

HVL-rapport nr. 15

2021

Cost Analysis for an Actor-Based
Workflow Modelling Language

Muhammad Rizwan Ali and Violet Ka I Pun

© Muhammad Rizwan Ali and Violet Ka I Pun

Faculty of Engineering and Science

Department of Computer Science, Electrical Engineering and Mathematical Sciences

Høgskulen på Vestlandet

2021

HVL-rapport frå Høgskulen på Vestlandet nr. 15

ISSN 2535-8103

ISBN 978-82-93677-58-1

Utgjevingar i serien vert publiserte under Creative Commons 4.0. og kan fritt distribuerast,
remixast osv. så sant opphavspersonane vert krediterte etter opphavsrettslege reglar.
https://creativecommons.org/licenses/by/4.0/

Cost Analysis for an Actor-Based
Workflow Modelling Language

(Technical Report)

Muhammad Rizwan Ali1 and Violet Ka I Pun1

Western Norway University of Applied Sciences, Norway
{mral,vpu}@hvl.no

Abstract. Workflow planning usually requires domain-specific knowl-
edge from the planners, making it a relatively manual process. In addi-
tion, workflows are largely cross-organisational. As a result, minor modi-
fications in the workflow of a collaborative partner may be propagated to
other concurrently running workflows, which may result in significant ad-
verse impacts. This paper presents a resource-sensitive formal modelling
language, Rpl. The language has explicit notions for task dependen-
cies, resource allocation and time advancement. The language allows the
planners to estimate the effect of changes in collaborative workflows with
respect to cost in terms of execution time. This paper proposes a static
analysis for computing the worst execution time of a cross-organisational
workflow modelled in Rpl by defining a compositional function that
translates an Rpl program to a set cost equations.

Keywords: cross-organisational workflows · resource planning · formal
modelling · static analysis

1 Introduction

Workflow management can be seen as an effective method of monitoring, manag-
ing, and improving business processes using IT assistance [1]. Workflow manage-
ment systems (WMS) allow planners to create, manage, and execute workflows,
as well as play a key role in collaborative business domains such as supply chain
management and customer relationship management. As a result, WMS is re-
garded as among the most effective systems for facilitating cooperative business
operations [13]. With the fast growth of e-commerce and virtual companies, cor-
porations frequently work beyond organisational borders, engaging with others
to meet competitive challenges. Moreover, the rapid growth of the Internet and
digital technology encourages collaboration across widely distant businesses [27].

The adoption of cross-organisational workflow allows restructuring business
processes beyond the limits of an organisation [2]. Cross-organisational workflows
often comprise multiple concurrent workflows running in various departments
within the same organisation or in different organisations. For example, the
workflow of a retail company may involve a workflow of a supplier providing
products and a workflow of a courier company delivering products to customers.

2 M. R. Ali and V. K. I Pun

Furthermore, workflow planning often requires domain-specific knowledge to
accomplish efficient resource allocation and task management, which makes plan-
ning cross-organisational workflow especially challenging. Additionally, modify-
ing workflows is error-prone: one modification in a workflow may result in sig-
nificant changes in other concurrently running workflows, and a minor mistake
might have significant negative consequences.

Workflow planning has been significantly digitalised and automated, and
tools such as Process-Aware Information Systems (PAIS) [14] and Enterprise Re-
source Planning (ERP) systems have been developed to facilitate workflow plan-
ning. However, cross-organisational workflow planning remains a rather manual
process as the current techniques and tools often lack domain-specific knowl-
edge to support automation in workflow planning and updates. Moreover, the
planners may only have limited domain knowledge and do not have a common
understanding of all the collaborative workflows, which can be catastrophic, es-
pecially in the healthcare domain. Therefore, there is a need for an analysis
that over-approximates the cost before any changes in the workflows are imple-
mented. With the cost analysis, the planners can first simulates the changes in
the design of workflows, including the task dependencies and resource allocation,
and see the effect of the changes in terms of execution time before the changes
are implemented in the workflow in practice.

In this paper, we first present a formal modelling languageRpl. The language
has explicit notions for task dependencies, resource usage and time consump-
tion, which allows the cross-organisational planners to couple various workflows
through resources and task dependencies. A preliminary idea of the language is
presented in [8]. In addition, we present a technique based on the work in [22] to
statically over-approximate the worst execution time of the workflows modelled
as an Rpl program, by translating the program into a set of cost equations
that can be fed to an off-the-shelf constraint solver (e.g., [15,6]). This enables
planners to estimate the effects of the workflows (and its possible changes) in
terms of execution time before the actual implementation. The language and
the cost analysis can help facilitate planning cross-organisational workflows and
may ultimately contribute to automated planning.

The rest of the paper is organised as follows: Section 2 introduces the syn-
tax and semantics of the language. Section 3 shows a static analysis to over-
approximate the execution time of an Rpl program. Section 4 shows the cor-
rectness of analysis. Section 5 briefly discusses the related work. Finally, we
summarise the paper and discuss possible future work in Section 6.

2 Formal Workflow Modelling Language Rpl

In this section, we present a formal modelling language Rpl. The language is
inspired by an active object language, ABS [20], and has a Java-like syntax
and actor-based concurrency model. In an actor-based concurrency model [5],
actors are primitives of concurrent computation. They can send a finite number
of messages to other actors, spawn a finite number of new actors or modify their

Cost Analysis for an Actor-Based Workflow Modelling Language 3

P ::=R Cl {T x; s}
Cl ::= class C {T x; M}
M ::= Sg {T x; s}
Sg ::=B m(T y)
B ::= Int | Bool | Unit
T ::= C | B | Fut〈B〉

e ::= x | g | this
g ::= b | f? | g ∧ g
s ::= x = rhs | skip | if e {s} | wait(f) | return e
| hold(r, e) | release(r, e) | cost(e) | s ; s

rhs ::= e | new C | f.get
|m(x, e) after f? | !m(x, e) after f?

Fig. 1. Syntax of Rpl

private state. A primary feature of the actor-based model is that one message is
being processed per actor, preserving the invariants of an actor without locks.
Rpl uses explicit notions to express time advancement and to indicate re-

sources required for each task (expressed as a method) and dependencies between
tasks. Using cooperative scheduling of method activations, Rpl controls the in-
ternal interleaving of processes inside an object with explicit scheduling points.

2.1 The syntax of Rpl

The syntax of the language is given in Fig. 1. An overlined element represents a
(possibly empty) finite sequence of such elements separated by commas, e.g., T
implies a sequence T1, T2, . . . , Tn.

An Rpl program P comprises resources R, a sequence of class declarations
Cl and a main method body {T x; s}, where T x; is the declaration of local
variables and s is a statement. Types T in Rpl are basic types B, including
integer, boolean and unit type, a class C and future types Fut〈B〉, which types
asynchronous method invocations (see below).

Resources R : r 7→ v maps resource identifiers r to integer values v, indicating
the number of resources r is available. A class declaration class C {T x; M} has a
class name C and a class body {T x; M} comprising state variables and methods
of the class. Methods in Rpl have a method signature Sg followed by a method
body {T x; s}. A method signature Sg consists of a return type B, method
name m and a sequence of formal parameters y. We assume each method name
is unique. We further assume that the formal parameters T y is a non-empty
set and has a fixed pattern C o,C ′ o′, T ′ x where o is always the callee object
identifier of the method of class C, o′ are object identifiers of class C ′ and x are
the remaining parameters. This assumption is the syntactic sugar that we use to
realise the cost analysis introduced in Section 3. Expressions e include guards g,
variables x and self-identifier this. A guard g allows a process to release control
of an object. It can be boolean conditions b, return tests f? checking if the future
variable f is resolved, or a conjunction of guards.

Statements include sequential composition, assignment, if, skip, and return
are standard. Iterative loops are not included in the language, but can be im-
plemented with recursion. Rpl uses hold(r, e) and release(r, e) to acquire and
return e number of resources r. Statement wait(f) suspends the current process
until future f is resolved, while other processes in the same object can be sched-

4 M. R. Ali and V. K. I Pun

uled for execution. Statement cost(e), the only term in Rpl that consumes time,
represents e units of time advancement.

The right-hand side rhs of an assignment includes expressions e, object
creation new C, method invocations and synchronisation. Communication in
Rpl is based on method calls, which can be either synchronous, written as
m(x, e) after f?, or asynchronous, written as !m(x, e) after f?, where x is the
callee object and f? is a sequence of futures that must be resolved prior to invok-
ing method m. A synchronous method invocation blocks the caller object until
the invoked method returns. Asynchronous method invocations, on the contrary,
do not block the caller, allowing the caller and callee to run in parallel. An asyn-
chronous method invocation is associated to a future variable of type Fut〈B〉,
where B is the return type of the invoked method. Moreover, the expression
f.get blocks all execution in the object until future f is resolved.

One can see a future as a mailbox that is created by the time a method is
asynchronously invoked, and the caller object continues its own execution after
the invocation. When the invoked method has completed the execution, the
return value will be placed into the mailbox, i.e., the future. The caller object
will only be blocked if it tries to retrieve the value of the future with a get
statement.

1 [Driver 7→ 5, Vehicle 7→ 3]
2 class Retail {
3 Unit sale(Retail o, Int ord) {
4 Fut<Bool> f1;
5 Supplier sp = new Supplier;
6 Courier cr = new Courier;
7 f1 = !supply(sp,ord) after;
8 Unit x = deliver(cr,ord,10) after f1?;
9 }

10 }
11 class Courier {
12 Unit deliver(Courier o, Int ord, Int t) {
13 hold(Driver,1)(Vehicle,1);
14 cost(t);
15 release(Driver,1)(Vehicle,1);
16 }}

Fig. 2. A simple example.

Fig. 2 shows a simple program in Rpl.
The code snippet captures a simple collab-
oration between the workflows of a retail,
a supplier and a courier company. Line 1
models the available resources. Lines 2–10
define a retail sale workflow. First, a re-
quest to the supplier for product supply is
made asynchronously with associated fu-
ture f1 on Line 7. While waiting for the
product (until f1 is resolved), the retailer
can continue with other tasks. After get-
ting the product from the supplier (f1 is
resolved), it is sent to the customer by
utilising the services of a courier company
(Line 8). Lines 11–16 define the deliver workflow of the courier company. A driver
and a vehicle (resources) are first acquired to deliver the product (Line 13).
Line 14 depicts the time taken for delivery. Afterwards, the acquired resources
are released (Line 15). For simplicity, we do not show the implementation of the
supply workflow.

2.2 The Semantics of Rpl

To understand how time advances in Rpl and the cost analysis later, we briefly
discuss the semantics of the language in this section. The semantics of Rpl is
a transition system whose states are configurations cn with the runtime syntax
defined in Fig. 3.

Cost Analysis for an Actor-Based Workflow Modelling Language 5

cn ::= ε | res | obj (o, a, p, q) | fut(f, val)

| invoc(o, f,m, v) | cn cn
p ::= idle | {l | s}
q ::= ∅ | {l | s} | q q

s ::= cont(f) | . . .

act ::= ε | o
val ::= v | ⊥
res ::= [r 7→ v]

a ::= [. . . , x 7→ v , . . .]

v ::= o | f | b | k

Fig. 3. Runtime syntax of Rpl

A configuration cn includes futures, objects, message invocations, and re-
sources. An empty configuration is ε, and whitespace denotes the associative
and commutative union operator on configurations. A future fut(f, val) holds a
future identifier f and a return value val, where ⊥ indicates that future has not
been resolved.

An object is a term obj (o, a, p, q) where o is the object identifier, a a sub-
stitution describing the object’s attributes, p an active process, and q a pool of
suspended processes. A process, written as {l | s}, has local variable bindings l
and a statement s. A message invocation is a term invoc(o, f,m, v), where o is
a callee object, m a method name, f a future to which method m returns, and
v the set of actual parameter values for m. Resources res is a mapping from
resource identifier r to the number of resources. The statement cont(f) controls
the scheduling when a synchronous call completes its execution, returning con-
trol to the caller. Values v include object, future identifier, and Boolean, Integer
or constant values.

We discuss a selection of the semantics rules of Rpl (see Figs. 4 and 5) that
are relevant to the analysis later. The rest of the semantics is standard, and can
be found in Appendix A. In the semantics, we use the auxiliary functions dom(l)
and dom(a) to return the domain of l and a, respectively. The evaluation function
[[e]](a◦l) returns the value of e by computing the expressions and retrieving the
value of identifiers stored either in a or l. Moreover, the function atts(C , o) is
used to create an object of a class C, which binds this to o, and the function
bind(o, f,m, v, C) returns a process that is going to execute method m with
declaration B m(T y) {T ′ x; s}, which is defined as:

bind(o, f,m, v, C) = {[destiny 7→ f, y 7→ v, x 7→ ⊥] | s[o/this]}

The semantics in Figs. 4 and 5 includes object creation, communication, task
dependencies, resource management and time advancement. For clarity, we use F
to represent all the futures in the configuration in the semantics.

Rule Wait-False suspends the active process, leaving the object idle if f
is not resolved, otherwise Wait-True consumes wait(f). Rule New-Object
creates a new object. Rule Get retrieves the value of future f if it is resolved;
the reduction on this object is blocked otherwise.

Rules Async-Call and Sync-Call handle the communication between ob-
jects through method invocations. To ensure the task dependencies between
method calls, the rules first check if all the futures on which the method call
depends exists, i.e., if f can be found in F and check if they are resolved. Rule
Async-Call creates an invocation message to o′ with a fresh unresolved fu-

6 M. R. Ali and V. K. I Pun

(New-Object)

o′ = fresh()
a′ = atts(C , o′)

obj (o, a, {l | x = new C; s}, q)
→ obj (o, a, {l | x = o′; s}, q)

obj (o′, a′, idle, ∅)

(Async-Call)

∀ f ∈ f.fut(f, v) ∈ F ∧ v 6= ⊥
v = [[e′]](a◦l) o′ = [[e]](a◦l) f ′ = fresh()

obj (o, a, {l | x = !m(e, e′) after f?; s}, q) F
→ obj (o, a, {l | x = f ′; s}, q)

invoc(o′, f ′,m, v) fut(f ′,⊥) F

(Get)

v 6= ⊥
obj (o, a, {l | x = f.get; s}, q) fut(f, v)
→ obj (o, a, {l | x = v; s}, q) fut(f, v)

(Invoc)

{l|s} = bind(o, f,m, v, class(o))

obj (o, a, p, q) invoc(o, f,m, v)
→ obj (o, a, p, q ∪ {l | s})

(Wait-True)

v 6= ⊥
obj (o, a, {l | wait(f); s}, q) fut(f, v)
→ obj (o, a, {l | s}, q) fut(f, v)

(Wait-False)

v = ⊥
obj (o, a, {l | wait(f); s}, q) fut(f, v)

→ obj (o, a, idle, q ∪ {l | wait(f); s}) fut(f, v)

(Sync-Call)

∀f ∈ f.fut(f, v) ∈ F ∧ v 6= ⊥ o′ = [[e]](a◦l) o 6= o′ f ′ = fresh()

obj (o, a, {l | x = m(e, e′) after f?; s}, q) obj (o′, a′, p, q′) F
→ obj (o, a, {l | f ′ = !m(e, e′) after f?;x = f ′.get; s}, q) obj (o′, a′, p, q′) F

(Self-Sync-Call)

∀f ∈ f.fut(f, v) ∈ F ∧ v 6= ⊥ o = [[e]](a◦l) v = [[e′]](a◦l) f ′′ = l(destiny)
f ′ = fresh() {l′ | s′} = bind(o, f ′,m, v, class(o))

obj (o, a, {l | x = m(e, e′) after f?; s}, q) F
→ obj (o, a, {l′ | s′; cont(f ′′)}, q ∪ {l | x = f ′.get; s}) fut(f ′,⊥) F

(Wait-Async-Call)

∃f ∈ f.fut(f, v) ∈ F ∧ v = ⊥
obj (o, a, {l | x = !m(e, e′) after f?; s}, q) F

→ obj (o, a, idle, q ∪ {l | x = !m(e, e′) after f?; s}) F

(Sync-Return-Sched)

f ′′ = l(destiny)

obj (o, a, {l′ | cont(f ′′), q ∪ {l|s})
→ obj (o, a, {l | s}, q)

(Wait-Sync-Call)

∃f ∈ f.fut(f, v) ∈ F ∧ v = ⊥
obj (o, a, {l | x = m(e, e′) after f?; s}, q) F

→ obj (o, a, idle, q ∪ {l | x = m(e, e′) after f?; s}) F

(Cost)

[[e]](a◦l) = 0

obj (o, a, {l | cost(e); s}, q)
→ obj (o, a, {l | s}, q)

(Hold)

∀(r, e) ∈ (r, e).r ∈ dom(res) ∧ v ≥ 0
where v = res(r)− [[e]](a◦l)

obj (o, a, {l | hold(r, e); s}, q) res
→ obj (o, a, {l | s}, q) res[r 7→ v]

(Release)

∀(r, e) ∈ (r, e).r ∈ dom(res)
∧ v = res(r) + [[e]](a◦l)

obj (o, a, {l | release(r, e); s}, q) res
→ obj (o, a, {l | s}, q) res[r 7→ v]

Fig. 4. A selection of semantics – Part 1

Cost Analysis for an Actor-Based Workflow Modelling Language 7

(Tick)

strongstablet(cn)

cn→ Φ(cn, t)

where, Φ(cn, t) =




obj (o, a, { l′ | cost(k); s}, q) Φ(cn ′, t) if cn = obj (o, a, {l | cost(e); s}, q) cn′
and k = [[e]](a◦l) − t

obj (o, a, {l | hold(r, e); s}, q) Φ(cn ′, t) if cn = obj (o, a, {l | hold(r, e); s}, q) cn′
obj (o, a, {l | x = e.get; s}, q) Φ(cn ′, t) if cn = obj (o, a, {l | x = e.get; s}, q) cn′
obj (o, a, idle, q) Φ(cn ′, t) if cn = obj (o, a, idle, q) cn′

cn otherwise.

Fig. 5. A selection of semantics – Part 2

ture f ′, method name m, and actual parameters v. Rule Self-Sync-Call di-
rectly transfers control of the object from the caller to the callee. After the
execution of invoked method is completed, rule Sync-Return-Sched reacti-
vates the caller. Rule Sync-Call specifies a synchronous call to another object,
which is replaced by an asynchronous call followed by a get statement. In case
one of the futures that a synchronous (or asynchronous) method invocations
depends on is not yet resolved, the process will be suspended (see Rules (Wait-
Async-Call) and (Wait-Sync-Call)). Rules Hold and Release control the
resource acquisition and return. Note that it is required to have all the acquired
resources to be available in order to consume the hold statement; otherwise, the
process will be blocked.

In Rpl, the unique statement that consumes time is cost(e). Rule Cost
specifies a trivial case when e evaluates to 0. When the configuration cn reaches
a stable state, no other transition is possible except those evaluating the cost(e)
statement where e evaluates to some t ≤ 0, then time advances by the smallest
value required to let at least one process execute. To formalize this semantics,
we first define stability in Definition 1.

Definition 1. A configuration is t-stable for some t > 0, denoted as stablet(cn),
if every object in cn is in one of the following forms:

1. obj (o, a, {l | x = e.get; s}, q) where [[e]](a◦l) = f and fut(f,⊥) ∈ cn,
2. obj (o, a, {l | cost(e); s}, q) where [[e]](a◦l) ≥ t,

3. obj (o, a, {l | hold(r, e); s}, q) with res ∈ cn,
where ∃(r , e) ∈ (r, e) s.t. r ∈ dom(res) and res(r)− [[e]](a◦l) ≤ 0,

4. obj (o, a, idle, q) and if
(a) q = ∅, or,
(b) ∀p ∈ q and if

i. p = {l | wait(f); s} and fut(f,⊥) ∈ cn, or,
ii. p = {l | x = m(e, e′) after f?; s}, or p = {l | x = !m(e, e′) after f?; s},

where ∃f ∈ f s.t. fut(f,⊥) ∈ cn.

8 M. R. Ali and V. K. I Pun

A configuration cn is strongly t-stable, written as strongstablet(cn), if it is
t-stable and there is an object obj (o, a, {l | cost(e); s}, q) with [[e]](a◦l) = t. Note
that both t-stable and strongly t-stable configurations cannot proceed anymore
because every object is stuck either on a cost(e), on unresolved futures, or wait-
ing for some resources. Rule Tick in Fig. 5 handles time advancement when cn
is strongly t-stable by advancing time in cn for t units using Φ(cn, t).

The initial configuration of an Rpl program with main method {T x; s} is

obj (omain , ε, {[destiny 7→ finitial, x 7→ ⊥}, q)

where omain is object name, and finitial is a fresh future name. Normally, →∗ is

the reflexive and transitive closure of → and
t

=⇒ is →∗ t−→→∗. A computation is

cn
t1=⇒ . . .

tn=⇒ cn ′; that is, cn ′ is a configuration reachable from cn with either

transitions → or
t

=⇒. When the time labels of transitions are not necessary, we
also write cn ⇒∗ cn ′.

Definition 2. The computational time of cn
t1=⇒ . . .

tn=⇒ cn ′ is t1 + · · ·+ tn.

The computational time of a configuration cn, written as time(cn), is the max-
imum computational time of computations starting at cn. The computational
time of an Rpl program is the computational time of its initial configuration.

3 Analysis of Rpl program

1 [r1 7→ 2, r2 7→ 3, r3 7→ 2]
2 class A {
3 Unit m1(A x, B y, Int k) {
4 Fut<Unit> g1;
5 g1= !m3(y, k) after;
6 wait(g1);
7 g1.get;}
8 Unit m2(A x, B y, Int k) {
9 Fut<Unit> h1; Unit z;

10 h1 = !m3(y, k) after;
11 z = m1(this, y) after h1?;} }

12 class B {
13 Unit m3(B x, Int k) {
14 hold(r1, 2);
15 cost(k);
16 release(r1, 2);} }
17 {
18 Int k1; Int k2; Int k3;
19 Fut<Unit> f1; Fut<Unit> f2;
20 A a1 = new A; B b1 = new B;
21 cost(k1);
22 f1 = !m2(a1, b1, k3) after;
23 cost(k2);
24 f2 = !m3(b1, k3) after;
25 f1.get;
26 f2.get;}

Fig. 6. A running example of an Rpl program.

In this section, we describe the cost analysis for anRpl program, which trans-
lates an Rpl program into a set of cost equations that can be fed to a constraint
solver. The solution to the resulting constraint set is an over-approximation of
the execution time of the Rpl program. We use the example in Fig. 6 to illus-
trate the idea of the analysis. Our analysis assumes all Rpl programs terminate
and all invoked methods are synchronised. It extends the analysis presented

Cost Analysis for an Actor-Based Workflow Modelling Language 9

in [22] and to handle a more expressive language with explicit notion of task
dependencies and resource allocations.

A cost equation results in a cost expression exp that has the following syntax:

exp ::= k | cm | max (exp, exp) | exp + exp

A cost expression may have natural numbers k, the cost cm of executing a
method m, the maximum and the sum of two cost expressions.

Given an Rpl program P, the analysis iterates over every method definition
B m(T y){T x; s} in each class in P, and translates it into a cost equation of the
form eqm=exp, where exp corresponds to an upper bound of the computational
time of m. The analysis performs this translation by considering the process pool
of every object associated with the execution of method m, computing an upper
bound for the finishing time of all of its processes, which gives rise to an upper
bound to the computational time of the method itself.

In the following, we describe the two significant structures, namely, syn-
chronisation schema and accumulated costs, used in the analysis to handle the
complexity of considering process pools.

3.1 Synchronisation Schema

We will first describe synchronisation sets, an element of synchronisation schema,
and proceed with the function that is used to manipulate the schema. A syn-
chronisation set [22], ranged over O,O′, . . . , is a set of object identifiers whose
processes have implicit dependencies; that is, the processes of these objects may
reciprocally influence the process pools of the other objects in the same set
through method invocations and synchronisations.

A synchronisation schema, ranged over S, S′, . . . , is a set of pairwise disjoint
synchronisation sets. Let B m(C o,C ′ o′, T x) {T ′ x′; s} be an Rpl method
declaration. The synchronisation schema of m, denoted as Sm, can be seen as a
distribution of the objects used in that method into synchronisation sets, where
Sm = sschem({{o, o′}}, s, o), which is defined in Definition 3.

Definition 3 (Synchronisation Schema Function). Let S be a synchroni-
sation schema, s a statement and o a carrier object which is executing s.

sschem(S, s, o) =





S ⊕ {o′, o′′} if s is x = m(o′, o′′, e) after f?

or, x = !m(o′, o′′, e) after f ′?

sschem(S, s1, o) if s is if e {s1}
sschem(sschem(S, s′, o), s′′, o) if s is s′; s′′

S otherwise.

where

S ⊕O =





O if S = ∅
(S′ ⊕O) ∪O′ if S = S′ ∪O′ and O′ ∩O = ∅
S′ ⊕ (O′ ∪O) if S = S′ ∪O′ and O′ ∩O 6= ∅

10 M. R. Ali and V. K. I Pun

The term S(o) represents the synchronisation set containing o in the synchro-
nisation schema S. The function S⊕O merges a schema S with a synchronisation
set O. If none of the objects in O belongs to a set in S, the function reduces to
a simple set union. For example, let S = {{o1, o2}, {o3, o4}}. Then S ⊕ {o2, o5}
is equal to ({{o1, o2}} ⊕ {o2, o5}) ∪ {{o3, o4}}, resulting {{o1, o2, o5}, {o3, o4}}.
To perform cost analysis later, a synchronisation schema will be constructed for
each method m. The synchronisation schemas of methods defined in Fig. 6 are
Sm1

= {{x, y}}, Sm2
= {{x, y}}, Sm3

= {{x}}, Smain = {{omain}, {a1, b1}}.

3.2 Accumulated Costs

The syntax of exp is extended to express (an over-approximation of) the time
progressions of processes in the same synchronisation set. We call this extension
accumulated cost [22], denoted as E , which is defined as follows:

E ::= exp | E · 〈cm, exp〉 | E ‖ exp .

Let o be a carrier object and o′ an object that does not belong to the same
synchronisation set of o, i.e., o′ /∈ S(o). The term exp represents the starting time
of a process running on o′. The term E · 〈cm, exp〉 describes the starting time of
a method invoked asynchronously on object o′. For example, when o invokes a
method m on o′ using f = !m(o′, o′′, e) after f?, the accumulated cost of the
synchronisation set of o′ is E · 〈cm, 0〉, where E is the cost accumulated up to
that point and cm is the cost of executing method m. Statement cost(e) in the
process of the carrier o not only advances time in o, but also updates the starting
time of succeeding method invocations on object o′ to E · 〈cm, e〉, indicating that
the starting time of the subsequent method invocation on the synchronisation
set of o′ is after the time expressed by E plus the maximum between cm and e.
The term E ‖ exp expresses the time advancement in the carrier object o when a
method running on an object o′ in another synchronisation set is synchronised.
In this situation, the time advances by the maximum between the current time
exp in o and E the time in o′. The evaluation function for the accumulated
cost, denoted as [[E]], computes the starting time of the next process in the
synchronisation set whose cost is E as follows:

[[exp]] = exp , [[E · 〈cm, exp〉]] = [[E]] + max (cm , exp) , [[E ‖ exp]] = max ([[E]], exp) .

The table below shows the accumulated costs of some of the statements declared
in Fig. 6. The accumulated cost of Line 24 evaluates to k1 + max (cm2 , k2)+ cm3 ,
which is the cost expression of the main method (cmain).

Method Line Accumulated Cost

m1 5 0 · 〈cm3 , 0〉
m2 10 0 · 〈cm3 , 0〉
m3 15 k

Method Line Accumulated Cost

main 22 k1 · 〈cm2 , 0〉
main 23 k1 · 〈cm2 , k2〉
main 24 k1 · 〈cm2 , k2〉 · 〈cm3 , 0〉

3.3 Translation Function

This section defines the translation function that computes the cost of a method
by analysing all possible synchronisation sets and synchronisations made on it.

Cost Analysis for an Actor-Based Workflow Modelling Language 11

TSm(I, Ψ, o, ta, t, s) =



1. TSm(I ′, Ψ ′, o, t′a, t
′, s′′) if s is s′; s′′, and

(I ′, Ψ ′, t′a, t
′) = TSm(I, Ψ, o, ta, t, s

′)

2. (I, Ψ + e, ta, t+ e) if s is cost(e)

3. (I ′, Ψ ′, t′a, t
′ + cm′) if s is o = m′(o′, e) after f?, and

(I ′, Ψ ′, t′a, t
′) = transSm(I, Ψ, o, ta, t, f)

4. (I ′[f 7→ Sm(o)], Ψ ′, t′a + cm′ , t′) if s is f =!m′(o′, e) after f ′?, o′ ∈ Sm(o), and

(I ′, Ψ ′, t′a, t
′) = transSm(I, Ψ, o, ta, t, f ′)

5. (I ′[f 7→ Sm(o′)], Ψ ′[Sm(o′) 7→ E · 〈cm′ , 0〉], t′a, t′)
if s is f = m′(o′, e) after f ′?, o′ /∈ Sm(o), and

(I ′, Ψ ′, t′a, t
′) = transSm(I, Ψ, o, ta, t, f ′),where

E =

{
Ψ ′(Sm(o′)) if Sm(o′) ∈ dom(Ψ ′)

t′ otherwise.

6. (I ′, Ψ ′, t′a, t
′) if s is f.get or wait(f), and

(I ′, Ψ ′, t′a, t
′) = transSm(I, Ψ, o, ta, t, {f})

7. (I ′, Ψ ′,max (ta , ta1),max (t , t1)) if s is if e {s1}, and
(I1, Ψ1, ta1 , t1) = TSm(I, Ψ, o, ta, t, s1)
I ′ = I ∪ I1, and
Ψ ′ = upd(Ψ, Ψ1, I

′, dom(I ′))

8. (I, Ψ, ta, t) otherwise.

Fig. 7. The translation function

Given an Rpl method m and a synchronisation schema Sm computed based
on Section 3.1, the translate function analyses the body of the method m by
parsing each of its statements sequentially and recording the accumulated costs
of synchronisation sets in a translation environment.

Definition 4 (Translation Environment). Translation environments, ranged
over Ψ, Ψ ′, . . . , is a mapping from synchronisation sets to their corresponding ac-
cumulated costs (Sm(o) 7→ E).

Given a synchronisation schema of a method m, Sm, the translation function
TSm

(I, Ψ, o, ta, t, s) defined in Fig. 7 takes six parameters: I is a map from future
names to synchronisation sets, Ψ a translation environment, o is the carrier
object, ta a cost expression that computes the cost of the methods invoked
on objects belonging to the same synchronisation set of carrier o and but not
yet synchronised, t a cost expression that computes the computational time
accumulated from the start of the method execution, and a statement s.

The function returns a tuple of four elements: an updated map I ′, an updated
translation environment Ψ ′, the updated cost of asynchronously running objects
t′a, and the updated current cost t′. We explain in the following the cases of the
T function defined in Fig. 7.

Case 1: Each statement in a sequential composition is translated recursively.

12 M. R. Ali and V. K. I Pun

transSm(I, Ψ, o, ta, t, F) =



(a) (I, Ψ, ta, t) if F = ∅
(b) transSm(I \ F ′′, Ψ + ta, o, 0, t+ ta, F

′) if F = F ′ ∪ f and o ∈ I(f) and
F ′′ = {f ′ | I(f ′) = Sm(o)}

(c) transSm(I \ F ′′, (Ψ ‖ t′) \ I(f), o, 0, t′, F ′)
if F = F ′ ∪ f and o /∈ I(f) where
F ′′= {f ′ | I(f ′)=Sm(o) ∨ I(f ′)=I(f)}
and t′ = max (t + ta , [[Ψ(I (f))]])

(d) transSm(I \ F ′′, Ψ + ta, o, 0, t+ ta, F
′) if F = F ′ ∪ f and f /∈ dom(I) where
F ′′ = {f ′ | I(f ′) = Sm(o)}

Fig. 8. The auxiliary translation function

upd(Ψ1, Ψ2, I, F) =




Ψ1 if F = ∅ ∨ Ψ2 = ∅
Ψ2 if Ψ1 = ∅
upd(Ψ1[I(f) 7→ max (Ψ1 (I (f)), Ψ2 (I (f)))], Ψ2, I, F

′)
if F =F ′ ∪ f ∧ I(f)∈dom(Ψ1) ∧ I(f)∈dom(Ψ2)

upd(Ψ1, Ψ2, I, F
′) if F =F ′ ∪ f ∧ I(f)∈dom(Ψ1) ∧ I(f) /∈dom(Ψ2)

upd(Ψ1[I(f) 7→ Ψ2(I(f))], Ψ2, I, F
′) if F =F ′ ∪ f ∧ I(f) /∈dom(Ψ1) ∧ I(f)∈dom(Ψ2)

Fig. 9. The auxiliary update function

Case 2: When s is a cost(e) statement, the function updates the current cost t
and the accumulated cost Ψ by adding the cost e to them.

Case 3: If s is a synchronous method invocation m′(o′, e) after f?, since the
method can only be invoked after the futures f1 have been resolved, we need to
first compute the cost of all methods associating to f? with the auxiliary function
transSm

(I, Ψ, o, ta, t, f) in Fig. 8 (see below for explanation). After computing the
cost of executing the methods associating to f , the cost of method m′, cm′ , is
added to the accumulated cost t′.
Case 4 & 5: The next two cases corresponds to s as an asynchronous method
invocation !m′(o′, e) after f?. Similar to Case 3, we first compute the cost of all
methods associating to f?. Case 4 handles the situation if carrier o and callee o′

are in the same synchronisation set. We add the cost of method m to t′a and
update I ′ with the binding f 7→ Sm(x). If o′ is not in the same synchronisation
set of carrier o, as in Case 5, we add the binding f 7→ Sm(y) to I ′ and update
the Ψ ′ by adding the cost of method m′ to the accumulated cost of Sm(y).

Case 6: When s is either f.get or wait(f) statement, we compute the cost by
utilising function transSm(I, Ψ, x, ta, t, {f}).
Case 7: To handle conditional statements, we first calculate the cost of executing
the statements in the conditional branch. Since the conditional branch may
be executed at runtime, to over-approximate the cost, we update ta with the
maximum of ta and ta1 , and the current cost t with the maximum of t and t1.

1 We refer f to a (possibly empty) set of futures by overloading the overline notation.

Cost Analysis for an Actor-Based Workflow Modelling Language 13

The resulting I ′ is the union of I and I1. We further update the translation
environment with the auxiliary update function defined in Fig. 9.

The trans function. Similar to the translation function T , the auxilary function
trans in Fig. 8 also takes six arguments. While the first five are the same as those
of T , the last one is a set of futures F . This function recursively calculates the
cost of each method associated to the futures in F as follows:

(a): It is trivial if F is an empty set, where I, Ψ , ta, and t remain unchanged.
(b): This corresponds to the case where F contains a future f associated to a
method call whose callee belongs to same synchronisation set of the carrier x.
Since it is non-deterministic when this method will be scheduled for execution,
to over-approximate the cost, we sum the cost of the methods invoked on the
objects that are in Sm(o), which is stored in ta, and add it to the cost t accu-
mulated so far. We then reset ta to 0 and remove all the corresponding futures
from I since the related costs have been already considered.
(c): When F contains a future associated to a method call whose callee (say o′)
does not belong to Sm(o). Since objects o and o′ reside in separate synchronisa-
tion sets, the method running on o′ runs in parallel with o. Therefore, the cost
is the maximum between the total cost of all methods invoked on the objects in
Sm(o) and that in Sm(o′). Since we over-approximating the cost, the cost of all
methods invoked on the objects in Sm(o) and Sm(o′) have already been com-
puted. Therefore, we remove Sm(o′) from Ψ , as well as all the futures associated
with Sm(o) and Sm(o′) from I.
(d): When F contains a future f that does not belong to I, it indicates that the
cost of the method corresponding to f has been already calculated. Since it can
happen that other methods may be invoked after this computation, the actual
termination of the method invocation corresponding to f may happen after the
completion of these invocations. To take this into account, we add the cost of
all methods whose callee belongs to Sm(o), which has been stored in ta, to the
cost accumulated so far.

Example 1. We show how the translation function can be applied on the methods
defined in Fig. 6. Let S = {{o}, {a1, b1}}, S1 = {{x, y}}, S2 = {{x, y}} and
S3 = {{x}} (as computed in Section 3.2). We use si to indicate the sequence of
statements of a method body starting from line i.
Translation of method m1 : TS1(∅, ∅, x, 0, 0, g1 = !m3(y, k) after; s6)

= TS1({g1 7→ {x, y}}, ∅, x, cm3 , 0,wait(g1); s7)

= TS1(∅, ∅, x, 0, cm3 , g1.get)

= (∅, ∅, 0, cm3)

Translation of method m2 : TS2(∅, ∅, x, 0, 0, h1 = !m3(y, k) after; s11)

= TS2({h1 7→ {x, y}}, ∅, x, cm3 , 0, z = m1(this, y) after h1?)

= (∅, ∅, 0, cm3 + cm1)

Translation of method m3 : TS3(∅, ∅, x, 0, 0, hold(r1, 2); s15)

= TS3(∅, ∅, x, 0, 0, cost(k); s16)

= TS3(∅, ∅, x, 0, k, release(r1, 2))

= (∅, ∅, 0, k)

14 M. R. Ali and V. K. I Pun

Translation of method main :

TS(∅, ∅, o, 0, 0, A a1 = new A; B b1 = new B; s21)

= TS(∅, ∅, o, 0, 0, cost(k1); s22)

= TS(∅, ∅, o, 0, k1, f1 = !m2(a1, b1, k3) after; s23)

= TS({f1 7→ {a1, b1}}, {{a1, b1} 7→ k1 · 〈cm2 , 0〉}, o, 0, k1, cost(k2); s24)

= TS({f1 7→ {a1, b1}}, {{a1, b1} 7→ k1 · 〈cm2 , k2〉}, o, 0,
k1 + k2, f2 = !m3(b1, k3) after; s25)

= TS({f1 7→ {a1, b1}, f2 7→ {a1, b1}}, {{a1, b1} 7→ k1 · 〈cm2 , k2〉 · 〈cm3 , 0〉}, o, 0,
k1 + k2, f1.get; s26)

= TS(∅, ∅, o, 0,max(k1 + k2, k1 · 〈cm2 , k2〉 · 〈cm3 , 0〉), f2.get)
= (∅, ∅, 0, max (k1 + k2 , k1 · 〈cm2 , k2 〉 · 〈cm3 , 0 〉))

We notice that for each method the resulting translation environment Ψ is always
empty, and ta is always equal to 0 because every asynchronous method invocation
is always synchronised within the caller method body.

4 Properties

The correctness of our analysis relies on the property that the execution time
never rises throughout transitions. Therefore, the cost of the program in the
initial configuration over-approximates the cost of each computation.

Cost Program. The cost of a program is calculated by solving a set of equations.
Let a cost program be an equation system of the form:

eqmi
= expi

eqmain = expmain

where mi are the method names and 1 ≤ i ≤ n, expi and expmain are cost
expressions. The solution of the above cost program is the closed-form upper
bound for the equation eqmain , which is a main method of the program.

Definition 5 (Cost of Program). Let P=(R C {T x; s}) be an Rpl program,
where C = class C1 {T x; B m1(T y){T ′ x; s1} . . .}...

class Cj {T x; B mk(T y){T ′ x; s1} . . . B mn(T y){T ′ x; sn}}
Then for every 1 ≤ i ≤ n and 1 ≤ j ≤ m, let

1. Si = sschem({{oi, o′}}, si, oi)
2. eqmi

= ti, where TSi
(∅, ∅, oi, 0, 0, si) = (Ii, Ψi, ta, ti)

3. Smain = sschem({{omain}}, s, omain) and
TSmain

(∅, ∅, omain , 0, 0, s) = (I, Ψ, ta, tmain)

Let eq(P) be the cost program (eqm1
= t1, . . . , eqmn

= tn, eqmain = tmain).
A cost solution of P, named U(P), is the closed-form solution of the equation
eqmain in eq(P).

For all methods, we produce cost equations that associates the method’s cost
to the cost of its last statement, eqmi

= ti. Similarly, we produce one additional
equation for the cost of the main method eqmain and its closed-form solution
over-approximates the computational time of Rpl program.

Cost Analysis for an Actor-Based Workflow Modelling Language 15

Example 2. The cost program of Fig. 6 is shown as follows, where each cost
expression is computed in Example 1.

eqm1
= cm3

, eqm2
= cm3

+ cm1
, eqm3

= k ,
eqmain = max (k1 + k2 , k1 · 〈cm2

, k2 〉 · 〈cm3
, 0 〉) .

Correctness Property. The correctness of our analysis follows the theorem below.

Theorem 1 (Correctness of Analysis). Let P be an Rpl program, whose ini-
tial configuration is cn, and U(P) be the closed-form solution of P. If cn ⇒∗ cn ′,
then time(cn ′) ≤ U(P).

Proof (Sketch). The proof is similar to the one proven in [22]. The main idea is
to first extend function T for runtime configurations, and to define the cost of
a computation cn ⇒∗ cn ′, written as time(cn ⇒∗ cn ′), to be the sum of the
labels of the transitions, and to show that U(P) is a solution of T (cn), then
U(P)− time(cn ⇒∗ cn ′) is a solution of T (cn ′).

5 Related Work

Comprehensive research has been performed on modelling business process work-
flows, such as Business Process Execution Language (BPEL) [23,9], Business
Process Model and Notation (BPMN) [25], Petri-nets [1] and Yet Another Work-
flow Language (YAWL) [3]. BPEL is an executable language for simulating pro-
cess behaviour, whereas BPMN uses a graphical notation to represent busi-
ness process descriptions. Petri-nets has been used to formalize both BPEL and
BPMN [10,18]. YAWL is inspired by Petri nets, and is a powerful workflow spec-
ification language with independent semantics. Different formal approches based
on e.g., pi-calculus [4], timed automata [17], CSP [26] have been developed to
analyse and reason about models of business process workflows. Compared to our
proposed approach, the main focus of these techniques is on intra-organisational
workflows and have limited support for coordinating tasks and resources in work-
flows that are across organisational.

Approaches have been proposed to merge business process models, e.g., [16]
presents an approach to merge two business processes based on Event-driven Pro-
cess Chains [24], which has been implemented in the process mining framework
ProM [12], and [21] describes a technique that generates a configurable business
process with a pair of business processes as input. To the best of our knowledge,
these techniques do not consider connecting workflows across organisations.

Numerous techniques have been introduced for static cost analysis. For ex-
ample, [7] presents the first approach to the automatic cost analysis of object-
oriented bytecode programs, [19] proposes the first automatic analysis for de-
riving bounds on the worst-case evaluation cost of parallel first-order functional
programs. In [22], authors define a concurrent actor language with time. Also,
they define a translation function that uses synchronisation sets to compute a
cost equation function for each method definition. Compared to this techniques,
this paper handles a more expressive language that is sensitive to task depen-
dencies and resource consumption.

16 M. R. Ali and V. K. I Pun

6 Conclusion

We have presented in this paper a formal languageRpl that can be used to model
cross-organisational workflows consisting of concurrently running workflows. We
use an example to show how the language can be employed to couple these
concurrent workflows by means of resources and task dependencies. We also
proposed a static analysis to over-approximate the computational time of anRpl
program. We also presented a proof sketch of the correctness of the proposed
analysis.

As for the immediate next steps, we plan to enrich the language such that
the resource features, e.g., the experience and specialities, can be explicitly spec-
ified, and to extend the analysis to handle non-terminating programs. We also
plan to develop an approach to associate workflow resources to ontology models.
Furthermore, we intend to develop verification techniques to ensure the correct-
ness of workflow models in Rpl for cross-organisational workflows. A reasonable
starting point is to investigate how to extend KeY-ABS [11], a deductive verifi-
cation tool for ABS, to support Rpl.

The presented language is intended to be the first step towards the automa-
tion of cross-organisational workflow planning. To achieve this long-term goal,
we plan to implement a workflow modelling framework with the support of cost
analysis. In this framework, planners can design and update workflows modelled
in Rpl, and simulate the execution of the workflows. By connecting the cost
analysis to a constraint solver, the planner can estimate the overall execution
time of collaborative workflows and see the effect of any changes in the resource
allocation and task dependency. We foresee that such framework can eventually
contribute to automating planning for cross-organisational workflows.

References

1. van der Aalst, W.M.: The application of Petri nets to workflow management. Jour-
nal of circuits, systems, and computers 8(01), 21–66 (1998)

2. van der Aalst, W.M.: Loosely coupled interorganizational workflows:: modeling
and analyzing workflows crossing organizational boundaries. Information & man-
agement 37(2), 67–75 (2000)

3. van der Aalst, W.M., Ter Hofstede, A.H.: YAWL: yet another workflow language.
Information systems 30(4), 245–275 (2005)

4. Abouzaid, F.: A mapping from pi-calculus into BPEL. Frontiers in artificial intel-
ligence and applications 143, 235 (2006)

5. Agha, G.A.: Actors: A model of concurrent computation in distributed systems.
Tech. rep., Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab (1985)

6. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static
cost analysis. Journal of automated reasoning 46(2), 161–203 (2011)

7. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theoretical Computer Science 413(1), 142–
159 (2012), Quantitative Aspects of Programming Languages (QAPL 2010)

8. Ali, M.R., Pun, V.K.I: Towards a resource-aware formal modelling language for
workflow planning. In: Intl. Conf. on Model and Data Engineering. Springer (To
appear) (2021)

Cost Analysis for an Actor-Based Workflow Modelling Language 17

9. Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K.,
Thatte, S., Yendluri, P., Yiu, A.: Web services business process execution language
version 2.0. Working Draft. WS-BPEL TC OASIS (2005)

10. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using Petri nets. Queensland Univ. of Technology, Tech. Rep. pp.
1–30 (2007)

11. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: A deductive verification tool for the
concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) Intl.
Conf. on Automated Deduction. LNCS, vol. 9195, pp. 517–526. Springer (2015)

12. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H., Weijters, A., van der Aalst,
W.M.: The ProM framework: A new era in process mining tool support. In: Intl.
Conf. on Application and Theory of Petri Nets. pp. 444–454. Springer (2005)

13. Dourish, P.: Process descriptions as organisational accounting devices: the dual
use of workflow technologies. In: Proceedings of the 2001 Intl. ACM SIGGROUP
Conf. on Supporting Group Work. pp. 52–60 (2001)

14. Dumas, M., van der Aalst, W.M., Ter Hofstede, A.H.: Process-aware information
systems: bridging people and software through process technology. John Wiley &
Sons (2005)

15. Flores-Montoya, A., Hähnle, R.: Resource analysis of complex programs with cost
equations. In: Asian Symposium on Programming Languages and Systems. pp.
275–295. Springer (2014)

16. Gottschalk, F., van der Aalst, W.M., Jansen-Vullers, M.H.: Merging event-driven
process chains. In: OTM Confederated Intl. Confs. On the Move to Meaningful
Internet Systems. pp. 418–426. Springer (2008)

17. Gruhn, V., Laue, R.: Using timed model checking for verifying workflows. Com-
puter Supported Activity Coordination 2005, 75–88 (2005)

18. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: Intl. Conf.
on Business Process Management. pp. 220–235. Springer (2005)

19. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
European Symposium on Programming Languages and Systems. pp. 132–157.
Springer (2015)

20. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for Abstract Behavioral Specification. In: Intl. Symposium on Formal
Methods for Components and Objects. pp. 142–164. Springer (2010)

21. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Merging business process models.
In: OTM Confederated Intl. Confs.” On the Move to Meaningful Internet Systems”.
pp. 96–113. Springer (2010)

22. Laneve, C., Lienhardt, M., Pun, K.I, Román-Dı́ez, G.: Time analysis of actor pro-
grams. Journal of Logical and Algebraic Methods in Programming 105, 1–27 (2019)

23. Matjaz Juric, Benny Mathew, P.S.: Business Process Execution Language for Web
Services BPEL and BPEL4WS. Packt Publishing (2006)

24. Mendling, J.: Event-driven process chains (epc). In: Metrics for process models,
pp. 17–57. Springer (2008)

25. OMG, B.P.M.: Notation (BPMN) Version 2.0 (2011)
26. Wong, P.Y., Gibbons, J.: Property specifications for workflow modelling. Science

of Computer Programming 76(10), 942–967 (2011)
27. Xu, L., Liu, H., Wang, S., Wang, K.: Modelling and analysis techniques for cross-

organizational workflow systems. Systems Research and Behavioral Science: The
Official Journal of the Intl. Federation for Systems Research 26(3), 367–389 (2009)

18 M. R. Ali and V. K. I Pun

A Semantics of Rpl

The full semantics of Rpl is given in Figs. 10 and 11. In addition to the rules
introduced in Figs. 4 and 5, we have rules Cond-True and Cond-False if
handles conditional statements based on the evaluation of expression e. Rule
Return puts the return value into the method’s associated future. Rule Skip
uses a skip in the active process. Rule Activate picks a ready for execution
process p from the process pool q using the select(q) funtion.

select(q) =





idle if empty(q)

p if ∃ p ∈ q and ready(p)

idle otherwise.

ready(p) =

{
true if p = wait(e) and [[e]](a◦l) = true

false otherwise.

Rules Assign-Local and Assign-Field allot the value of expression e to a
variable x in the local variables l or in the objects’ field a, respectively. Rule
Wait-False suspends the active process, leaving the processor idle if f is not
resolved, otherwise Wait-True consumes wait(f). Rule New-Object creates
a new object. Rule Get dereferences the future f if it is resolved; otherwise, the
reduction on this object is blocked.

Rules Async-Call and Sync-Call handle the communication between ob-
jects through method invocations. To ensure the task dependencies between
method calls, the rules first check if all the futures the called method depends
on exist, i.e., if f belong to F (a set of all futures in the configuration) and the
futures must be resolved. Rule Async-Call creates an invocation message to
o′ with a fresh unresolved future f ′, the method name m, and actual parame-
ters v. Rule Self-Sync-Call directly transfers control of the processor from the
caller process to the callee. After the execution of callee process is completed, rule
Sync-Return-Sched reactivates the caller process. Rule Sync-Call specifies
a synchronous call to an other object, captured by an asynchronous call im-
mediately followed by a get statement. Rules Hold and Release control the
resource acquisition and return. Note that it is required to have all the acquired
resources to be available in order to consume the hold statement; otherwise,
the process will be blocked. In Rpl, the unique statement that consumes time
is cost(e). Rule Cost specifies a trivial case when e evaluates to 0. When the
configuration cn reaches a stable state, no other transition is feasible apart from
those evaluating the cost(e) statement then time is advanced by the smallest
value required to let at least one process execute. Rule Tick defines the time
advancement where Φ(cn, t) updates configuration cn for time t.

B Type system of Rpl

Fig. 12 illustrates the type system of Rpl. A typing context Γ maps names to
typings, which assigns types T to variables. Expressions of the basic types are

Cost Analysis for an Actor-Based Workflow Modelling Language 19

(New-Object)

o′ = fresh()
a′ = atts(C , o′)

obj (o, a, {l | x = new C; s}, q)
→ obj (o, a, {l | x = o′; s}, q)

obj (o′, a′, idle, ∅)

(Async-Call)

∀ f ∈ f.fut(f, v) ∈ F ∧ v 6= ⊥
v = [[e′]](a◦l) o′ = [[e]](a◦l) f ′ = fresh()

obj (o, a, {l | x = !m(e, e′) after f?; s}, q) F
→ obj (o, a, {l | x = f ′; s}, q)

invoc(o′, f ′,m, v) fut(f ′,⊥) F

(Get)

v 6= ⊥
obj (o, a, {l | x = f.get; s}, q) fut(f, v)
→ obj (o, a, {l | x = v; s}, q) fut(f, v)

(Invoc)

{l|s} = bind(o, f,m, v, class(o))

obj (o, a, p, q) invoc(o, f,m, v)
→ obj (o, a, p, q ∪ {l | s})

(Wait-True)

v 6= ⊥
obj (o, a, {l | wait(f); s}, q) fut(f, v)
→ obj (o, a, {l | s}, q) fut(f, v)

(Wait-False)

v = ⊥
obj (o, a, {l | wait(f); s}, q) fut(f, v)

→ obj (o, a, idle, q ∪ {l | wait(f); s}) fut(f, v)

(Sync-Call)

∀f ∈ f.fut(f, v) ∈ F ∧ v 6= ⊥ o′ = [[e]](a◦l) o 6= o′ f ′ = fresh()

obj (o, a, {l | x = m(e, e′) after f?; s}, q) obj (o′, a′, p, q′) F
→ obj (o, a, {l | f ′ = !m(e, e′) after f?;x = f ′.get; s}, q) obj (o′, a′, p, q′) F

(Self-Sync-Call)

∀f ∈ f.fut(f, v) ∈ F ∧ v 6= ⊥ o = [[e]](a◦l) v = [[e′]](a◦l) f ′′ = l(destiny)
f ′ = fresh() {l′ | s′} = bind(o, f ′,m, v, class(o))

obj (o, a, {l | x = m(e, e′) after f?; s}, q) F
→ obj (o, a, {l′ | s′; cont(f ′′)}, q ∪ {l | x = f ′.get; s}) fut(f ′,⊥) F

(Wait-Async-Call)

∃f ∈ f.fut(f, v) ∈ F ∧ v = ⊥
obj (o, a, {l | x = !m(e, e′) after f?; s}, q) F

→ obj (o, a, idle, q ∪ {l | x = !m(e, e′) after f?; s}) F

(Sync-Return-Sched)

f ′′ = l(destiny)

obj (o, a, {l′ | cont(f ′′), q ∪ {l|s})
→ obj (o, a, {l | s}, q)

(Wait-Sync-Call)

∃f ∈ f.fut(f, v) ∈ F ∧ v = ⊥
obj (o, a, {l | x = m(e, e′) after f?; s}, q) F

→ obj (o, a, idle, q ∪ {l | x = m(e, e′) after f?; s}) F

(Cost)

[[e]](a◦l) = 0

obj (o, a, {l | cost(e); s}, q)
→ obj (o, a, {l | s}, q)

(Hold)

∀(r, e) ∈ (r, e).r ∈ dom(res) ∧ v ≥ 0
where v = res(r)− [[e]](a◦l)

obj (o, a, {l | hold(r, e); s}, q) res
→ obj (o, a, {l | s}, q) res[r 7→ v]

(Release)

∀(r, e) ∈ (r, e).r ∈ dom(res)
∧ v = res(r) + [[e]](a◦l)

obj (o, a, {l | release(r, e); s}, q) res
→ obj (o, a, {l | s}, q) res[r 7→ v]

Fig. 10. Full semantics of Rpl – Part 1

20 M. R. Ali and V. K. I Pun

(Cond-True)

true = [[e]](a◦l)

obj (o, a, {l | if e {s1}s}, q)
→ obj (o, a, {l | s1; s}, q)

(Cond-False)

false = [[e]](a◦l)

obj (o, a, {l | if e {s1}s}, q)
→ obj (o, a, {l | s}, q)

(Return)

v = [[e]](a◦l) f = l(destiny)

obj (o, a, {l | return e; s}, q) fut(f,⊥)
→ obj (o, a, {l | s}, q) fut(f, v)

(Context)

cn = cn′

cn cn′′

→ cn′ cn′′

(Field-Assign)

x ∈ dom(a) v = [[e]](a◦l)

obj (o, a, {l | x = e; s}, q)
→ obj (o, a[x 7→ v], {l | s}, q)

(Local-Assign)

x ∈ dom(l) v = [[e]](a◦l)

obj (o, a, {l | x = e; s}, q)
→ obj (o, a, {l[x 7→ v]|s}, q)

(Activate)

p = select(q)

obj (o, a, idle, q)
→ obj (o, a, p, q \ p)

(Skip)
obj (o, a, {l | skip; s}, q)
→ obj (o, a, {l | s}, q)

(Tick)

strongstablet(cn)

cn→ Φ(cn, t)
where,
Φ(cn, t) =



obj (o, a, { l′ | cost(k); s}, q) Φ(cn ′, t) if cn = obj (o, a, {l | cost(e); s}, q) cn′
and k = [[e]](a◦l) − t

obj (o, a, {l | hold(r, e); s}, q) Φ(cn ′, t) if cn = obj (o, a, {l | hold(r, e); s}, q) cn′
obj (o, a, {l | x = e.get; s}, q) Φ(cn ′, t) if cn = obj (o, a, {l | x = e.get; s}, q) cn′
obj (o, a, idle, q) Φ(cn ′, t) if cn = obj (o, a, idle, q) cn′

cn otherwise.

Fig. 11. Full semantics of Rpl – Part 2

type-checked immediately as in the rule T-Bool. By T-Var, a variable is well-
typed if stated in Γ . By T-Get, the get expression discloses the type of future.
By T-Wait, wait(e) is well-typed if type of e is Bool. By T-Poll if type of e is
a future, then type of return test e? is Bool. Rule T-And disintegrates guards of
type Bool. By T-Return, statement return e is well-typed if e types to the type
of the method’s future. Typing rules for skip, composition, assignment, while,
and conditional statements are standard.

By T-New-Object, object creation has a type C. By T-SyncCall, a call
to a method m has type B if its actual parameters have types T and return tests
have types Fut〈B〉. By T-AsyncCall, an asynchronous method call has type
Fut〈B〉 if the corresponding synchronous call has type B.

Cost Analysis for an Actor-Based Workflow Modelling Language 21

(T-Wait)

Γ ` e : Bool

Γ ` wait(e)

(T-Poll)

Γ ` e : Fut〈B〉
Γ ` e? : Bool

(T-Assign)

Γ ` rhs : Γ (x)

Γ ` x = rhs

(T-Bool)

Γ ` b : Bool

(T-And)

Γ ` g1 : Bool

Γ ` g2 : Bool

Γ ` g1 ∧ g2 : Bool

(T-Composition)

Γ ` s Γ ` s′

Γ ` s ; s′

(T-Return)

Γ ` e : B
Γ (destiny) = Fut〈B〉

Γ ` return e

(T-Cond)

Γ ` e : Bool Γ ` s
Γ ` if e {s}

(T-Skip)

Γ ` skip

(T-New-Object)

Γ ` new C : C

(T-Hold)

∀ (r, e) ∈ (r, e). Γ ` r : R
∧ Γ ` e : Int

Γ ` hold(r, e)

(T-Var)

Γ (x) = T

Γ ` x : T

(T-Release)

∀ (r, e) ∈ (r, e). Γ ` r : R
∧ Γ ` e : Int

Γ ` release(r, e)

(T-Method)

Γ ′ = Γ [y 7→ T , x 7→ T ′]
Γ ′[destiny 7→ Fut〈B〉] ` s
Γ ` B m(T y){T ′ x ; s}

(T-Get)

Γ ` e : Fut〈B〉
Γ ` e.get : B

(T-Resource)

Γ ` e : Int Γ ` r : R

Γ ` [r 7→ e] : R 7→ Int

(T-Sync-Call)

∀ f ∈ f. Γ ` f : Fut〈B〉
Γ ` e : C Γ ` e′ : C Γ ` e′′ : T

Γ ` m(e, e′, e′′) after f? : B

(T-Async-Call)

Γ ` m(e, e′, e′′) after f? : B

Γ ` !m(e, e′, e′′) after f? : Fut〈B〉

(T-Class)

Γ [this 7→ C, fields(C)] `M
Γ ` class C {T ′ x′; M}

(T-Cost)

Γ ` e : Int

Γ ` cost(e)

(T-Program)

Γ [x 7→ T] ` s Γ ` R ∀ Cl ∈ Cl. Γ ` Cl
Γ ` R Cl { T x; s }

Fig. 12. Type system of Rpl

22 M. R. Ali and V. K. I Pun

By T-Program, a Rpl program is well-typed if its resources, classes, and
its main method are well-typed. By T-Resource, a resource has type R 7→ Int

if resource identifier r has type R and e has type Int. By T-Hold and T-
Release, statements hold(r, e) and release(r, e) are well-typed in the typing
context Γ if all the resource identifiers r have type R and all expressions e have
type Int. A class C is well-typed if its methods M are well-typed in the typing
context Γ extended by the self identifier this and fields of the class, by T-Class.
Similarly by T-Method, a method declaration is well-typed if method’s body is
well-typed in the typing context Γ extended by the typing of formal parameters
and local variables.

C Subject Reduction

The initial configuration of a well-typed program includes an object, denoted
obj (start, ε, p, ∅), where the p is an active process that corresponds to the ac-
tivation of the program’s main block. A run is an order of reductions of an
initial configuration based on the semantic rules defined in section 2.2. To prove
the correctness of Rpl, we need to show that a run from a well-typed initial
configuration will keep well-typed configurations. Let Γ `R cn ok shows that
a configuration cn is well-typed in the typing context Γ . Fig. 13 presents the
typing system of runtime configurations of Rpl.

(T-Configuration)

Γ `R cn ok
Γ `R cn′ ok

Γ `R cn cn′ ok

(T-State)

Γ (v) = T
Γ `R val : T

Γ `R T v val ok

(T-Future)

Γ (f) = Fut〈B〉
val 6= ⊥ ⇒ Γ (val) = B

Γ `R fut(f, val) ok

(T-Resource)

Γ (v) = T
Γ (r) = R

Γ `R [r 7→ v] ok

(T-Process)

Γ ′ = Γ [x 7→ T]

Γ ′ `R T x val ok
Γ ′ `R s ok

Γ `R (T x val, s) ok

(T-Process-Queue)

Γ `R q ok
Γ `R q′ ok

Γ `R q q′ ok

(T-Object)

fields(Γ (o)) = [x 7→ T]

Γ ′ = Γ [x 7→ T]
Γ ′ `R p ok Γ ′ `R q ok

Γ ′ `R T x val ok

Γ `R obj (o, T x val, p, q) ok

(T-Invoc)

Γ (f) = Fut〈B〉
Γ (v) = B

match(m,B 7→ B ,Γ (o))

Γ `R invoc(o, f,m, v)

Fig. 13. Type system of runtime configurations of Rpl

Cost Analysis for an Actor-Based Workflow Modelling Language 23

Lemma 1 (Type Preservation). Let Γ be a typing context and σ a substitu-
tion such that Γ ` σ. If Γ ` e : T and σ ` e → σ′ ` e′, then there is a typing
context Γ ′ such that Γ ⊆ Γ ′, Γ ′ ` σ′, and Γ ′ ` e′ : T .

Proof. The evaluation of an expression e is defined by the small-step reduction
relation σ ` e → σ ` σ(e). By assumption, Γ ` σ and Γ ` e : T . Since σ is
well-typed, Γ ` σ(e) : Γ (e), so Γ ` σ(e) : T .

It follows from Lemma 1 that given a well-typed expression e and a well-
typed substitution σ, then all states in the reduction order from σ ` e will be
well-typed, independent of the order of reductions.

Theorem 2 (Subject Reduction). If Γ `R cn ok and cn 7→ cn′, then there
is a Γ ′ such that Γ ⊆ Γ ′ and Γ ′ `R cn′ ok.

Proof. The proof is by induction over the application of transition rules. By
Lemma 1, the reduction of an expression in a well-typed object ends in a well-
typed object. The transition rules employ when these reductions finish, reducing
an expression e in the state σ to the ground term [[e]]σ.

– Local-Assign and Field-Assign.
Let Γ `R obj (o, T x v, {T ′ x′ v′ | x = e; s}, q) ok. Let Γ ′ = Γ [x 7→ T , x′ 7→
T ′]. Then Γ ′ ` x = e; s, so Γ ′ ` e : Γ ′(x). Assume that v = [[e]](a◦l), we need

to show Γ `R obj (o, T x v, {T ′ x′ v′[x 7→ v] | x = e; s}, q) ok, which follows
from Lemma 1 as Γ ′ ` v : Γ ′(x).

– Cond-True and Cond-False.
Let Γ `R obj (o, a, {l | if e {s1}s}, q) ok. By assumption there is a Γ ⊆ Γ ′,
such that Γ ′ ` e,Γ ′ ` s1, and Γ ′ ` s. Consequently, Γ ′ ` s1; s , and both
rules, Cond-True and Cond-False maintain well-typedness.

– Skip.
If Γ `R obj (o, a, {l | skip; s}, q) ok, then Γ `R obj (o, a, { l | s }, q) ok.

– New-Object.
Let Γ `R obj (o, a, {l | x = new C; s}, q) ok. Since fresh(o′), let Γ ′ = Γ [o′ 7→
C]. Certainly, Γ ′ `R obj (o, a, {l | x = o′; s}, q) ok.
By assumption, a′ is well-typed in o′, therefore, Γ ′ `R obj (o′, a′, idle, ∅) ok.

– Return.
Assume Γ `R obj (o, a, {l | return e; s}, q) ok and Γ `R fut(f,⊥) ok. Obvi-
ously, Γ `R obj (o, a, { l | s }, q) ok. As f = l(desting) and l is well-typed,
we know that Γ (destiny) = Γ (f). Let Γ (f) = Fut〈B〉. By rule T-Return,
Γ `R e ok : B and by Lemma 1, Γ (v) = B, so Γ `R fut(f, v) ok.

– Get.
By assumption, Γ `R obj (o, a, {l | x = e.get; s}, q) ok, Γ `R fut(f, v) ok,
and f = [[e]](a◦l). Let Γ (f) = Fut〈B〉. Consequently, Γ `R e.get : B and
Γ (v) = B, so Γ ` x = v, and Γ `R obj (o, a, {l | x = v; s}, q) ok.

– Cost.
Let Γ `R obj (o, a, {l | cost(e); s}, q) ok and v = [[e]](a◦l). By T-Cost, Γ (e) :
Int and by Lemma 1, Γ ` v = Int, so Γ `R obj (o, a, {l | cost([[e]](a◦l) −
1); s}, q) ok, which is immediate.

24 M. R. Ali and V. K. I Pun

– Hold.
By assumption, we have Γ `R obj (o, a, {l | hold(r, e); s}, q) ok, Γ `R res ok
and v = [[e]](a◦l). Obviously, Γ `R obj (o, a, { l | s }, q) ok. By T-Resource,

Γ ` e : Int and by Lemma 1, Γ ` v = Int, so Γ `R res[r 7→ v] ok. Similarly
for Release.

– Self-Sync-Call.
By assumption, Γ `R obj (o, a, {l | x = m(e, e′, e′′) after f?; s}, q) ok, Γ `
m(e, e′, e′′) after f? : B, Γ `R {l′ | s′} ok, and fresh(f). Let Γ ′ = Γ [f 7→
Fut〈B〉]. Obviously Γ ′ ` { l′ | s′ ; cont(f)}, Γ ′ ` x = f.get, and Γ ′ `R
fut(f,⊥) ok.

– Sync-Call
By assumption, Γ `R obj (o, a, {l | x = m(e, e′, e′′) after f?; s}, q) ok, Γ `
m(e, e′, e′′) after f? : B, and fresh(f). Let Γ ′ = Γ [f 7→ Fut〈B〉]. Obviously
Γ ′ ` f = m(e, e′, e′′) after f?;x = f.get.

– Async-Call
Let Γ `R obj (o, a, {l | x = !m(e, e′, e′′) after f?; s}, q) ok. By assumption,
Γ ` !m(e, e′, e′′) after f? : Fut〈B〉 and by T-Assign, Γ (x) = Fut〈B〉.
Therefore, Γ ` e : C, Γ ` e′ : C and Γ ` e′′ : T . Assume that o′ =
[[e]](a◦l) and Γ (o′) = C for a class C. Let Γ ′ = Γ [f 7→ Fut〈B〉]. Since
fresh(f) and f /∈ dom(Γ), so if Γ `R cn ok, then Γ ′ `R cn ok. Since Γ `
!m(e, e′, e′′) after f? = Γ ′ ` f , we get Γ ′ `R obj (o, a, {l | x = f ; s}, q) ok.
Moreover, Γ ′ `R invoc(o′, f,m, v) ok and Γ ′ `R fut(f,⊥) ok.

– Invoc.
Let Γ `R obj (o, a, p, q) ok, Γ `R invoc(o, f,m, v) ok and C = Γ (o), so
Γ (f) = Fut〈B〉 and Γ (v) = T . Let x be the formal parameters of m in
C. Certainly, the auxiliary function bind(o, f,m, v, C) returns a process
{l[B x v,Fut〈B〉]} which is well-typed, and it follows that Γ `R obj (o, a, p, q∪
{bind(o, f,m, v, C)}) ok.

