify this to prioritize specific types of actions or parts of the model to repair. Their
approach is applied to different types of structural issues in UML models.

Badger is metamodel-independent and its planner algorithm can be adapted to
work in different domains. To show this, the authors create a metamodel to represent
and repair Java code smells. The planner does not require the user to specify resolution
rules manually or to specify information about the causes of the issues, hence the tool
is fully automated.

Automated planning presents advantages and disadvantages similar to those
presented in search-based approaches. Automated planning can be considered as an
off-the-shelf solver, independent of the application domain, and hence may produce
unpredictable solutions. Likewise, due to the exploration of the state space that
planning performs, it might suffer scalability problems when dealing with very large
models.

The comparison between automated planning and RL is very similar to the one we
described with respect to search-based approaches in the previous section. Automated
planning usually deals with complete known problems. It is only possible to create
plans when knowing the environment of a problem, whether it is the real one or an
estimated one, like a simulation. However, in RL, sequences are learnt by trial and
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error via interactions with the real environment, which is not completely known.
By using automated planning, Badger [78, 79] generates plans that lead from an

initial state to a defined goal, each plan being a possible way to repair one issue. In
PARMOREL, we prefer to repair the whole model since some actions might modify the
model drastically, and we consider it counter-intuitive to decide which action to apply
on an issue without knowing its overall consequences. This is the reason why we give
rewards when all issues have been addressed at the end of an episode. Furthermore,
PARMOREL is able to streamline the repairs and reuse what was learnt from previous
repairs, while Badger’s repair time remains static.

While Badger is metamodel-independent, PARMOREL goes one step beyond, as the
type ofmodels, issues, actions, and preferences can bemodified. Regarding preferences,
Badger allows to prioritize certain types of actions or to focus on repairing specific
parts of the model. In the initial versions of PARMOREL, we included these types of
preferences (see Paper A), but in later versions, we preferred to focus on higher-level
preferences such as quality characteristics (see Paper B). Lower-level preferences might
have the risk of providing a repair which consequences can not bemeasured beforehand
by the user, for example, by rewarding certain types of actions without knowing how
they will modify the model.

8.2.3 Neural networks

Some approaches make use of neural network (NN) architectures. NNs are an ML
architecture, and there exist different types of NNs able to solve problems within
supervised, unsupervised, and reinforcement learning. NNs are inspired by the brain’s
structure and simulate a net of neurons able to identify patterns and correlations
in data. NNs contain multiple layers of a data structure called neurons, which are
connected with each other. These connections have changing weights that simulate the
connection of neurons in the human brain. Connections with stronger weights will be
favoured and will lead to learning the solution for a given problem. These algorithms
allow to perform multiple tasks given a dataset with enough examples from which the
network can learn.

In [29] the authors present a NN for model transformation without specifying code
for any specific transformations. Although not specifically model repair, we consider
this approach close enough to be included in this section. They make use of a dataset
of UML models generated by a Java program, but the approach is open for other
modeling languages. Models are stored in a tree structure using JSON formatting, the
root contains the keyword MODEL, and its children are the model elements. Then,
the network transforms the input models into their corresponding output models
extracting the model transformation needed.

Tackling model refactoring, in [87] the authors make use of a deep NN architecture
to refactor UML diagrams with symptoms of design flaws. In this approach, the deep
NN learns to recognize the presence of functional decomposition in UML models of
object-oriented software, producing as output a refactored model without flaws. They
use a dataset comprising feature vectors of distinct UML class diagrams. They obtained
the dataset from the UML-Ninja repository [3] and extracted metrics from them by
using SDMetrics [94]. In both approaches, the authors claim their results are promising
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but there are still a series of open challenges needed to be addressed, such as the size
of the training dataset, diversity of data, generality, etc.

The main advantage of NNs approaches is that, once trained, they produce results
very fast and they can solve a wide range of problems. However, they need a great
amount of data to be able to solve a problem. NNs depend a lot on training data which
may lead to over-fitting and generalization problems. Lastly, NNs work as black boxes,
meaning it is hard to know why a specific result was obtained and which variables
influenced it.

NNs and RL are designed to deal with different problems. NNs usually deal
with regression and classification problems by being fed with great amounts of pre-
processed data, while RL algorithms learn how to solve a problem in an environment by
interacting with it, without needing training data. Current modeling repositories are
still limited in terms of size, labeling, and diversity of models. Hence, the lack of data is
a challenge for ML adoption in modeling problems like model repair [27, 29, 30, 45, 85].
Due to this data challenge, RL algorithms present an advantage to NNs when solving
the model repair problem.

The solutions provided by NNs are tightly related to the training dataset; if the
requirements of the problem change, the data also needs to change (as happened in
tree learning). By using RL in PARMOREL, the algorithm learns by directly interacting
with the models and, by using the abstract concepts of issue, action, reward, etc, our
approach can easily be adapted to solve different problems without the burden of
designing new datasets.

Although RL algorithms can also be considered as black boxes, the origin of their
results is easier to interpret than in NNs. In PARMOREL, the chosen actions will be
those that maximize the rewards obtained from user preferences, thus, actions most
aligned with preferences tend to be chosen. It is possible to backtrack how Q-values
were obtained from rewards and knowing why one action was preferred over the rest.

Following the approaches in [29] and [87], PARMOREL modules could be extended
with NNs, both to identify issues and repair actions from the models and to learn
how to repair them according to preferences. As in [87], we also use SDMetrics [94]
in PARMOREL, in our case to calculate coupling in UML sequence diagrams (see
Appendix).

8.2.4 Genetic algorithms

Genetic algorithms are used to generate solutions to optimization and search problems
by using biologically inspired operators such as mutation, crossover, and selection.
These algorithms fall under an AI branch called evolutionary algorithms, however,
since they aim to solve similar problems as RL algorithms (searching for solutions
that maximize or minimize a reward or cost function) and behave in a similar way
(finding a solution by interacting with an environment with no training data), genetic
algorithms can be considered a branch of RL [67].

In [45], the authors present an approach based on an interactive genetic algorithm.
In this paper, the authors make use of a fitness function that combines the similarity
between the analyzed design model and models from a base of examples, and the
modelers’ feedback. Modelers introduce their feedback after some iterations of the
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algorithm, indicatingwhich solutions from the ones found theyprefer. Users can specify
different parameters, such as the percentage of solutions shown in each interaction.
Hence, some expertise in these algorithms is required. The tool takes as input a base
of examples of refactored models and an initial model to refactor, then, it generates
as output a sequence of refactorings to be applied on the input model. This tool
is developed as an Eclipse plugin. As a dataset, they use Ref-Finder [84] to extract
refactorings performed in different Java projects, working with UML models. In this
approach, the feedback from the user modifies how the genetic algorithms work and
find repairs.

Genetic algorithms have the advantage that, if used properly, they may produce a
solution faster than other algorithms. Likewise, their concepts are easier to understand
than other algorithms, as they follow bio-inspired mechanisms and use vectors as
data structures. These algorithms start with a population of randomly generated
solutions and use the principle of natural selection to discover useful sets of solutions
by combining and updating the population. The nature of genetic algorithms is based
on heuristics and random updates of the population of solutions. This randomness
might lead to situations in where the algorithm is not always able to find the optimum
solution to a problem or gets stuck in local maximum and fails to find a suitable solution
at all. This situation might be mitigated by adding more iterations to the algorithm,
however, it will also increase the running time.

Genetic algorithms are used to generate solutions to optimization and search
problems, looking to maximize a fitness function. They work in a similar way to RL,
where the goal is to maximize a reward. The nature of genetic algorithms is based
on heuristics and random updates of the population of solutions. RL algorithms
in PARMOREL are ε-greedy and hence also rely on a random component, however,
Q-values updates are not arbitrary, as they follow a gradient-based update using the
Bellman’s equation [91].

Although genetic algorithms tend to produce solutions faster, PARMOREL presents
some mechanisms not supported by genetic algorithms to mitigate this situation, such
as streamlining learning by reusing what was learnt in previous repairs. Likewise, the
experience acquired in PARMOREL when repairing different models can be reused
while in genetic algorithms, populations can hardly be reused.

Regarding [45], where user interaction is necessary for the tool to work, in PAR-
MOREL, interaction is optional and happens at the end of the repair process, allowing
users to choose from the found repairs. If users want to modify how PARMOREL
learns, they can use preferences prior to the repair.
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CHAPTER 9
CONCLUSIONS AND FUTURE WORK

This chapter concludes the Part I of this thesis. We begin by re-visiting the RQs
presented in Chapter 1 and summarizing the main contributions of the thesis. To
conclude, we outline directions for future work.

9.1 Research questions revisited

The main research focus of this thesis was on applying RL to model repair and devel-
oping an approach to achieve personalized and extensible model repair. In this section,
we re-visit our RQs and summarize our answers to these questions according to the
results obtained in this thesis.

RQ1: How can RL algorithms improve model repair? How can we apply RL algo-
rithms in model repair?

RQ1 focused on investigating RL algorithms: how they can be applied to model
repair and how useful they can be in solving current model repair challenges. As stated
in Section 6.1, we identified as relevant problems in the model repair field: (i) the need
for balance between automated and personalized approaches, (ii) the wide spectrum
of issues, actions, and models existing within the field, and the lack of a unified mecha-
nism to deal with them, and (iii) the multiple solutions that exist for repairing a single
issue, needing some sort of user intervention to choose the most adequate solution.

Due to its ability to adapt to data and different scenarios, RL can provide automated
solutions while adapting to the needs of the users. Likewise, these algorithms present
flexibility to solve different problems and to deal with the different types of models,
issues, etc, that are part of the model repair problem. Also, several mechanisms are
supported so that users can interact and provide their feedback to these algorithms.

We discarded most ML algorithms due to the lack of data available in the modeling
field and the nature of the data existing on current modeling repositories (small variety,
poor quality, unlabeled). Hence, due to this data issue, we chose to apply RL to solve
the model repair problem. RL algorithms are a solution that allows personalization of
results without needing large amounts or pre-labeled data. To apply RL to solve the
model repair problem it was first necessary to characterize how this problem is defined
within RL terms. As a result, we formalized the model repair problem as an MDP and
developedour theory for applying the notions of RL andTL to themodel repair problem.
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RQ2: How can we keep a human in the loop when performing model repair? How
well can human intervention improve results?

RQ2 focused on exploring and identifying which mechanisms are most beneficial to
keep a human in the loop while repairing models and how this interaction affects the
final results.

For answering this RQ, we focused on the concept of reward and how we could
adapt it to align it to the user requirements. The answer was to develop the preferences
module within the PARMOREL framework, where users could define their own repair
preferences as long as these could be quantified and hence, used as rewards in the RL
algorithm. This way, the algorithmwould eventually choose repair actions alignedwith
the user preferences, leading to personalized results. According to our experiments,
by further extending preferences, models with better quality characteristics can be
obtained.

Moreover, for those situations where preferences were not enough, we developed a
mechanism through which users could provide their feedback at the end of the repair
process. This way, users could manually select the sequence of repair actions they
preferred, and their feedback would override the rewards of the algorithm, hence being
remembered in future repairs.

Also, we have defined our own TL approach for model repair, with which the
preferences of different users and what the algorithm learns with their repairs can be
forwarded to future repairs, hence taking advantage of what was already learnt from
other users to streamline the repair process.

RQ3: How can a model repair framework be designed to tackle the variety of repair
situations existing in the model repair field?

RQ3 focused on researching how the outcomes of RQ1 and RQ2 could be incor-
porated into a model repair framework that tackles the wide range of problems that
can be solved in the model repair in a unified way.

Instead of having a specific tool for each kind of issue and each type of model,
we propose a unified extensible framework: PARMOREL, which can be extended
to support the new requisites that modelers need to address in their model repair
processes. Powered by RL, PARMOREL focuses on supporting personalization of
repair results and on extending its functionality to provide repair for different kinds of
models, issues, and repair preferences. Likewise, it is possible to modify the editing
actions and the RL algorithm used.

PARMOREL follows a modular structure, divided into three main modules: model-
ing, preferences, and learning module. PARMOREL is designed as an Eclipse plugin
and users can implement its modules through a series of interfaces. We have demon-
strated PARMOREL’s extensibility by extending each of these modules with a series of
extensions (see Section 5.2). The framework is not tied to these extensions and hence,
could be further extended.

56 Chapter 9



9.2 Summary of contributions

9.2 Summary of contributions

In this section, we summarize the contributions of this thesis by dividing them into
theoretical and practical contributions, according to the constructive research method
we detailed in Chapter 6.

9.2.1 Theoretical contribution

We consider as a theoretical contribution the theory built during the development of
this thesis. Our theoretical contribution is related to adapting RL to solve the model
repair problem. This theory is novel, and according to our research, no other work has
built theory in this direction. We detail our contribution in Chapter 4.

First of all, we have formalized the model repair problem as an MDP, defining
abstract concepts such as states, actions, and rewards that can be implemented using
different modeling elements (e.g., a state can correspond with different types of issues).
Then, we have defined how to use RL, specifically some tabular algorithms such
as Q(λ), to solve the model repair problem according to the above-mentioned MDP
definition. Lastly, we have defined our own TL approach, by combining existing
methods (starting-point and imitation methods, see Section 3.5), that allows us to reuse
the experience obtained from previous repairs to streamline the next repairs.

9.2.2 Practical contributions

The main practical contribution of the thesis is the PARMOREL framework. The
framework solves the problems we identified in the literature (see Chapter 6) and gives
answers to our RQs. The PARMOREL framework is detailed in Chapter 5.

The implementations for RL and TL used by PARMOREL are detailed in Chapter 4.
We provide details about both implementations so they can be reproduced by other
researchers. Furthermore, both implementations are based on abstract concepts that
can be implemented in various ways, hence, our approach could be adapted to solve
different problems.

The experiments performed in our evaluations, together with their respective
outcomes were summarized in Chapter 7. These experiments are used as a proof of
concept to evaluate our approach and it is still pending to evaluate it with modelers
in real-world scenarios. We provided enough data for other researchers to replicate
our experiments and compare their results to ours. Likewise, our datasets are publicly
available in [2], so that they can be freely used for experimentation. By providing these
datasets we contribute to improving the lack of data in the modeling field.

9.3 Future work

The work presented in this thesis provides several directions for future work given the
extensible nature of PARMOREL, its current limitations, and the identified challenges
in the ML-powered model repair field.
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9.3.1 Overcoming limitations
First, PARMOREL could be extended to overcome its current limitations. Now,
PARMOREL focuses on repairing or solving issues contained in models. In this
direction, new mechanisms could be integrated so that the framework could learn how
to improve models without issues, for example, by boosting their quality characteristics.

Also, PARMOREL could be provided with the means to, in a similar way to other
approaches such as derivative (see Section 8.1), infer repair actions automatically from
issues present in the model, removing the need for providing the framework with a set
of repair actions. Likewise, the experience submodule could be extended so that TL
can be applied in more complex scenarios beyond the repair of conformance issues.

At the moment, PARMOREL works sequentially and concurrent sharing of experi-
ence is not supported. That is, we store experience in an XML file that can be shared
via a repository. This method works as a proof of concept, however, a collaborative
environment could be created, where experience is gathered and shared at runtime.
Furthermore, an option could be provided so that users can share their own preferences
and explore other users’ preferences. In this direction, PARMOREL could be extended
to work with collaborative modeling environments, where PARMOREL would be able
to detect issues as they happen, forwarding the repair to all the users involved.

9.3.2 Further evaluation
In this thesis, we have claimed that PARMOREL is able to support different types
of learning algorithms, which we have evaluated by repairing models with a set of
different RL algorithms (see Paper C). To further support this claim, the learning
module could be extended with other RL and ML algorithms.

Likewise, it is pending an evaluation where real modelers of different levels of
expertise use PARMOREL, both with our current modules extensions and by asking
them to implement their own. Thisway, it would be possible to evaluate the extensibility
potential of PARMOREL in a real setting.

In Chapter 8, we have compared PARMOREL with other model repair approaches.
However, we have not applied PARMOREL to repair the same models as other
approaches. Hence, there is room for a more exhaustive comparison, studying
parameters such as repair time or the quality of the models produced. In this direction,
a benchmark could be created by using different modeling datasets, including the ones
used in the papers of the Part II of this thesis. By using this benchmark, PARMOREL’s
results and its performance could be compared to other existing model refactoring and
repair approaches in the literature. Due to their tailor-made nature, some approaches
are currently difficult to compare with others, hence, it will be necessary to find
objective evaluation metrics to compare them.

Lastly, an interesting research line would be to explore the potential of PARMOREL
to develop models from scratch in inter-related model scenarios, as explained in the
Appendix. This could be evaluated in projects containing different UML models,
providing PARMOREL with one of the models of the project and evaluating how well
it can create the rest of the models.
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Abstract In model-driven software engineering, models are used in all
phases of the development process. These models may get broken due to
various editions throughout their life-cycle. There are already approaches
that provide an automatic repair of models, however, the same issues might
not have the same solutions in all contexts due to different user preferences
and business policies. Personalization would enhance the usability of
automatic repairs in different contexts, and by reusing the experience from
previous repairs we would avoid duplicated calculations when facing similar
issues. By using reinforcement learning we have achieved the repair of
broken models allowing both automation and personalization of results.
In this paper, we propose transfer learning to reuse the experience learned
from each model repair. We have validated our approach by repairing
models using different sets of personalization preferences and studying how
the repair time improved when reusing the experience from each repair.

Keywords Model Repair; Reinforcement Learning; Transfer Learning

1 Introduction

Models are often used to develop key parts of systems in engineering domains [WHR14].
In model-driven software engineering (MDSE) processes, models become more prone
to errors as changes occur in their development environment, such as growing modeling
teams or modifications in requirements. Tools that automate or support error detection
and repair of models can improve how organizations deal with these errors. Model
repair research has produced diverse tools that tackle repair of faulty models from
different perspectives: e.g., support systems with abstract repairs [OPKK18], rule-
based [NRA17] or automated approaches [MGC13]. Despite the variety of approaches,
the proposed solutions can be arranged in two different lines of research: support
systems where the repair choice is left to the developer’s criteria or fully automatic,
non-interactive model repair. Both approaches present advantages and disadvantages.
Support systems that personalize the repairing process provide tailor-made solutions,
however, they are time-consuming since they require close interaction from the modeler
and are hard to scale for repairing a wider range of models. Automatic solutions improve
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repair time, however, they have the drawback of providing the same solutions for the
same errors although different modelers may have different preferences for repairing the
same model. A desirable solution should provide a balance between automation and
personalization of repair [MJC16], facilitating the use of both approaches’ advantages.

This paper follows our previous work [BRH18, BRH19], where we proposed rein-
forcement learning (RL) [SB11] as a solution to allow both automatic and personalized
model repair. RL consists of algorithms able to learn by themselves how to interact in
an environment only needing a set of available actions and rewards for each of these
actions. The structure of RL algorithms provides the necessary flexibility to adapt to
different personalization settings and to perform faster after each execution. Following
this approach, we implemented our tool PARMOREL (Personalized and Automatic
Repair of MOdels using REinforcement Learning) [Bar] where users can personalize
the repairing process. By utilizing RL, the repair gets faster since PARMOREL learns
from the errors which have been already faced. We validated the tool’s usefulness by
repairing randomly generated models under one set of user preferences [BRH19].

In this paper, we focus on repairing and learning from different sets of preferences
by applying transfer learning (TL) to reuse the experience gained from repairing under
different personalization settings. TL is a research line in machine learning (ML)
that focuses on storing knowledge gained while solving one problem and applying
it to a different but related problem to solve it faster. TL permits us to share and
reuse the experience gained in different users’ repairs. Our objective is to improve
the repairing time by avoiding repeated calculations for errors to which a solution is
already learned. The contributions of this paper are hence (i) the application of RL to
produce personalized model repair solutions, (ii) an approach to improve model repair
time with TL, and (iii) a proof of concept implementation.

The remainder of this paper is structured as follows. Section 2 provides a motivating
example for our approach. Section 3 explains the necessary background of PARMOREL
and RL to understand the rest of the paper. In Section 4, we explain our approach of
TL for model repair. Next, Section 5 presents the implementation and testing of our
approach through two different examples. After discussing the threats to validity in
Section 6 and related work in Section 7, we conclude the paper and present future
work plans in Section 8.

2 Motivation

Model repair is a broad field that covers different model issues: syntactic and semantic
errors, design smells, compliance to quality attributes and metrics, co-evolution issues,
etc. We focus on developing a framework that simplifies how modelers repair and
improve their models regardless of the model’s type, the type of issues they repair,
and the user’s expertise. To do so, we utilize ML algorithms which provide enough
flexibility to handle the above-mentioned variety of models and issues.

When following rule-based or quick-fix approaches, the modeler must specify a
series of rules to repair issues in the model or derive them from grammar or constraints.
Although these rules are precise for a single set of requirements they are not universal
and might not satisfy every specific modeler’s requirements. The number of rules to
define can increase rapidly when repairing big models. In contrast, ML algorithms
are easy to scale, as they can target any model size without increasing the number of
rules. This is due to the learning capability of ML algorithms which allows them to
learn how to repair without being explicitly programmed for every situation.
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[1..1]	address

issue4

issue1

issue2

issue5
issue6

 issue3

Figure 1 – Sample model containing a variety of issues

In our previous work [BRH19], we used RL in our framework and applied it to
repair syntactic errors in models that violated certain constraints of the Ecore meta-
model [SBMP08]. In the current work, we address a wider range of issues, including
design smells and compliance to quality properties [BV10, BDRIP19]. Furthermore,
we take the learning capability of our framework one step further, by utilizing TL,
which enables experience sharing between different users.

Consider as an example the model shown in Fig. 1, which represents a part of a
smart system in which a device has several statuses, categories, owners and an address.
The model contains several types of issues: design smells, i.e. classes with duplicated
attributes and references (issues 1 and 2), syntactic inconsistencies corresponding
to constraints imposed by the language used to define the model, i.e. the Ecore
metamodel [Fou] (issues 3, 4 and 6: operation with two return parameters instead of a
single one, containment reference with an upper bound greater than 1 and attribute
without a type) and violations with respect to some quality properties, i.e. attributes
should not be (potential) associations [LFGDL14] (issue 5).

Each of these issues can be addressed by applying different actions. For example,
issue1 could be handled by deleting or updating one of the duplicated classes Status or
Public_Status or by creating a hierarchy within these classes. This hierarchy could
consist of promoting one of the initial classes to superclass or making both of them
children of a new superclass. References could remain in the children or belong to
the superclass. Likewise, issue4 could be repaired by (i) changing the upper bound
from 2 to 1, (ii) modifying the containment to a regular reference, (iii) deleting the
reference owner or (iv) deleting both owner and device. issue5 by renaming or removing
address in Device, class Address or the address association and issue6 by setting a type
or deleting the faulty attribute or the container class.

This sample model shows that addressing model issues is not a trivial task. There
are multiple, possible repair solutions that a modeler could choose while there might
not exist an objectively best solution to satisfy all modelers. ML algorithms can
provide model repair solutions adapted to each modeler without requiring to specify
beforehand how to act for every specific model and modeler requirement.
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Figure 2 – Overview of our approach

3 Reinforcement Learning in PARMOREL

This section introduces a brief notion of RL and PARMOREL in order to provide
a comprehensive guide to understand the rest of this paper. Figure 2 presents an
overview of our approach. PARMOREL uses RL to find a sequence of concrete actions
required to repair the issues present in a model. We rely on an external modeling
framework (i.e. the Eclipse Modeling Framework (EMF) [Fou, SBMP08]) to retrieve
issues in the models (e.g. attribute without a type, duplicated class). The modeling
framework is also responsible for applying the actions selected by PARMOREL (e.g.
setType, delete or addSuperClass) and creating the repaired models. PARMOREL
produces the sequence of actions to repair each model based on preferences introduced
by the user. At the moment, users can select preferences from a catalogue of predefined
options offered through a GUI (see Fig. 6).

In the beginning, RL follows a try-and-fail approach: when a sequence of concrete
action applications leads to a repair which is aligned with the user preferences, the
actions in that sequence will get rewarded, and otherwise punished (negative reward
when punishing, positive when rewarding). Following this approach, the algorithm
learns which actions to apply for each issue. We adapt RL rewards to align with
user preferences; e.g., if a user prefers to preserve the structure of the original model,
we can assign positive rewards to conservative actions. Moreover, we filter actions
obtained from the modeling framework so that PARMOREL only works with those
that can be applied in a concrete type of error (see line 5 in Alg. 1); e.g., if one issue
is present in an attribute, actions invokable in references or classes would be discarded.
This way, we improve performance by reducing the search space.

RL provides structures to store experience gained from each repair, so that the
algorithm can improve its performance in consecutive executions. PARMOREL is
powered by the Q-learning algorithm [SB11], in which experience is stored in a table
structure called Q-table (see example in Fig. 3). We chose Q-learning because it
provides several features that are useful to solve the model repair problem: (i) the
Q-table structure allows us to pair actions with issues and locations in the models
(see below), (ii) the Q-table is highly reusable and easy to import and export into new
executions, (iii) the algorithm is able to find a set of different solutions for the same
issue thanks to its combination of exploitative and explorative policies (i.e., picking
the best-known action vs. finding a new random one) and (iv) it takes into account
the consequences of applying an action to measure its suitability. Traditionally, the
Q-table stores pairs of states (a situation to solve) and actions. An action can be
any editing operation that can be applied to the model and repair an issue, including
element creation and deletion.
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 entry1 := issue5, class1: Owner, action1: delete

 entry2 := issue5, attrib1: address, action1: delete
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Figure 3 – Detail of how the Q-table gets populated each episode

In PARMOREL, we use a 3-dimensional Q-table to store entries, which corresponds
with a combination of a concrete action applied in a location to repair a particular
issue in the model. Each entry has a weight which reflects how good an action is for
repairing an issue in a model location according to the user preferences. Actions from
entries in the Q-table are stored individually and they are sequence-independent. To
obtain these repairing actions, the algorithm filters the selected invokable actions to
keep only those that are able to repair at least one error (see lines 6-9 in Alg. 1).
Hence, the Q-table only contains entries that are able to repair an issue. Although
these actions may produce different repairs depending on their application order, it
is not necessary to store the whole sequence since the weights will be updated based
on how good an action is both individually and in the applied repair sequence. For
example, when repairing the model in Fig. 1, one entry in the Q-table would be:
entry3 := issue5, attribute1: address, action2: setName with a final weight of 382 after
10 episodes (see below).

Figure 3 shows how the Q-table would be populated with weights in each episode
of the algorithm when repairing issue5 and issue6 from Fig. 1. Each episode is one
iteration in which the algorithm has successfully repaired the model within a predefined
number of steps (see lines 10-18 in Alg. 1); one step corresponds to the application
of one entry. After each episode, the algorithm starts repairing the model again in
order to find possibly “better” repair sequences; i.e., sequences with entries whose total
weights are higher than the currently found ones. Figure 3 represents 10 episodes
(e0-e10); in the beginning (e0), the Q-table is empty as the algorithm does not know
yet how to repair the model, hence all entries have a weight of 0. Picking the “right”
number of episodes assures that the algorithm has enough time to find different possible
sequences to repair the model; what is right depends on the model size, the number of
errors and actions available. There is no established policy of how many episodes are
best for a given problem [SB11], so according to our experimentation, between 15 and
20 episodes are enough. Likewise, the maximum number of steps is picked based on
the size of the model and number of errors - 10 in the case of this example. Limiting
the number of steps assures that the algorithm does not fall in an infinite loop while
looking for repairing sequences. In the future, the selection of these values could be
automated by implementing a hyperparameter selection method, similar to grid and
random search in other ML algorithms [BBBK11].

For this example, we simulate a user who prefers to repair the model preserving as
much as possible of its original structure (pref1 ) and to address each issue individually,
rewarding entries that repair one issue at a time (pref2 ). His intention is to respect
the original model and to repair in a way that allows him to track independently
the repair of each issue. We would like to remark that the preferences displayed in

Journal of Object Technology, vol. 19, no. 2, 2020

Paper A 75



6 · Angela Barriga et al.

this paper work as a proof of concept to evaluate different repair scenarios with our
approach and they may not substitute the requirements specified by a real modeler.

When an action fulfills pref1, its entry obtains a reward of 10, otherwise, it obtains
a punishment of -10 multiplied by the number of times the entry is unaligned with
the preference. For pref2, entries obtain a positive reward with the percentage of
remaining non-repaired issues after repairing a single issue or a negative reward with
the percentage of repaired issues. For example in e1, applying delete in class Owner
would get -80 from pref1 since it would delete 8 elements of the model (1 class, 4
attributes and 3 references) and -50 from pref2, since we would be repairing 50% of
the issues simultaneously (3 out of 6)—making a total reward of -130. In e3, however,
changing the type of password would get a reward of 10 from pref1, since it solves
the issue by updating an existing element without deleting or adding new ones to the
model, and 83 from pref2 since it repairs just 1 out of 6 issues (13%) and does not
interfere with the resting 83%—making a total reward of 93.

If no preference is involved with the applied entry, there will be a positive default
reward for each repaired error. Picking the right rewards for the preferences is
done based on our experimentation, there is no established policy about defining
rewards in Q-learning [SB11]. For simplicity, we calculate the weights in the Q-table
with an accumulation of the rewards obtained from the user preferences. In the
implementation in PARMOREL, however, these weights are calculated based on the
Bellman Equation [Bel13] where one of the inputs to the equation is the rewards
obtained from user preferences.

The Q-learning algorithm picks the entry with the highest value in the Q-table or
an entry randomly (see line 13 in Alg. 1). This way, it assures applying new entries
that would have otherwise never been picked; in each step, there is 20% chance of
picking an entry which is not having the highest weight in the Q-table. Following this
procedure, Fig. 3 displays how the algorithm picks entries in each episode: highest
in green, random in blue. Once a weight is stored, it is propagated to the following
episodes and if the entry is picked in multiple episodes the weight will be accumulated.
This way, after some episodes the algorithm is able to learn which are the entries most
aligned with user preferences (see lines 23-24 in Alg. 1); for the current user these
entries are entry3 and entry7. Below, we show a pseudo-code of Q-learning within
PARMOREL (see Alg. 1).

Due to the Q-table’s storage procedure, when facing the same error repeated times,
even if it appears in different and unrelated models, PARMOREL will be able to
recognize it and gradually repair it in a more efficient way. For example, issue5 in
Fig. 1 will always follow the same structure —an attribute with the same name as
class/association—regardless of the model where issue5 appears.

In traditional RL, the weight of each entry depends on a single reward ; e.g., for
a robot learning how to escape a maze, it receives a negative reward when stepping
into a wall and a positive one when entering a free space. However, in model repair
one entry’s weight may depend on multiple rewards since it might involve several user
preferences, e.g., recall that entry1 in Fig. 3 got its weight based on two different
preferences. Introducing user preferences complicates reusing experience since what is
a good repair for one user might not be acceptable for another one. This challenge of
reusing experience when the rewards change from one scenario to another is addressed
in the ML field by TL [PY10].
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Algorithm 1 Q-learning in PARMOREL
1: INPUT: from User (model, preferences)
2: INPUT: from M. framework (issues Ð getIssues(model), actions Ð getActions(model),
3: locations Ð getLocations(issues))
4: for each i in issues do
5: invokableActions Ð getAllInvokableActions(i)
6: repairingActions Ð getAllRepairingActions(i, invokableActions)
7: for each a in repairingActions do
8: addQtableEntry(i, a, i.location, 0)
9: originalModel Ð model

10: while numberOfEpisodes not 0 do
11: while numberOfSteps not 0 _ issues != H do
12: e Ð selectRandomIssue(model)
13: entry Ð selectEntry(e, Q-table) // random or highest Q-value
14: model.applyAction(entry.getAction(), entry.getLocation)()
15: rewards Ð getRewards(model, preferences)
16: updateQtableWeights(entry, rewards)
17: seq Ð addEntry(entry)
18: if checkNewIssues(model) then repeat lines 4-9
19: sequences Ð addSequence(seq)
20: numberOfEpisodes Ð numberOfEpisodes - 1
21: model Ð originalModel
22: bestSequence Ð getBestSequence(sequences)
23: updateQtableWeights(bestSequence.getEntries, rewards)
24: applySequence(bestSequence, model)
25: OUTPUT: repaired version of model

4 Applying transfer learning in model repair

TL differs from traditional ML in the fact that, instead of learning how to solve a
problem from zero, it reuses experience gained in solving a source task to accelerate
the solution of a new target task. The benefits of TL are that it can speed up the time
it takes to develop and train an ML system by reusing already developed solutions.

There exist many techniques within TL. In PARMOREL we take into account
starting-point and imitation methods [TS10]. Starting-point methods use the solution
found in the source task to set the initial experience in a target task. Imitation
methods use parts of the source task experience to influence the solution of the target
task. Applied to our scenario, following starting-point methods the whole Q-table
from a previous repair would be reused in a new one while following imitation methods
only some parts of the source Q-table would be copied to the new repair.

4.1 Learning through propagating preferences

As mentioned, while repairing models with PARMOREL the Q-learning algorithm
stores weights in the Q-table indicating how good an entry is for repairing an issue.
Working with the same Q-table in different repair scenarios is useful as long as user
preferences remain unchanged. However, it is not convenient to directly reuse the
Q-table (as in starting-point methods) when introducing new sets of preferences since
the repairing process would use the weights calculated with the old preferences and
this could lead to repair decisions unaligned with the new ones. Following imitation
methods would not be convenient either since we would still copy some of the weights
from an old Q-table calculated with old preferences. Our goal is to reuse the experience
obtained from other users’ repairs, therefore we apply our own version of the starting-
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Q-table
User1

e10

 User1 rewards

73
382
23

-186
-146
-143

-260 -90

 User2 rewards

Without TL
User2

e10

-2
6
-12

-32

User2
e0

-188
-140
-155

-122

User2
e10

With TL
accumulated rewards
(reward x episodes)

 from pref1 x0.2

 pref1: -80, pref2: -50 (x2 episodes)
 pref1: -10, pref2: +83 (x1 episode)
 pref1: +10, pref2: +83 (x3 episodes)
 pref1: -60, pref2: +83 (x1 episode)

 pref1: -80, pref3: 50 (x3 episodes)
 pref1: -10, pref3: -83 (x2 episode)
 pref1: +10, pref3: -83 (x2 episodes)
 pref1: -60, pref3: -83 (x1 episode)

entry1
entry2
entry3
entry4

 entry2 := issue5, attrib1: address, action1: delete

 entry3 := issue5, attrib1: address, action2: setName

 entry4 := issue5, class2: Address, action1: delete

 entry1 := issue5, class1: Owner, action1: delete

Figure 4 – Example of differences when initializing the Q-table with and without TL

point method by copying all Q-table entries without their weights so that the algorithm
would not start with a completely empty Q-table. In addition, we apply a variant of the
imitation method in which instead of copying weights from the Q-table, we keep track
of which preferences were used to produce the weights during the episodes, accumulate
their values, and reuse those which are aligned with the new user preferences.

The quality of an entry is no longer tied to a specific set of preferences; the
algorithm is now able to pick the individual rewards used to calculate the weight of
each entry. Since entries represent issues and actions that can potentially appear
in any model, the structure of the Q-table can be reused regardless of the model to
repair.

Note that the sample Q-tables shown in this paper exemplify the entries by
displaying the names of the locations where the actions are applied; e.g., entry3 in the
Q-table in PARMOREL would look like entry3 := issue5, attribute1, action2 rather
than entry3 := issue5, attribute1: address, action2: setName.

As an example, the upper part of Fig. 4 shows the difference in the Q-table of two
users with different preferences for repairing issue5 in Fig. 1. User1 is the same user we
simulated in Fig. 3 with pref1 and pref2 as displayed in Fig. 4. User2 shares pref1 and
in addition prefers to repair as many issues as possible with just one action (pref3).

These users share one of their preferences, but since the other one is different, they
will get different repairs. The Q-table reflects this difference, entry3 is the one selected
for User1, and entry1 for User2, since by deleting the class Owner we repair issue4,
issue5 and issue6 at the same time. User2 preferences are specially interesting because
it shows how RL is able to pick a solution when preferences are contradictory. In this
situation, it is not possible to repair more than one error at a time without deleting
several elements in the model, which goes against pref1.

Additionally, the lower part of Fig. 4 shows how the weights of User2 are changed
when we transfer learning. That is, by transferring the accumulated rewards (multiplied
by the number of episodes they were applied) coming from shared preferences between
both users (pref1 in this example), it is possible to streamline consecutive repairs.

Journal of Object Technology, vol. 19, no. 2, 2020

78 Paper A



Improving model repair through experience sharing · 9

When sharing experience, we initialize the Q-table with the accumulated rewards of the
shared preferences multiplied by a discount factor of 0.2. This way we assure previous
repairing processes influence the new repairs by jump-starting the repairing process but
do not interfere with learning new repair sequences. Based on our experimental results,
we found that a value of 0.2 gave the best results for our cases. This parameter’s
value can be modified so that the previous experience affects less or more new repairs.
However, the value should remain a constant during the execution otherwise some
parts of the experience will be more favoured than others. Now, when User2 starts
repairing, PARMOREL will already know that entry3 is the best according to pref1,
but thanks to the discount factor it is still able to find a better solution for this user.

4.2 Integration with PARMOREL

In this section, we detail how PARMOREL shares experience between different users.
We use the model in Fig. 5 to illustrate how PARMOREL supports TL in model
repair. The learning information gained after each repair is represented by the concept
Experience which is composed of one to many entries and preferences. Experience has a
structure that achieves transfer learning from older repairs independent of the models
which we want to repair.

The concept Entry has references to all the elements that are part of the Q-table:
an Issue, a Location and an Action. In addition, an Entry has a zero to many references
to Reward. Weights are not included in this model since we only share the accumulated
rewards which were used to calculate them. Hence, the Reward contains a numerical
value based on the users’ preferences. The model has also the following constraints:

1. There cannot exist two identical Entry elements (formed by the same combination
of Issue, Location and Action).

2. One Entry cannot contain more than one Reward from the same Preference.

When the repairing algorithm is executed for the first time, there is no previous
experience and PARMOREL starts learning from zero; the Q-table is empty and the
algorithm needs to process the model to populate it with entries. When the repair
finishes, the first experience is created. It contains every entry stored in the Q-table
and the accumulated rewards coming from user preferences for those entries. For
second and consecutive executions, the sharing will be different depending on how
much current user preferences coincide with the ones already stored in the Experience:

Entry

Experience

Location

Action

Issue

Preference

Reward

+ value: int

[1..*] preferences

[1..*] entries

[0..*] rewards

[1..1] issue

[1..1] action

[1..1] location 
[1..1] preference

[1..*] rewards

Figure 5 – Model of transferring learning experience in PARMOREL
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• Always, independently of the new preferences chosen, the current Q-table is
initialized with the stored entries (see line 6 in Alg. 2). If there are new entries
in the current model, these are also added to the Q-table and therefore in the
experience (lines 4-8 in Alg. 1).

• If any of the new preferences are shared with the stored ones, the current Q-table
is initialized with all rewards coming from the matching preferences (see lines
7-10 in Alg 2). Returning to the example in Fig. 4, User2’s Q-table is initialized
with rewards correspondent with pref1 since that is the one selected by both
users. These preferences’ rewards will be updated for future propagation (see
line 12 in Alg. 2). If a user introduces preferences not stored yet, these will be
added to the experience.

When sharing experience in PARMOREL, we reduce the random factor of the
Q-learning algorithm from 20% to 10% to enhance the influence of the previous
Experience. The number of episodes is also reduced since due to TL the repairing
process is improved and solutions are found faster.

Regarding Alg. 1, for introducing TL, we add some new code right after the inputs
for checking if any previous Experience exists to initialize the Q-table, see Alg. 2. Lines
4-9 in Alg. 1 are executed for those errors not present in the experience. Then, after
line 16 we store pairs of preference-reward for the selected entry, in order to keep track
of which preferences provided each reward. When facing the same entry, the pairs are
updated, accumulating the rewards. Finally, at the end of the algorithm, we store all
generated experience in a text file with XML format (see output in Alg. 2).

Algorithm 2 Transfer learning in PARMOREL
1: INPUT: from User (preferences)
2: INPUT: from PARMOREL (experience, discountFactor, episodes)
3: Qtable Ð createNewQtable()
4: if experience != H then
5: reduceNumberofEpisodes(episodes)
6: for each entry in experience.entries do
7: addQtableEntry(entry, 0)
8: for each pref in preferences do
9: for each reward in entry.rewards do

10: if reward.preference == pref then
11: updateQtableWeight(entry, reward.value * discountFactor)
12: //Algorithm 1, in line 4: if i exists in the Qtable then skip loop
13: //after line 16: for each entry, store in the experience reward values coming from preferences
14: updateExperience(Qtable.entries, preferences, rewards)
15: OUTPUT: XML with generated experience

5 Implementation and Evaluation

In this section, we present a proof of concept implementation of our approach, testing
it with two examples: we repair a broken model with different sets of preferences and
then we repair 30 randomly mutated models obtained from 3 originals from GitHub.
The objectives of this section are to show that our approach can (i) store and reuse
experience learned from different preferences and (ii) improve the repairing time when
working with different models. The implementation source code and the models are
publicly available in [Bar]. Additionally, PARMOREL is available as an Eclipse plugin
(see Fig. 6).
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Figure 6 – Screenshot of PARMOREL Eclipse plugin

In our current PARMOREL implementation, we use the EMF API to obtain issues
present in the model and actions to repair it. For these examples, PARMOREL is run
in Eclipse Oxygen (the Modeling package) on a laptop with the following specifications:
Windows 10 Home, Intel Core i5-6300U @2.4GHz, 64 bits, 16GB RAM.

5.1 Example I: different users repairing the same model

In this example, we use our implementation of TL in PARMOREL to repair the broken
model presented in Section 2 (see Fig. 1). We simulate 7 different users with different
sets of preferences to repair the model. For the sake of brevity, we only display the
first three users in Fig. 7 together with their preferences and the repaired model that
each of them obtains. Our goal with this example is to demonstrate that our approach
is able to produce different repair solutions depending on the preferences selected by
the user and to streamline the repairs the more experience is reused.

Each user preferences are a combination of those displayed in Fig. 6. The
combinations have been chosen so that they are completely different (User1 and User2
in Fig. 7), coincide partially (User2 and User3), and are the same. Also, some users
may completely coincide in some of their preferences while having opposite preferences
in others (User3 and User5 coincide in repair errors individually but one prefers to
preserve the original model and the other to modify it). This diverse set of preferences
allows us to evaluate if our approach is able to: (i) share experience between users
with unrelated preferences, (ii) successfully reuse experience when preferences coincide
completely or partially with the stored experience, and (iii) achieve better performance
when more parts of the experience are reused.
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The first repair of our example is executed with User1’s preferences (see Fig. 7),
when there is no previous experience stored. Afterwards, we repair the model using
each set of user preferences in numerical order. The experience gained is stored and
reused in the next repair. Note that repair processes are not concurrent but sequential:
when one user finishes his process the experience is locked until the next user starts
repairing. We also changed the repair order but it did not provide different solutions.

Figure 7 shows, for each user, the applied repairing sequence and the repaired
model which PARMOREL produces. In the repaired models, we show where each
issue was repaired. Below, we detail the repairing process for each user in Fig. 7 :

• User1: Since this is the first repair, there is no experience stored yet. In order
to preserve the original model, PARMOREL avoids to delete or add elements to
the model as much as possible.

• User2: This repair reuses experience obtained from the previous user’s repair
process, however, since User2’s preferences do not coincide with the ones stored
(User1’s preferences), only entries without rewards are reused. User1’s preference
is opposite to User2’s (preservation vs modification of the original model),
therefore, this repair is not influenced by User1’s preference. Since User2 wants
to reward modification, the algorithm chooses to delete elements in the model
and to add a new class to solve issue1 and 2.

• User3: This user is the first one to pick preferences already stored in the
experience, in addition to a new one. As in the previous repair, one of the
preferences selected by User3 is new. Since User3 prefers to reward model
modification and to repair errors individually, there are fewer elements deleted
than in the previous repair.

The random component of RL produces variations in the results, therefore, to get
stable results, we reproduced the following steps 20 times: repairing the broken model
with preferences from User1 to User7 starting with no previous experience in User1.
Results in Fig. 7 are the majority of those that were obtained most frequently.

To check if our approach succeeded in improving the repair time when more
experience is reused, we measured the time used to complete each user’s repairing
process. Figure 8 shows how long it takes to repair the model with the 7 sets of user’s
preferences during three different rounds. Although there are some variations in each
round, we can see a pattern. User1’s execution had no previous experience, therefore
this repair takes longer, where the preprocessing of entries took an average of 570ms.
User2 shows a faster execution than before since they reuse entries and PARMOREL
does not need to calculate them again. From here, we can see how execution time gets
even lower since User3 to User7 have preferences that appear in the stored experience.
User3 introduced new preferences so the repair is not fast as in User4 to User7 since
all their preferences were already stored in the experience. In these last users, their
execution times are not so different. This is because the type of preferences introduced
also influences execution time, e.g., repairing several issues at a time is faster than
individual repair.

In conclusion, each user obtains a customized repairing process and a repaired
Ecore file is exported. PARMOREL allows to automatically store and share experience
in different executions. Sharing is adapted depending on whether users introduce
preferences already stored in the experience (reuse of entries and rewards) or not
(reuse of only entries). With this approach, the repairing time becomes faster when
reusing more experience.
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Repairing sequence

 issue1 - make Status superclass of Public_Status, remove ref from
Status, remove attribs from Public_Status
 issue2 - make Category child of Status, remove attribs from Category
 issue3 - delete string return parameter from pushNotification()
 issue4 - change reference owner upper bound to 1
 issue5 - rename attribute address
 issue6 - add type to attribute password
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StatusCategory
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issue4
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issue6

Repairing sequence

 issue1 - delete Public_Status
 issue2 - add a new class Category_Status, make it superclass of Category and
Status, add attribs to Catgory_Status, remove attribs from Category and Status
 issue3 - delete operation pushNotification()
 issue4, 5 and 6  - remove class Owner

Repairing sequence

 issue1 - delete Public_Status
 issue2 - add a new class Category_Status, make it
superclass of Category and Status, add attribs
to Catgory_Status, remove attribs from Category and Status
 issue3 - delete  operation pushNotification()
 issue4 - delete reference owner
 issue5 - delete attribute address
 issue6 - delete attribute password
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Repair errors individually
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Figure 7 – Users with different preferences repair the same broken model
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Figure 8 – Evolution of repair times for model in Fig. 1 with 7 users in 3 different rounds

5.2 Example II: different users repairing randomly mutated models

To evaluate and test the generality and scalability of our approach, we use our im-
plementation of TL in PARMOREL to repair 30 mutant models generated from 3
industry size models (10 mutants per original model) obtained from GitHub: Ran-
domEMF [mar15], OCCIware ecore [Occ17] and amlMetaModel [aml16]. To generate
the mutants, we use AMOR Ecore Mutator [AKK`08], an EMF-based framework
to randomly mutate models conforming to the Ecore meta-metamodel. We refer to
each group of mutants coming from these models as batches A, B, and C, respectively.
AMOR offers different mutation options such as deleting, adding, or moving objects,
however, here we only introduce mutations by updating features of the original models.
This is because updating features would create issues which are similar enough to
demonstrate reuse of experience (in our previous work [BRH19], we demonstrated how
PARMOREL could repair a more diverse variety of mutations through 100 models).
The mutant models contain between 1 and 7 syntactic errors (out of 11 different issues)
and have different sizes ranging from 21 to 36 classes, 21 to 100 attributes and 15 to
197 references. Actions to repair the mutants are directly extracted from the editing
actions available in EMF. Mutants from this example are available to download in
[Bar]. In this example, we simulate 3 users (User1 to User3) to repair each batch of
mutants (each user repairs one batch) with different set preferences based on those
displayed in Fig. 6.

First, we repair each batch without applying TL. Then, we proceed to repair them
in the following order: A-B-C-A, starting from zero with no experience stored in
PARMOREL. We repair batch A twice to measure its repairing time with and without
TL, since in its first repair there is no experience to propagate. Results are displayed
in Table 1 (times displayed are the average after reproducing this cycle 20 times). In
batch A, the repairing time is improved 58,90% when using TL; it benefits from the
experience containing all its errors and preferences since we repair A twice in the cycle.
Batch B contains 10 errors, from which 3 are not present in the experience and User2’s
preference is new, so it only gets an improvement of 9,71%. Finally, for mutants in
batch C, we obtain an improvement of 36,56%, a better result than the previous batch
since PARMOREL does not face any unknown issue and has already processed one
of User3’s preferences. Batch C takes longer to repair with and without TL since it
contains the biggest models.
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The results of this evaluation indicate that our TL approach accomplishes sharing
the experience learnt by repairing different models, can work with real-world models
and streamlines the repair regardless of the chosen preferences.

Per model Total batch
Elements Issues Without TL With TL Improvement

Batch A 76 1 - 7 7,93s 3,26s 58,90%
Batch B 74 1 - 5 7,41s 6,69s 9,71%
Batch C 336 1 - 6 12,06s 7,65s 36,56%

Table 1 – Comparison of repairing times with and without TL

6 Threats to validity

Although we consider our approach successful in integrating TL in PARMOREL and
streamline the repairing process, we face some validation issues worth discussing in
this section.

Models and errors. Our evaluation focused on repairing a broken model designed
by us (see Fig. 1) and 30 mutant models produced with AMOR. The criteria for
selecting which issues should be present in the first model was to create a broken
model that could be repaired in different ways according to our set of preferences,
making a motivating example for our approach. The reasons for using AMOR are its
easy integration with EMF and the randomness of the introduced mutations. Despite
this randomness, it has a predefined set of mutations, and the issues it produces might
not be as complex as errors introduced by a human. Still, we believe it is realistic to
think these issues could appear in real modeling environments.

Preferences. Since no real users participated during the evaluation, we simulated
different sets of high-level repairing preferences. Although these preferences were
fictitious, we consider them a good example for showing the potential of RL to produce
personalized solutions and how experience sharing works.

Generality. Our approach is evaluated using EMF and Ecore metamodels, however,
PARMOREL should also work with other types of models. The assumption is, as long
as the framework in which the models are defined can detect errors and provide an
API for editing actions, future versions of PARMOREL should be able to repair them
and to apply TL.

Dynamic learning. Although we consider our approach to provide a balance be-
tween automation and personalization, it is obvious that providing a predefined set
of preferences might not be universally applicable in all scenarios. Therefore, we
contemplate the possibility of providing further interactions with users, for example,
offering runtime repair options to the users and learning from their choices.
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7 Related work

Model repair is a research field that has drawn the interest of many researchers to
formulate approaches and build tools to repair broken models. Even though some of
these tools offer some degree of automation and customization, we could not find in
the literature any research applying RL or TL to model repair.

One tool that allows customization is Echo [MGC13], in which users can customize
repair operations. They provide concrete repairs and produce well-formed model
instances. The only output is the generated instance of the model, so the user lacks
information about repair plans and causes of the inconsistencies. It has some predefined
metrics such as preferring least-change options, which cannot be modified by users.

Taentzer et al. [TOLR17] present a prototype based on graph transformation
theory for change-preserving model repair. In this approach, the authors check opera-
tions performed on a model to identify which ones caused inconsistencies and apply
the correspondent consistency-preserving operations, maintaining already performed
changes on the model. Although this approach does not offer active customization,
it keeps track of user history and takes their repairing preferences into account. By
obtaining preferences from historical data, this approach assumes user preferences
will not change from one repair to another, which is a situation that could happen
frequently when facing different model repair scenarios.

Other efforts focus on interactive solutions, authors in [CvBLR`17] present an
interactive repairing tool powered by visual comparison of models, performing confor-
mance checking. They claim fully automated methods lead to overgeneralized solutions
that are not always adequate, and strong interaction comes with a high computational
effort, therefore as future work they seek an equilibrium between automation and
interaction. This is exactly our vision: a balance between the algorithm independence
and enough interaction with the user to provide personalized solutions.

Khelladi et al. [KKE19] present a model repair approach that ranks repairs
depending on the positive or negative side effect they produce. They also identify
alternative repair paths and cycles of repairs. This is a very interesting research
line and some of their concepts are also present in PARMOREL’s implementation.
We also avoid falling in cycles of repairs by delimiting the number of steps in the
Q-learning algorithm, repairs with bad side effects will get a poor reward and the
random component of Q-learning lets us explore different alternative repair paths. As
future work, it would be interesting to integrate their concept of positive side effect to
provide good rewards in PARMOREL.

Kretschmer et al. introduce in [KKE18] an approach for discovering and validating
values for repairing inconsistencies automatically. Values are found by using a validation
tree to reduce the state space size. Trees tend to lead to the same solutions once
and again due to their exploitation nature (probing a limited region of the search
space). Differently, RL algorithms include both exploitation and exploration (randomly
exploring a much larger portion of the search space with the hope of finding other
promising solutions that would not be selected normally), allowing to find new and,
sometimes more optimal solutions for a given problem.

Also tree-powered, Model/Analyzer [RE12] is a tool that, by using the syntactic
structure of constraints, determines which specific parts of a model must be checked
and repaired. The user is expected to select a specific violation to be repaired but
does not support user customization.

Puissant et al. propose a tool called Badger based on an artificial intelligence
technique called automated planning [PVDSM15]. Badger generates sequences that
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lead from an initial state to a defined goal. It has a set of repaired operations to
which users can assign costs and weights to decide its priority. Badger generates a set
of plans, each plan being a possible way to repair one error. We prefer to generate
alternative sequences to repair the whole model since some repair actions can modify
the model drastically. This makes it difficult for the user to decide which action to
apply without knowing how it affects the rest of the model. Additionally, in Badger
users can personalize parameters of a predefined set of operations, we offer higher-level
preferences that allow a wider range of customization. Also, by combining RL and TL
we are able to streamline the repairing process; while automated planning performance
does not improve with time.

Lastly, it is worth mentioning search-based and genetic algorithm-based approaches
since, although they have not been applied yet to model repair, they can be considered
as possible competitors to RL. These techniques have shown promising results deal-
ing with model transformations and evolution scenarios, for example in [KMW`17]
Kessentini et al. use a search-based algorithm for model change detection. These
algorithms deal efficiently with large state space scenarios, however, they cannot learn
from previous tasks nor improve their performance. While RL is less efficient when
dealing with large state spaces, it can compensate with its learning capability. At the
beginning, performance might be poor, but with time repairing becomes straightfor-
ward. Also, search and genetic algorithms require a fitness function to converge. This
function is more rigid to personalize than RL rewards. While in RL is easy to adapt
different rewards for individual actions or complete sequences, is not so intuitive how
to provide personalization at different levels with a fitness function.

8 Conclusions and future work

In this paper, we presented an approach to repair models using Reinforcement Learning
(RL) and Transfer Learning (TL) in our tool Personalized and Automatic Repair
of MOdels using REinforcement Learning (PARMOREL), together with a proof of
concept implementation. In this approach, experience generated by repairing models
under certain customization preferences can be reused to streamline later repairs.
Different parts of the experience are taken into account depending on user preferences.
Each execution updates the stored experience, hence, the algorithm’s learning becomes
more efficient with time.

In the proof of concept implementation, we repaired broken models with different
user preferences. To show how TL works under different circumstances, we simulated
a set of users with preferences, such as punishing modification of model elements.
The implementation showed how our approach allows us to repair models and to
automatically share experience in different executions and models, achieving better
performance the more experience is reused. Our results are promising and can be seen
as an indicator of the potentials of this research direction, hence, we would like to
continue developing PARMOREL following the next research lines.

Modeling framework. The implementation displayed in Section 5 is tied to EMF
and Ecore metamodels. However, since PARMOREL is built as an Eclipse plugin we are
currently working on implementing features that enable users—through implementing
a series of interfaces—to define both the issues they want to repair, their own catalogue
of actions and types of models.
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Preferences and dynamic learning. Next, we will work further on how users
define their preferences for model repair. We are developing a domain-specific language
(DSL) to allow users to design their own preferences in addition to offering a predefined
set of preferences (as shown in Fig. 6). Regarding rewards, we would like to apply
apprenticeship learning [AN04] to infer their values from observing users during
repairing processes. Furthermore, we are working on enabling the users to give feedback
to the algorithm by selecting among the repair sequences provided by the algorithm.
This way, the users can determine which of the solutions fit their requirements after
checking the effect of the repair sequence. Moreover, we will investigate how historical
changes in the models could be used to influence the final repair sequence.

Collaborative environment. Currently, PARMOREL works sequentially and con-
current sharing of experience is not supported. That is, we store experience in an
XML file that can be shared via a repository. This method works as a proof of concept,
however, we plan to provide a collaborative environment where experience is gathered
and shared in runtime.

Quality metrics. Moreover, the only measurable quality of the repaired models
is how much they fit user preferences. In future work, we want to also assure these
models’ quality based on metrics [DG18]. The same way we can produce personalized
models by using preferences, we will be able to produce models that improve different
quality metrics at request. Finally, one area we want to study is the refactoring of
models using RL to make them more aligned to architectural and design patterns.
Additional rewards could be related to how well the models meet the coupling and
cohesion criteria.

References

[AKK`08] Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Rets-
chitzegger, Martina Seidl, Wieland Schwinger, and Manuel Wimmer.
Amor–towards adaptable model versioning. In 1st International Work-
shop on Model Co-Evolution and Consistency Management, in con-
junction with MODELS, volume 8, pages 4–50, 2008.

[aml16] amlModeling. amlmodeling/amlmetamodel, Jan 2016. URL: https:
//github.com/amlModeling/amlMetaModel.

[AN04] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first international
conference on Machine learning, page 1. ACM, 2004.

[Bar] Angela Barriga. PARMOREL. Available at: https://ict.hvl.no/
project-parmorel/.

[BBBK11] James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In Advances in neural
information processing systems, pages 2546–2554, 2011.

[BDRIP19] Lorenzo Bettini, Davide Di Ruscio, Ludovico Iovino, and Alfonso
Pierantonio. Quality-driven detection and resolution of metamodel
smells. IEEE Access, 7:16364–16376, 2019.

[Bel13] Richard Bellman. Dynamic programming. Courier Corporation, 2013.

Journal of Object Technology, vol. 19, no. 2, 2020

88 Paper A



Improving model repair through experience sharing · 19

[BRH18] Angela Barriga, Adrian Rutle, and Rogardt Heldal. Automatic model
repair using reinforcement learning. In Proceedings of MODELS 2018
Workshops, Copenhagen, Denmark, October, 14, 2018., pages 781–786,
2018. URL: http://ceur-ws.org/Vol-2245/ammore_paper_1.pdf.

[BRH19] Angela Barriga, Adrian Rutle, and Rogardt Heldal. Personalized
and automatic model repairing using reinforcement learning. In 2019
ACM/IEEE 22nd International Conference on Model Driven Engi-
neering Languages and Systems Companion (MODELS-C), pages
175–182, 2019. [Forthcoming]. Available: https://bit.ly/2IPfwMD.

[BV10] Manuel F Bertoa and Antonio Vallecillo. Quality attributes for soft-
ware metamodels. Málaga, Spain, 2010.

[CvBLR`17] Abel Armas Cervantes, Nick RTP van Beest, Marcello La Rosa, Mar-
lon Dumas, and Luciano García-Bañuelos. Interactive and incremental
business process model repair. In OTM Confederated International
Conferences" On the Move to Meaningful Internet Systems", pages
53–74. Springer, 2017.

[DG18] Khanh-Hoang Doan and Martin Gogolla. Assessing uml model quality
by utilizing metrics. In 2018 11th International Conference on the
Quality of Information and Communications Technology (QUATIC),
pages 92–100. IEEE, 2018.

[Fou] The Eclipse Foundation. Eclipse modeling project. URL: https:
//www.eclipse.org/modeling/emf/.

[KKE18] Roland Kretschmer, Djamel Eddine Khelladi, and Alexander Egyed.
An automated and instant discovery of concrete repairs for model
inconsistencies. In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, pages 298–299. ACM,
2018.

[KKE19] Djamel Eddine Khelladi, Roland Kretschmer, and Alexander Egyed.
Detecting and exploring side effects when repairing model inconsis-
tencies. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering, pages 113–126, 2019.

[KMW`17] Marouane Kessentini, Usman Mansoor, Manuel Wimmer, Ali Ouni,
and Kalyanmoy Deb. Search-based detection of model level changes.
Empirical Software Engineering, 22(2):670–715, 2017.

[LFGDL14] Jesús J López-Fernández, Esther Guerra, and Juan De Lara. Assessing
the quality of meta-models. In MoDeVVa@ MoDELS, pages 3–12.
Citeseer, 2014.

[mar15] markus1978. markus1978/randomemf, Dec 2015. URL: https://
github.com/markus1978/RandomEMF/.

[MGC13] Nuno Macedo, Tiago Guimaraes, and Alcino Cunha. Model repair
and transformation with echo. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering, pages
694–697. IEEE Press, 2013.

[MJC16] Nuno Macedo, Tiago Jorge, and Alcino Cunha. A feature-based clas-
sification of model repair approaches. IEEE Transactions on Software

Journal of Object Technology, vol. 19, no. 2, 2020

Paper A 89



20 · Angela Barriga et al.

Engineering, 43(7):615–640, 2016. doi:https://doi.org/10.1109/
TSE.2016.2620145.

[NRA17] Nebras Nassar, Hendrik Radke, and Thorsten Arendt. Rule-based
repair of emf models: An automated interactive approach. In Interna-
tional Conference on Theory and Practice of Model Transformations,
pages 171–181. Springer, 2017.

[Occ17] Occiware. occiware/ecore, Sep 2017. URL: https://github.com/
occiware/ecore/.

[OPKK18] Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, and Timo Kehrer.
Revision: a tool for history-based model repair recommendations. In
Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, pages 105–108. ACM, 2018.

[PVDSM15] Jorge Pinna Puissant, Ragnhild Van Der Straeten, and Tom Mens.
Resolving model inconsistencies using automated regression planning.
Software & Systems Modeling, 14(1):461–481, 2015.

[PY10] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2010.

[RE12] Alexander Reder and Alexander Egyed. Computing repair trees for
resolving inconsistencies in design models. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engi-
neering, pages 220–229. ACM, 2012.

[SB11] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. 2011.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: eclipse modeling framework. Pearson Education, 2008.

[TOLR17] Gabriele Taentzer, Manuel Ohrndorf, Yngve Lamo, and Adrian Rutle.
Change-preserving model repair. In International Conference on
Fundamental Approaches to Software Engineering, pages 283–299.
Springer, 2017.

[TS10] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of
Research on Machine Learning Applications and Trends: Algorithms,
Methods, and Techniques, pages 242–264. IGI Global, 2010.

[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of
practice in model-driven engineering. IEEE software, 31(3):79–85, 2014.

About the authors

Angela Barriga is a PhD Candidate at Western Norway University of Applied
Sciences. She has experience woring with machine learning, computer vision, geron-
technology and pervasive systems. Barriga’s thesis is focused on model repair, specially
on repairing using reinforcement learning. She has been part of the local organization
of iFM 2019 and is involved in STAF 2020-2021. She is also part of the program
committee of the third international workshop on gerontechnology. You can learn
more about her at https://angelabr.github.io/ or contact her at abar@hvl.no.

Journal of Object Technology, vol. 19, no. 2, 2020

90 Paper A



Improving model repair through experience sharing · 21

Adrian Rutle is a Full-time professor at Western Norway University of Applied Sci-
ences. Adrian holds PhD in Computer Science from the University of Bergen, Norway.
Rutle is professor at the Department of Computer science, Electrical engineering and
Mathematical sciences at the Western Norway University of Applied Sciences, Bergen.
Rutle’s main interest is applying theoretical results from the field of model-driven
software engineering to practical domains and has expertise in the development of mod-
elling frameworks and domain-specific modelling languages. He also conducts research
in the fields of modelling and simulation for robotics, eHealth, digital fabrication,
smart systems and machine learning. Contact him at adrian.rutle@hvl.no

Rogardt Heldal is a professor of Software Engineering at the Western Norway Uni-
versity of Applied Sciences. Heldal holds an honours degree in Computer Science from
Glasgow University, Scotland and a PhD in Computer Science from Chalmers Univer-
sity of Technology, Sweden. His research interests include requirements engineering,
software processes, software modelling, software architecture, cyber-physical systems,
machine learning, and empirical research. Many of his research projects are performed
in collaboration with industry. Contact him at rogardt.heldal@hvl.no

Journal of Object Technology, vol. 19, no. 2, 2020

Paper A 91





PAPER B
MODEL REPAIR WITH QUALITY-BASED
REINFORCEMENT LEARNING

L. Iovino, A. Barriga, A. Rutle, and R. Heldal.

In Journal of Object Technology, Volume 19, Number 2, 2020.





Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Model Repair with Quality-Based
Reinforcement Learning

Ludovico Iovinob Angela Barrigaa Adrian Rutlea

Rogardt Heldala

a. Western Norway University of Applied Sciences, Norway

b. Gran Sasso Science Institute - Computer Science Scientific Area, Italy

Abstract Domain modeling is a core activity in Model-Driven Engineering,
and these models must be correct. A large number of artifacts may
be constructed on top of these domain models, such as instance models,
transformations, and editors. Similar to any other software artifact, domain
models are subject to the introduction of errors during the modeling process.
There are a number of existing tools that reduce the burden of manually
dealing with correctness issues in models. Although various approaches
have been proposed to support the quality assessment of modeling artifacts
in the past decade, the quality of the automatically repaired models has
not been the focus of repairing processes. In this paper, we propose the
integration of an automatic evaluation of domain models based on a quality
model with a framework for personalized and automatic model repair. The
framework uses reinforcement learning to find the best sequence of actions
for repairing a broken model.

Keywords MDE; Machine Learning; Model Repair; Quality Evaluation

1 Introduction

Models are becoming core artifacts of modern software engineering processes [WHR14].
When performing modeling activities, the chances of breaking a model increase together
with the size of development teams and the number of changes in software specifications,
due to lack of communication, misunderstanding, mishandled collaborative projects, etc
[TOLR17]. The correctness and accuracy of these models are of the utmost importance
to correctly produce the systems they represent. However, it can be a time-consuming
task to make sure that models are correct and have the required quality. Therefore,
several approaches to automatic model repair have been proposed in the past decades
[OPKK18, NRA17, MGC13]. However, the quality of the automatically repaired
models has not been the main focus of the repairing algorithms even though quality
characteristics have been extensively studied in the literature [BBL76, Dro95, OPR03].
Usually, a common approach to define quality models is to first identify a small set of
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high-level quality characteristics and then decompose them into sets of subordinate
characteristics. We consider customization important due to the flexibility of the
concept of quality; quality characteristics may be given different meanings depending
on the considered application scenarios, context, and intended purpose [BDRDR+16].
Hence in this paper, we propose the integration of an automatic model repair method
with a customizable quality definition method.

In previous work, we introduced PARMOREL (Personalized and Automatic
Repair of MOdels using REinforcement Learning) [BRH18, BRH19], an approach
that provides personalized and automatic repair of software models using reinforcement
learning (RL) [TL00]. PARMOREL finds a sequence of repairing actions according
to preferences introduced by the user without considering objective measures such
as quality characteristics. In this paper, we extend our approach to also consider
well-known metrics to improve the overall quality of the repaired models. To achieve
this, we integrate PARMOREL with a tool for quality evaluation of modelling arti-
facts [BDRDR+19]. This tool facilitates the evaluation of the modeling artifacts in
terms of a personalized view of the quality concepts. This integration leads to the
production of models that are improved based on both user preferences and quality
characteristics—such as maintainability and understandability. Our approach takes
automatic model repair one step further in supporting users to improve the quality of
models.

Structure of the paper. This paper is organised as follows: section 2 presents
a running example where we demonstrate how a domain model with errors can be
repaired in different ways. In section 3, we propose some quality characteristics to be
evaluated on the running example in order to demonstrate how different actions impact
the repaired domain model differently. We show the proposed extended architecture
of PARMOREL in section 4, evaluate the approach in section 5, and discuss factors
which might affect the validity of the evaluation in section 6. In section 7, we present
some relevant related works and we conclude the paper in section 8.

2 Running example

In this section, we demonstrate how a broken domain model can be repaired. We will
show how different actions can lead to different resulting repaired models with different
quality characteristics. As an example, we will use the model in Figure 1 that shows a
domain model specified using the Eclipse Modeling Framework (EMF) [SBMP08a].
This model represents an excerpt of the “company” application domain. The root of
the model is a CompanyModel containing a set of companies. A Company is defined
with a name, and it can hire a set of Employees. Every employee has a name and
specializes the class Person. Client is another specialization of Person. Moreover, the
model can define Projects.

The chances of breaking a model increase with collaborative modeling activities,
depending on the number of changes in software requirements [BRH18], and the size
of the conceptual domain to be engineered. This domain model might have become
invalid at any stage of the modeling activity 1. The model in Fig. 1 presents a number
of problems as seen from the highlighted parts (in red). The invalid model is unsuitable

1This domain model has been taken from a dataset of academic examples used during the MDE
Course at the GSSI, Italy. This model has been created by junior MDE experts, during the lab-sessions
of the course.
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E1
E2
E3

E4

E3

E2

E1

E4

[0..*] assigned

Figure 1 – A snapshot of an invalid domain model

for modeling activities that require model validation [MLLD10]. We summarize these
problems as follows:

E1 Person cannot inherit from itself

E2 Reference employees of the class Company has lowerbound greater than upper-
bound

E3 Reference works of the class Employee is untyped (see treeview based representa-
tion)

E4 There cannot be two features name in the same class (also including inherited
attributes).

These errors can be repaired in multiple ways [DREI+16] leading to different
results but with the same intent—restore the validity. For each error, a possible set
of resolution actions can be undertaken. To avoid increasing the search space and
the complexity of the example, we consider only two possible actions per error (these
actions were chosen manually with an illustrative purpose). We group these actions
into two sets: A1 and A2. Furthermore, the domain models in Fig. 2 and Fig. 3,
respectively, show the effects of repairing the errors applying A1 and A2.

Starting from error E1 where a class cannot have itself as a supertype, the resolution
actions we propose are:
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A1 Removal of the supertype relationship

A2 Adding a new class to satisfy the supertyping

In this specific case the Person class having a supertype relationship to itself can be
resolved with A1 where we remove the relationship or with A2 where we introduce a
new class where its name is super{class− name}, i.e. SuperPerson.

Error E2, where the lower bound of the employees reference is greater than the upper
bound can be solved with one of the following actions. Concretely, the two actions
can result in modifying employees cardinality [5..2] to [2..5] or [1..2] (by decreasing
lowerBound until it is smaller than the upperBound value: 2).

A1 Invert lowerBound with upperBound of the reference

A2 Decrease lowerBound or increase upperBound of the reference until the model
results valid

For E3 where the works reference is untyped, the possible resolution actions are
numerous if we decide to pick any class in the model to type the reference. To
reduce the search space, we apply a heuristic that only allows to type references by
classes having less than 2 ongoing references. In our example, only classes Project,
ProductionLine and Client comply to this heuristic. To maintain the uniformity of
presenting 2 actions per error, we concentrate on the first two classes; typing works
with Client do not produce any significative changes w.r.t. the actions proposed below:

A1 Type it with Project (merging works with the existing reference assigned into a
bi-directional reference)

A2 Type it with ProductionLine

The last error to be fixed is E4 where the name attribute cannot be repeated since
the superclass of Employee and Client already has declared it.

In this case the resolution can be listed as follows:

A1 Remove the attribute from the supertype

A2 Remove the attribute from the subtypes

These two actions applied to the domain model resulted in having the attribute name
in the Person class or in both of its subclasses Client and Employee. Also, in this case,
we could propose other alternative actions, but what is important is the concept that
we will detail in the next section.

3 Quality evaluation

In [BDRDR+19, BDRDR+16, LFGDL14] different works propose quality models specif-
ically conceived to measure the quality of models and other modeling artifacts. In these
works, characteristics like maintainability, portability, and usability are introduced
together with sub-characteristics like analyzability, adaptability, and understandability
for each main characteristics. Multiple quality characteristics may be considered in
order to evaluate qualitative aspects of the domain engineering phase, formalized as
a domain model. This aspect is particularly relevant in the activity of model repair
since the actions undertaken to repair the errors could produce valid models, but with
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low-quality characteristics. The alternative is to manually repair models with the
disadvantage of being very time consuming. For this reason, we dedicate this section
to demonstrate how the two actions selected for each error (exposed in section 2) may
produce valid domain models but with different quality characteristics.

CompanyModelCompany

name	:	EString

Person

Employee

name	:	EString

ProductionLine

Client

name	:	EString

Project

title	:	EString

[0..*]	companies

[0..100]	persons

[0..*]	projects

[0..*]	lines

[1..1]	model

[2..5]	employees

[0..*]	assigned

[2..2]	works

Figure 2 – Repaired model with actions A1

CompanyModelCompany

name	:	EString

Person

name	:	EString

Employee

ProductionLine

Client Project

title	:	EString

SuperPerson

[0..*]	companies

[0..100]	persons

[0..*]	projects

[0..*]	lines

[1..1]	model

[1..2]	employees

[2..2]	works

[0..*]	assigned

Figure 3 – Repaired model with actions A2
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3.1 Quality characteristics

In this section, we consider the following quality characteristics [GP01]: maintain-
ability, understandability, complexity, and reusability. For measuring the quality
characteristics of the two produced domain models in Fig. 2 and Fig. 3, we have
implemented a quality assessment tool inspired by [BDRDR+16]. This tool will be
presented in section 4 in the overall integrated approach.

The maintainability quality characteristic considered in this paper has been defined
according to the definition given in [GP01] and that is based on some of the metrics
shown in Table 1 as follows:

Maintainability =

(
NC +NA+NR +DITMax + FanoutMax

5

)
(1)

According to the considered definition of maintainability the lower values the better.
The definitions of the Understandability and Complexity quality characteristics are

adopted from [SC06]. In particular, understandability can be defined as follows:

Understandability =

(∑NC
k=1 PRED + 1

NC

)
(2)

where PRED regards the predecessors of each class, since, in order to understand a
class, we have to understand all of the ancestor classes that affect the class as well as the
class itself. According to such a definition, the lower values for the understandability
quality characteristic the better.
Complexity can be defined in terms of the number of static relationships between the
classes (i.e., number of references). The complexity of the association and aggregation
relationships is counted as the number of direct connections, whereas the generalization
relationship is counted as the number of all the ancestor and descendant classes. Thus,
the complexity quality characteristic can be defined as follows:

Complexity =(NR −NUR +NOPR + UND + (NR−NCR)) (3)

Metric Acronym
Number of Class NC
Number of TotalReference NR
Number of Opposite Reference NOPR
Number of TotalReference containment NCR
Number of TotalAttribute NA
Number of Unidirectional reference NUR
Max generalization hierarchical level DITmax
Max Reference Sibling (max fan Out) FANOUTmax
Number of TotalFeatures NTF
Sum of inherited structural features INHF
Attribute inheritance factor AIF
Number of predecessor in hierarchy PRED
Within an relation chain is the longest path from the class to others HAGG
Difference between the upper bound and lower bound in a reference REFint
Max or min upper bound of a set of references UPBmax|UPBmin

Table 1 – Excerpt of the metrics considered in the evaluation
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Quality characteristics A1 A2
Maintainability 4.20 4.60
Understandability 1.28 1.62
Complexity 12.28 8.6
Reusability 0.00 0.15
Relaxation Index 4.57 4.56

Table 2 – Quality characteristics after evaluation of the running example (table)

where NUR is the number of unidirectional references calculated as the difference
between bidirectional and total reference number, and UND is the understandability
value calculated as defined in Def. 2. According to the given definition, the lower
values for the complexity characteristic the better.

The reusability of a given model can be calculated in different ways. One of these
is to use the attribute inheritance factor AIF as proposed in [Are14] where it is stated
that a higher value indicates a higher level of reuse. As presented in [AJS07], AIF can
be defined as follows:

Reusability = AIF =

(
INHF

NTF

)
(4)

where INHF is the sum of the inherited features in all classes, and NTF is the total
number of available features.

Moreover, we decided to define a new quality characteristic inspired by the concept
of metamodel relaxation [AA17], called relaxation index.

RelaxationIndex =

(∑NR
k=1 REFint− UPBmin

UPBmax− UPBmin

)
(5)

Based on the concept of relaxation we can define how much a relation is strict with
respect to its cardinality constraints. For instance, [0..*] on a reference is more relaxed
compared to [i..i] (for i ∈ INT ). This is because in the first case the modeler has
more freedom to define the number of instances, that can be optional or even infinite;
in the second case he / she needs to define exactly i instances to fulfill the constraints.
For this reason, if we want to give more elasticity to the modeler, we can use this
index to understand which model is less restrictive.

3.2 Evaluating the running example

When we calculate these quality characteristics on the running example, the result
can be summarized as follows (see Table 2).

The application of the two actions can have different impact on the quality character-
istics of the domain models. In fact, it seems that A1 resulted better in maintainability,
understandability and relaxation index, while A2 resulted better in the rest. Maintain-
ability is calculated over the number of model elements, the hierarchical definitions
and the siblings of every element and the balance of these elements has made the
result similar for the two actions, even if A1 resulted better.

In the same way, understandability resulted better for A1, since also this quality
characteristic is based on the predecessors of the classes. Complexity resulted better in
A2, being partially linked to the understandability, but also to the unidirectional and
bidirectional references. In fact A1 introduces a reference with type Project (works),
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this class already has a unidirectional reference to Employee (assigned), matching then
a new eOpposite constraint, i.e. bidirectional, making the model more complex.

Reusability indicates that A2 produces a model with a better level of reuse. This
is due to the fact that A2 concerning the name attributes decides to move it up to
the hierarchy, instead of maintaining the ones in the subtypes. This increases the
number of inherited features and hence the level of reuse. Finally, considering the
relaxation index the A1 set of actions results in generating a domain model slightly
more relaxed with respect to the A2 set. In fact, the references are all the same, except
the employees relation where in case of A1 is set to [2..5], and in A2 to [1..2], affecting
the relaxation index.

4 Customizing quality characteristics with RL

Up to now, the results of our quality evaluation are based on definitions taken from
existing literature (see Section 3.1). In this section, we demonstrate how the quality
definition may be specified and customized by the modeler based on her own point of
view on model quality. Our approach takes the quality preferences from the modeler
as input and uses Reinforcement Learning (RL) to find customized repairing sequences
of actions that improve the selected characteristics.

PARMOREL uses RL algorithms (currently, Q-learning [TL00]) to find which
is the best possible repairing action for each error in the model. RL consists of
algorithms able to learn by themselves how to interact in an environment without
existing pre-labelled data, only needing a set of available actions and rewards for each
of these actions. We rely on an external modeling framework (i.e. the Eclipse Modeling
Framework (EMF) [SBMP08b]) to retrieve issues in the models (e.g. attribute without
a type, duplicated class). The modeling framework is also responsible for applying
the actions selected by PARMOREL and creating the repaired models. The learning
algorithm in PARMOREL allows to provide repairing from zero, without knowing
any details of the model to be repaired. By using and tuning RL rewards, these
algorithms can learn which are the best actions to repair a given error. We can adapt
these rewards to align with any preference introduced by the user, including quality
characteristics; i.e., if a user prefers to improve maintainability in the model, we assign
positive rewards to actions that satisfy this quality metric (note that it is mandatory
for users to introduce, at least, one metric preference).

Figure 4 shows the extended workflow of PARMOREL. Before finding a repairing
sequence for a given model, PARMOREL is executed for a number of episodes. Each
episode equals one iteration attempting to repair the model, as reported with dotted
lines in Figure 4. For each of these episodes, a possible repairing sequence is found,
and applying it, a provisional repaired model is created.

By introducing quality evaluation to PARMOREL, we can measure the quality
for each of the provisional repaired models. PARMOREL translates these results
into rewards, so that it can identify how good each repairing action is improving or
preserving the considered quality of the model. Likewise, after each episode, only
actions providing higher quality would be selected. This is done by extending the
architecture to include the Quality Evaluation Module, that we will detail in the
remaining of this section. After performing enough repairing iterations, PARMOREL
will select the repair sequence with higher rewards and saves the final repaired model.
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Figure 4 – PARMOREL’s workflow for assuring quality in repaired models

4.1 Specification of quality aspects

The Quality model plays a key role in the proposed approach since it enables the
specification of quality measures according to the domain’s or the modeler’s require-
ments. Inspired by the quality model proposed in [BDRDR+16], we have designed a
model for the specification of the quality of multiple artifacts (see Fig. 5). Each of
these artifacts will be assigned a set of QualityCharacteristicss in which the modeler can
specify, among others, the calculation function (functionaName) and the priority with
respect to other quality characteristics. Moreover, whether a quality characteristic
should be maximized or minimized, is specified in the attribute solution.

Figure 5 – Quality characteristics model

Furthermore, the attribute value—which is empty at the beginning—will be actual-
ized with the resulting value of the evaluation by the engine which executes the quality
calculation function; this function is presented as a workflow diagram in Fig. 6. Indeed,
the modeler specifies the initial setting of the quality characteristics according to her
preferences while the engine applies the calculation function on the given artifacts to
determine their quality.

Figure 6 reports a simplified representation of the quality evaluation process.
For each provisionally repaired model—i.e., after applying the repairing algorithm
once—, the evaluation engine will be invoked on two inputs: the quality preferences
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which is an instance of the model in Fig. 5 and the provisional model which is
subject for the evaluation. The evaluation engine will actualize the QualityCharac-
teristics’s attribute value in the quality model. Then the results become available
for inspecting the values of the calculated quality characteristics. These results will
be used by PARMOREL to optimize the required qualities in subsequent episodes.

Legend

Quality Evaluation ModulePARMOREL

Quality Evaluation Engine

Quality 
Calculator

Provisional Model

Repair Optimizer 
(according to quality 

preferences)

Quality characteristics 
model 

Value for each quality characteristics

FunctionModule Flow Model

Input

Figure 6 – Excerpt workflow of quality characteristic evaluation

The evaluation engine has been implemented with EOL [KPP06], an imperative
programming language for creating, querying and modifying EMF models. EOL offers
model management operations with a dedicated language built on top of EMF. This
makes easier the definition of evaluation operations with respect to Java implementa-
tions using EMF API directly [BDRDR+16]. A declared library is used to evaluate
the domain models given as input. An excerpt of this specification is reported in
Algorithm 1, which is an abstraction of the EOL library.

Algorithm 1 Quality evaluation, EOL main file excerpt
1: IMPORT: qualityModel as QM
2: INPUT: provisionalModel as MM
3: QM.evaluatedArtifact← MM
4: maintainability← (n_classes(MM) + n_attrs(MM) +

n_refs(MM) + dit_max(MM) + hagg_max(MM))/5
5: . . .
6: //if maintainability is declared in the quality model
7: if QM.maintainability != ∅ then
8: QM.maintainability← maintainability
9: QM.evaluatedArtifact.addCharacteristics(maintainability)

First, the evaluation begins by setting the evaluated artifact (line 3) with the domain
model passed as provisional model in Fig. 6. Further, all the quality characteristics
declared in the quality model will be evaluated. For instance, line 7 evaluates if
maintainability is declared in the quality model given as input to the evaluation
(line 1). A representative quality model is depicted in Fig. 7, where the modeler has
declared the five quality characteristics to be evaluated (anticipated in section 2), and
set the functionName to the name of the function used in the EOL script to invoke the
calculator. Algorithm 1 reports only one of the quality characteristics available in that
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evaluation

Figure 7 – Quality model initial setting and result

library (maintainability), but the modeler can evaluate others by simply declaring
them as model elements, as in Fig. 7 (left).

The evaluation of the given artifact will refine the artefact’s existing quality model.
In the initial setting, the modeler selects the quality characteristics to be evaluated
with a specific user-defined priority. As seen in Fig 7 (right), a new evaluation will be
available for each domain model under evaluation, and every quality characteristic
has its related value actualized. Here, we highlight the evaluated domain model given
as input to the process, identifiable with the unique URI http://cs.gssi.it/company/1
of the domain model. In the property view the reusability evaluation of the domain
model obtained with the application of A1 shows the reuse value 0.153.

4.2 Using quality evaluation in preference specification

Using the initial setting of the quality model, as for instance the one depicted in Fig. 7,
the modeler can instruct the reward algorithm. To achieve this, the modeler can select
which quality characteristics he wants to measure in the model and in which priority.

First, PARMOREL calculates a reward for each of the quality characteristics
selected (see lines 3 - 6 in Alg. 2). This is done by subtracting the value of the quality
characteristic of the original model from the provisional repaired version. The order
of the subtraction is altered depending on whether the quality characteristic should
be maximized or minimized. Then, the algorithm multiplies each reward value by
the corresponding quality characteristic priority value. As a consequence, we obtain
stronger rewards for the characteristics which the modeler considers of higher relevance.
The rewards values are normalized in order to avoid big numerical differences when
one of the quality characteristics varies more than the others.

Finally, PARMOREL adds all the rewards and stores the obtained value for each
action in the selected sequence in the Experience module. Following this procedure,
after each episode PARMOREL will be able to produce repaired models of higher
quality since the algorithm will progressively apply actions with higher rewards.
Thanks to the random component of PARMOREL’s Q-learning, the algorithm will
also be able to apply new actions that otherwise would not be selected due to the
other actions having already higher rewards. This random component assures the
discovery of different repairing sequences that might lead to higher quality models.
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Algorithm 2 Rewards calculation in PARMOREL
1: INPUT: from Modeler (qualitycharacteristics, originalModel)
2: INPUT: from PARMOREL (repairedModel, sequenceActions)
3: for each qa in qualitycharacteristics do
4: reward← getQuality(qa, originalModel) - getQuality(qa, repairedModel)
5: reward← reward * qa.priority
6: rewardsList← reward
7: normalize(rewardsList)
8: experienceModule(repairedModel, rewardsList, sequenceActions)

Figure 8 displays the results of repairing the model from Fig. 1 by using three
of the quality characteristics introduced in Section 3: complexity, reusability and
understandability. Working with these quality characteristics is especially interesting,
since improving complexity and reusability involves reducing the number of elements,
which might lead into getting a worse value for understandability. Here we show how
RL can make a compromise in order to satisfy all characteristics as much as possible.

The four initial syntactical errors (E1-E4) are repaired with the available actions
presented in Section 2, where we showed an example of how would the repair be when
applying all A1 actions (see Fig. 2) or A2 actions (see Fig. 3). In this new example,
PARMOREL picks the actions that achieve better results for all characteristics: E1
is repaired with its correspondent A1 and E2-E4 are repaired with their A2s. The
reasoning behind choosing these actions rely on minimizing the number of elements in
the model with a special focus on hierarchies, which boosts the understandability.

PARMOREL finds different solutions depending on the considered quality. For
example, Fig. 9 displays the results of repairing the model from Fig. 1 when prioritizing
another three quality characteristics from Section 3: maintainability, reusability and
relaxation index. This time, PARMOREL picks the following actions: E1-E3 are
repaired using their A1s and E4 is repaired with A2. With these actions the produced
model has less elements, which improves the maintainability and reusability and the
employees reference has more relaxed bounds.

In this section, we introduced a scenario which highlights how PARMOREL can
be instructed to consider the user preferences, specified by a quality model.

5 Evaluation of PARMOREL

To evaluate and test the scalability of our approach, we use PARMOREL to repair
107 domain models2 and consider two research questions:

RQ1 How the size of the model affects the execution-time of the repair?

RQ2 How the number of errors in the model affects the execution-time of the repair?

To answer these questions, we conducted an experiment using syntactically cor-
rupted models and two metrics: number of errors and number of elements (size). We
split the dataset of models with an 80-20% distribution, repairing 20% of the models
twice, with and without having first repaired the 80%. With this experiment, we
analyze the impact of number of errors and size on the repairing time of the 80% and
the influence these metrics have when reusing learning and streamlining the repair on
the 20%.

2This dataset is available on this Git repository: https://github.com/MagMar94/ParmorelRunnable
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Figure 8 – Model from Fig. 1 prioritizing complexity, reusability and understandability
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Figure 10 – Relation between repair time in ms per model size and number of errors

To retrieve these models we rely on the dataset used in [NDRDR+19] and filtered
in order to get only corrupted Ecore models. All errors present in these models
are syntactic errors that violate certain constraints of the Ecore metamodeling lan-
guage [SBMP08b] (e.g., the opposite of the opposite of a reference must be the reference
itself, classifiers must have different names, etc). Each subject model contains between
1 and 118 errors, counting a total of 12 different types of errors throughout the models.
Regarding the number of elements, each model has between 12 and 4227, counting the
number of classes, attributes, references, and operations.

In the following, we present the results of the experiment. First, we configure
PARMOREL to run 25 episodes to repair each model in 80% of the dataset. There is
no established policy of how many episodes are best for a given problem [TL00], so
according to our experimentation, 25 are enough to find at least one repairing sequence
of actions for every model. The execution of all the episodes takes between 2.1s (for a
model M1 with 70 elements and 1 error) and 14.38 mins (for a model M2 with 4141
elements and 49 errors—the second biggest model in the dataset); this is shown in
Fig. 10. We include a zoomed area in Fig. 10 to display the details of models with
less than 550 elements and 20 errors since these constitute the majority of the 80%
dataset. The number of errors influences the repair time slightly more than the size of
the models since PARMOREL needs to go throughout each model structure to find
and repair each error, so the more errors are in the model the more calculations are
required. The total execution time for the 80% dataset is 51.35m.

We can conclude that both the size of the models and the number of errors affect
the repairing time logarithmically (see Fig. 10), although the influence of the latter
is stronger. The influence of these factors is confirmed by calculating the correlation
coefficient [ASG06] for each pair of values: we get a coefficient of 0.68 for size/time
and 0.80 for number of errors/time.

Next, we focus on testing the impact of the number of errors and model size when
PARMOREL reuses learning from previous repairs. Additionally, we measure how
much the repair is streamlined. This process can be conceived as the usual training
phase in other ML algorithms. When reusing learning, the process needs fewer episodes
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to converge since the tool has acquired knowledge from previous repairs. Hence, we
configure PARMOREL to reduce the number of episodes by 50%, making a total of
12 episodes. First, we proceed to repair the remaining 20% of the dataset directly
after repairing the previous 80%. Then, we repair again the 20% after resetting the
Qtable, this is, deleting the learning obtained from the 80% repair. By comparing
the results from these two rounds, we can conclude that PARMOREL streamlines
the repairing time of the new models between 3% and 84% when it has learned from
repairing other models. Faster repairing happens in models with bigger size, since the
bigger the models, the more learning can be reused from previous repairs. On average,
there is an improvement of 66.65% on the repairing time of the 20% set (without
previous learning: 18.17m, reusing learning: 6.06m). With this experiment, we can
conclude that repairing time depends more on the number of errors but performance
improvement on the size of the models.

We could see from our testing that different quality characteristics do not alter
the timing results; the algorithm gets different rewards and therefore the produced
repaired models will be different, however, the time required to repair them will remain
the same. For this reason, in this section, we only presented the repair which aims to
boost the maintainability quality characteristic.

The results of this evaluation indicate that PARMOREL is scalable and that it can
handle real-world corrupted models. Furthermore, the approach works with models
with different amounts and types of errors, finding a repairing solution for all of them.

6 Threats to Validity

In this section, we comment the threats to validity of our research, following the
guidelines from [WRH+12].

Internal threats. Quality evaluation may be considered as an internal threat to
validity since the quality model is user-defined. The definition of quality aspects tends
to be based on the user’s experience. Moreover, mistakes in these definitions could
lead to faulty results. This can be partially mitigated by including quality experts in
the definition process, or, as in our experiments, by relying on definitions based on
formulae in the literature. Also, the result of combining different quality characteristics
could lead to results not aligned with the goals of a user. Again, this can be avoided
by including experts who can guide which characteristics should (or not) be combined.

External threats. A potential external threat to the validity of our evaluation is
the dataset used for the experiments. We have selected corrupted models resulting in
a dataset of 107 models, which may be considered small, however, this threat may
be mitigated with the heterogeneity of the sources; these models have been retrieved
from different Github repositories and hence from different modelers.

Also, throughout the paper we have picked five characteristics (maintainability,
understandability, reusability, complexity, and relaxation index) as a proof of concept
to show the potentials of PARMOREL and used one of them, maintainability, for the
evaluation. We consider this sample set representative enough for our experiments
but the approach is not limited to this set since it supports any characteristics defined
using the Epsilon Language. Although the implementation displayed in Section 5
is tied to EMF and Ecore models, PARMOREL is built as an Eclipse plugin, so
it is possible to use other modelling frameworks—through implementing a series of
interfaces—and users can define both the issues they want to repair and their own
catalogue of actions and types of models.
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7 Related work

Over the years, various approaches have been proposed to support the quality mea-
surement of modeling artifacts using quality models. The authors in [BDRDR+16,
BDRDR+19], propose quality models [Are14] to measure the quality of modeling
artifacts. A number of tools have been developed to support quality evaluation in
UML [AT16] or EMF [AST10]. Others focus on quality evaluation of valid models, with
the intent of applying refactorings in order to improve the quality [BDRDR+19, AT13].
Although our quality evaluation builds on top of the works mentioned here, our work is
different since we focus on the combination of automatic model repair and improvement
of model quality.

The main feature that distinguish our approach from other model repair approaches
is the capability to learn from each repaired model in order to streamline the perfor-
mance. We could not find in the literature any research applying RL to model repair.
The most similar work to ours we could find is [PVDSM15], where Puissant et al.
present Badger, a tool based on an artificial intelligence technique called automated
planning. Badger generates plans that lead from an initial state to a defined goal,
each plan being a possible way to repair one error. We prefer to generate sequences to
repair the whole model, since some repair actions can modify the model drastically,
and we consider it counter-intuitive to decide which action to apply without knowing
its overall consequences, additionally, RL performs better after each execution.

Nassar et al. [NRA17] propose a rule-based prototype where EMF models are
automatically completed, with user intervention in the process. Our approach allows
for more autonomy since quality preferences are only introduced at the beginning of
the repair process—not during the process.

Taentzer et al. [TOLR17] present a prototype based on graph transformation
theory for change-preserving model repair. The authors check operations performed
on a model to identify which ones caused inconsistencies and apply the correspondent
consistency-preserving operations, maintaining already performed changes on the
model. Their preservation approach is interesting, however it only works assuming
that the latest change of the model is the most significant.

It is worth mentioning search-based and genetic algorithm-based approaches since,
although they have not been applied yet to model repair, they are possible competitors
to RL. These techniques have showed promising results dealing with model transforma-
tions and evolution scenarios, for example in [KMW+17] authors use a search-based
algorithm for model change detection. These algorithms deal efficiently with large state
spaces, however they cannot learn from previous tasks nor improve their performance.
While RL is, at the beginning, less efficient in large state spaces, it can compensate
with its learning capability. At the beginning performance might be poor, but with
time repairing becomes straightforward. Also, search and genetic algorithms require
a fitness function to converge. This function is more rigid to personalize than RL
rewards. While in RL it is easy to adapt different rewards to quality criteria, is not so
intuitive how to provide personalization with a fitness function.

Lastly, another search-based approach is presented by Moghadam et al. in [MÓC11].
In this work, authors present Code-Imp, a tool for refactoring Java programs based
on quality metrics that achieves promising results at code-level by using hill-climbing
algorithms [SG06]. These algorithms are interesting to find a local optimum solution
but they do not assure to find the best possible solution in the search space (the
global optimum). By using RL we assure to find the global optimum: the sequence of
repairing actions that maximize the selected quality characteristics the most.
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8 Conclusions and future work

Analogous to any other software artifact, domain models are living entities and are
exposed to errors. It is crucial to keep these models free of errors and assure their
quality. To deal with these issues, we have developed PARMOREL, a framework for
personalized and automatic model repair, which uses reinforcement learning to find the
best sequence of actions for repairing a broken model according to preferences chosen by
the user. In this paper, we extended PARMOREL with a quality assurance mechanism
based on a quality model. We presented a motivating example demonstrating the
usefulness of the approach in modeling and how this can lead to better repaired
solutions. Furthermore, we evaluated the approach on a set of real-world models,
achieving promising results.

In the near future, we plan to test the framework with a more extended dataset of
domain models and errors, with the help of modelers that may attest if the repaired
sequence really offers better quality of the repaired domain model. In particular
we plan to test the presented approach with a bigger dataset of domain models
coming from GitHub repositories, in order to validate the approach with real examples.
Additionally, we plan to create a benchmark with the mentioned dataset, with which
we will compare PARMOREL to other existent model repair approaches.

So far, we have not conducted a comparative study changing the ML algorithm
of PARMOREL. This is due to the difficulty of applying ML to the model repair
problem. Most well-known ML algorithms depend on large amounts of labelled data
to learn how to repair a problem [MRT18]. This is a challenge in the modeling domain
since available model repositories (like [KC13, BDRDR+14]) only offer unlabelled data
limited in terms of size and diversity. This situation reduces the options to those
algorithms within the RL domain. Alternatives to Q-learning are either too simple in
terms of structure for our problem (e.g., armed bandits, Monte Carlo) or would add
extra complexity that is not necessary (e.g., off-policy approaches, Deep RL methods).
For further details on these examples we refer the reader to [TL00]. What we plan to
do in the future is a comparative study with the automatic repairing tools presented
in Section 7, paying especial attention to search-based, rule-based and automated
planning approaches. Lastly, in this direction, we will work on optimizing the repair
with a focus on achieving state-of-the-art time.
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ABSTRACT
In model-driven software engineering, models are used in all phases
of the development process. These models may get broken due to
various editions during the modeling process. To repair broken
models we have developed PARMOREL, an extensible framework
that uses reinforcement learning techniques. So far, we have used
our version of the Markov Decision Process (MDP) adapted to
the model repair problem and the Q-learning algorithm. In this
paper, we revisit our MDP definition, addressing its weaknesses,
and proposing a new one. After comparing the results of both MDPs
using Q-Learning to repair a sample model, we proceed to compare
the performance of Q-Learning with other reinforcement learning
algorithms using the new MDP. We compare Q-Learning with four
algorithms: Q(λ), Monte Carlo, SARSA and SARSA (λ), and perform
a comparative study by repairing a set of brokenmodels. Our results
indicate that the new MDP definition and the Q(λ) algorithm can
repair with faster performance.
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ing.
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1 INTRODUCTION

Models are becoming essential artifacts of modern software en-
gineering processes [Whittle et al. 2014]. When performing mod-
eling activities, the chances of breaking a model increase together
with the size of development teams and the number of changes
in software specifications, due to lack of communication, misun-
derstanding, mishandled collaborative projects, etc [Taentzer et al.
2017]. The correctness and accuracy of these models are of the
utmost importance to correctly produce the systems they repre-
sent. However, it can be a time-consuming task to make sure that
models are correct and have the required quality. Therefore, several
approaches to automatic model repair have been proposed in the
past decade [Macedo et al. 2013; Nassar et al. 2017; Ohrndorf et al.
2018].

In a previous work [Barriga et al. 2020] we presented our frame-
work PARMOREL (Personalized and Automatic Repair of MOdels
using REinforcement Learning) where users can personalize the re-
pairing process. We proposed reinforcement learning (RL) [Sutton
and Barto 2018] as a solution to allow both automatic and per-
sonalized model repair. RL consists of algorithms able to learn by
themselves how to interact in an environment only needing a set of
available actions and rewards for each of these actions. The struc-
ture of RL algorithms provides the necessary flexibility to adapt to
different personalization settings and to improve performance after
each execution.

In PARMOREL, the model repair problem is formulated as a
Markov Decision Process (MDP) [Sutton and Barto 2018]. MDPs
are defined in terms of a finite set of states and a finite set of
actions. State transitions must depend only on the current state
and the action chosen. In our formalization, the states are sets of
errors in the model, and the set of actions is defined by the editing
actions available provided by a modeling framework. The MDP is a
theoretical framework and its concepts can be used to solve different
problems. Each problem might require a different definition of the
MDP concepts to be solved (a state can be a position in a maze, the
score in a videogame, etc). However, the same problem could be
solved with different definitions of the same MDP concepts. For
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example, in the model repair problem so far we have defined the
state space as each error contained in a model, but this is not the
only state definition that could solve the problem.

Hence, in this paper, we want to explore an alternative definition
of the MDP concepts for the model repair problem. We discuss
our previous definition (MDP-A) and introduce a new one (MDP-
B) that addresses the weak points of MDP-A. We analyze both
MDPs strengths and weaknesses and compare them by repairing a
corrupted model using the Q-Learning algorithm. The Q-learning
algorithm provides several features that are useful to solve this
problem in terms of reusability, structure, and decision making.

PARMOREL is not limited to the Q-learning algorithm, as it is
built as an extensible framework and other algorithms for MDPs
could be easily incorporated. Finally, we compare the results of
Q-Learning and other RL algorithms in combination with the best
MDP: Q(λ), Monte Carlo, SARSA, and SARSA (λ). We perform the
comparative study repairing a dataset of models extracted from the
dataset used in [Nguyen et al. 2019].

Structure of the paper. This paper is organised as follows:
Section 2 presents the necessary background to understand the rest
of the paper and introduces both MDP definitions, finishing with
the results of repairing the same sample model with both MDPs and
Q-Learning. Next, Section 3 presents different RL algorithms that
can be an alternative to Q-Learning and finishes with the results of
repairing the same dataset models with each algorithm. Then, we
present threats to validity in Section 4, explore the related work in
Section 5, and conclude the paper in Section 6.

2 FORMALIZING THE MODEL REPAIR
PROBLEM AS A MARKOV DECISION
PROCESS

MDPs are mathematical models used to solve sequential decision-
making problems [Mundhenk et al. 2000]. At specified points in
time, a decision agent observes the state of a system and chooses an
action. The action choice and the state make the system transition
to a new state at a subsequent discrete point in time. The agent
receives a reward signal at each transition. The goal of theMDP is to
find a policy (i.e. a mapping from states to actions) that maximizes
the rewards accumulated over time.

As long as one commits to this behaviour, these concepts of state,
action, and reward are abstract and must be defined in order to
apply MDP to solve a specific problem.

In this section, we present two different formalizations of the
model repair problem using MDPs: our previous approach, from
now on MDP-A and our new one, MDP-B. In each approach we
define and discuss the following concepts:

(1) State space: set of states, observable situations, that can hap-
pen in a system. Every system has an initial state (how it
starts) and a final state. The goal of the MDP is to find a
policy of actions that takes the system from the initial to
the final state while maximizing the accumulated reward, i.e.
an optimal policy. It is important to differentiate between
a state and the actual system. A state is what is observable
by the agent and it might not contain all details about the
system, because they might not be necessary or available to
the agent. For example, given the model repair problem, our

system would be the model itself, but the state is what we
consider important in the model to solve the problem, for
instance, the errors present in the model but not its whole
structure.

(2) Action space: the set of actions that can modify the system,
leading to new states.

(3) Reward: a numerical value that tells the agent how good is
the action it applies. The reward is local and immediate, so
it does not reflect future consequences.

Before diving into each approach, it is necessary to clarify some
concepts necessary to follow further explanations:

Step: a step corresponds with the application of one action in
the system.

Episode: each episode corresponds with one iteration in which
the algorithm has successfully repaired the model using the avail-
able actions. We consider an episode ends when the final state is
reached. The number of episodes is finite, we define a maximum
number of episodes for the algorithm to run. A good number of
episodes is when the algorithm has sufficient time to find the opti-
mal policy of actions.

Customizable rewards: rewards can be adapted to align with user
preferences to personalize the repair result. Since rewards indicate
how good local actions are, the only requirement for user prefer-
ences is that they can be quantified (e.g., preserve the original model
structure by minimizing the model distance metric or boost quality
characteristics by optimising quality metrics). Since PARMOREL is
extensible, users can plug different tools to obtain these rewards. In
this paper, we work with a quality metrics tool [Iovino et al. 2020]
inspired by the quality model proposed in [Basciani et al. 2016].
The rewards obtained by using quality metrics correspond with a
positive float number. From now on we refer to this component of
PARMOREL as the metrics tool.

Q-Learning: an RL algorithm that solves MDP problems. Knowl-
edge acquired is stored in a table structure called Q-Table. This
table stores pairs of states and actions together with a Q-value. The
Q-value is calculated using the rewards and it indicates how good
each pair is. The Q-value is obtained with repeated calculations
based on the Bellman Equation [Bellman 2013] (see Equation 1),
telling that the maximum future reward is the reward 𝑟 the agent
received for entering the current state 𝑠𝑡 with some action 𝑎𝑡 plus
the maximum future reward for the next state 𝑠𝑡+1 and action 𝑎𝑡+1
reduced by a discount factor 𝛾 . This allows inferring the value of
the current (𝑠𝑡 , 𝑎𝑡 ) pair based on the estimation of the next one 𝑠𝑡+1,
which can be used to calculate an optimal policy to select actions.
The factor 𝛼 provides the learning rate, which determines how
much new experience affects the Q-values. One of the variables
used to calculate the Q-value, is the maximum weight stored in the
Q-table for the next error to repair (max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎′)). This allows
us to measure the consequences of applying a certain action in the
model (e.g., if applying an action creates a new unknown error this
action will be punished, getting a lower weight). At the end of the
execution, pairs with the highest Q-value will conform to the policy
to solve the problem. Our algorithm is epsilon-greedy (ε-greedy):
it avoids local optima using an exploration-exploitation trade-off
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Figure 1: Sample model with 3 errors

by exploring (i.e. choosing a random action) with probability ε,
and exploiting (i.e. choosing the action with highest Q-value) the
remainder of the time. We work with an ε of 0.3. Regarding other
parameters, discount factor (γ), and learning rate (α), we use 1.0
for both of them. Details of Q-Learning can be seen in Algorithm 1,
which has been adapted from [Sutton and Barto 2018] (cf. chapter
6).

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎′) −𝑄 (𝑠, 𝑎))
(1)

Algorithm 1 Q-Learning
1: Initialize Q-Table
2: for each episode do
3: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑠0
4: while errors in model != ∅ do
5: Get state s
6: Select action a with 𝜖-greedy policy for s
7: 𝑠𝑡+1 ← a applied in s
8: 𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎′) −𝑄 (𝑠, 𝑎))
9: 𝑡 ← 𝑡 + 1
10: 𝑠 ← 𝑠𝑡+1

We use the sample model in Figure 1 to exemplify and compare
each MDP definition. It has two classifiers, one reference, two at-
tributes and, an operation. The following errors are present in the
model:

(1) E1: Attribute without a type.
(2) E2: Two attributes with repeated names.
(3) E3: Operation with a not well formed name.

2.1 MDP-A definition
We start by explaining the concepts of MDP-A, the MDP definition
we have used in PARMOREL so far.

State space: the state space is defined by the list of errors present
in the model. A state corresponds with a single error in the model,
so errors are repaired one by one, following their order in the
list obtained from the modeling framework. The final state is one
without errors, i.e. it corresponds to a repaired model. In order to
obtain the errors, we rely on the modeling framework in which
the models are produced (e.g., the Eclipse Modeling Framework,
EMF [Steinberg et al. 2008]). Some examples of these errors are
syntactical errors of conformance with the Ecore metamodel: the
opposite must be a feature of the reference’s type, two or more
features with the same name, etc. An example of a state would be
Fig. 1’s initial state: [E1].

Action space: the set of editing actions obtained, as with the
errors, from the modeling framework in which the models are
produced. For each state, actions are filtered, so that only actions
capable of repairing at least one error in the state are considered.
Some examples of these actions are: delete, setName, setType, set-
Containment, etc.

Reward: in every step, we reward an applied action by using an
external tool used to measure the quality of the model in terms
of quality metrics, model distance, etc.. Then, when all episodes
finish, PARMOREL picks the sequence of actions with the highest
accumulated rewards and provides an extra reward to these actions.
With this, we reward each action not only for how good they are
individually but also for belonging to the best repairing sequence.

2.1.1 MDP-A strengths and weaknesses. We have used this ap-
proach in enough experiments to identify a series of points that
could be improved. Since we give substantial rewards at every step,
fewer episodes are necessary to find good enough repair sequences.
In this approach, we do not give the algorithm enough time to
converge to an optimal solution by itself, since we consider every
solution found, even if it is not optimal. At the end of the episodes,
PARMOREL compares all sequences found and picks the one with
higher accumulated rewards. This reduces the execution time, how-
ever, there might be better solutions that the algorithm does not
find due to not having enough episodes to do so. Also, in an ortho-
dox Q-Learning approach, the algorithm should converge to the
optimal solution, without comparing the found sequences.

Although it is not necessary to provide all details of the model
in the state, there might be situations in which our current state
definition might not provide enough information about the model.
For instance, there might be two models defined by the same state
space because they contain the same errors, but they might be
different in terms of structure and they would need different repair
solutions. For example, we could have a small model with all errors
concentrated in one class and another big model with the same type
of errors scattered in its structure. Although the initial state would
be the same for both models their optimal repair sequence might
be very different. This might lead to having stochastic rewards, this
is different rewards for the same state.

Regarding Q-Learning, the Q-table is populated before algorithm
execution. This means we process all errors existing in the model
and actions to repair each of them and create a respective entry
in the Q-table. Errors are stored in the Q-table individually. An
advantage of this approach is that it makes the Q-table easier to
reuse since the same errors can appear in many different models
and we are storing information about them individually. However,
this way the algorithm learns to solve errors one by one, while
there might be scenarios where it could be able to repair several
ones at the same time, which would be more efficient. Also, by
forcing individual repair we might be forcing a repair order that
might not be the best one.

2.2 MDP-B definition
To address the weak points of our previous MDP approach, we
propose an alternative formalization, exploring different, more
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elaborate definitions of the state space and reward function. The
definition of action space remains unchanged.

State space: Each state is defined by a set of model errors together
with an array containing the number of classes (NC), the total
number of attributes, and operations (NA) and the total number
of references (NR) in the model. All these parameters are positive
integers. This array is updated at the beginning of each episode
with the current errors present in the model and the values of NC,
NA, and NR. A final state has an empty set of errors, i.e, it stands
for a repaired model. The final state is independent of the NC, NA
and, NR values. Some examples of these errors are: "the opposite
must be a feature of the reference’s type", "two or more features
with the same name", etc. An example of a state would be the initial
state in Fig 1: {E1, E2, E3} [2, 3, 1].

Reward: in every non-final step the reward will be 0. When the
final state is reached, the reward will be given by an external tool
used to measure the quality of the repaired model in terms of quality
metrics, model distance, etc.

By giving the reward once the final state is reached, the algorithm
will need more episodes to learn how to repair the model but in
exchange, it will always find the optimal repair sequence.

2.2.1 MDP-B strengths and weaknesses. MDP-B offers several ad-
vantages over MDP-A. By including NC, NA and, NR in the states,
we give the algorithm some information about the model structure,
making a more complete observation. Returning to the example
mentioned in the MDP-A, now if we have two models with the
same errors but very different structures, the differences will be
reflected in the states.

Now the Q-table is populated dynamically when the algorithm
finds new states. This helps to reduce the longer learning time
caused by a higher number of episodes. In this MDP approach, we
store in the Q-table the complete set of errors present in the model,
instead of individual errors. Now the algorithm can learn which is
the optimal repair sequence without forcing it to repair the errors
one by one, as in the MDP-A. However, this might make the Q-table
harder to reuse. This problem could be mitigated by adapting our
transfer learning approach [Barriga et al. 2020] to work with this
new Q-table.

2.3 Comparing both MDP formalizations
We now proceed to compare the MDP approaches presented in
the previous section. We compare both approaches in terms of
learning time and the number of episodes required to find the
optimal solution. We use Q-Learning as our learning algorithm and
EMF as our modeling framework. As user preference, we decide to
boost the maintainability of the models [Iovino et al. 2020]. The
maintainability quality metric considered in this paper has been
defined according to the definition given in [Genero and Piattini
2001] which is based on some of the metrics shown in Table 1 as
follows,

Maintainability =

(
NC + NA + NR + DITMax + FanoutMax

5

)
(2)

Metric Acronym
Number of classifiers NC
Number of references NR
Number of attributes NA
Max generalization hierarchical level DITmax
Max reference sibling FANOUTmax

Table 1: Excerpt of the metrics considered in the evaluation

Figure 2: Error 38 indentified in fxg.ecore

According to the considered definition of maintainability the
lower the values the better. Since Q-Learning maximizes the reward,
PARMOREL translates maintainability values to the negative so
that the lower they are the higher is the reward they provide.

To test both MDPs, we use a sample model extracted randomly
from our dataset of models (more details in the next section). This
model needs to be repaired because it contains syntactic errors
that violate certain constraints of the Ecore metamodeling lan-
guage [Steinberg et al. 2008].

Specifically, the sample model fxg.ecore contains eight instances
of error 38: "Invalid specified literal". In Fig. 2 we show one of the
instances of this error in fxg.ecore. The model contains 52 classes,
37 references, and 267 attributes and operations. Error 38 "Invalid
specified literal" is a warning saying that the default value specified
is not coherent with the literals specified in the enumeration. Indeed
in the case in Fig. 2 the default value specified for the attribute
blendMode is BlendMode.LAYER, when the corresponding literal
on the enumeration, set as datatype, is layer. Possible solutions are
to modify the literal value in the attribute with any of the possible
literals, modify the default in the datatype enumeration, remove
the faulty attribute, etc.

We run both approaches until the maximumQ-value of the initial
state (𝑚𝑎𝑥𝑎𝑄 (𝑠0, 𝑎)) remains unchanged for 1000 steps. With this
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Time (s) Episodes Improvement
MDP-A 231.34 548 -
MDP-B 88.29 217 61.84%

Table 2: Comparison of MDP approaches

number of steps, we give the algorithm enough time to converge
to the best solution.

First, we proceed to repair fxg.ecore using PARMOREL with the
MDP-A approach. The process took 231.34s and converged in 548
episodes.

Secondly, we repeat the experiment this time using PARMOREL
with the MDP-B approach. In this occasion, the process took a total
of 88.29s and converged after 217 episodes.

For both MDPs, the resulting model produced with the best
repairing policy found has a maintainability score of 72.2. This
sequence includes actions that modify the literal value and remove
some of the faulty attributes. It is interesting to mention that, for
both approaches, between 70-75% of the learning time is dedicated
to calculate the quality characteristics of the model. So the time
dedicated only to learn to repair using Q-Learning constitutes only
a 25-30% of the total.

The best result in terms of learning time and the number of
episodes is obtained when executing PARMOREL with the MDP-B.
Table 2 displays a summary of the results. The total learning time
is reduced by 61.84% with respect to the MDP-A. As explained in
the previous section, one of the weakest points of MDP-A was that
it was not specifically designed to converge to the best solution
but to find a range of different solutions. This, together with the
population of the Q-table before the algorithm execution, naturally
leads to a slower convergence. In contrast, MDP-B is designed to
converge to the optimal solution, and its dynamic population of the
Q-table reduces drastically the learning time. Hence, given these
results, we consider the MDP-B a better approach to tackle the
model repair problem with RL than our previous MDP-A definition.

3 ALTERNATIVE REINFORCEMENT
LEARNING ALGORITHMS

Next, in order to assess if there is an alternative to Q-Learning that
provides faster performance when repairing models, we apply the
MDP-B using different RL algorithms to repair the same dataset.

To conduct a preliminary evaluation, we use a representative
sample of 12 models from the dataset used in [Nguyen et al. 2019],
filtered in order to get only corrupted Ecore models. All errors
present in these models are syntactic errors that violate certain
constraints of the Ecore metamodeling language [Steinberg et al.
2008] (e.g., the opposite of the opposite of a reference must be the
reference itself, classifiers must have different names, etc). Each
subject model contains between 1 and 8 errors (details of the errors
can be seen in Table 3). Regarding the number of elements, each
model has between 10 and 352, counting the number of classes,
attributes, references, and operations.

Given the stochastic nature of the ε-greedy policy used by the
learning algorithms, we average the performance data (learning
time and number of episodes) for each model over 10 repair agents
with different random seeds. By changing the seeds, each agent

Code Message
Error 13 The opposite must be a feature of the reference’s type
Error 29 Two or more Classifier with the same name
Error 32 Two or more feature with the same name
Error 38 Invalid specified literal

Table 3: Errors present in the selected models

will pick different actions when choosing randomly. All results
displayed in this section are averaged data. The user preference, as
in Section 2.3 is to boost the maintainability of the models using
Equation 2.

We begin by obtaining the performance of Q-LearningwithMDP-
B repairing the dataset. Later, we use the results as a benchmark to
compare Q-Learning with other RL algorithms.

To run these experiments, we use the same configuration as in
Section 2: an ε of 0.3, and both γ and α of 1.0 (we keep these values
constant since, according to our testing, they provide the best re-
sults regardless the algorithm). Also, to find the number of episodes
at which each algorithm converges, we run the algorithms with
the same stopping criteria presented earlier: each execution will
stop once𝑚𝑎𝑥𝑎𝑄 (𝑠0, 𝑎) (the maximum Q-value of the initial state)
remains unchanged for 1000 steps. The values in the Q-table are
initialized to -500.0 so that it contains a value lower than the worst
maintainability found in the models. We compare our Q-Learning
results with the following algorithms: Q(λ), Monte Carlo, SARSA
and, SARSA(λ). We introduce each algorithm in the following sub-
sections.

3.1 Q(λ)
This algorithm [Sutton and Barto 2018] is a mixture of the ideas
behind temporal difference methods (such as Q-learning, where
each value is updated according to the immediate step), and those
of Monte Carlo methods (more details in the following subsec-
tion). The algorithm uses a technique called eligibility traces to
back-propagate the values and rewards received (as in temporal
differences), but it does so not only to the immediately preced-
ing state (or pair of action-state), but to all preceding states of
the current episode. The idea is that this propagation decays in
intensity the further a state is in the past, see eligibility e(s,a) in
Algorithm 2. This decayed propagation can lead to a speed up in
the algorithm’s convergence, especially in sparse reward models,
like MDP-B, which provides reward only at the end of each episode.
The propagation decay is controlled with a parameter λ, such that
if its value is 0 the algorithm would behave like Q-Learning and if
it is 1 it would behave like a pure Monte Carlo method. In practice,
the speed of convergence as a function of the value of λ(between 0
and 1) generally has a U-shape. Therefore, the optimal convergence
is usually achieved with an intermediate value of λ, which needs
to be determined experimentally. According to our experiments,
we get the best results by giving λ a value of 0.7. Lower or higher
values lead to results of lower quality and slower convergence.

The use of eligibility traces is a general idea that can be executed
with different implementations. We follow the Q(λ) algorithm since
it can be implemented on top of Q-Learning, modifying some parts
of the latter. The new parts added to Q-Learning are depicted in
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Algorithm 2. This pseudocode is adapted from the one presented in
chapter 12 in [Sutton and Barto 2018].

Algorithm 2 Q(λ)
1: Initialize Q-Table
2: for each episode do
3: Initialize eligibility table e (default value 0)
4: Initialize sae as an empty list of state-action pairs
5: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑠0
6: while errors in model != ∅ do
7: Get state s
8: Select best action a with 𝜖-greedy policy for s
9: if a is selected randomly then
10: reset eligibility to 0
11: reset sae as an empty list
12: 𝑠𝑡+1 ← a applied in s
13: Add (s,a) to sae list
14: 𝑒 (𝑠, 𝑎) ← 𝑒 (𝑠, 𝑎) + 1
15: 𝛿𝑡 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄 (𝑠𝑡+1, 𝑎′) −𝑄 (𝑠, 𝑎)
16: for each s,a in sae do
17: 𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼𝛿𝑒 (𝑠, 𝑎)
18: 𝑒 (𝑠, 𝑎) ← 𝛾_𝑒 (𝑠, 𝑎)
19: 𝑡 ← 𝑡 + 1
20: 𝑠 ← 𝑠𝑡+1

3.2 Monte Carlo methods
Monte Carlo methods are ways of solving RL problems based on
averaging sample returns [Sutton and Barto 2018]. As in other RL
algorithms, in Monte Carlo, an agent learns about the states and
rewards when it interacts with the environment. In this method
the agent generates experienced samples and then based on the
average return, a value is calculated for a state or pair of state-
action. The main difference of this algorithm is that the agent learns
by sampling experience. Unlike Q-learning, Monte Carlo learns
directly from episodes of experience without any prior knowledge
of MDP transitions.

Oneweakness is that it can only be applied to episodicMDPs. The
reason is that each episode has to terminate before the algorithm
can calculate any returns. In the model repair scenario we tackle in
this paper this is not a problem since we obtain the maintainability
of the produced model only when an episode ends. Also, in Monte
Carlo, there is no guarantee to visit all the possible states and the
sampling process can lead to high variance of results.

To execute this algorithm, we proceed to run the Q(λ) algorithm
(see Algorithm 2) with λ set to 1.0. This way, the algorithm behaves
as a Monte Carlo method without requiring further modification.

3.3 SARSA
SARSA is a temporal-differencemethod that differs fromQ-Learning
in that the target value for the learning update rule is 𝑄 (𝑠𝑡+1, 𝑎𝑡+1
instead of𝑚𝑎𝑥𝑎′𝑄 (𝑠𝑡+1, 𝑎′), where𝑎𝑡+1 is the action actually chosen
by the 𝜖-greedy learning strategy during the episode.

SARSA is strongly dependant on the value of ε, to the extent that
convergence will only happen when ε decreases to 0. So, unlike

the other algorithms where ε was constant with a value of 0.3,
for executing SARSA we need to decrease ε during the execution.
According to our experiments, starting with a value of 0.3 and
decreasing it by multiplying it by 0.995 at the end of each episode
provides the best results we could find. If ε decreases too fast the
converge will be slower, and if it decreases too slow it might not find
the best solution. Details about SARSA can be found in Algorithm
3, adapted from chapter 6 in [Sutton and Barto 2018].

Algorithm 3 SARSA
1: Initialize Q-Table
2: for each episode do
3: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑠0
4: Select action a with 𝜖-greedy policy for s
5: while errors in model != ∅ do
6: Get state s
7: 𝑠𝑡+1 ← a applied in s
8: Select 𝑎𝑡+1 with 𝜖-greedy policy for 𝑠𝑡+1
9: 𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠, 𝑎))
10: 𝑡 ← 𝑡 + 1
11: 𝑠 ← 𝑠𝑡+1
12: 𝑎 ← 𝑎𝑡+1

3.4 SARSA(λ)
SARSA(λ) is the combination of the SARSA algorithm with eligibil-
ity traces implemented on top of it, just as happened with Q(λ) and
Q-Learning.

Themain differencewith Q(λ) is the same as betweenQ-Learning
and SARSA, the way 𝑎𝑡+1 is selected. Due to the eligibility traces
behavior, SARSA(λ) is more independent of ε than regular SARSA,
so it is not necessary to decrease ε during the execution. Details
about SARSA(λ) can be found in the pseudocode in Algorithm 4,
adapted from the code presented in chapter 12 in [Sutton and Barto
2018].

3.5 Results of the algorithmic comparison
The results obtained from each algorithm are displayed in tables 4
and 5. Table 4 displays how long it takes in average for each algo-
rithm to learn to repair each model in the dataset (in seconds) and
how many episodes each algorithm needs to converge to the best
solution. Table 5 shows the total time each algorithm needs to learn
to repair all the models in the dataset and the percentage of im-
provement each algorithm presents with retrospect to Q-Learning.
If the improvement is a negative number it means that the algo-
rithm performs poorer than Q-Learning. We take Q-Learning as
the reference since it was the algorithm used in PARMOREL so far.

The algorithm that presents the best performance, both in time
and number of episodes is Q(λ), completing the repair 3.53% faster
thanQ-Learning. The rest of the algorithms,Monte Carlo, SARSA(λ)
and SARSA, perform worse than Q-Learning, being Monte Carlo
the one with a better performance from this group, with -3.8% and
SARSA the worse by a big difference, performing a 61% worse than
Q-Learning.
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Q-Learning Q(λ) Monte Carlo SARSA SARSA(λ)
Model Time (s) Episodes Time (s) Episodes Time (s) Episodes Time (s) Episodes Time (s) Episodes

activityDiagram 93.39 334 89.87 320 93.42 335 449.97 1367 102.31 355
aggregator_0.9.0 295.32 697 263.83 697 297.23 697 481.14 1215 298.15 699
backbone 172.12 545 168.51 532 177.69 581 378.61 1210 206.1 716
bpmn20 559.9 1031 526.57 1015 531.79 1031 514.99 1030 556.3 1031
BusinessDomainDsl 205.92 694 202.78 672 208.98 694 389.38 1215 208.14 697
car 298.33 1003 295.1 1001 298.17 1003 301.17 1009 299.59 1005
chess 308.1 1043 306.87 1033 307.24 1037 309.28 1052 396.92 1033
family 298.58 1007 296.51 1001 299.76 1007 326.18 1109 297.72 1007
fxg 88.29 217 82.17 206 178.75 464 470.47 1195 130.71 341
General 332.08 1079 324.17 1033 338.56 1085 392.3 1121 323.96 1036
glucose 97.14 353 96.84 352 99.17 369 264.89 870 97.81 382
GSML 182.39 595 174.85 590 212.28 673 441.7 1373 176.04 595

Table 4: Algorithms comparison in episodes and time

Q-Learning Q(λ) Monte Carlo SARSA SARSA(λ)
Total time (s) 2931.56 2828.07 3093.75 4720.08 3093.75
Improvement - 3.53% -3,8% -61% -5.53%

Table 5: Algorithms compared with Q-Learning

Algorithm 4 SARSA(λ)
1: Initialize Q-Table
2: for each episode do
3: Initialize eligibility table e (default value 0)
4: Initialize sae as an empty list of state-action pairs
5: 𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒 𝑠0
6: Select action a with 𝜖-greedy policy for s
7: while errors in model != ∅ do
8: Get state s
9: 𝑠𝑡+1 ← a applied in s
10: Select 𝑎𝑡+1 with 𝜖-greedy policy for 𝑠𝑡+1
11: if 𝑎𝑡+1 is selected randomly then
12: reset eligibility to 0
13: reset sae as an empty list
14: 𝑠𝑡+1 ← a applied in s
15: Add (s,a) to sae list
16: 𝑒 (𝑠, 𝑎) ← 𝑒 (𝑠, 𝑎) + 1
17: 𝛿𝑡 = 𝑟 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡 )
18: for each (s,a) in sae do
19: 𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼𝛿𝑒 (𝑠, 𝑎)
20: 𝑒 (𝑠, 𝑎) ← 𝛾_𝑒 (𝑠, 𝑎)
21: 𝑡 ← 𝑡 + 1
22: 𝑠 ← 𝑠𝑡+1
23: 𝑎 ← 𝑎𝑡+1

These results are an indicator of the potential of Q(λ) for the
model repair problem, while Monte Carlo, SARSA and SARSA(λ)
might not provide the best solutions.

Additionally, Table 6 displays the maintainability of each model
in the dataset before and after repair. The repaired models present
better maintainability than their broken versions.

Maintainability
Model Before repair After repair

activityDiagram 7.6 6.8
aggregator_0.9.0 52.2 51.8
backbone 7.6 7.2
bpmn20 121.6 121.4
BusinessDomainDsl 15.4 15.0
car 2.8 2.6
chess 3.0 2.8
family 3.8 3.2
fxg 73.2 72.2
General 25.8 25.6
glucose 10.4 9.8
GSML 6.4 4.6

Table 6: Models maintainability before and after repair

4 THREATS TO VALIDITY
In this section, we comment on the threats to validity of our re-
search, following the guidelines from [Wohlin et al. 2012].

Internal threats. Among the internal threats, we have the qual-
ity evaluation process since the quality model is user-defined. Qual-
ity aspects are often based on the modeler’s experience and mis-
takes in these quality models’ definitions may impact the results.
Including experts in the quality definition process can mitigate this
aspect, e.g. by including definitions adopted from the literature. In
this direction, the formula we used for maintainability is based on
the literature.

External threats. A potential external threat to the validity of
our evaluation is the dataset used for the experiments. We have
selected corrupted models resulting in a dataset of 12 models, which
may be considered small, however, this threatmay bemitigatedwith
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the heterogeneity of the sources; these models have been retrieved
from the dataset used in [Nguyen et al. 2019] which comes from
different Github repositories and hence from different modelers.

RL is a wide field with multiple algorithms. We have selected
a set of four of them based on their suitability to solve the model
repair problem and the proximity to the current implementation
(Q-Learning). We consider they are a representative set to indicate
which algorithms should be explored further in our research.

Although our implementation is tied to EMF and Ecore models,
PARMOREL is built as an Eclipse plugin, so it is possible to use other
modelling frameworks—through the implementation of a series of
interfaces.

5 RELATEDWORK
Model repair is a research field that has drawn the interest of many
researchers to formulate approaches and build tools to repair broken
models. Despite the variety, we could not find in the literature any
research that applies RL to model repair. Hence, in this section
we explore literature that uses other types of techniques to repair
models.

Kretschmer et al. introduce in [Kretschmer et al. 2018] an ap-
proach for discovering and validating values for repairing incon-
sistencies automatically. Values are found by using a validation
tree to reduce the state space size. Trees tend to lead to the same
solutions once and again due to their exploitation nature (probing
a limited region of the search space). Differently, RL algorithms
include both exploitation and exploration (randomly exploring a
much larger portion of the search space with the hope of finding
other promising solutions that would not be selected normally),
allowing to find new and, sometimes more optimal solutions for a
given problem.

Also tree-powered, Model/Analyzer [Reder and Egyed 2012] is a
tool that, by using the syntactic structure of constraints, determines
which specific parts of a model must be checked and repaired. The
user is expected to select a specific violation to be repaired but
does not support user customization., unlike what we do with RL
rewards.

Puissant et al. propose a tool called Badger based on an artificial
intelligence technique called automated planning [Puissant et al.
2015]. Badger generates sequences that lead from an initial state to
a defined goal. It has a set of repaired operations to which users can
assign costs and weights to decide its priority. Badger generates
a set of plans, each plan being a possible way to repair one error.
This makes it difficult for the user to decide which action to apply
without knowing how it affects the rest of the model. We prefer
to generate alternative sequences to repair the whole model since
some repair actions can modify the model drastically.

It is worth mentioning search-based and genetic algorithm-based
approaches since, although they have not been applied yet to model
repair, they are possible competitors to RL. These techniques have
shown promising results dealing with model transformations and
evolution scenarios, for example in [Kessentini et al. 2017] authors
use a search-based algorithm for model change detection. These
algorithms deal efficiently with large state spaces, however they can-
not learn from previous tasks nor improve their performance.While

RL is, in the beginning, less efficient in large state spaces, it can com-
pensate with its learning capability. In the beginning, performance
might be poor, but with time repairing becomes straightforward.

Lastly, another search-based approach is presented byMoghadam
et al. in [Moghadam and Ó Cinnéide 2011]. In this work, authors
present Code-Imp, a tool for refactoring Java programs based on
quality metrics that achieves promising results at code-level by
using hill-climbing algorithms [Selman and Gomes 2006]. These
algorithms are interesting to find a local optimum solution but they
do not assure to find the best possible solution in the search space
(the global optimum). By using RL we assure to find the global opti-
mum: the sequence of repairing actions that maximize the selected
quality characteristics the most.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a comparative study of different RL tech-
niques to solve the model repair problem in our tool PARMOREL.
First, we proposed a newMDP definition to address the weaknesses
of our previous MDP and compared both approaches with the Q-
Learning algorithm in a sample model. Then, using the new MDP
definition, we compared the performance of Q-Learning with other
RL algorithms, namely, Q(λ), Monte Carlo, SARSA and, SARSA(λ).
We applied each algorithm to repair a dataset of models extracted
from the dataset used in [Nguyen et al. 2019]. Although our results
are preliminary, we consider them an indicator of the potential of
Q(λ) for repairing models.

In the future, we would like to make further research about Q(λ)
and other RL techniques. Another interesting line of future research
would be to explore a multi-objective approach to model repair
[Mandow and Pérez-de-la Cruz 2018], considering and combining
different performance metrics.

Additionally, we would like to perform a comparative study with
the automatic repairing tools presented in Section 5, paying especial
attention to search-based and automated planning approaches. We
will also include less automatic approaches, like those that are
search-based. Lastly, in this direction, we will work on optimizing
the repair with a focus on achieving state-of-the-art time.

Also, we plan to extend this comparative study with a wider
dataset of domain models and errors, with the help of modelers that
may attest if the repaired sequence offers a better quality of the
repaired domain model. In particular, we plan to test the presented
approach with a bigger dataset of domain models coming from
GitHub repositories, in order to validate the approach with real
examples. Additionally, we plan to create a benchmark with the
mentioned dataset, with which we will compare PARMOREL to
other existent model repair approaches.
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ABSTRACT
In model-driven software engineering, models are used in all phases
of the development process. These models may get broken due to
various editions during the modeling process. There are a number
of existing tools that reduce the burden of manually dealing with
correctness issues in models, however, most of these tools do not
prioritize customization to follow user requirements nor allow the
extension of their components to adapt to different model types. In
this paper, we present an extensible model repair framework which
enables users to deal with different types of models and to add their
own repair preferences to customize the results. The framework
uses customizable learning algorithms to automatically find the
best sequence of actions for repairing a broken model according to
the user preferences. As an example, we customize the framework
by including as a preference a model distance metric, which allows
the user to choose a more or less conservative repair. Then, we
evaluate how this preference extension affects the results of the
repair by comparing different distance metric calculations. Our
experiment proves that extending the framework makes it more
precise and produces models with better quality characteristics.
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• Software and its engineering→Model-driven software en-
gineering; • Theory of computation→Reinforcement learn-
ing.
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1 INTRODUCTION

Models are central objects of the processes of modern software
engineering [Whittle et al. 2014]. When conducting modeling activi-
ties, modelers can introduce errors of different nature in the models
(syntactic errors, duplicates, bad smells [Bettini et al. 2019], antipat-
terns [Strittmatter et al. 2016], etc), making them corrupted. The
chances of corrupting a model increase along with the size of de-
velopment teams and amount of changes in software requirements
due to [Taentzer et al. 2017] lack of coordination, misunderstanding,
mishandled collaborative projects, etc.

The reliability and accuracy of these models is of utmost impor-
tance to correctly produce the systems they represent. But ensuring
that the models are accurate, have the required quality and remain
true to the original model structure can be a time-consuming task.
A variety of solutions to automatic model repair have therefore
been suggested over the last decades, tackling repair of corrupted
models from different perspectives and applied to different kinds
of models: [Macedo et al. 2013; Nassar et al. 2017; Ohrndorf et al.
2018].

Additionally, there are multiple, possible repair solutions that a
modeler could choose while there might not exist an objectively
best solution to satisfy all modelers. Consequently, the modeling
community has developed over the years a series of metrics and
characteristics that can be used to get an unbiased measure of how
good is a model.

For example, the literature has already highlighted how impor-
tant it is to preserve the original model structure when repairing
in order to minimize undesired side-effects in the repaired model
[Khelladi et al. 2019; Taentzer et al. 2017]. An effective tool to
measure the preservation of the original model structure is the
calculation of the distance between the original and the repaired
model [Addazi et al. 2016; Kehrer et al. 2011; Syriani et al. 2019].
However, within the approaches developed by the community to
automatically repair models, minimizing the model distance with
respect to the original has not been the main focus of the repairing
algorithms.
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Another example is the use of characteristics specifically con-
ceived to measure the quality of models and other modeling arti-
facts, like analyzability, adaptability, or understandability [Basciani
et al. 2019; López-Fernández et al. 2014]. Even though quality char-
acteristics have been extensively studied in the literature [Boehm
et al. 1976; Dromey 1995; Ortega et al. 2003], the quality of the
automatically repaired models has not been the main focus of the
repairing algorithms.

We can conclude that there are multiple approaches both to
solve the model repair problem in different kinds of models and to
measure the quality of the produced models. However, if a modeler
wants to apply and compare different approaches, she will need to
download and use several tools or to implement one herself, since
there is no unified way to perform this process at the moment.

In our previous work [Barriga et al. 2019, 2020; Iovino et al.
2020], we presented our research of model repair and reinforce-
ment learning (RL) [Thrun and Littman 2000] through PARMOREL.
PARMOREL is an approach that provides personalized and auto-
matic repair of software models using RL algorithms. It finds a
sequence of repairing actions according to preferences introduced
by the user. So far, we conceived PARMOREL as a tool to provide
repair of models only providing personalization of the users prefer-
ences. However, due to the flexibility RL provides to our approach,
we want to transform PARMOREL from a rigid tool to framework
that users can fully customize to their needs.

Hence, in this paper, we present our new version of PARMOREL,
an extensible model repair framework which allows customization
of results, type of models and learning.

In this paper, we explore PARMOREL’s suite of customizable
modules, which allows users to choose and add their own repair
preferences, to work with different modeling frameworks and with
different learning algorithms.

Despite customization, we are aware there might be scenarios
where automatically-produced results might not be enough nor
desirable. In [Cervantes et al. 2017], the authors conclude that fully
automatedmethods might lead to overgeneralized solutions that are
not always adequate. To support those situations where automatic
repairing is not enough, we integrate a module through which users
can provide PARMOREL with their feedback of the found solutions.
This way, we keep users in the loop while PARMOREL learns, so
user feedback can shape future repair solutions.

To show the extensible potential of PARMOREL, in this paper
we focus on customizing the repair so that the produced models
are as close as possible to the original model structure since, as
above-mentioned, this is an important problem highlighted in the
literature. We achieve this with the addition of a model distance
component to the PARMOREL architecture. This component im-
plements a model comparison mechanism [Stephan and Cordy
2013] in order to compute the distance between two models. This
integration leads to the production of models that are repaired re-
specting the original model structure as much as possible. By using
model distance, the approach takes model repair one step further in
minimizing the undesired choices and side-effects that automatic
approaches produce.

We validate the integration of this component with a dataset
of 107 models crawled from Github repositories containing Ecore

models. The results are encouraging, including additional prefer-
ences to the framework can lead to better precision in selecting
the best repaired models in terms of the specified preferences. In
our experiment we tested PARMOREL with two preferences, i.e.,
model quality + model distance, that have been both integrated
with model-based artifacts in PARMOREL.

Structure of the paper. This paper is organised as follows: Sec-
tion 2 shows real examples of corrupted models taken from Github
repositories. Section 3 presents our approach. Section 4 demon-
strates how PARMOREL can integrate different customizable pref-
erences in order to perform the repair process with better precision.
As an example, in Section 5 we extend the preferences in PAR-
MOREL by using a model distance metric. In Section 6 we evaluate
if PARMOREL can produce higher results when extending its com-
ponents, following the example of the previous section. Then, we
present threats to validity in Section 7, explore the related work in
Section 8 and conclude the paper in Section 9.

2 REPAIRING MODELS
As any other software artifacts, domain models can be subject to
modifications, to address changes in software requirements, to im-
provemodel quality characteristics [Basciani et al. 2016], or changes
on the size of the conceptual domain to be engineered. During these
modifications the chances of corrupting a model increases, specially
with collaborative activities [Di Rocco et al. 2015; Franzago et al.
2017]. To better explain the problem, we are facing in this paper,

Table 1: Occurrences of errors in the selected dataset

Error Occurrences
E1 The opposite of a transient reference must be

transient if it is proxy resolving
2

E2 The opposite must be a feature of the reference’s
type

1

E3 The opposite of the opposite of a reference must
be the reference itself

5

E4 Not transient Attribute so it must have a data
type that is serializable

7

E5 A primitive type cannot be used in this context 4
E6 Two or more Classifier with the same name 2
E7 Two or more feature with the same name 20
E8 Invalid specified literal 166
E9 Not well formed name 216
E10 Operation with the same signature as an acces-

sor method
5

E11 A containment or bidirectional reference must
be unique if its upper bound is different from 1

160

E12 The same contained instance cannot be con-
tained in two different instances

94

we analyzed models retrieved from Github repositories. To retrieve
these models we rely on the dataset used in [Nguyen et al. 2019] and
filtered in order to get only corrupted models. From this selection
we have worked with 107 models, where errors were distributed
as in Table 1. We identified 12 errors, E1–E12, supported by our
tool PARMOREL, in the following we detail three of these errors
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since we will focus on them in a later section. Table 1, with a total
of 973 error occurrences confirms the need to support model repair
as an automated activity. Each of these errors can be repaired by
several actions. Hence, this also confirms the need to support mod-
elers with extensible repair preferences, so that they can customize
which kind of repair actions satisfy their specific needs.

In the following we report an excerpt of the models affected
by 3 of the 12 errors, and we briefly describe each error and the
repairing actions that could solve it. These 3 errors will be part of
examples later in the paper and hence, we focus on them now as
a representative sample. The complete list and explanation of the
errors and models where occurred can be found at https://github.
com/models2020modelsrepair/ModelsRepair.git

E6. Two or more classifiers with the same name cause error
E6, present twice in the dataset. Specifically, the model car.ecore
contains two classes with same name but different letter casing.
Precisely, AirCond and Aircond inheriting from the same classifier
can be seen in Fig. 1. This leads to the hypothesis that the modeler
did not check the model and added the same class twice during
the development process. The multiple resolutions for this error
include renaming or removing any of the classifiers.

Figure 1: E6 identified in car.ecore model

E8. Error E8 "Invalid specified literal" is quite widespread in the
analyzed dataset, 166 times. This error basically is a warning saying
that the default value specified is not coherent with the literals
specified in the enumeration.

Indeed in this case the default value specified for the attribute
limitType is 1, when the literals on the enumeration, set as datatype,
are the following: Reporting, Hard, SoftLinear, SoftQuadratic.Maybe
the developer wanted to specify Hard as default value, being at the
position 1 of the possible literals. Possible solutions are to modify
the literal value in the attribute with any of the possible literals,
modify the default in the datatype enumeration, etc.

E11. This error is one of the most widespread and it is about
setting a unique containment reference if the upper bound is dif-
ferent from 1. In this model reported in Fig. 3, the containment
reference xMLNSPrefixMap and xSISchemaLocation are not de-
clared as unique, but their upperBound is set to -1, violating this

Figure 2: E8 identified in OPF31.ecore model

uniqueness constraint of a containment relationship. For this rea-
son, the possible resolutions are various, e.g., set the upperbound to
1, set the unique property, delete the faulty reference or unset the
containment. This error is quite widespread since 160 occurrences
have been matched in the dataset.

Figure 3: E11 identified in taxonomy.ecore model
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Since all these errors can lead to multiple repair actions of the
corrupted models, we propose a mechanism to select the best action
for each supported repairing mechanism based on preferences cus-
tomized by the users. This mechanism is extensible and embedded
in PARMOREL as mentioned before and will be explained in the
next sections.

3 APPROACH
PARMOREL uses RL algorithms to find which is the best possible
repairing action for each error in the model given as input. RL con-
sists of algorithms able to learn by themselves how to interact in an
environment without existing pre-labelled data, only needing a set
of available actions and rewards for each of these actions. We report
the abstract architecture in Fig. 4 with the main macro components
and artifacts involved in the process of model repair. PARMOREL
internally relies on a modeling framework to detect issues in the
corrupted model (e.g., see Section 2) given as input. If the valida-
tion check performed by the modeling framework is not successful,
the repairing process starts. The embedded modeling framework
is also responsible for applying the repairing actions selected by
PARMOREL and creating the repaired model returned as output
of the entire process. The learning algorithm allows PARMOREL
to repair without having any prior data about repairing models
(labelled data, historical data, etc). By using and tuning RL rewards,
these algorithms can learn which are the best actions to repair a
given error. RL rewards can be adapted to align with any prefer-
ence introduced by the user as long as it can be quantified (e.g.,
preserve the original model structure by minimizing the model dis-
tance metric or boost quality characteristics by maximizing quality
metrics). Preferences need to be quantified so that their values can
be directly mapped into RL rewards. For example, the value of the
model distance itself could be used as a reward. These preferences
can be considered singularly, or in combination, and the proposed
architecture is open to support additional reward mechanisms.

Before finding a repair sequence for a givenmodel, PARMOREL is
executed for a number of episodes. Each episode equals one iteration
attempting to repair the model in where different actions will be
applied to repair the different errors present in the model. For each
of these episodes, a possible repair sequence is found, and applying
it, a provisional repaired model is created. The provisional repaired
models are analyzed according to the preferences selected and the
result is translated into rewards (e.g., depending on how close the
provisional model is to the original one it will get a higher or lower
reward). Hence, PARMOREL can identify how good each applied
repairing action is according to the user requirements. Following
this process, after each episode, actions leading to the results closest
to the user requirements will have higher rewards and thus more
probabilities of being selected.

Additionally, for those situations where automatic repair might
not be enough for the users, they can manually select which se-
quence of actions they prefer among the repair sequences found in
the episodes. By doing this, the algorithm provides extra rewards
to the selected actions. This way, users can correct and influence
how the algorithm learns. Strong interaction with the user requires
more effort from her and also higher computational effort [Cer-
vantes et al. 2017] hence, the interaction we provide is optional

PARMOREL Framework

Preferences

Modeling framework

Learning 
Module

rewards

actions

solutions

inputcustomizes

repaired model

outputRepairing 
ProcessX

broken model

Figure 4: PARMOREL Components

and it takes place only after all episodes have ended. Furthermore,
by providing feedback at the end of the execution, users can com-
pare the provisional repaired models and the sequences of actions
that produced them. So their choice is done after measuring the
consequences of choosing either. For example, PARMOREL finds
two sequences of actions seq1 and seq2. Although seq2 produces
a model slightly closer to the original, after checking the results
of seq1 the user sees that it produces a result that he prefers over
minimizing the distance. The actions in seq1 will then be rewarded
and PARMOREL will prioritize them in future repairs.

After performing enough repairing iterations, PARMOREL will
select the repair sequence with higher rewards (with or without
user feedback) and saves the final repaired model.

4 PARMOREL EXTENSIBLE FRAMEWORK
Our approach is based on three main components: a modeling
framework, a learning module and user preferences, see Fig 4. PAR-
MOREL is designed as an Eclipse plugin, hence, is extensible and
users can customize these three components through a series of
interfaces. Now, we will go through each of these components.

Modeling framework: The modeling framework validates the
models and provides PARMOREL with the errors they present and
actions available for editing them. In the examples in this paper,
the modeling framework integrated in PARMOREL is the Eclipse
Modeling Framework (EMF) [Steinberg et al. 2008]. However, in
PARMOREL, the concepts of model, actions and errors are abstract,
and they can be implemented by different modeling frameworks
without affecting other parts of the system. Hence, working with
other type of models would also be possible, by connecting frame-
works such as Kermeta [Jézéquel et al. 2009] orMetaEdit+ [Tolvanen
and Kelly 2009].

Learningmodule: The learning module is responsible for learn-
ing which actions are the best to repair the errors in the models
according to the preferences introduced by the users. RL is a broad
field with many algorithms, currently, PARMOREL works with Q-
learning [Thrun and Littman 2000]. Q-learning provides several
features that are useful to solve the model repair problem in terms
of reusability, structure and decision making. In Q-learning, knowl-
edge acquired is stored in a table structure called Q-Table. This
table stores pairs of states and actions together with a Q-value. The
Q-value is calculated using the rewards and it indicates how good
each pair is. The Q-value is obtained with repeated calculations
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based on the Bellman Equation [Bellman 2013] (see Equation 1),
telling that the maximum future reward is the reward 𝑟 the agent
received for entering the current state 𝑠𝑡 with some action 𝑎𝑡 plus
the maximum future reward for the next state 𝑠𝑡+1 and action 𝑎𝑡+1
reduced by a discount factor 𝛾 . This allows inferring the value of
the current (𝑠𝑡 , 𝑎𝑡 ) pair based on the estimation of the next one 𝑠𝑡+1,
which can be used to calculate an optimal policy to select actions.
The factor 𝛼 provides the learning rate, which determines how
much new experience affects the Q-values. One of the variables
used to calculate the Q-value, is the maximum weight stored in the
Q-table for the next error to repair (max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎′)). This allows
us to measure the consequences of applying a certain action in the
model (e.g., if applying an action creates a new unknown error this
action will be punished, getting a lower weight). At the end of the
execution, pairs with the highest Q-value will conform to the policy
to solve the problem. Our algorithm is epsilon-greedy (ε-greedy):
it avoids local optima using an exploration-exploitation tradeoff
by exploring (i.e. choosing a random action) with probability ε,
and exploiting (i.e. choosing the action with highest Q-value) the
remainder of the time. We work with an ε of 0.3. Regarding other
parameters, discount factor (γ), and learning rate (α), we use 1.0 for
both of them. According to our experiments the best results were
obtained with these values.

𝑄 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 max𝑎′ 𝑄 (𝑠𝑡+1, 𝑎′) −𝑄 (𝑠, 𝑎)) (1)

However, the algorithm can be changed by another algorithm, as
long as it corresponds with a finite Markov Decision Process (MDP)
[Thrun and Littman 2000] and supports the concepts of states (er-
rors in our problem), actions and rewards. This way, Q-Learning
could be substituted with other RL algorithms.

Preferences: Users can customize the results PARMOREL pro-
duces with their own preferences. PARMOREL supports preferences
as long as they can be translated into numeric values. PARMOREL
will take these values as rewards that will guide the repair process.
For example, users could prefer to repair priorizing a quality char-
acteristic (maintainability, reusability, understandability, etc), to
minimize the model distance with respect to the original model, to
minimize the impact of bad smells in the model, etc. This extension
can be done by linking tools such as [Addazi et al. 2016] for model
distance, [Bettini et al. 2019] or for quality characteristics [Fourati
et al. 2011]. Also the relation with other modeling artifacts could
be considered as existing transformations [De Lara et al. 2017]
defined on top of the corrupted models. PARMOREL will use the
rewards to estimate how good or bad each action is to satisfy the
user preferences.

With this extensible approach, PARMOREL can be adapted to
the needs of the users in terms of different models, preferences
and learning algorithms, so it can be adapted to new problems and
situations.

One of the advantages of using RL is that these algorithms im-
prove their performance the more they are applied. In our approach,
the more models are repaired the better the performance becomes
since PARMOREL acquires and builds experience that is reused in
later repairs. To this extent, and to support the extensibility poten-
tial of our approach, we define experience as a model (see Fig. 6)
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Figure 5: PARMOREL Extensible Components

that can be reused regardless of the modeling framework, learning
module and preferences selected by the user.

Experience: The learning information gained after each repair
is represented by the concept Experience which is composed of one
to many entries and preferences. Reward and Preference are linked
so that PARMOREL can reuse the rewards corresponding with a
specific preference the next time it is selected by the user. The
concept of Entry includes all the information PARMOREL learns,
this is: which Action can repair an Issue in a given Location in the
model and how good is that action in terms of a Reward. In this
model we refer to issues instead of errors since PARMOREL could
be configured to fix bad smells or inefficient patterns, which are
not errors.

By implementing the concepts in this model, the framework be-
comes adaptable to different repair scenarios. For example, if a user
repairs a series of models based on EMF, the acquired experience
should be reusable when repairing conceptual models regardless the
framework. For instance, conceptually, a class diagram can act as a
metamodel for an object diagram. For this reason we could reuse
the accumulated experience to repair corrupted class diagrams.

Entry

Experience

Location

Action

Issue

Preference

Reward

+ value: int

[1..*] preferences

[1..*] entries

[0..*] rewards

[1..1] issue

[1..1] action

[1..1] location 
[1..1] preference

[1..*] rewards

Figure 6: Model of experience in PARMOREL
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Additionally, by combining this model with the machine learning
technique of transfer learning [Barriga et al. 2020], what is learnt
from the repair of one user could be reused by other users. With
this, consequent executions of PARMOREL, even by different users,
could achieve better performance the more experience is reused.
For more details about how PARMOREL uses transfer learning we
refer the reader to our previous work [Barriga et al. 2020].

5 EXTENDING PARMOREL WITH MODEL
DISTANCE

In this section, we exemplify an extension of the user preferences
by using a model distance metric to repair the models. By using
this metric we can reward the preservation of the original model
structure when repairing, minimizing undesired side-effects in the
repaired model.

Counting model differences is a challenging problem in MDE,
especially when large sets of models have to be compared. The
task of comparing two or more models can be managed by spe-
cific distance metrics, inspired by distances between words and
graphs [Ferdjoukh et al. 2017]. In this work we use a distance met-
ric in order to understand how much a repaired model is close to
the initial broken model. We have implemented this mechanism in
the component Model Distance Calculator, shown in Fig. 5, that
basically compares the two models, the broken one with the provi-
sional repaired one produced in each episode and gives a distance
reward to the Experience module. TheModel Distance Calculator
module is implemented as an Eclipse plugin, composed of a model
matching algorithm specified with an ECL script, reported in List-
ing 1, and it is invoked for all the model pairs in order to calculate
their distance metric. Table 2 represents an example calculation
where in the Basic column we reported the implementation shown
in Listing 1, we will define basic, for the distance calculation.

Table 2: Distance Matrix for taxonomy.ecore example and
error E11

Distance
Repaired
model Actions Basic Custom

model 1-1 E11-1: unset containment
E11-2: unset containment 1.0 0.89

model 1-2 E11-1: upperBound changed
E11-2: upperBound changed 0.89 0.89

model 1-3 E11-1: upperBound changed
E11-2: removed reference 0.89 0.89

model 1-4 E11-1: set uniqueness
E11-2: set uniqueness 1.0 0.89

This distancemetric is generated for a corruptedmodel with each
of its corresponding repaired versions, where the value indicates
howmuch each pair is similar. Distance value goes from 0 to 1.0 with
1.0 meaning that models are structurally the same; i.e., the closest
distance possible. For instance, themodel org.eclipse.wst.ws.internal-
model.v10.taxonomy.ecore (model 1 for sake of shortness) from our
dataset contains multiple errors, including E11 (see Fig. 3) twice. As
explained in Section 2, for this error PARMOREL finds 4 possible

solutions: setting the upperbound to 1, setting the unique property,
deleting the faulty reference or unsetting the containment. By com-
bining these actions for the two occurrences of E11, we obtain 16
different repair sequences. When comparing the models produced
by these sequences with the original model, we obtain 2 different
distance metric values. Hence, in this section we focus on 4 of the
provisional repaired models produced (model 1-1, 2, 3 and 4).

In the example in Table 2 (Basic column),model 1-1 andmodel 1-
4 are the solutions with closest distance, since their actions modify
the uniqueness property of the faulty reference and the containment
attribute, and those properties are not considered in the comparison
matching (see lines 33-34 of Listing 1). Oppositely, model 1-2 and
model 1-3 presents the furthest distance, since PARMOREL applies
two actions that modify components considered in the matching
comparison: a modified upperbound and the removal of a reference.

1pre variables {

2 var simmetrics : new Native('org.epsilon.ecl.tools.

↩→ textcomparison.simmetrics.SimMetricsTool');

3}
4rule EClass

5 match s : Source!EClass

6 with v : Target!EClass {

7
8 compare {

9 if(s.name.fuzzyMatch(v.name)){

10 return true;

11 }else{

12 return false;

13 }

14 }

15}
16rule EAttribute

17 match s : Source!EAttribute

18 with v : Target!EAttribute {

19
20 compare {

21 if(s.name.fuzzyMatch(v.name) and s.etype.isDefined() and v.

↩→ etype.isDefined() and s.etype.name.fuzzyMatch(v.

↩→ etype.name) and s.eContainingClass.name.fuzzyMatch(

↩→ v.eContainingClass.name)){

22 return true;

23 }else{

24 return false;

25 }

26 }

27}
28rule EReference

29 match s : Source!EReference

30 with v : Target!EReference {

31
32 compare {

33 if(s.name.fuzzyMatch(v.name) and s.etype.name.fuzzyMatch(v.

↩→ etype.name) and s.eContainingClass.name.fuzzyMatch(

↩→ v.eContainingClass.name) and s.lowerBound==v.

↩→ lowerBound and s.upperBound==v.upperBound){

34 return true;
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35 }else{

36 return false;

37 }

38 }

39}
40...

Listing 1: Fragment of the ECL implementation of the basic
matching algorithm

As we said, the implementation of the model distance calcula-
tor consists of two main components, 1) the matching algorithm
implemented in ECL and reported in part in Listing 1, and 2) the cal-
culation of the distance value depending on the matched elements.
We do not report this second component since it is implemented in
Java and can be easily imagined. This basic matching algorithm was
implemented for general purposes, and it uses the Levenshtein1 edit
distance [Levenshtein 1966] when calculating the name similarity
of different elements such as classes (lines 4–15) and structural fea-
tures (lines 16–39) of the model. This ECL script can be customized
in order to add other constraints or relax the similarity function,
e.g., removing the lower bound and upper bound matching for the
structural features (for instance line 21). This customization will
affect the distance calculation and in turn affects the repairing se-
quences chosen by PARMOREL. Indeed, by further restricting the
comparison mechanism as we propose in Listing 2, the comparison
algorithm will match elements differently, returning the distance
results in Table 2 in column Custom. This customization clearly
shows how to customize the comparison mechanism for the match-
ing strategies for the structural features and can offer an additional
way to the user to implement her own preference.

1...
2rule EReference

3 match s : Source!EReference

4 with v : Target!EReference {

5 compare {

6 if(s.name.fuzzyMatch(v.name) and s.etype.name.fuzzyMatch(v.

↩→ etype.name) and s.eContainingClass.name.fuzzyMatch(

↩→ v.eContainingClass.name) and s.lowerBound==v.

↩→ lowerBound and s.upperBound==v.upperBound and s.

↩→ unique==v.unique and s.containment==v.containment){

7 return true;

8 }else{

9 return false;

10 }

11 }

12}
13...

Listing 2: Customized comparison strategy for references of
the matching algorithm

The outcome of such a phase is a matching model given as input
to the Java method that simply builds the distance values. Just to
give the intuition of how this value is computed we report in (2)

1This functionality is loaded at line 2 as a native Java library

the final formula that will give the output distance value of the two
given models2:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ((((𝑐𝑙𝑎𝑠𝑠𝑠𝑖𝑚)/𝑛𝑟𝑐𝑙𝑎𝑠𝑠𝑒𝑠)+
((𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖𝑚)/𝑛𝑟 𝑓 𝑒𝑎𝑡𝑠))/2); (2)

Basically, the distance is computed as the sum of the class similar-
ity on the total number of classes, features similarity on the number
of features. PARMOREL obtains the distance metric from theModel
Distance Calculator, and uses its value as a reward. This way the
framework will learn to repair in a way that produces models as
close as possible to the original.

If we explore the example reported in Table 2, multiple reso-
lutions are possible to fix the corrupted model but PARMOREL
will pick by default the first one with closest distance, i.e., model
1-1 in both cases of the basic and the custom algorithm. With the
custom comparison mechanism, the distance values changed since
in Listing 2 the comparison mechanism at line 6 considers also the
unique and the containment properties that are used in the applied
repairing strategies of model 1-1 and 1-4. Figure 7 shows an exam-
ple of a repaired model for E11 (see Fig. 3), where the corruption
points are then resolved. It is worth noting how a tiny modification

Figure 7: Repaired example model 1-1 of taxonomy.ecore

to the distance calculation script can affect the reward mechanism
and so the selected repaired models by the algorithm. Adding addi-
tional preferences to PARMOREL can further improve the repairing
mechanism.

6 EVALUATION
In this section, we present an evaluation of the proposed approach
focusing on extensibility. We focus on evaluating if, by extending
the preferences, the framework is able to improve the precision in
selecting better repaired models. First, we introduce how the consid-
ered quality characteristics are linked to model elements [Genero
and Piattini 2001]. For instance, the maintainability of a model is
influenced by the size of the model and then the number of classes;
2The interested reader can refer to [Di Ruscio et al. 2020] for a complete implementation
of the similarity function that we borrowed for our implementation
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understandability is influenced by number of hierarchies, etc. For
this reason, if we consider an error impacting specific model ele-
ments, PARMOREL should produce a repaired model optimizing the
quality characteristics that are influenced by the repaired elements.
For example, if we consider error E6, where we have two classes
with same name in the model, if one of the classes is also involved
in a hierarchy, fixing this error could impact all the quality charac-
teristics considering the number of hierarchies in the model. As a
consequence, if we compare the basic implementation of the model
distance (Listing 1) with the customized one (Listing 2), even if the
customization of the matching strategy is minimal, the selected
repaired model should have improved quality characteristics since
the distance calculation is more refined.

Hence, we proceed to run PARMOREL first with the basic im-
plementation of the distance calculation and then the customized
one; if our hypothesis is correct we should have better precision
in selecting the repaired model and consequently optimize quality
characteristics.

As an example, we focus on improving the complexity of themod-
els. For this, we will repair models from the dataset containing error
E11. This error is related to containment references and the upper
bound and uniqueness of the reference—all these affect complexity.
Table 3 shows the models in our dataset impacted by error E11.
Complexity is defined in terms of the number of static relationships
between the classes (i.e., number of references). The complexity
of the association and aggregation relationships is counted as the
number of direct connections, whereas the generalization relation-
ship is counted as the number of all the ancestor and descendant
classes. Thus, the complexity quality characteristic can be defined
as follows:

Complexity = (NR − NUR + NOPR +𝑈𝑁𝐷 + (𝑁𝑅 − 𝑁𝐶𝑅)) (3)

where NR is the total number of references, NUR is the number
of unidirectional references calculated as the difference between
bidirectional and total reference number, NOPR is total number
of opposite references, NCR is the total number of containment
references, and UND is the understandability value calculated as
defined in equation 6 (see below). According to the given definition,
the lower the value for the complexity characteristic the better.

Table 3 reports the complexity value after repairing with the ba-
sic distance and the customized one. For all the cases, the complexity
improved (✓) (decreased, so it is optimized) or at least remained un-
changed (=). The results are that 12 of the selected repaired models
improved the complexity and 7 remained unchanged, confirming
our hypothesis.

Considering the customized distance algorithm extension, the
quality characteristics that are improved in relation to the whole
dataset are reported in Table 43. Maintainability has remained un-
changed or improved in the 80.2% of the total models in the dataset,
reusability in 84%, complexity in 84% and understandability in
100%4. The unimproved cases depend on the occurring errors in
the models and on the model elements that affect the quality char-
acteristics. For this reason, we also report that the most widespread
3The complete results are available as a Google spreadsheet and the dataset of models
can be found at https://Github.com/models2020modelsrepair/ModelsRepair
4Some of the cases are excluded since the quality evaluation exited with errors or
warnings

Table 3: Repairing models with error E11 while optimizing
their complexity with the custom distance calculator

complexity
model basic custom -
abapobj.ecore 8.54 8.54 =
com.ibm.commerce.foundation.datatypes.ecore 1.06 1.06 =
com.ibm.commerce.member.datatypes.ecore 1.22 1.22 =
com.ibm.commerce.payment.datatypes.ecore 1.44 1.44 =
componentCore.ecore 6 5 ✓
ddic.ecore 36.4 34.4 ✓
FacesConfig.ecore 12.12 12.12 =
ICM.ecore 15.76 15.76 =
org.eclipse.component.api.ecore 3 1 ✓
org.eclipse.component.ecore 3 1 ✓
org.eclipse.wst.ws.internal.model.v10.registry.ecore 3 1 ✓
org.eclipse.wst.ws.internal.model.v10.rtindex.ecore 3 1 ✓
org.eclipse.wst.ws.internal.model.v10.taxonomy.ecore 3 1 ✓
org.eclipse.wst.ws.internal.model.v10.uddiregistry.ecore 3.3 1.33 ✓
pom.ecore 19.03 15.03 ✓
RandL.ecore 99.13 97.13 ✓
rom.ecore 25.2 24.2 ✓
XBNF.ecore 24.13 22.13 ✓
XBNFwithCardinality.ecore 2.83 2.83 =

error in the unimproved models is E8, in order to discuss why the
quality has not been improved by selecting the best repaired model
in terms of distance by using the basic and the custom distance
algorithms.

Recall that the distance function has only been customized for the
references’ matching. As a consequence, only quality characteristics
which are calculated using references are the ones that are impacted.
In fact, we can verify that for error E8 and the maintainability
quality characteristics—where all the components of formula 3 are
number of classes, structural features, hierarchies and reference
siblings—the custom distance calculation did not optimize or affect
this maintainability.

Error E8 is the most widespread error in cases where quality
characteristics are unchanged, and it represents an invalid specified
literal in the model, which means that fixing the error does not
affect the maintainability, since enumerations are not considered
in the formula.

Maintainability =

(
NC + NA + NR + DITMax + FanoutMax

5

)
(4)

Regarding reusability, it has improved in 84% of the cases, and is
defined with the following formula:

Reusability = AIF =

(
𝐼𝑁𝐻𝐹

𝑁𝑇𝐹

)
(5)

where INHF is the sum of the inherited features in all classes, and
NTF is the total number of available features. E8 is again the most
present error in unimproved cases, and it does not affect the formula,
except when the attribute where the error is matched is the one
with the invalid specification.

The same reasoning applies to complexity in the sense that in
the unimproved cases, it is because the error is matched on features
which are not reflected in the quality calculation.
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Table 4: Percentage of models which, after repairing with
closest distance preference, are improved with respect to
quality characteristics

Quality Attribute Improved

Maintainability 80.2%
Reusability 84%
Complexity 84%
Understandability 100%

Finally, understandability is improved in all the models (100%),
being formulated as:

Understandability =

(∑𝑁𝐶
𝑘=1 𝑃𝑅𝐸𝐷 + 1

𝑁𝐶

)
(6)

where PRED is the number of predecessors. For most models this
quality attribute remains stable, this is caused because fixing errors
in this dataset does not affect hierarchies and hence PRED remains
unchanged. We can confirm that a quality characteristic improves
only in cases where the model repair impacts elements which are
used in the quality characteristics calculation.

With the results of this evaluation, we can conclude that, by
extending PARMOREL preferences, the precision of the framework
improves and it is able to produce repaired models with higher
quality characteristics.

7 THREATS TO VALIDITY
Internal threats. Among the internal threats we have the quality
evaluation process since the quality model is user-defined. Quality
aspects are often based on the modeler’s experience and mistakes in
these quality models’ definitions may impact the results. Including
experts in the quality definition process can mitigate this aspect,
e.g., by including definitions adopted from the literature. In this
direction, the considered formulas in the previous section are based
on the literature. Our distance metric calculation is parametric with
respect to a match threshold, specified in the FuzzyMatch function,
that in our case is set to 0.5. Varying this parameter, the distance
calculator may return different results, so we set this parameter to
a value that in our experiments seems to be balanced enough in
returning accurate results. We plan to extend our experiments with
sliding this value in order to offer the users of PARMOREL a way
to set her own preference also in this case.

External threats. The dataset we used for the experiment can
be considered as a potential external threat to the validity of the
evaluation. We have used a dataset of 107 corrupted models. The
number of models is not large for the standard evaluation but
finding real corrupted models on existing repositories is not an
easy task. However, this threat is justified by the heterogeneity
of the sources and the authors of the models, that are distributed;
in fact these models have been obtained from different Github
repositories.

Also, throughout the paper we have picked four quality charac-
teristics (maintainability, understandability, reusability and com-
plexity) as a proof of concept to measure the quality of the repaired

models when extending PARMOREL. Although many other char-
acteristics can be measured, we consider this set representative
enough since they are related to different elements in the models.

Finally, the examples in the paper are based on EMF and Ecore
models, but as we explained, it is possible to switch to other model-
ing frameworks by extending PARMOREL. Within EMF, the work
presented in this paper is is specific for Ecore models. However,
it could be applied in general to models instances if the repairing
actions retrieved from the framework were domain specific.

8 RELATED WORK
The main features that distinguish our approach from other model
repair approaches is the extensibility of the framework and the ca-
pability to learn from each repaired model in order to streamline the
performance. We could not find in the literature any research apply-
ing RL to model repair nor providing our degree of customization.
The most similar work to ours we could find is [Puissant et al. 2015],
where Puissant et al. present Badger, a tool based on an artificial
intelligence technique called automated planning. Badger generates
plans that lead from an initial state to a defined goal, each plan being
a possible way to repair one error. We prefer to generate sequences
to repair the whole model, since some repair actions can modify
the model drastically, and we consider it counter-intuitive to decide
which action to apply without knowing its overall consequences,
additionally, RL performs better after each execution.

Nassar et al. [Nassar et al. 2017] propose a rule-based prototype
where EMF models are automatically completed, with user inter-
vention in the process. Our approach allows for more autonomy
since preferences are only introduced at the beginning of the repair
process and user feedback at the end of all episodes, requiring less
effort from the user.

In this direction, authors in [Cervantes et al. 2017] present an
interactive repairing tool powered by visual comparison of mod-
els performing conformance checking. They conclude that fully
automated methods lead to overgeneralized solutions that are not
always adequate, and strong interaction comes with a high compu-
tational effort, therefore as future work they seek an equilibrium
between automation and interaction. This is our vision: balance be-
tween the algorithm independence and user intervention to provide
personalized solutions.

Taentzer et al. [Taentzer et al. 2017] present a prototype based on
graph transformation theory for change-preserving model repair.
The authors check operations performed on a model to identify
which ones caused inconsistencies and apply the correspondent
consistency-preserving operations, maintaining already performed
changes on the model. Their preservation approach is interesting,
however it only works assuming that the latest change of the model
is the most significant.

Kretschmer et al. introduce in [Kretschmer et al. 2018] an ap-
proach for discovering and validating values for repairing incon-
sistencies automatically. Values are found by using a validation
tree to reduce the state space size. Trees tend to lead to the same
solutions once and again due to their exploitation nature (probing
a limited region of the search space). Differently, RL algorithms
include both exploitation and exploration (randomly exploring a
much larger portion of the search space with the hope of finding
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other promising solutions that would not be selected normally),
allowing to find new and, sometimes better optimized fixes for a
given problem.

It is worth mentioning search-based and genetic algorithm-based
approaches since, although they have not been applied yet to model
repair, they are possible competitors to RL. These techniques have
showed promising results dealing with model transformations and
evolution scenarios, for example in [Kessentini et al. 2017] authors
use a search-based algorithm for model change detection. These
algorithms deal efficiently with large state spaces, however they can-
not learn from previous tasks nor improve their performance.While
RL is, at the beginning, less efficient in large state spaces, it can com-
pensate with its learning capability. At the beginning performance
might be poor, but with time repairing becomes straightforward.

Lastly, another search-based approach is presented byMoghadam
et al. in [Moghadam and Ó Cinnéide 2011]. In this work, authors
present Code-Imp, a tool for refactoring Java programs based on
quality metrics that achieves promising results at code-level by
using hill-climbing algorithms [Selman and Gomes 2006]. These
algorithms are interesting to find a local optimum solution but they
do not assure to find the best possible solution in the search space
(the global optimum). By using RL we assure to find the global
optimum aligned with the user preferences, in our example the
sequence of repairing actions that minimizes the distance with
respect to the original model.

9 CONCLUSIONS AND FUTUREWORK
In this paper we presented PARMOREL, an extensible framework
for model repair based on three main components: a modeling
framework, a learning module and user preferences. Users can
customize the modeling framework to work with different types of
models, the preferences to obtain different customized repairs and
the learning module to use different learning algorithms. Supported
algorithms must implement a Markov Decision Process [Thrun
and Littman 2000] and support the concepts of states (errors in our
problem), actions and rewards.

As an example, we have extended the preferences using a model
distance metric. To evaluate if the extensibility of the framework
had any impact in the repaired models’ quality, we applied two ver-
sions of the distance metric (a basic and a customized one) to repair
models in a dataset extracted from Github. Our hypothesis was that,
by extending PARMOREL, we could achieve models with better
quality. Our results concluded that using the customized distance
metric PARMOREL was able to produce models of higher quality.
We measured the complexity, understandability, maintainability
and reusability of the repaired models, obtaining better (or stable)
results in the majority of them.

Next, we plan to provide further testing on extending the model-
ing framework. We will test the framework with a more extended
dataset of domain models and errors, with the help of modelers
that may attest if the repaired sequence really offers better quality
of the repaired domain model. In particular we plan to test the
presented approach with a bigger dataset of domain models coming
from third party repositories in order to validate the approach with
more real-world examples. Additionally, we plan to create a bench-
mark with the mentioned dataset, with which we will compare

PARMOREL results and its performance to other existing model
repair approaches.

Also, we will perform a comparative testing on how PARMOREL
performs using different learning algorithms within RL. We have
a special interest in comparing the tool performance with other
automatic repairing tools presented in Section 8, paying especial
attention to search-based, rule-based and automated planning ap-
proaches.

We plan to perform a study to assess to which extent experience
can be reused when changing the framework and the type of mod-
els, for example, reusing the accumulated experience of repairing
structural models to repair corrupted behavioral models.
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ABSTRACT Models are core artifacts of modern software engineering processes, and they are subject to evolution throughout
their life cycle due to maintenance and to comply with new requirements as any other software artifact. Smells in modeling
are indicators that something may be wrong within the model design. Removing the smells using refactoring usually has a
positive effect on the general quality of the model. However, it could have a negative impact in some cases since it could
destroy the quality wanted by stakeholders. PARMOREL is a framework that, using reinforcement learning, can automatically
refactor models to comply with user preferences. The work presented in this paper extends PARMOREL to support smells
detection and selective refactoring based on quality characteristics to assure only the refactoring with a positive impact is
applied. We evaluated the approach on a large available public dataset to show that PARMOREL can decide which smells
should be refactored to maintain and, even improve, the quality characteristics selected by the user.
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1. Introduction
Models are becoming core artifacts of modern software engi-
neering processes (Whittle et al. 2014). Models, as happens
with code, change and evolve throughout their life cycle due to
maintenance and to comply with new requirements. Preserving
the quality of these models is of the utmost importance to ease
their maintenance and to correctly produce the systems they
represent. To this extent, the model-driven engineering (MDE)
community has developed a series of mechanisms to identify
bad practices and smells that worsen models maintenance and
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to measure the quality of models.
Smells in code (Beck & Fowler 2018) are not bugs or errors

but instead, can be considered as violations of the fundamentals
of developing software that decrease the quality of code. In the
same way, smells in modeling (Bettini et al. 2019) are indicators
that something may be wrong within the model design, even if
the model is valid. Some examples of domain modeling smells
would be unnecessary duplicated features or classes isolated
from the rest of the model, often resulting in uninstantiatable
classes, especially if the model is instantiated with a class that
could not reach the isolated one. Smells may severely affect
the maintenance and evolution of models, as happens with code.
Therefore, their early identification and removal is crucial to
assure the final quality of models. There are many smells de-
fined in the literature (Mumtaz et al. 2019; Beck & Fowler 2018;
Strittmatter et al. 2016) and detecting and removing them is far
from trivial. Refactoring models to remove smells might come
with a cost. Since removing the smells imply modifying the
model structure, this usually has a positive effect on the general
quality of the model (Bettini et al. 2019) but, in some cases, it
could also have a negative impact. This impact is strictly related
to multiple aspects: the model’s structural composition, smell
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occurrences and combinations, etc.
However, to know the impact of the refactoring one needs a

way to measure the quality of the model after the refactoring. In
this paper, we will use quality characteristics. Quality charac-
teristics have been extensively studied in the literature (Boehm
et al. 1976; Dromey 1995; Ortega et al. 2003). With them, mod-
elers can quantify how good models are in terms of concepts
like analyzability, adaptability, understandability, etc. Several
tools exist in code analysis and also in MDE where modelers
can define their own characteristics and automatically detect
them in models using various automated mechanisms (Basciani
et al. 2019; López-Fernández et al. 2014).

The positive effect of calculating these quality characteristics
automatically is that they can be used to measure the impact of
removing a specific smell on the overall model or on specific
quality characteristics (Di Rocco et al. 2014; García-Magariño
et al. 2008). By combining the removal of smells and quality
measurement, modelers could tackle the refactoring of models to
remove smells without compromising the overall model quality,
making it possible to find a balance between which smells
should be removed and which ones not.

In our previous work (Barriga, Heldal, et al. 2020), we pre-
sented PARMOREL, an extensible model repair framework,
implemented as an Eclipse plugin, which enables users to deal
with different types of model issues and to add their own re-
pair preferences to customize the results. This customization
of results is achieved with reinforcement learning (RL) (Thrun
& Littman 2000). By using RL, PARMOREL finds the best
solution for repairing a model according to the user preferences.
So far, as model issues, we tackled with PARMOREL the repair
of syntactic errors in broken models. As user preferences, we
have worked with quality characteristics (Iovino et al. 2020).

In this paper, we will demonstrate the flexibility of PAR-
MOREL showing that it can support smells detection and refac-
toring. To achieve this, we integrate PARMOREL with a tool
that allows modelers to identify smells and refactor them with
known refactorings (Bettini et al. 2019). This extension is based
on Edelta (Bettini et al. 2020), a DSL-based tool to define smells
and corresponding refactorings in personalized libraries.

To validate this new extension, we solve the trade-off prob-
lem between smells and model quality in a dataset used in
the literature, consisting of 404 class diagrams extracted from
GitHub (Babur 2019). The results are encouraging and show
that PARMOREL is able to decide which are the best smells
to refactor in order to maintain and, even improve, the quality
characteristics selected by the user.

Structure of the paper. This paper is organised as follows:
Section 2 illustrates and presents the PARMOREL architec-
ture. Section 3 demonstrates why we need to selectively remove
smells instead of addressing all of them. Then, in Section 4,
we show the customization applied to PARMOREL to perform
selective removal of smells and how existing components have
been extended, i.e., with Edelta and with a quality evaluation
framework. In Section 5, we evaluate if PARMOREL can suc-
cess in refactoring with a balance between smells and quality.
Then, we present threats to validity in Section 6, explore the
related work in Section 7 and conclude the paper in Section 8.

2. PARMOREL Framework
In this section, we briefly present the PARMOREL framework
in order to understand its extension (in Section 4 ) to support
selective refactoring of models containing smells. PARMOREL
makes use of three main concepts: issues to be found in the mod-
els, actions to be applied in response to issues and preferences
with which the user customizes how issues are solved. Then, a
RL algorithm is in charge of deciding which is the best action to
apply in response to an issue, according to preferences selected
by the user. The architecture of PARMOREL is based on three
main modules that we represented in Fig. 1: a modeling module,
a learning module and a preferences module. In the rest of this
section, we will explain these components and show how they
make the framework flexible to be adapted to the needs of the
users in terms of different models, issues, actions, preferences
and learning algorithms.

Modeling module

PARMOREL Framework

 

Learning 
Module

input

refactored model

output

Modeling 
module

Issues 
submodule

Actions 
submodule

Preferences
Module

Experience
submodule

rewards

solutions

model info

actions

domain model

Refactoring

Figure 1 Overview of the PARMOREL architecture

2.1. Modeling module
The modeling module is divided in two submodules, namely the
issues submodule and actions submodule.

The issues submodule is in charge of identifying which is-
sues are present in the model and sends them to the learning
module. In (Barriga, Heldal, et al. 2020) we introduced the
concept of issue. An issue represents something that is improv-
able in a model regardless of its nature. An issue could be a
syntactic or semantic error, a smell, a violation with respect to
an architectural pattern or a specific constraint, etc.

The actions submodule is in charge of sending to the learning
module the actions which are available for refactoring the model
and of applying the chosen refactorings.

In this paper, we focus on extending the modeling module
so that PARMOREL supports smell identification and refactor-
ing. Therefore, more details about this module can be found in
Section 4.

2.2. Learning module
The learning module makes use of RL to learn which actions
are the best to refactor the issues in the models according to the
preferences introduced by the users.

RL consists of algorithms able to learn by themselves how
to interact in an environment without existing pre-labelled data,
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only needing a set of available actions and rewards for each
of these actions. RL allows PARMOREL to perform model
manipulation without having any prior data (i.e., labelled data,
historical data, etc.) about removing issues in models.

By using and tuning RL rewards, these algorithms can learn
which are the best actions to apply to the model. RL rewards can
be adapted to align with any preference introduced by the user
as long as it can be quantified, e.g., improving quality character-
istics (Iovino et al. 2020). Preferences need to be quantified so
that their values can be mapped into RL rewards. For example,
the value of the maintainability quality characteristic itself could
be used as a reward, if the modeler wants to improve it.

Before finding a refactoring for a given model, PARMOREL
is executed for a number of episodes. Each episode equals to
one iteration refactoring the model. During the episodes, differ-
ent actions will be applied to remove the different issues present
in the model. For each of these episodes, a refactoring sequence
is found, and by applying it, a provisional refactored model
is created. The provisional refactored models are analyzed ac-
cording to the preferences selected by the user, and the result is
translated into rewards (e.g., the value of the considered quality
characteristic of the refactored model). Hence, PARMOREL
can identify how good the applied refactoring is according to the
user requirements. Following this process, after each episode,
actions leading to the results closest to the user requirements
will have higher rewards and thus higher probabilities of be-
ing selected. After performing enough refactoring iterations,
PARMOREL will select the refactoring with higher rewards and
save the final refactored model.

RL is a broad field with many algorithms. In previous work,
we compared the performance of different RL algorithms in
PARMOREL and Q(λ) was the one that provided us the best
performance (Barriga, Mandow, et al. 2020). Hence, we use
Q(λ) in our current implementation.

Q(λ) In this algorithm, knowledge acquired is stored in a table
structure called Q-Table (Thrun & Littman 2000). This table
stores pairs of states (states equal smells in our application) and
actions together with a Q-value. The Q-value is calculated using
the rewards and it indicates how good each pair is. The Q-value
is obtained with repeated calculations based on the Bellman
Equation (Bellman 2013) as follows:

Q(s, a) = α(r + γ maxa′ Q(st+1, a′)−Q(s, a)) (1)

telling that the maximum future reward is the reward r the agent
received for entering the current state s with some action a plus
the maximum future reward for the next state st+1 and action a′

reduced by a discount factor γ.
This allows inferring the value of the current (s, a) pair based

on the estimation of the next one (st+1, a′), which can be used
to calculate an optimal policy to select actions. The factor α
provides the learning rate, which determines how much new
experience affects the Q-values. One of the variables used to
calculate the Q-value, is the maximum weight stored in the
Q-table for the next error to refactor (maxa′ Q(st+1, a′)). This
allows us to measure the consequences of applying a certain
action in the model (e.g., if applying an action creates a new
smell this action would be punished, getting a lower weight).

At the end of the execution, pairs with the highest Q-value will
conform to the policy to solve the problem. Our algorithm
is epsilon-greedy (ε-greedy): it avoids local optima using an
exploration-exploitation trade-off by exploring (i.e. choosing a
random action) with probability ε, and exploiting (i.e. choosing
the action with highest Q-value) the remainder of the time. Ac-
cording to our testing (Barriga, Mandow, et al. 2020), we obtain
better results with an ε of 0.3. Regarding other parameters,
discount factor (γ), and learning rate (α), we use 1.0 for both of
them.

Q(λ) uses a technique called eligibility traces (see lines 9-
18 in Algorithm 1) to back-propagate the values and received
rewards, but it does so not only to the immediately preceding
state e(s,a) (or pair of state-action), but to all preceding states
of the current episode, (stored in the sae list, see lines 16-18).
The idea is that this propagation decays in intensity the further a
state is in the past. This decayed propagation can lead to a speed
up in the algorithm’s convergence, especially in sparse reward
models (Thrun & Littman 2000), which provides rewards only at
the end of each episode (e.g., PARMOREL receives the quality
characteristics rewards from the provisional refactored model
at the end of an episode). The propagation decay is controlled
with a parameter λ (see line 18). In practice, the speed of
convergence as a function of the value of λ (between 0 and 1)
generally has a U-shape. Therefore, the optimal convergence is
usually achieved with an intermediate value of λ, which needs
to be determined experimentally. According to our experiments
(Barriga, Mandow, et al. 2020), we get the best results by giving
λ a value of 0.7. Lower or higher values lead to results of lower
quality. The new Q-value is temporarily stored in the variable
δ (see line 15). It is later stored in the Q-table (see line 17) by
adding the already stored Q-value for that pair of state-action
(s, a) to the product of α, δ (the new Q-value) and the eligibility
trace of (s, a).

The pseudocode depicted in Algorithm 1 is adapted from the
one presented in chapter 12 in (Thrun & Littman 2000).

Algorithm 1 Q(λ)
1: Initialize Q-Table
2: for each episode do
3: Initialize eligibility table e (default value 0)
4: Initialize sae as an empty list of state-action pairs
5: s← initial state s0
6: while errors in model != ∅ do
7: Get state s
8: Select best action a with ε-greedy policy for s
9: if a is selected randomly then

10: reset eligibility to 0
11: reset sae as an empty list
12: st+1 ← a applied in s
13: Add (s,a) to sae list
14: e(s, a)← e(s, a) + 1
15: δ = r + γmaxa′Q(st+1, a′)−Q(s, a)
16: for each s,a in sae do
17: Q(s, a) = Q(s, a) + αδe(s, a)
18: e(s, a)← γλe(s, a)
19: t← t + 1
20: s← st+1
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Figure 2 Model of experience in PARMOREL

Experience submodule One of the advantages of using RL is
that these algorithms can improve their performance the more
they are applied. In our approach, the more PARMOREL modi-
fies models, the better performance it might get. This is because
PARMOREL acquires and builds experience that is reused in
later refactorings. To this end, we define the experience submod-
ule. This submodule makes use of the machine learning (ML)
technique of transfer learning (TL) (Barriga, Rutle, & Heldal
2020). In traditional RL, the value of each pair of issues and
actions depends on a single reward; e.g., for a robot learning
how to escape a maze, it receives a negative reward when step-
ping into a wall and a positive one when entering a free space.
However, in our case one pair’s weight may depend on multiple
rewards since it might involve several user preferences, e.g., a
user might want to boost the maintainability and reusability of
a model. Introducing user preferences complicates reusing the
experience acquired by the RL algorithm, since what is a good
refactoring for one user might not be acceptable for another one.
With this technique, what is learnt from the refactoring of one
model could be reused for other models. Hence, consequent
executions of PARMOREL could achieve better performance
the more experience is reused. Even if the users are different,
if the preferences they selected and the issues present in the
models are similar, sharing experience would be useful.

We use the model in Fig. 2 to illustrate how PARMOREL
supports TL. The learning information gained after each refac-
toring is represented by the concept Experience which is com-
posed of one to many entries and preferences. The concept
Entry refers to the pairs in the Q-table and hence it has refer-
ences to all the elements that are part of the Q-table: an Issue
and an Action. In addition, an Entry has a zero to many ref-
erences to Reward. The Reward contains a numerical value
based on the users’ preferences.

The rewards stored in the Experience are used to initialize
the Q-table in following executions. This way, if the current
user shares any preference with previous ones, the rewards these
previous preferences provided in previous refactorings can be
used to initialize the new user’s Q-table, so that the refactoring
does not start from zero. This way, the learning will converge
faster and less episodes will be required. When sharing expe-
rience in PARMOREL, we reduce the value of ε (see line 8
in Algorithm 1) from 0.3 to 0.15 to enhance the influence of
the previous Experience. We initialize the Q-table with the
accumulated rewards of the shared preferences multiplied by a

User1: pref1, pref2

User2: pref1, pref3

entry1:= issue1, action1
entry2:= issue1, action2
entry3:= issue2, action1
entry4:= issue2, action2

Total pref1 pref2

entry1:= issue1, action1
entry2:= issue1, action2
entry3:= issue2, action1
entry4:= issue2, action2

Total Without TLWith TL

10.42
10.97
12.06
11.27

7.91
4.65
8.32
5.64

2.51
6.32
3.74
5.63

x 0.2

1.58
0.93
1.66
1.12

Figure 3 TL between 2 users with a shared preference

discount factor of 0.2. This way we assure previous refactoring
processes influence the new ones by jump-starting the process
but without interfering with learning new refactoring sequences.
Based on our experimental results (Barriga, Rutle, & Heldal
2020), we found that a value of 0.2 gave the best results for our
cases. This parameter’s value can be modified to affect the im-
pact of previous experience on new refactorings. However, the
value should remain a constant during the execution otherwise
some parts of the experience will be more favoured than others.

An example of this process is displayed in Fig. 3. In the
left part of the image we show the Q-table of User1 once she
finishes using PARMOREL. User1 chooses as preferences pref1
and pref2 to refactor a model with two issues, namely issue1
and issue2. Both issues can be refactored with actions action1
and action2. Then, in the right part of Fig. 3 we show how the
Q-table will look for User2 once she starts using PARMOREL.
This user chooses to refactor with preferences pref1 and pref3.
The model to refactor is different than the one refactored by
User1, but since what is relevant for PARMOREL are issues and
actions, the Experience can be reused regardless of the specific
model to refactor. Without TL the Q-table will not exist and a
new one will be created, adding more time to the processing
part of the learning algorithm. With TL, every entry existent
in the Experience is copied in the Q-table, and since pref1 is
shared with User1, the Q-table is initialized with the rewards
provided from this preference multiplied by the discount factor.
This way, when PARMOREL starts the refactoring process for
User2, the time spent in populating the Q-table is reduced and
the learning algorithm will already have an intuition of which
actions are better for each issue.

For more details about how PARMOREL uses TL and how
the experience submodule works we refer the reader to our
previous work (Barriga, Rutle, & Heldal 2020; Barriga, Heldal,
et al. 2020).

2.3. Preferences module
Users can customize the results PARMOREL produces with
their own preferences. PARMOREL supports preferences as
long as they can be translated into numeric values. PARMOREL
will take these values as rewards that will guide the refactor
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Figure 4 Quality characteristics model

process.
For example, users could prefer to refactor improving a qual-

ity characteristic (e.g., maintainability, reusability, understand-
ability, etc.), to minimize the model distance with respect to
the original model, etc. PARMOREL will use the rewards to
estimate how good or bad each action is to satisfy the user
preferences. As part of the preferences given to the users, PAR-
MOREL integrates a quality evaluation tool (Iovino et al. 2020),
which is inspired by (Basciani et al. 2016).

Quality Characteristics as preferences This quality evalua-
tion tool supports the specification of quality characteristics
conforming to the domain model in Fig. 4. Each EvaluatedAr-
tifact (the artifact from which the quality characteristics will
be measured, e.g.; a domain model) will be assigned a set of
QualityCharacteristics which can be specified by the modeler.
Moreover, whether quality characteristics should be maximized
or minimized, is specified in the attribute solution. The cal-
culation function functionName of each quality characteristic
has to match with a definition of an EOL (Kolovos et al. 2006)
script aggregating the available metrics (as shown in the var-
ious formulas) in a predefined library (Basciani et al. 2019).
EOL (Kolovos et al. 2006) is an imperative programming lan-
guage for creating, querying and modifying EMF models. EOL
offers model management operations with a dedicated language
built on top of EMF. This makes it easier to define evaluation
operations compared to Java implementations using the EMF
API directly (Basciani et al. 2016).

In this paper, we specify the following quality characteristics
to be used as user preferences: maintainability, understandabil-
ity, complexity, and reusability.

The maintainability has been defined according to the defini-
tion given in (Genero & Piattini 2001) and the formula presented
in (Basciani et al. 2016), that is based on some of the metrics
shown in Table 1 as follows:

Maintainability =

(
NC + NA + NR + DITMax + FanoutMax

5

)

(2)

The definitions of the understandability and complexity qual-
ity characteristics are adopted from (Sheldon & Chung 2006).
In particular, understandability can be defined as follows:

Understandability =

(
∑NC

k=1 PRED + 1
NC

)
(3)

Characteristic Acronym

Number of classes NC

Number of references NR

Number of opposite references NOPR

Number of containment references NCR

Number of attributes NA

Number of unidirectional references NUR

Max. generalization hierarchical level DITmax

Max. reference sibling FANOUTmax

Number of features NTF

Sum of inherited structural features INHF

Attribute inheritance factor AIF

Number of predecessor in hierarchy PRED

Table 1 Metrics used in the quality characteristics equations

where PRED regards the predecessors of each class, since, in
order to understand a class, we have to understand all of the
ancestor classes that affect the class as well as the class itself.

Complexity can be defined in terms of the number of static
relationships between the classes (i.e., number of references).
The complexity of the association and aggregation relationships
is counted as the number of direct connections, whereas the
generalization relationship is counted as the number of all the
ancestor and descendant classes. Thus, the complexity quality
characteristic can be defined as follows:

Complexity = (NR−NUR + NOPR + UND + (NR− NCR))
(4)

where NUR is the number of unidirectional references mea-
sured as the difference between bidirectional and number of
references, and UND is the understandability value measured
as defined in Equation 3.

The reusability of a given model can be measured in different
ways. One of these is to use the attribute inheritance factor AIF
as proposed in (Arendt & Taentzer 2013). As presented in (Al-
Jáafer & Sabri 2007), AIF can be defined as follows:

Reusability = AIF =

(
INHF
NTF

)
(5)

where INHF is the sum of the inherited features in all classes,
and NTF is the total number of available features.

3. Dilemma: Removing all the smells?
According to (Arendt & Taentzer 2013) a model quality as-
surance framework should implement three important iterative
phases: i) model analysis, ii) identification of smells and iii)
removing of the smells. In order to confirm that removing the
smells had a positive effect not only formally but also practically,
quality evaluation is crucial and can be considered as a litmus
test of the refactoring activity. For this reason, it is helpful to
evaluate the model before and after removing the smells to see
if the applied refactorings effectively improved the design of
the model.

In this section, we use an explanatory example to motivate
our research. We demonstrate that removing all the smells in
a model may be beneficial in terms of quality, but we can have
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Figure 5 Running example showing an initial smelly model, an intermediate version of the model where SM1 and SM2 are re-
moved, and a final version where SM3 and SM4 are removed

cases in which not all the quality characteristics improve. These
cases strictly depend on the model containing the smells, num-
ber of occurrences and the structure of the parts that are not
affected by the smells. For instance, evaluating the quality of a
huge model with only one smell can give very different results
with respect to a small model containing the same smell. More-
over, certain type of smells may affect specific quality character-
istics because of the parts of the model they affect (Strittmatter
et al. 2016; Basciani et al. 2016; Bettini et al. 2019), as we will
see later in this section.

Removing all the smells unconditionally should improve the
quality characteristics, but depending on the model structure,
smell occurrences and applied refactorings, some of the quality
characteristics may get worse. In Fig. 5 we introduce, as an ex-
ample, a “smelly” model. This domain model is inspired by an
example taken from the ATL Zoo and it represents a simplified
conference management system that can be used internally by
universities or departments. We use this trivial example to high-
light the issues and motivate the problem, whereas in Section 5
we will show case studies part of a real dataset.

In this system, as can be seen from Fig. 5 (initial), the mod-
eler can declare a Conference, that contains the submitted Arti-
facts, that can be identified with a title and a name. Moreover,
a set of Users can be defined and registered to the system with
their email addresses. In particular, users can be assigned to
papers. A Conference contains a set of Artifacts which might
be either a Paper or a TechnicalReport, that may extend one or
more papers. These two classes extend the class Artifact which
is declared as concrete. The possibility of an accidental instanti-
ation of the class Artifact leads to the smell concrete abstract
class (SM1). Three of the classes in this model, Conference,
Paper and TechnicalReport, share the attribute name, which
can be identified with the smell SM3, duplicated features. The
two subclasses of Artifact (i.e., Paper and TechnicalReport)

share the attributes title and name (String). This identifies the
smell duplicated features in hierarchy, i.e., SM2, which is a
more specific version of duplicated features: here the same
feature is found in all of the subclasses of a given superclass.
Finally the class Document is declared, maybe with a missing
relationship to any of the other classes. This implies the dead
class smell, i.e., SM4. It is worth noting that the class Docu-
ment could not be instantiated in a framework like EMF—due
to EMF’s requirement that all model elements should be con-
tained in a root model element—since Conference is the root of
our model. One way to instantiate it is to declare it as root of the
model but then the modeler would not be able to instantiate the
remaining classes of the metamodel, hence the class is identified
as dead.

These four smells may affect multiple quality characteris-
tics, and when multiple smells are automatically removed with
refactorings, the quality characteristics can improve but in some
cases can also get worse. In the case reported in Fig. 5, four
possible refactorings may be applied:

SM1 Concrete abstract class→Make the class abstract
SM2 Duplicated features in hierarchy→ Pull up features
SM3 Duplicated features→ Extract superclass
SM4 Dead class→ Remove class

When our smell finder detects a smell, the corresponding
refactoring is immediately applied. Applying all the refactor-
ings immediately after finding the smells might lead to models
with lower quality characteristics than the original smelly mod-
els. In Fig. 5, the intermediate model shows the model after
applying the refactoring for SM1 (Artifact is made abstract) and
SM2 (name and title are pulled up into Artifact), whereas the
final model in Fig. 5 shows the model after applying all the
refactorings, including also a newly created instance of SM3.
Hence a new class NameElement is added as superclass for
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Figure 6 The quality characteristics maintainability (maint.),
understandability (understand.), complexity, and reusability
before and after removing all the smells in the model in Fig. 5

Conference and Artifact) and SM4 is removed by deleting the
dead class Document. Although we identified both SM2 and
SM3 on the classes Paper and TechnicalReport, we removed
the more specific smell SM2. This strategy incorporated in our
smells finder and resolver (see Section 4.1) makes sense with
respect to how a modeler would refactor this smell, however,
it would at the end produce the final model in Fig. 5 which
is of lower quality than the original smelly model. Figure 6
displays some quality characteristics, namely, maintainability,
understandability, complexity and reusability, measured in the
final model before and after the smells are removed. That is, by
removing all the smells automatically with the listed refactor-
ings, we will get worse values in all these characteristics except
for reusability.

In our example, applying the refactoring associated with
SM3 extract superclass, worsen the overall quality of the model,
since it affects the maintainability, understandability and com-
plexity by adding a new element into the model. However,
SM3 improves the reusability, since it creates more inherited
features. The refactorings associated with SM2-SM3 improve
the reusability and maintainability by removing features from
the model. Removing classes to solve SM4 worsens under-
standability and complexity while it improves maintainability.
Regarding SM1, removing it does not affect the quality char-
acteristics considered in this example, however, if unsolved, it
could deteriorate the model’s quality in the future, since a class
that is concrete when it should be abstract could be incorrectly
instantiated.

By combining these refactorings we could face situations
where removing several smells lead to no improvement in the
model quality, for example by removing SM1 and SM4 we get
worse understandability and complexity, without improving any
quality characteristics. This is an indication that, by selectively
applying refactorings when removing smells, quality charac-
teristics could improve with respect to automatically removing
every smell in a model.

To overcome these limitations and complement the automatic
approaches as (Bettini et al. 2019; Arendt & Taentzer 2013) we
propose a new application of PARMOREL to find a balance
between smells refactoring and models quality.

PARMOREL Framework

refactored model

                                               
Modeling module

Preferences
module

Quality
Evaluation

...
rewards

output

input

...

Q(λ)

Learning 
Module

smelly domain model

Refactoring

Issues submodule

... Experience
submodule

le
ar

ni
ng

Actions submodule

actions

solutions

model info

Edelta

Smells finder

Smells resolver

Figure 7 Detailed architecture of the framework

4. Selective smell removal
In previous work (Barriga, Rutle, & Heldal 2020; Barriga, Hel-
dal, et al. 2020; Iovino et al. 2020), we have applied PAR-
MOREL to repair faulty models that violate certain constraints
of the Ecore metamodel. In order to apply it for refactoring
smells, there are some parts of the framework that must be
adapted. In this section, we detail how the PARMOREL frame-
work has been extended to support this task. Figure 7 displays
the architecture of the framework in detail after this extension.

4.1. Modeling module extension
In this paper, we extend the modeling module to identify and
refactor smells by using EMF (Steinberg et al. 2008) together
with Edelta (Bettini et al. 2017) for refactoring Ecore models.

Edelta Edelta is a model refactoring tool, based on a DSL, for
easily defining Ecore model evolutions and refactorings. The
core features of Edelta and its DSL have been detailed in (Bet-
tini et al. 2017). Edelta provides modelers with constructs for
specifying atomic evolutions and complex refactorings. Atomic
evolutions are simple changes applied to models, i.e., addi-
tions, deletions and edits. Complex refactorings are reusable
changes, defined by composing already defined atomic or com-
plex refactoriings. The Edelta DSL has been implemented with
Xtext (Bettini 2016) and also a complete IDE based on Eclipse
is available, offering syntax highlighting, code completion, error
reporting, incremental building, as well as debugging. Recently,
in (Bettini et al. 2020), the new version of Edelta was presented,
supporting a completely live environment, where the modeler
can have an immediate feedback in the IDE of the evolved Ecore
models. Edelta has also been used for detecting Ecore model
smells and for removing them by means of reusable refactorings
organised in libraries (Bettini et al. 2019). In previous work,
Edelta has been used as a standalone tool that can be used on
a subject metamodel to analyze it, evolve it or to apply refac-
torings, interactively, with the live IDE environment of Edelta.
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Moreover, all these mechanisms can also be used in a standard
Java program to process a set of metamodels in batch mode.

In this paper, we make use of Edelta libraries to instantiate
the issues submodule and the actions submodule with a smells
finder and smells resolver, respectively.

Smells finder The smells finder uses the Edelta DSL to spec-
ify queries for identifying smells in Ecore models. Using the
Edelta language, the modeler can provide the specification of
custom smell finders and refactorings, which can be properly
organized in reusable libraries. The Edelta DSL has a Java-like
syntax, so it should be easily understood by Java programmers,
but with less “syntactic noise”. For example, most of types
declarations can be omitted if they can be inferred from the
context. Moreover, the Edelta DSL is based on the Java type
system and it is completely interoperable with all existing Java
types and libraries. Indeed, the types used in the next listings
are Java types.

Edelta comes with a smell finder including the smells men-
tioned in this paper, but the modeler can further extend this
library with new smells or refine the existing ones. In Listing 1
we report an extract of an Edelta library containing a few smells
finders mentioned in Section 3.

1 de f findDuplicatedFeatures(EPackage epackage) {
2 r e t u r n findDuplicatedFeaturesInCollection(
3 ePackage.allEStructuralFeatures,
4 [existing, current| new EdeltaFeatureEqualityHelper()
5 .equals(existing, current) ] )
6}
7 de f findDuplicatedFeaturesInCollection(
8 Collection<EStructuralFeature> features,
9 BiPredicate<EStructuralFeature, EStructuralFeature>

matcher) {
10 v a l map = newLinkedHashMap
11 f o r (f : features) {
12 v a l existing = map.entrySet.findFirst[matcher.test( i t .key

, f)]
13 i f (existing != n u l l ) {
14 existing.value += f
15 } e l se {
16 map.put(f, newArrayList(f))
17 }
18 }
19 r e t u r n map.filter[key, values| values.size > 1]
20}
21 de f findConcreteAbstractMetaclasses(EPackage ePackage) {
22 r e t u r n ePackage.allEClasses
23 .filter[cl | !cl.abstract && cl.hasSubclasses]
24}
25...

Listing 1 Edelta snippet of the smell finder library

Concerning finding duplicated features, the core function
is findDuplicatedFeaturesInCollection. This operation
takes the collection of features to inspect and a lambda ex-
pression1 that is responsible of deciding whether two features
should be considered equal in two different classes2. Both find-
DuplicatedFeaturesInHierarchy and findDuplicated-
Features call this operation with a different collection of fea-
tures to inspect and with a lambda expression that relies on our

1 In Edelta lambda expressions have the shape: [ param1, param2, ... |
body ]. As in Java, types of parameters can be omitted when they can be
inferred. Note that the lambda expression is assignable to the Java functional
interface BiPredicate.

2 We do not report all the code since the complete implementation of the smell
finders can be found in the source files of the Edelta plugin: https://
github.com/LorenzoBettini/edelta.

default implementation of equality detection for features, which
scans all the properties of two given features. Note that model-
ers can reuse findDuplicatedFeaturesInCollection with
a custom equality matcher for their own new smells and refactor-
ings. The smell finder returns the possible detected duplicated
features in an appropriate data structure (in this case, a map).
Such a data structure contains the information needed to possi-
bly “resolve” the smell, as shown in the next paragraphs. The
definition of findConcreteAbstractMetaclasses should
be straightforward. In the above code we rely on some utility
functions defined in Edelta (e.g., allEClasses, directSub-
classes, etc.) that we do not detail here.

The smells finder implements the issues submodule in the
PARMOREL framework and hence, it takes care of identifying
which smells are present in the models and communicating them
to the learning module.

Smells resolver To complement the smells finder we use a
smells resolver to remove the smells found in the models. When
a smell is declared the modeler needs to specify the refactoring
to resolve the smell. This correspondence is declared in a Edelta
library called resolver that basically links the smells with the
refactorings. Model refactorings are specified by using the
Edelta DSL as well. For instance we could specify that the
duplicated features in hierarchy should be resolved by pull
up attributes, that the more general duplicated features smell
should be resolved by extract superclass, and that the concrete
abstract class should be resolved by simply making the class
abstract.

An important feature of Edelta is that it resolves all oc-
currences of a smell type in one run. For instance, when
resolving SM2 in Fig. 5, both of the attributes name and
title are pulled up to the same class Artifact. The impact
of this batch resolution would be more visible if we had
two common superclasses for Paper and TechnicalReport,
since in this case, atomic resolutions would lead to poten-
tially pulling up name to one of the superclasses and title to
the other one. Listing 3 reports a few Edelta refactorings
that we have defined in the catalog published at https://
www.metamodelrefactoring.org that we used in the
above resolver functions in Listing 2. In particular, in this
Listing we show the Edelta operations for pull up and extract su-
perclass (functions like addNewEClass and addEStructural-
Feature are examples of Edelta atomic refactorings).

1 de f resolveDuplicatedFeaturesInHierarchy(EPackage pack) {
2 finder.findDuplicatedFeaturesInHierarchy(pack)
3 .forEach[superClass, duplicates|
4 duplicates.forEach[key, values|
5 refactorings.pullUpFeatures(superClass, values) ] ]
6}
7 de f resolveDuplicatedFeatures(EPackage pack) {
8 finder.findDuplicatedFeatures(pack).values
9 .forEach[refactorings.extractSuperclass( i t )]

10}
11 de f resolveAbstractSubclassesOfConcreteSuperclasses(

EPackage pack) {
12 finder.findAbstractSubclassesOfConcreteSuperclasses(pack)
13 .forEach[makeConcrete]
14}
15...

Listing 2 Edelta snippet (i) of the resolver library
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1 de f extractSuperclass(List<? extends EStructuralFeature>
duplicates) {

2 v a l feature = duplicates.head;
3 v a l name = feature.name.toFirstUpper + "Element";
4 v a l containingEPackage = feature.EContainingClass.EPackage
5
6 containingEPackage.addNewEClass(name) [
7 makeAbstract
8 duplicates.map[EContainingClass].forEach[c | c.

addESuperType( i t )]
9 pullUpFeatures(duplicates)

10 ]
11}
12 de f pullUpFeatures(EClass dest, List<? extends

EStructuralFeature> duplicates) {
13 duplicates.head.copyTo(dest)
14 removeAllElements(duplicates)
15}
16...

Listing 3 Edelta snippet (ii) of the resolver library

The Edelta DSL supports the definition of new smell finders
and refactorings that can be coupled together and thus creating
new resolvers (as can be seen in Listing 2). These finder-resolver
pairs can be organized in a way which dictates the order in which
the smells are resolved by Edelta. Although this order is impor-
tant, the modeler could also specify mutually-exclusive smell
finders since the Edelta specification allows for user-defined
libraries. For instance, one could define duplicated features not
in hierarchy as a counterpart for duplicated features in hierarchy
so that model elements matched by a former smell finder are
not related with model elements matched by a latter one. In this
way, an implicit order of resolutions could be defined. All such
new smell and resolver definitions are automatically available
to the entire ecosystem.

The smells resolver implements the actions submodule, so
it notifies the learning module about the refactorings available
for each smell. Additionally, it applies the chosen refactorings
in the model. As mentioned in Section 3, the integration with
an external tool like PARMOREL could also reuse the order of
invocation of the resolvers. Since PARMOREL removes smells
by their types (e.g. all instances of SM2) we rely on the order
in which the smells are found and resolved.

4.2. Issues
Previously, we tackled issues individually. PARMOREL would
address them one by one regardless of their type or possible
duplicities. This made sense since, in a broken model with
syntactic errors, the desirable solution is that all errors are re-
moved. Additionally, these errors could have multiple potential
solutions that could modify drastically the model structure.

In our current scenario, we contemplate the possibility to
leave smells unsolved as long as this is beneficial for the over-
all quality of the model. Now, for each smell type, the smell
resolver provides us with one possible solution. Hence, PAR-
MOREL has to learn whether it is worth it or not to apply the
refactoring. According to our testing with the smell types and
their refactorings which are implemented for this paper (see
Section 5), removing a particular smell type will have a very
similar impact on the quality characteristics of the models. This
is because the quality characteristics we consider are based on
the number of different elements in the models. Changing the
number of specific elements with addition or removal or setting

values, will affect some quality characteristics positively and
others negatively.

Because of this, we consider smells in batches, organized
by their types. For example, if a model present 3 instances of
SM1 (see Section 3), PARMOREL will tackle SM1 as a batch,
deciding to refactor or leave it unsolved, instead of tackling the
3 instances individually.

4.3. Episodes
With this batch organization, we reduce the time needed for
refactoring, since the maximum number of episodes the RL
algorithm will run depends on the found smell types, and not
the smell instances.

As explained in Section 2, an episode equals to one iteration
refactoring the model. In each episode, a possible refactoring
sequence is found, and by applying it, a provisional refactored
model is created. At the end of all the episodes, PARMOREL
will have learned which are the best actions to solve the issues
in the model according to the user preferences. The maximum
number of episodes which PARMOREL runs is a parameter
within the framework.

According to our testing, PARMOREL needs, for learning
the best refactoring for each model, a maximum of 50 episodes
for each present smell type. The more smell types a model
contains, the longer PARMOREL will require to learn which
is the best refactoring for it. For example, for a model with
one smell type, PARMOREL will require a maximum of 50
episodes to converge, while for a model with 5 smell types, the
maximum will be 250.

To avoid reaching the maximum needlessly, we run the RL
algorithm with an early-stopping criteria. The learning will stop
once maxaQ(s0, a) (the maximum Q-value of the initial state)
remains unchanged for 25 episodes.

4.4. Rewards
To support the combination of several quality characteristics as
a preference, it is not enough to directly use the values of the
characteristics as a reward.

According to the characteristics definitions presented in Sec-
tion 3, maintainability, understandability and complexity are
decreasing characteristics. This means that lower values in
these characteristics are an indicator of better quality. By con-
trast, reusability is an increasing characteristic, meaning that the
higher its value is, the better reusability the model has. Hence,
we could directly use increasing characteristics values, but de-
creasing ones need to be converted so that their values can be
used as a reward.

For example, a user wants to improve the maintainability
and reusability characteristics of a model which initial values
(v0) are 10 and 0.15, respectively. For this model, PARMOREL
finds two possible refactorings, R1 and R2, each leading to the
following quality values (vr): R1: maintainability of 9.6 and
reusability of 0.02 and R2: maintainability of 9.2 and reusability
of 0.17. Maintainability improves in both refactorings while
reusability gets better in R2 and worse in R1. If we directly
added these values we would obtain a reward of 9.62 for the first
refactoring and 9.37 for the second one. With this, PARMOREL
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would choose R1 although it worsens reusability rather than
choosing R2 which improves both characteristics and gives a
better result in maintainability.

To avoid this situation, for every decreasing characteristic, we
subtract vr from v0 and add v0 back to the result (see Equation
6). With this, we convert the characteristics values so that the
higher they are, the better quality they imply.

There could be situations where different quality charac-
teristics have very different ranges. To avoid that one of the
characteristics has more influence on the reward than the others,
we transform the values v so that they reflect the improvement
each characteristic has undergone within a closer range (see the
value x in Equation 7). For example, by applying Equation 6 for
R2, where vr values are 9.2 (decreasing) and 0.17 (increasing),
and the v0 values are 10 and 0.15, respectively, we obtain the
v values 10.8 and 0.17. Applying Equation 7 to these values,
we obtain the x values 108 and 113.3. Finally, by applying
Equation 8, (where n is the number of quality characteristics
selected by the user), we add all x values and we obtain the
reward.

By doing this, the example refactorings would get a reward
of 117.3 for R1 and 221.3 for R2. Hence, PARMOREL would
choose R2. To make them easier to read, values in Fig. 6 were
converted so that higher values imply higher quality by using
these equations.

v =

{
(v0 − vr) + v0, if decreasing characteristic
vr, if increasing characteristic

(6)

x =
v ∗ 100

v0
, if v == 0 then x = 0 (7)

reward =
n

∑
i=1

xi (8)

5. Evaluation
In this section, we present an evaluation of the proposed ap-
proach. In particular, we aim at answering the following re-
search question:

RQ: How well can PARMOREL refactor models with
a balance between removing smells and at the same
time improving their quality?

Experiment setup and dataset In this paper, we consider
the following quality characteristics (Genero & Piattini 2001):
maintainability, understandability, complexity, and reusability.
These characteristics are offered to PARMOREL users as pref-
erences. In this experiment, as user preferences, we select to
improve maintainability and reusability. These preferences are
mapped into reward values as explained in Section 4.4. These
characteristics are opposite and, usually, when one improves
the other worsens. This adds more challenge to the evaluation,
since PARMOREL needs to find a balance for satisfying both
quality criteria at the same time. For this evaluation, we choose
the dataset from (Babur 2019), containing 555 Ecore models ex-
tracted from GitHub. We run PARMOREL in Eclipse 2020-06
(the Modeling package) on a laptop with the following specifi-
cations: Windows 10 Home, Intel Core i5-6300U @2.4GHz, 64
bits, 16GB RAM.

Smell Refactoring

1-Concrete abstract class Make the class abstract

2-Duplicated features in hierarchy Pull up features

3-Duplicated features in classes Extract superclass

4-Dead class Remove dead class

5-Redundant container relation Set correct reference as opposite

6-Abstract subclasses of concrete superclass Make subclasses concrete

7-Abstract concrete class Make the class concrete

8-Classification by hierarchy Transform the hierarchy to enum

Table 2 Smells and refactorings supported in the evaluation
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0

100

200
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Figure 8 Distribution of smells throughout the dataset

Only 58 models in the dataset do not contain any smell,
meaning that 89.54% of the models present some type of smell.
From the models with smells, we discard 93, since they are not
supported by the quality evaluation tool and hence we can not
extract their quality and use it as rewards in the RL algorithm.
This makes a total of 404 models subject to be refactored.

The models are of diverse size, containing between 10 and
445 elements, counting classes, attributes and references. From
the 8 smell types we have defined in the smells finder for this
evaluation, each model present between 1 and 7 types. Counting
individual instances of each smell type, the models present
between 1 and 52 smell instances. Table 2 details the defined
smells and the refactoring for each of them. Figure 8 shows the
number of models in the dataset containing each smell type.

We randomly split the dataset of models with an 80-20%
distribution, refactoring 20% of the models twice, with and
without having first refactored the 80%. With this, we analyze
the impact of reusing learning with the experience submodule
on the refactoring time of the 20%.

Analysis of results When refactoring the 80+20% of the
dataset, it takes PARMOREL between 0.9 and 56.5s to learn
how to refactor each model.

When refactoring the 20% independently, without reusing
learning, it takes PARMOREL an average of 37% more time
to refactor these models. Faster refactoring happens in models
with bigger size, since the bigger the models, the more learning
can be reused from previous refactorings. By comparing the
refactor time from refactoring with and without reusing learning,
we can conclude that PARMOREL streamlines the refactor time
of the models between 2% and 61% when it has learned from
refactoring other models.
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Regarding maintainability, PARMOREL is able to improve
it in 33.6% of the models. For 40% of the models it remains un-
changed and, for the remaining 26.3%, it worsens. For reusabil-
ity, 74.50% of the models present better results after refactoring
and 25.2% remains unchanged. Only one model from the dataset
presented worse reusability after refactoring. These results are
summarized in Fig. 9. In 100% of the models, whenever one
of the characteristics worsened, the other one improved. These
refactorings were selected because in the trade-offs between the
characteristics values the best decision for the overall quality of
the model was to worsen one of the characteristics in benefit of
the other one.

0 20 40 60 80 100

maint

reuse

improves unchanged worsens

Figure 9 Reusability and maintainability results

Figure 10 displays the percentage of each smell type removed
from the total present in the models for which maintainability
and reusability improves, respectively. SM1-3 are mostly re-
moved in both cases, while SM4-8 are mostly ignored. More-
over, SM4 and SM8 are more often removed when reusability
improves, mostly because the refactoring of these smells reduce
the total number of elements in the model.

Taking into account the characteristics in combination, PAR-
MOREL was able to improve the quality of both of them in
31.43% of the models in the dataset. It also improves one of the
two characteristics in 45.29% of the models while for 23.28%
both remained unchanged (see Fig. 11).

As a conclusion, only in 22.27% of the models the best solu-
tion found by PARMOREL was to remove all the smells With
the results of this evaluation, we can conclude that when tak-
ing into account the quality of the models, the best solution is
usually not to remove all the smells. Hence, as an answer to

SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8

0

50

100

maintainability improves reusability improves

Figure 10 Percentage of each smell type fixed when quality
improves

0 20 40 60 80 100

both

both improve one improves both unchanged

Figure 11 Both characteristics results after refactoring

our research question, PARMOREL is able to refactor the mod-
els with a balance between which smells should be addressed
without degrading the quality of the models and even improving
it. In most cases, the refactored model presents higher quality
in the characteristics selected by the user than the original one
(76.72% of the models in the evaluation). Additionally, as Fig.
10 shows, PARMOREL has the tendency to remove some of the
smell types and to ignore others.

6. Threats to validity
In this section, we discuss potential threats that are associated
with the validity of the experiments discussed in Section 5. We
distinguish between internal and external threats to validity as
in the following:

Internal validity Internal threats are factors influencing the
outcomes of the performed experiment. One potential internal
threat is that we focus on automatically detectable smells and
this could limit the applicability of the approach since semantic-
driven smells might not be representable with the Edelta DSL
syntax. Moreover the correctness of the experiments results are
driven by the solver, the applied refactoring, smells definitions
and quality characteristics calculation formulas. All these el-
ements are defined by modelers and then subject to possible
inconsistencies that could influence the final result. To mitigate
this aspect we reused, when possible, existing definitions from
literature and represented them faithfully with the corresponding
models or DSL syntax.

External validity In this context we discuss how the conducted
experiment would still be valid outside the used setting. To
mitigate this aspect, we considered various models since the
dataset is heterogeneous and used in other experiments in lit-
erature (Nguyen et al. 2019). We plan to further replicate the
experiment with other large datasets.

Throughout the paper we have picked four quality charac-
teristics as a proof of concept to measure the quality of the
refactored models. Likewise, we work with a set of eight smells
and their corresponding refactorings. Many other characteris-
tics could be measured in the models and other smells could
be identified together with different refactorings. We consider
the set of characteristics, smells and refactorings representative
enough since they are related to different elements in the models,
covering a wide range of structural changes in them.

Finally, the examples in the paper are based on EMF and
Ecore models, but as we explained, it is possible to switch to
other modeling frameworks by extending PARMOREL. Within
EMF, the work presented in this paper is specific for Ecore
models. However, it could be applied in general to models
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instances if the refactoring actions retrieved from the framework
were domain specific.

7. Related Work
This section discusses relevant works that are related to smells
detection and code refactoring with ML, model refactoring, ML
approaches for MDE and, recommender systems.

Smells detection and code refactoring with ML ML for
smells detection has been more applied at code level than at
model level. In (Fontana et al. 2016), the authors perform a
comparative study with different ML techniques for identify-
ing a set of four smells. They achieve high accuracy without
needing much data for each smell. However, in the literature
review presented in (Azeem et al. 2019) and (Di Nucci et al.
2018), authors point that most studies are done at a theoretical
level, and there are still big open challenges the field needs to
overcome to reach its full potential.

ML offers the possibility to identify complex smells and it
could also be used to detect smells in models. However, users
would need to find or define their own datasets in order to tackle
the smells they are interested in. The scope of the smells de-
tected using the Edelta DSL is automatically detectable smells,
but users just need to define their own smells at code level with-
out needing to train on any dataset. Regarding code refactoring,
different ML techniques (Alenezi et al. 2020; Sheneamer 2020)
have been applied to predict and identify which parts of the
code are prone to be refactored. By doing so, the time spent in
refactoring can be reduced. Although our current approach does
not support predictions, we use RL to identify both the parts of
models that should be refactored in their current state and what
is the best action to perform the refactoring. Approaches for
code refactoring usually rely on great amounts of data, including
code’s historic evolution coming from public code repositories.
This amount and type of data is not yet available in the MDE
field.

Model refactoring The concept of refactoring has been ex-
plored using UML class diagrams in (Mens 2006) after a com-
plete analysis of Fowler in (Fowler 1999) for code. A DSL
called Wodel (Gómez-abajo et al. 2016), allows to create model
mutations by means of a metamodel independent specification.
Creation, deletion and reference reversal are the primitives of-
fered by the model mutations whereas the composition of muta-
tions are similar to the Edelta mechanism. The specifications
are translated into Java code but Edelta works in a different
abstraction layer in which the refactoring / mutation is applied.

Similarly to the applied refactorings used in the experiments,
a refactoring catalog for UML models is presented in (Sunyé et
al. 2001). Whereas in (Xing & Stroulia 2006; Fadhel et al. 2012)
mechanisms for detecting refactorings are presented. Lastly,
the approach in (Langer et al. 2013) proposes an a searching
algorithm for occurrences of composite operations within a set
of detected atomic changes in a post-processing manner.

In these approaches, the user is responsible of deciding which
refactorings to apply in the model and sometimes of designing
them. In PARMOREL, we abstract users from this burden as

the tool will take care of deciding which refactorings should be
applied to satisfy the user preferences.

ML approaches for MDE We could not find in the literature
any research applying RL to model refactoring hence, we focus
on other ML techniques as related work.

Puissant et al. propose a tool called Badger based on an
artificial intelligence technique called automated planning (Puis-
sant et al. 2015). Badger generates sequences that lead from an
initial state to a defined goal.

It has a set of repaired operations to which users can assign
costs and weights to decide its priority. Badger generates a set
of plans, each plan being a possible way to repair one error. This
makes it difficult for the user to decide which action to apply
without knowing how it affects the rest of the model. We prefer
to generate alternative sequences to refactor the whole model
since some actions can modify the model drastically.

It is worth mentioning search-based and genetic algorithm-
based approaches since, although they have not been applied
yet to model repair, they are possible competitors to RL. These
techniques have shown promising results dealing with model
transformations and evolution scenarios, for example in (Kessen-
tini et al. 2017) authors use a search-based algorithm for model
change detection. These algorithms deal efficiently with large
state spaces, however they cannot learn from previous tasks nor
improve their performance. While RL is, in the beginning, less
efficient in large state spaces, it can compensate with its learning
capability. In the beginning, performance might be poor, but
with time refactoring becomes straightforward.

Some approaches make use of neural network (NN) archi-
tectures to solve different MDE problems. In (Burgueño et al.
2019) authors present a NN architecture for model transforma-
tion without specifying code for any specific transformations.
Tackling model refactoring, in (Sidhu et al. 2020) authors make
use of a deep NN architecture to refactor UML diagrams with
symptoms of design flaws. NN need a great amount of data in
order to work. The produced solutions are tightly related to the
training dataset, so if the requirements of the problem changes,
so needs to do the data. By using RL we do not need training
data, as these algorithms learn by directly interacting with the
models and, by using the abstract concepts of PARMOREL
architecture, our tool can easily be adapted to solve different
problems without the burden of designing new datasets.

Recommender systems Other approaches such as (Cuadrado
et al. 2018; Muşlu et al. 2012) work as recommender systems
(both for code and models) instead of only relying on automa-
tion. PARMOREL may also be utilized like a recommender
system allowing users to choose the solution they prefer from a
ranked list of proposed solutions. These choices are in turn fed
back to the learning algorithm and affect the rewards (Barriga,
Heldal, et al. 2020). However, the main focus of this paper
is on providing automatic model refactoring to remove smells.
Hence, instead of letting the users know about the consequences
of the refactorings so that they decide a solution, we ask them
beforehand which consequences (quality characteristics as pref-
erences) they prefer, and we use these preferences to guide the
refactoring phase. In (Cuadrado et al. 2018) authors present a
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catalogue of quick fixes, knowing which one of them can solve
each problem. In our paper, each smell found by the smell finder
has a corresponding refactoring, however, we have worked in
scenarios where we had a set of available actions and we did
not know which one solved each smell. Finally, although some
quick-fix approaches (Cuadrado et al. 2018) might be initially
faster than PARMOREL, the idea of our approach is that it
learns and streamlines its performance the more models it refac-
tors. As could be seen in the evaluation, with a relatively small
dataset we already were able to refactor models in which the
issues were known by PARMOREL 37% faster on average.

8. Conclusions and future work

In this paper, we present a new PARMOREL extension to sup-
port smells detection and selective refactoring. The approach
is able to selectively remove smells that has impact on the
quality characteristics expressed as preference by the user. To
achieve this, we integrate PARMOREL with a tool that allows
modelers to identify smells and refactor them with precise refac-
torings. This extension is based on the integration of tools, e.g.,
Edelta, and a model-based quality assessment methodology. We
demonstrated how we can solve the trade-off between smells
and quality characteristics with a dataset used in the literature,
consisting of 404 models extracted from GitHub. The results
are positive and show that PARMOREL effectively select the
best smells to refactor in order to maintain and, even improve,
the quality characteristics expressed by the modeler. We outline
that this approach is totally model-based and that can be further
extended with other preferences, issues and actions that we plan
to investigate. The main strength of PARMOREL is the degree
of flexibility it provides to the user.

In this flexible environment, we use reinforcement learning
to learn how to refactor a model without any prior knowledge
of the model, and by using our transfer learning approach with
experience sharing, we can forward what the framework learns
from previous refactorings. Reinforcement learning might have
the weakness to provide a slower solution than other approaches
during the first refactorings, however, the idea of our approach is
that the learning module learns and streamlines the performance
the more models it refactors.

Currently, PARMOREL is limited to quantitative user prefer-
ences and it needs to get a set of actions to modify the model,
unlike other approaches these actions cannot yet be inferred
from the issues in the models. Also, PARMOREL needs to de-
tect issues in a model in order to improve it, it cannot deal with
models without issues yet. We plan to address these limitations
as part of our future work.

Next, we plan to create a benchmark using different model
datasets, including the one used in this paper, with which we
will compare PARMOREL results and its performance to other
existing model refactor and repair approaches in the literature.
Also, we plan to extend PARMOREL to solve other problems
relevant in the modeling field, like model refactoring after their
corresponding metamodel evolves (co-evolution) and making
architectural models compliant with best practices and recom-
mended design patterns.

Additionally, we plan to extend the learning module with
other algorithms beyond reinforcement learning, specially fo-
cusing in other AI and search-based approaches and study their
performance with respect to RL algorithms.
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APPENDIX

In this appendix, we show how we extend PARMOREL to identify and restore inter-
model consistency between UML class and sequence diagrams. These new extensions
are part of paper [12], which is in the second round of the review process in the SoSyM
journal at the moment of writing this thesis (see Section 1.3).

We extend the issues and actions submodule to find and restore inter-model
inconsistencies. The preferences module in this extension uses a coupling calculation
technique in order to reward lower coupling in the sequence diagrams when restoring
consistency. Next, we present these extensions and test them through a preliminary
evaluation.

Issues submodule: Inter-model inconsistencies

To demonstrate that PARMOREL is able to restore inter-model consistency, we have
implemented, as an example, the following rules (inspired by rules 110 and 114 from
[92]) to identify inconsistencies between UML sequence and class diagrams:

• Rule 1: If a message in a sequence diagram refers to an operation through the
signature of the message, then that operation must belong, as per the class
diagram, to the class that types the target lifeline of the message.

• Rule 2: Each public operation in a class diagram triggers a message in at least
one sequence diagram.

As an example, we show in Fig. 1 a modification of the video-on-demand system
(VoD) presented in [40, 62, 74]. In this example, we have a class diagram with three
classes: Video, Server, andUser, and a sequence diagramwith the lifelines corresponding
to these classes. We assume the class diagram has evolved and its corresponding
sequence diagram is no longer consistent with the new changes. As can be seen, the
operation disconnect should be invoked in Server by Video, however, in the sequence
diagram it is invoked inVideo byUser, which violates Rule 1. Additionally, the operation
loop does not appear in any of the classes’ lifelines in the sequence diagram, hence
violating Rule 2. This operation should be invoked in Video either by User or Server.

With this extension, we not only include a new type of issue, but also we prove that
PARMOREL can work with UML models.

Actions submodule: Repairs for inter-model inconsistencies

To solve the inconsistencies presented in the diagram in Fig. 1, we have implemented
two actions into the actions submodule. These actions produce the diagram depicted
in Fig. 2. As an example, we have implemented actions that modify the sequence
diagram, assuming the changes done in the corresponding class diagram have not
been propagated yet.



Rule 1

Rule 1Rule 2

 Rule 1: Message-operation correspondence
 Rule 2: Public operation without message

Fig. 1: Example showing inconsistencies between UML class and sequence diagrams
violating rules 1 and 2

Rule 1

Rule 2

Fig. 2: PARMOREL’s solution for the example in Fig. 1
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• Move message: moves a message between lifelines to its corresponding place
according to the class diagram. It solves inconsistencies caused by violating Rule
1.

• Add message: adds a message in a lifeline according to its corresponding
operation and the class it belongs to in the class diagram. It solves inconsistencies
caused by violating Rule 2.

Preference module: Coupling

By using the metrics offered in SDMetrics [94], we can define preferences to guide the
repair of UML models. To this end, we sum up the values of MsgSent and MsgRecv of
each lifeline (being n the total number of lifelines, see Equation 1). Then, we divide the
sum value by the addition of theMsgSent andMsgRecv of each lifeline. Finally, we add
the obtained value for each lifeline into reward (see Equation 2). This value will be
higher as the total coupling of the diagram decreases. We use this value as a reward
for the learning algorithm.

sum =

n∑
i=1

MsgSenti +MsgRecvi (1)

reward =

n∑
i=1

sum

MsgSenti +MsgRecvi
(2)

For example, returning to the example in Fig. 1, the operation disconnect should
be invoked in Server by Video, but there are two possible Server lifelines: mirror and
main, each leading to a different coupling value. Likewise, the operation loop should
be invoked in Video either by User or one of the Server lifelines. For this example,
the optimal solution found by PARMOREL (see Fig. 2) has a reward of 26.5. Here,
PARMOREL moves the operation disconnect to have the Server:mirror lifeline as receiver
and Video as sender and it adds the operation loop to have the Video lifeline as receiver
and Server:mirror as sender. Other solutions receive a lower reward, since their coupling
is worse, for example, moving the operation disconnect and adding loop to have, in both
cases, the Server:main lifeline as the receiver and Video as the sender would get a reward
of 20.66. In this case, both Video and Server:main lifelines would have worse coupling.

Evaluation: Restoring inter-model consistencywhile lowering cou-

pling

To perform a preliminary initial evaluation, as a dataset, we have manually created 12
models, 6 pairs of class and sequence diagrams using the Eclipse IDE of UMLDesigner
9.0 [21]. The sequence diagrams are based on sequence diagrams that can be found in
[38]. Regarding the class diagrams, we created them based on these sequence diagrams,
since in [38] they were not available. Furthermore, we arbitrarily added the inter-model
inconsistencies in the sequence diagrams, as the diagrams available did not contain
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this kind of issues. The subject sequence diagrams have between 4 and 11 lifelines and
include between 2 and 10 violations of rules 1 and 2.

In this experiment, we evaluate whether PARMOREL is able to deal with unidirec-
tional inter-model inconsistencies between UML class and sequence diagrams. We
want to evaluate that the framework can be extended to deal with different types of
models and issues.

For each pair of class and sequence diagrams, first, we analyze if there exist any
violations of rules 1 and 2. Then, for every violation detected, PARMOREL obtains
which potential senders and receivers the repair actions could have. Then, in every
episode, PARMOREL applies the repair actions with different senders and receivers,
obtaining the coupling of the repaired sequence diagrams. Finally, the sequence of
repair actions (with the best combination of senders and receivers) that leads to the
lowest coupling is selected. For each pair of diagrams, it takes PARMOREL between
0.7 and 8.2s to learn how to restore the consistency.

PARMOREL is able to restore all consistencies from the dataset models, always
choosing themost optimal solutionwith respect to coupling (the sequence of actions that
create the model with the lowest coupling), hence providing personalized restoration.
With these results, we can conclude that PARMOREL can support different types of
models (UML class and sequence diagrams) and more complex issues, like inter-model
inconsistencies.

Additionally, while performing this evaluation, we discovered that PARMOREL is
able to design sequence diagrams from scratch. For every operation existing in a class
diagram, a violation of Rule 2 is triggered (each public operation in a class diagram triggers
a message in at least one sequence diagram), since no messages are existing in an empty
sequence diagram. Then, PARMOREL is able to create a sequence diagram with the
most optimal distribution of messages between the lifelines in the sequence diagram
to reduce the coupling and create a diagram with such a distribution. Hence, apart
from repairing, our approach could be used to assist modelers—with some degree of
auto-completion—when designing inter-related models. This design could be guided
by a reference model and different user preferences.

We find this discovery could have great potential to automatically generate models.
Apart from keeping consistency between corresponding models, PARMOREL could
help modelers to design new models in inter-modeling environments. This design
could be guided by different user preferences, like reducing coupling, enhancing
cohesion, improving quality characteristics, etc. We plan to continue researching the
potential of this discovery in the future.
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