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Abstract: Hot flaring, even from quite high flare stacks, may result in significant heat radiation
outside a facility to, e.g., public roads where random passersby may be exposed. The present study
suggests a novel method for analyzing a typical flare heat radiation exposure and investigates skin
burns that may be inflicted on an exposed person if a facility needs to depressurize in an emergency
situation. A typical radiation field from an ignited natural gas vent was taken as the boundary
condition, and these values were compared to radiation levels mentioned by the American Petroleum
Institute (API 521), e.g., 1.58 kW/m2 and above. Due to facility perimeter fences along roads in
larger industry areas, it was assumed that an exposed person may flee along a road rather than in the
ideal direction away from the flare. It was assumed that naked skin, e.g., a bare shoulder or a bald
head is exposed. The Pennes bioheat equation was numerically solved for the skin layers while the
person escapes along the road. Sun radiation and convective heat exchange to the ambient air were
included, and the subsequent skin injury was calculated based on the temperature development
in the basal layer. Parameters affecting burn severity, such as heat radiation, solar radiation, and
convective heat transfer coefficient, were analyzed. For small flares and ignited small cold vents,
no skin burn would be expected for 1.58 kW/m2 or 3.16 kW/m2 maximum heat radiation at the
skin surface. However, higher flare rates corresponding to, e.g., 4.0 kW/m2 maximum flare heat
radiation to the skin, resulted both in higher basal layer temperatures and longer exposure time, thus
increasing the damage integral significantly. It is demonstrated that the novel approach works well.
In future studies, it may, e.g., be extended to cover escape through partly shielded escape routes.

Keywords: natural gas flaring; passersby; radiant heat exposure; skin burns; modeling

1. Introduction

Most hydrocarbon processing plants and gas transport systems operate at high pres-
sures, i.e., up to and even above 100 bar. During process upsets, leaks, and other emergency
situations, blowdown and vent/flare systems are recognized as very important safety barri-
ers. During hot flaring, the released gas inventory is burned at the flare tip. Depending on
the size and pressures, flare rates up to 1000 tons per hour may be experienced. From quite
high industrial flare stacks, this flaring may result in significant heat radiation levels inside
the facility, i.e., inside the fenced-off area. However, also outside the facility perimeter,
the heat radiation may be significant, e.g., at public roads where random passersby may
be exposed.

Smaller facilities are often designed with cold vents, i.e., where the flare is usually not
intentionally ignited. This type of pressure relief results in high environmental impacts
due to the release of methane and non-methane volatile organic components (nmVOC).
Methane, in particular, has a very high global warming potential. Due to such environmen-
tal impacts, cold flaring is likely to be banned in the future in several countries. The flares
then need to be redesigned for combustion and may then result in high heat flux levels
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beyond the borders of the facility. It is also observed that cold vents have ignited and thus
resulted in flaming combustion.

During planned flaring, public access close to the facility perimeter may temporarily
be restricted, and the flaring may be performed at low rates thus preventing excessive
heat exposure. However, during an emergency requiring immediate depressurization,
any passerby may become exposed and may be expected to flee the zone due to the
heat radiation and noise levels associated with the flaring. The question may then be
raised regarding what skin damage can be expected, if any, during the escape through fast
walking or running to an area with lower heat flux levels, or behind objects shadowing the
heat radiation. In industrial areas, public roads may go along facilities with high fences,
preventing the escape directed away from the radiation source, i.e., the escape must follow
a road or a pavement to a safer location. Sun radiation may add to the radiation levels
experienced by the fleeing person, and any wind may heat or cool the fleeing person
dependent on the ambient temperature and the wind strength. All in all, this person may
be expected to move toward a safer area while being exposed to gradually lower heat
radiation levels. Research on this type of varying heat exposure has not been discovered
thus far. However, analyzing the temperature development in exposed skin may be a way
forward to study this in more detail.

Systematic approaches for studying skin burns due to heat exposure were initiated
following World War II. Several important research studies on thermal skin injury were then
published in The American Journal of Pathology. These studies included heat transport to,
and within, porcine skin and included temperature measurements [1]. The significance of
exposure time and skin surface temperature in causing cutaneous burns [2] was analyzed.
Pathology and pathogenesis were also analyzed regarding cutaneous skin injury on pigs [3].
The research demonstrated that both the temperature and the exposure time influenced
the severity of the burns analyzed. Additionally, a temperature threshold for skin injury
was suggested. Several studies refer to temperature in excess of 44 ◦C for developing skin
burns [4,5]. For hot liquid scalding, other studies refer to 43 ◦C as the threshold temperature
for developing skin injury [6]. “Skin temperature” development has also been studied in
physical simulators during exposure to controlled heat flux levels [7]. A damage development
following an Arrhenius type equation is often assumed. Thus, it is assumed that damage
increases exponentially with excess temperature and increases linearly with time.

The pain receptors of human skin are located at about 0.1 mm depth, and it is generally
accepted that the threshold temperature for pain is 44.8 ◦C [8,9]. This temperature is above
the threshold for slow skin injury development. However, burns usually involve much
higher basal layer temperatures than 44.8 ◦C. Thus, the pain signal provides an appropriate
warning about potential excessive skin heating. In burn scenarios, the skin heating is indeed
often very rapid. Thus, the damage develops while the exposed person is warned about the
possible dangerous heat exposure. While some burns result from very rapid excessive heat
exposure, e.g., scalding by hot water, porridge, etc., flare radiation heat exposure outside
the facility perimeter results in slower skin heating. The victim may, however, use some
time to move away from the heat exposure, and may flee a long distance while gradually
being exposed to lower heat flux levels. As opposed to scalding, elimination of the heat
source and cooling the heat-exposed skin by tempered water are not viable options while
fleeing from heat radiation exposure.

In some situations involving simple boundary conditions, heat exposure of the skin
may be studied by analytic mathematics [10]. However, in a flare heat radiation situation,
such solutions are too limited for managing the complex boundary conditions involved.
Numerical modeling allows for the required flexibility in dynamic boundary conditions, in
particular, gradually reduced radiative heat flux while fleeing. Additionally, it allows for
analyzing the situation at hand including realistic properties of the involved heat sources,
i.e., the flare and sun heat radiation, the skin layers, blood perfusion, and metabolic heat
production. Numerical modeling also allows for boundary conditions changing during a
modeling case where a passerby is exposed and starts fleeing away from the heat exposure.
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Based on these qualities and possibilities, the present study analyzed the heat exposure by
numerically solving the Fourier-type heat transfer equation, which also has been used with
success by other researchers, e.g., [11–13]. The Pennes bioheat equation was utilized in the
present study for assessing the corresponding skin overheating injury (damage integral).

Some recent studies have investigated possible skin burns in low heat flux situa-
tions [14,15]. Yang et al. [14] studied the heat flow to the skin through firefighting garments
exposed to 8 kW/m2 heat radiation and recorded heat flux to the skin gradually increasing
to about 2 kW/m2. Physiological reactions such as sweat production were considered.
The effect of high heat flux early and late during heat exposure has previously been ana-
lyzed [16], and it was found that an early heat flux peak gave fewer burns than a similar
later peak in heat flux to the skin. The situations analyzed by Yang et al. [14] are therefore
different from the flaring cases analyzed in the present case, in which the heat flux decrease
with time while a person flees the exposed area. Zhang et al. [15] studied physical work
(treadmill) for persons in underwear exposed to a constant 1 kW/m2 or 2 kW/m2 heat
flux. However, in their study, the persons in the quite stagnant air (less than 0.1 m/s)
climate chamber started sweating, thus reducing the net heat flux to the skin. These studies
are therefore not directly comparable to the present work, which is unique in analyzing
possible passersby exposed to gradually decreasing heat loads in situations where the wind
will convectively cool any exposed skin.

The objective of the present study is to analyze temperature development and skin
burn injury for selected realistic flare heat exposures to naked skin, e.g., a naked shoulder
or a bald head, by numerical modeling while a person is fleeing the area. Parameters
influencing burn severity, such as walking or running speed, solar radiation, wind speed,
and ambient temperature were analyzed. Modeled heat radiation from a representative
flaring case, taking into consideration radiant heat absorption due to air relative humidity,
was used as a base case. Attention was given to the API value of 1.58 kW/m2 heat radiation
and twice this level.

The paper is unique in analyzing the skin damage development during the evacuation
from a radiant heat source including heat radiation from the flare and the sun, as well as
heat transfer to the ambient air. Time-dependent skin temperatures and injury develop-
ment are presented for selected cases. Conclusions are drawn with respect to the most
influential parameters identified and measures that may be introduced to limit the skin
injury development during the evacuation.

The theory on involved heat transfer mechanisms, skin layer blood perfusion, and
metabolic heat generation, numerical modeling parameters, and damage integral modeling
are presented in Section 2. The modeling and the general findings are presented and
discussed in Section 3, and the main conclusions are presented in Section 4. A motivation
for accomplishing and publishing this study is to analyze the possibility for assessing skin
damage in a realistic situation that may occur and present a methodology for future flare
radiation risk assessments.

2. Heat Transfer and Damage Integral
2.1. Radiant and Convective Heat to Exposed Skin

In normal operation, the heat exposure to a passerby outside a petroleum production,
compression or transport site will be very low also in the case of pilot ignited flares. The
pilot flames ensuring that gas released will be combusted do not emit any noticeable heat
radiation. Most flaring incidents are usually associated with maintenance situations where
the timing of the flaring and the flaring rates can be selected according to the weather
conditions. Flaring in low wind strengths results in a quite vertical flame. However, during
an emergency, e.g., a gas leak within the facility that may ignite, depressurization needs
to start immediately and at rates as fast as the flare system design allows, to prevent gas
leak ignition. If the plant experiences a developed fire, overpressuring possible enclosed
volumes and softening of the process equipment and piping may result in an escalation
of the incident. Then, it is very important to depressurize the facility as fast as possible to
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prevent an escalation. This may occur when the wind direction is unfortunate regarding
exposing areas outside the site fencing, i.e., where passersby may be present, to heat
excessive heat radiation.

Inside the site, personnel are generally trained and familiar with the incidents that
may occur. They also use protective clothing, gloves, hard hats, etc. which will protect
them from high radiative heat fluxes within the site. They can also usually evacuate to
safe areas within the site where they will be protected while equipment and piping are
depressurized. Any passerby may, however, be wearing only light clothing and may in
principle have naked skin exposed to sudden flare radiation. Examples may be, e.g., naked
arms, shoulders or a bald head.

A principal sketch of flames from flaring in low wind and in a strong wind blowing
toward a passerby is shown in Figure 1. Since the wind bends the flame plume, the flame
will be much closer to an exposed person in such windy conditions. Being downwind of
the flare, he/she will then be exposed to much more heat radiation than on a calm day.
If it blows in the other direction, he/she will be less exposed. When dimensioning the
flare system, the credible worst scenario should give the dimensioning parameters, i.e.,
the strong wind condition, if that is consistent with wind strengths and wind directions
experienced at the site.

Figure 1. Principal sketch of flare flame heat exposure in varying wind conditions.

2.2. Skin Heat Transfer Modeling

The exposed skin will absorb heat radiation from the flare and the sun, as well as heat
radiation from objects at the ambient temperature. In windy conditions, i.e., when the flare
heat radiation to an exposed person, as presented in Figure 1, is highest, more heat will be
exchanged convectively between the skin and the surrounding air. The skin itself will also
radiate heat back to the surroundings. These heat fluxes will form the boundary conditions
for the skin surface heat transport.

The inward heating of the skin is governed by heat conduction, which may be de-
scribed by Fourier’s law, i.e., the conductive heat flux is a linear function of the temperature
gradient as follows:

.
q′′k = −k · ∇T

(
W/m2

)
, (1)

where k (W/m·K) is the skin thermal conductivity, and ∇T (K/m) is the temperature
gradient. The conventional heat balance for bioheat production and heat transfer may be
described by the Pennes bioheat equation.

ρC
∂T
∂t

= −∇ · .
q′′k + WbρbCb(Tb − T) + Qmet + Qext

(
W/m3

)
, (2)
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where ρ (kg/m3) is the density of the skin, C (J/kg·K) is the specific heat of the skin, t (s) is
the time, Wb (m3/m3·s) is the blood perfusion rate, ρb (kg/m3) is the density of the blood,
Cb (J/kg·K) is the specific heat of the blood, Tb (K) is the temperature of the supplied blood,
Qmet (W/m3) is the metabolic heat generation, and Qext (W/m3) is the heat provided by an
external heat source.

For heat exposures of short duration, Ng and Chua [17] found that blood perfusion does
not influence the extent of skin burns significantly. This conclusion supports the findings
by Lipkin et al. [18], who determined that approximately 20 s was required for the skin to
raise the blood flow. A similar conclusion was also presented by Fu et al. [4]. When escaping
from a flaring scenario, the person fleeing may be exposed to excessive heat radiation for
much longer periods than 20 s. Thus, in the present study, blood perfusion and metabolic
heat generation had to be included in the numerical modeling. Models for blood perfusion
and metabolic heat generation, as suggested by Rai and Rai [19], were in the present study,
therefore, included when solving Pennes bioheat equation, i.e., Equation (2).

The curve diameter of an exposed shoulder or a bald head is much larger than the
expected heat penetration depth while fleeing. Thus, the exposed skin may be treated
as one-dimensional, i.e., it may be assumed that the body surface can be treated as a flat
surface. This enables analyzing heat flow in one dimension, i.e., dependent on the skin
depth (x-dimension) only.

In a scenario where an exposed person is quite a distance from the flare, with heat
radiation flux level

.
q′′flare(t) (W/m2), a moderate skin temperature increase is expected for

the scenarios analyzed in the present study. It is, therefore, reasonable to assume that the
skin thermal properties are independent of temperature. It should also be noted that any
heat radiation from the sun,

.
q′′sun, may add a substantial heat flux to exposed skin during

daytime. The worst-case scenario is that both the flare and solar heat radiation are from
about the same angle to the person exposed. Thus, these heat fluxes may simply be added.

A shoulder or a bald head will have parts of the skin surface quite perpendicular to
these radiating objects. A quite credible scenario, and slightly conservative assumption, is
that these heat fluxes hit perpendicular to the exposed skin, as indicated in Figure 2.

Figure 2. Sketch of the skin and muscle layers and heat fluxes involved in an ignited flare scenario.

In Figure 1, it is assumed that the ambient air is colder than the heat exposed skin
surface and that the wind bending the flare flames to some extent will cool the radiant heat
exposed skin surface. Though this may not initially be the case in hot climates, this will be
the case when skin surface temperatures reach values associated with radiant heat burns.

In real cases, it may take some seconds from the first signs of increased flaring to
full depressurization capacity rates. For simplicity in the present study, it was assumed
that the flaring happens instantaneously at t = 0 and onwards. This may not be a very
conservative assumption since an exposed person will probably need some time to realize
what is transpiring before start fleeing. At t > 0, heat is radiated to the skin, while increasing
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skin surface temperature results in some heat gradually being lost by convection and heat
radiation to the ambient.

The radiative heat loss from the skin may be expressed by

.
q′′rad = εσ

(
T4

amb − T4
s,s(t)

)(
W/m2

)
, (3)

where σ (5.67 × 10−8 W/m2 K4) is the Stefan–Boltzmann constant, and ε is the emissivity
of the skin, which is generally assumed to be 0.98 [20], Tamb (K) is the ambient temperature,
and Ts,s (K) is the skin surface temperature.

The heat loss by convection from the skin surface at temperature Ts,s (K) to the ambient
air is given by

.
q′′conv = h · (Ts,s − Tamb)

(
W/m2

)
, (4)

where h (W/m2·K) is the convective heat transfer coefficient. This varies with wind speed
and the dimension of the object. The convective heat transfer coefficient for a bald head has
been studied by several researchers, especially regarding wind chill conditions. Shitzer [21]
summarized several such studies and concluded that the study of Osczevski [22], where
this was directly measured by heat loss from head mockups were most reliable. Thus, the
convective heat transfer coefficient may be expressed by

h = 0.23 · (U · ρ/µ)0.6 · k/D0.4
(

W/m2 K
)

(5)

where U (m/s) is the wind speed, ρ (kg/m3) is the ambient air density, µ (N·s/m2) is the
ambient air viscosity, k (W/mK) is the ambient air thermal conductivity, and D (m) is the
head diameter, i.e., here taken as 0.18 m. In, e.g., 10 m/s wind and 20 ◦C air, the heat
transfer coefficient becomes 35.6 W/m2·K. However, the wind speed at shoulder height
will be lower than the meteorological wind speed, which is usually referred to at 10 m
elevation. Local obstructions may also lower the wind speed close to the ground level.
Thus, a more conservative value of h = 20 W/m2·K was adopted in the present study.

To correctly model the net external heat flux to the skin surface, Equation (1) must be
solved for the skin layers. Solving Equation (2) numerically allows for including varying
boundary conditions for the heat transport to the skin, i.e., a gradually decreasing flare
radiation heat exposure while the exposed person flees the area along the pavement, as
indicated in Figure 1. To simplify initial conditions, the skin temperature at t = 0 was
conservatively set to 37 ◦C [6] for all involved depths, i.e., 0 ≤ x ≤ ∆, where ∆ (m) is the
domain size. This includes the skin layers of Table 1. From the onset of the flaring and
onwards, i.e., at t > 0, the heat supply at the surface of the skin, i.e., at x = 0, is given by

.
q′′ (t) = ε

.
q′′flare(t) + ε

.
q′′sun + εσ

(
T4

amb − T4
s,s(t)

)
+ hair(Tair − Ts,s(t)) for t > 0, (6)

where the skin emissivity, ε, is generally assumed to be 0.98 [20], i.e., quite close to 1.0.

Table 1. Properties of the affected skin layers (thermal conductivity, k, density, ρ, and specific heat, C,
from [6]).

Skin Layer k (W/m·K) ρ (kg/m3) CP (J/kg·K) a (m2/s) Thickness (m)

Epidermis 0.22 1200 3600 5.1 × 10−8 60 & 80 × 10−6

Dermis 0.40 1200 3600 9.3 × 10−8 0.002
Sub cutaneous 0.20 1000 2500 8.0 × 10−8 0.010

Muscle 0.45 1000 3800 1.2 × 10−7 0.005

Thus, the skin surface boundary condition is given by

k
∂T
∂x

=
.
q′′ (t) for all t > 0 at x = 0, (7)
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The inner skin surface, i.e., at x = ∆, boundary condition is for simplicity given by a
reflection plane, i.e., in contact with an adiabatic surface.

k
∂T
∂x

= 0 for all t at x = ∆, (8)

The domain size, i.e., the skin depth ∆, must be large enough to limit any influence of
the skin depth in the modeling. A thickness ∆ > 2

√
at is normally required to minimize

any influence of a reflectance heatwave of a limited one-dimensional domain [23], where t
(s) is the time from the onset of the heating, and a (m2/s) is the thermal diffusivity of the
solid given by

a =
k
ρC

(m2/s) (9)

By including the subcutaneous layer, the domain becomes much larger than the
required ∆ > 2

√
at criterion for the cases studied in the present work.

Values for the different skin layer thicknesses vary in the literature. This variation
is probably a result of individual differences, as well as variation in skin layer thickness
on possibly exposed body parts. A thorough summary of skin thicknesses and properties
relating to burns are provided by Johnson et al. [6]. The values reported vary from those
reported by Millington and Wilkinson [24] but are used also by many other researchers. The
epidermis thickness also varies with location, i.e., probably thicker on the outwards facing
surface and thinner on the inward-facing surfaces. Abraham et al. [13] used a thickness
of 80 µm for the epidermal thickness in a study concerning scalding on shoulders. In the
present work, an epidermis thickness of 60 µm was also studied for sensitivity analysis.
The skin properties used in the present study are presented in Table 1.

To obtain numerical stability, the numerical integration time interval, ∆t (s), must be
set to comply with a Fourier number satisfying

Fo = a · ∆t
∆x2 < 0.5, (10)

where ∆x (m) is the integration layer thickness. For the numerical integration, an inte-
gration layer thickness ∆x = 10 µm, and a time interval ∆t = 2 × 10−4 s were used to
satisfy the Equation (10) criterium and ensure numerical stability for the muscle layer, i.e.,
the skin layer with the highest thermal diffusivity. A computer code was written in the
C++ language for solving the involved numerical equations within the defined boundary
conditions and the respective skin layers.

2.3. Skin Damage Modeling

Burns and scalds severity are among laypersons categorized as first-degree, second-
degree, and third-degree burns. More professionally, burns may better be categorized into
one of the following categories: (1) superficial (S) burns restricted to the epidermis layer and
characterized by minor edema and quick healing; (2) superficial partial-thickness (SP) burns
that continue into the outer dermis layer resulting in moderate edema but limited or no
scarring (usually less than 1 mm burn depth); (3) deep partial-thickness (DP) burns extending
well into the dermis and heal slowly (typically 1 mm or more burn depth), resulting in
hypertrophic scarring; (4) full-thickness (FT) burns extending through the entire dermis and
require skin grafting (burn depths typically deeper than 2 mm) [13]. Category S burns
usually correspond to the lay-term first-degree burns, while category SP and DP burns
correspond to second-degree burns, and category FT corresponds to third-degree burns.

Cell injuries resulting from excessive skin temperatures and protein breakdown, where
collagen is a key protein, can be modeled to evaluate burn severity at the depths of interest.
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The cell injury forming during skin overheating at a particular depth may be expressed by
a damage index Ω [25] as follows:

Ω(τ) = − ln
(

Cτ

C0

)
, (11)

where C0 and Cτ , respectively, represent the concentration (or number) of undamaged cells
prior to and after the excessive heat exposure. Heat injury corresponding to 90% of the
cells still being undamaged corresponds to an index of 0.1. A damage index of 1.0 implies
that only 36% of the cells are still not damaged. The rate of skin damage developing as a
result of excessive tissue heating can be assessed using an activation energy-based model
originally suggested by Henriques and Moritz [26].

∂Ω
∂t

= P exp
(
−∆E

RT

)
, (12)

where P (1/s) is a pre-exponential frequency factor, ∆E (J/mol) is the damage activation
energy, R (8.314 J/mol·K) is the universal gas constant, and T (K) is the absolute tempera-
ture. Literature data for these damage parameters, i.e., P and ∆E, vary significantly [11].
In the present study, the data originally suggested by Henriques and Moritz [1,26], i.e.,
P = 3.1 × 1098 1/s and ∆E = 6.28 × 108 J/mol, were used while modeling the skin injury.

The accumulated burn damage may finally be obtained by integrating Equation (12)
for the time interval where the temperature of the basal layer is ≥43.0 ◦C.

Ω =
∫ t

0
P exp

(
−∆E

RT

)
dt, (13)

As the damage index, Ω, is assessed as an integral, it is often be referred to as a damage
integral. Ye and He [27] report damage integral of Ω = 0.53 in the basal layer as the limit
for superficial (first-order) burns and Ω = 1.0 as the limit for superficial partial-thickness
(second-order) burns. Calculated damage integrals were compared with these limits to
examine skin injury for different flare heat radiation exposure cases. Numerical integration
of the damage integral, i.e., Equation (12), was performed in the previously mentioned C++
code. Conveniently, the same integration time interval was used for the damages integral
as for the heat transport modeling.

2.4. The Flaring Scenarios Analyzed

The flare heat radiation is a result of heat radiation from the soot particles as well as
from gas products, e.g., methane (CH4) and combustion products such as carbon monoxide
(CO2) and water (H2O). Dependent on their vibrational modes, these gases can both release
and absorb heat radiation. Thus, the heat radiation from a flare is not a continuum as
expected from black body soot radiation. Several software codes are developed for flare
radiation simulations, e.g., Flaresim or Frustum, while others use computational fluid
dynamics modeling by, e.g., Kameleon FireEx (KFX), etc. Based on several tests and
working-level projects, the accuracy and usability of KFX have been verified, and the
simulation results show a very good result relative to the actual tests performed [28–31].
This is also confirmed in recent modeling studies, e.g., [32]. In KFX, the emissive power at
each wavelength based on literature data [33,34] may be calculated, including black body
radiation and molecular radiation from the dominant gas molecules, i.e., methane (CH4),
carbon dioxide (CO2), carbon monoxide (CO), and water vapor (H2O).

Outside the flare flame, the dipole moment of the water molecules makes the ambient
air humidity absorb some of the heat radiation frequencies emitted from an ignited flare,
making this even more complicated. However, e.g., KFX has the possibility to also post-
process atmospheric relative humidity heat radiation absorption at a given distance. Thus,
for a given flaring scenario, the remaining heat radiation to a distant point may be calculated
when the ambient temperature and relative humidity are known. Results obtained from
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this software were therefore used as input to the skin burns modeling and thus served as
an example of heat radiation field for the present study. In principle, any other code could
be used as long as it is capable of realistically modeling the flame heat radiation as well
as the radiant heat attenuation for the involved wavelengths through the air towards a
passerby.

3. Results and Discussion
3.1. Flare Heat Radiation along the Pavement

The case of interest in the present study involved flaring 275 tons/h (Case 1) natural
gas from a 60 m tall flare stack in 10 m/s wind blowing toward a pavement 80 m away, as
sketched in Figure 1. The ambient air temperature was 20 ◦C and the relative humidity was
60%. The resulting flare radiation at about shoulder/head level as a function of distance
along the pavement is shown in Figure 3. For the modeling of skin temperatures and skin
damage integral as a person is walking along the pavement under a gradually decreasing
flare stack heat flux, it is convenient to fit a polynomial expression to the calculated heat
flux levels. A sixth-order polynomial was therefore fitted to the calculated radiation levels.

y = a + b · x + c · x2 + d · x3 + e · x4 + f · x5 + g · x6 (kW/m2) (14)

Table 2. Flare rate, wind speed, relative humidity for the heat radiation modeling, as well as the
constants of Equation (14) and the corresponding regression coefficient (squared). The constant of
Equation (15) is also given for the selected cases.

Constants Case 1 Case 2 Case 3 Case 4

Rate (ton/h) 175 300 - -
Wind (m/s) 20 10 10 10

RH 60% 60% - -
a 2.370 2.850 3.16 4.0
b 1.9551 × 10−3 2.0025 × 10−3 2.2203 × 10−3 2.8105 × 10−3

c −3.0078 × 10−4 −2.8279 × 10−4 −3.1355 × 10−4 −3.9690 × 10−4

d 1.5213 × 10−6 1.1118 × 10−6 1.2327 × 10−6 1.5604 × 10−6

e 6.3191 × 10−9 7.3854 × 10−9 8.1887 × 10−9 1.0365 × 10−8

f −6.7819 × 10−11 −6.0525 × 10−11 −6.7108 × 10−11 −8.4947 × 10−11

g 1.4289 × 10−13 1.1527 × 10−13 1.2708 × 10−13 1.6178 × 10−13

R2 0.99987 0.99993 - -
ξ (kW) 17,901 26,147 28,991 36,697

Sun (kW/m2) 700 700 700 700

Figure 3. Net maximum flare heat radiation along the pavement for Case 1, Table 2.
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Outside the region where heat radiation data were available, i.e., outside the 200 m
domain used in the CFD modeling, the flare radiation was assumed to originate from a
point source, i.e., the heat radiation levels in that region approximately decreased with the
distance, x (m), squared as follows:

y = ξ/x2 (kW/m2) (15)

The heat radiation as a function of distance along the pavement modeled by Kameleon
FireEx is shown in Figure 3. The heat radiation given by Equation (14) and Equation
(15) with the respective constants given in Table 2 is also shown in the figure. Table 2
also contains details about the flare modeling for this case, denoted Case 1, i.e., flaring
rate, wind conditions, and relative humidity. Similar details for other cases used for skin
temperature and damage integral modeling are also given in Table 2.

Case 2 represents a higher flaring rate, i.e., 300 tons/h. Case 3 and Case 4 were
designed by multiplying the constants of Case 2 to obtain 3.16 kW/m2 and 4.0 kW/m2

flare radiation heat flux at the most exposed point on the pavement at shoulder height.
This allowed for checking the influence of increased flare heat flux levels on possible skin
burn damages. For comparison, the flare heat radiation for all the four cases along the
pavement is presented in Figure 4.

Figure 4. Net maximum flare heat radiation along the pavement for Cases 1, 2, 3, and 4, Table 2.

It should be noted that the regression coefficients obtained when fitting Equation
(11) to the modeled heat radiation was generally very close to 1.0. This indicates that the
approximation gives a sound estimate of the heat radiation to potentially exposed passersby
at the pavement. The radiant heat exposure to a person on the pavement walking away
from the ignited flare may then be calculated when the position along the pavement
is known.

The worst case is that a person is at x = 0, i.e., at the point closest to the flare, just as
the flaring is initiated. It may also be anticipated that the person does not immediately
start walking away but may stop and look at the flare for a short time, to (s). The person
may be shocked when the flaring starts and thus check what is transpiring before realizing
the importance of escaping the danger of the heat source and start moving away from the
heat radiation and the high flare noise levels. Assuming that the person then walks away
along the pavement at speed u (m/s), his/her location at time t > to may then be calculated
by x = u · (t − to), where t (s) is time. Based on the distance x, the current heat exposure is
then calculated by Equation (14).
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According to Browning et al. [35], the typical walking speed for grownups are 1.4 m/s.
In stressed situations, most people would not have difficulties increasing this speed to,
and even above, e.g., 2.0 m/s, though it would be tiresome in the long run. Thus, we may
assume that the passerby will be exposed to the heat flux from the flare radiation as a
function of walking time, as presented in Figure 5.

Figure 5. The total (flare + 700 W/m2 solar radiation) heat flux as a function of time to a passerby
evacuating from the most exposed area at a speed of 2 m/s (based on data for Case 1, Table 2).

It should be noted that when fleeing, the angle of the flare radiation will change, i.e.,
the skin initially perpendicular to the flare heat radiation will receive the heat radiation
gradually at a reduced angle. Thus, the heat radiation will be somewhat reduced at the
originally most heat-affected area and affect skin areas not previously that exposed. Given a
conservative approach, this was not taken into consideration in the skin damage modeling.

3.2. Skin Damage Modeling

The basal layer and 0.8 mm depth skin temperature and the corresponding damage
integral development versus time for Case 1 are shown in Figure 6. It may be seen from the
figure that the temperature level that gives pain is achieved at about 18 s and continues until
about 92 s. The damage integral is, however, significantly below the limit for superficial
burns, i.e., significantly below Ω = 0.53. Thus, the passerby would not experience any
superficial burns during this heat exposure.

Figure 6. The basal layer and 0.8 mm depth skin temperature, and the corresponding damage integral
development, versus time for Case 1.
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Similar data for Case 2 are shown in Figure 7. The pain limit is reached earlier, i.e., at
about 13 s, and the period of pain lasts to about 135 s. Additionally, in this case, there is a
very clear margin to skin burns, as indicated by a damage integral still significantly lower
than Ω = 0.53.

Figure 7. The basal layer and 0.8 mm depth skin temperature, and the corresponding damage integral
development, versus time for Case 2.

The AISI regulations operate with 1.56 kW/m2 as the heat radiation limit for infinite
exposure. It is known that some companies have used the double of this value, i.e.,
3.16 kW/m2, as a limit for short-time passerby heat exposure. Case 3 in Table 2 is based
on Case 2, by multiplying the flare heat exposure by 1.109 to obtain 3.16 kW/m2 as the
flare heat flux to the most exposed point at the pavement. Though this does not strictly
correlate to a given flare rate, it may give valuable information about the increased heat
exposure. It should be noted that not only the maximum heat exposure is increased but
also the time period the passerby is exposed to flare heat exposure above, e.g., 1.56 kW/m2.
The basal layer and 0.8 mm depth skin temperature and the corresponding damage integral
development versus time for Case 3 are shown in Figure 8. It may be seen from the
figure that the temperature level that induces pain is achieved at about 10 s and continues
until about 150 s. The damage integral is, however, still significantly below the limit for
superficial burns, i.e., Ω = 0.53. Thus, the passerby would not experience superficial burns
during this heat exposure.

Figure 8. The basal layer and 0.8 mm depth skin temperature, and the corresponding damage integral
development, versus time for Case 3, i.e., 3.16 kW/m2 as the flare heat flux to the most exposed point
at the pavement.

Case 4 in Table 2 is also based on Case 2, where the heat exposure as a function of
distance was multiplied by 1.404 to obtain 4.0 kW/m2 as the flare heat flux to the most
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exposed point at the pavement. The basal layer and 0.8 mm depth skin temperature, and
the corresponding damage integral development versus time for Case 4 are shown in
Figure 9. It may be seen from the figure that the temperature level that induces pain is
achieved at about 7 s and continues until about 190 s. Additionally, in this case, the damage
integral is Ω = 0.71 (0.709), which is well above the limit for superficial burns, i.e., Ω = 0.53.
Thus, the passerby would experience superficial burns after this heat exposure unless being
able to shield any exposed skin.

Figure 9. The basal layer and 0.8 mm depth skin temperature, and the corresponding damage integral
development, versus time for Case 4, i.e., 4.0 kW/m2, as the flare heat flux to the most exposed point
at the pavement.

The 10 s delay in starting to move from the most exposed part of the pavement may
not be very realistic in a flaring scenario. It was, therefore, decided to analyze the influence
of the delay on the skin damage integral. Fore Case 4, reducing the delay, to, from 10 s to
5 s decreased the damage integral from 0.71 to 0.39, while zero delays further decreased
the damage integral to 0.21. These results clearly show that it is very important to quickly
start moving away from zones of high radiant heat fluxes.

The damage integral increased quite substantially from Case 3 to Case 4. This also
indicates that the difference between a seemingly safe heat radiation level to radiation
levels that make skin damage is indeed not very large.

The convective heat transfer coefficient was conservatively set to 20 W/m2 K. Using
the data for Case 4 and a heat transfer coefficient of 25 W/m2 K reduced the modeled skin
damage integral from 0.71 to 0.40, i.e., to below the limit of superficial skin burns.

The solar radiation was, as default, set to 700 W/m2. Assuming partly cloudy condi-
tions and 350 W/m2 heat radiation, reduced the damage integral for Case 4 from 0.71 to
0.21, while zero solar radiation further reduced the damage integral to 0.06.

The reason for the “volatility” in the damage integral is due to two factors—the
exponential influence of the skin temperature on the damage integral and the linear
dependence on time. Given this volatility, it is not possible to precisely calculate skin
damage without very detailed knowledge about the situation at hand. The calculations
may, however, show at which radiant heat exposure levels different skin damage may be
expected, and below which levels skin burns may not be expected.

It should be noted that in the close vicinity to a regular flare or an unintentionally
ignited cold flare, the radiative heat flux levels are much higher than the values analyzed
in the present study. However, inside the industrial site perimeter, the zone closest to
such equipment is generally considered a sterile zone with very infrequent work, and
the workers are generally equipped with clothing that protects against much higher heat
fluxes [36,37]. Thus, exposure to very high heat fluxes that may generate deeper burns, e.g.,
deep partial-thickness burns [38], is outside the current study, which focused on low heat
radiation levels.
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In modeling and testing scenarios for the development of skin burns, very many
parameters determine the outcome of the heat exposure. In the study performed by
Yang et al. [14], the heat flow to the skin increased to about 2 kW/m2 during 180 s heat
exposure. They recorded an additional 10–15 s increase in skin surface temperature after
the heat exposure, i.e., during the cooling, due to accumulated heat in the firefighting
garments. High net heat flux to the skin late in the heat exposure period has previously
been shown to cause more skin burns than a similar high heat flux peak early in the heat
exposure [16]. The long-time exposure during physical work by Zhang et al. [15] for
persons in underwear exposed to 2 kW/m2 heat flux to naked skin in stagnant air (less
than 0.1 m/s) included sweating. They did not report any skin burns. Though it is very
difficult to compare these results, it may be argued that the present study complies with
these studies [14,15]. It may be concluded that in the present study, an early comparably
high heat flux being reduced while fleeing allows the heat to be dissipated in the skin while
fleeing, thereby reducing the skin injury. The convective cooling also reduces the net heat
flux to the skin in the present study, and the higher the skin surface temperature is, the
more heat is lost convectively.

The novel concept of modeling skin damage to fleeing persons also opens up for
modeling traveling through, e.g., constructions shielding direct heat radiation from the
flare and the sun. For the future, this could be interesting regarding safety evaluations
prior to necessary maintenance work in the sterile zone close to flares and cold vents where
the heat radiation levels in an emergency flaring could become quite high. This will likely
be of interest in future studies.

Given the flaring scenarios and distances analyzed in the present study, it appears that
heat flux levels up to 3.16 kW/m2 may be acceptable at a pavement where passersby may
occasionally be present. It should, however, be noted that this should be evaluated for each
site of interest, as very many parameters may influence the results, e.g., the type of gas to
be flared, the height of the flare stack, the extent of the radiation field, as well as wind and
sun conditions. It was, however, demonstrated that the novel method outlined and tested
in the present study is effective and that it may be used in future studies analyzing each
influencing parameter in greater detail.

4. Conclusions

Heat radiation exposure of a possible bold or bare shoulder passersby exposed when
flaring from a natural gas facility was investigated, including solving the Pennes bioheat
equation for the person walking on an adjacent pavement. For the studied case, a maximum
level of twice the API 521 recommended 1.58 kW/m2, i.e., 3.16 kW/m2, added 0.7 kW/m2

solar radiation, did not give superficial (“first-degree”) skin burns when walking at 2 m/s
away along a pavement perpendicular to the flare plume. However, for larger flares, i.e.,
with a larger heat radiation footprint, the burns could develop due to expected higher max-
imum heat radiation levels as well as increased exposure time while escaping. Increased
exposure time resulted in both higher basal layer temperatures and longer exposure time,
thus increasing the damage integral significantly. Under such conditions, a seemingly mi-
nor increase in heat radiation may increase the skin burns from superficial (“first-degree”)
to superficial partial-thickness (“second-order”) burns. It is important that each case is
analyzed individually.
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