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Modeling Non-linear Least Squares

Introduction

Ceres solver consists of two dis�nct parts. A modeling API which provides a rich set of tools to
construct an op�miza�on problem one term at a �me and a solver API that controls the
minimiza�on algorithm. This chapter is devoted to the task of modeling op�miza�on problems
using Ceres. Solving Non-linear Least Squares discusses the various ways in which an op�miza�on
problem can be solved using Ceres.

Ceres solves robus�fied bounds constrained non-linear least squares problems of the form:

(1)¶

In Ceres parlance, the expression  is known as a residual block, where 

is a CostFunction  that depends on the parameter blocks .

In most op�miza�on problems small groups of scalars occur together. For example the three
components of a transla�on vector and the four components of the quaternion that define the
pose of a camera. We refer to such a group of scalars as a parameter block. Of course a parameter
block can be just a single scalar too.

 is a LossFunction . A LossFunction  is a scalar valued func�on that is used to reduce the influence
of outliers on the solu�on of non-linear least squares problems.

 and  are lower and upper bounds on the parameter block .

As a special case, when , i.e., the iden�ty func�on, and  and  we get the
more familiar unconstrained non-linear least squares problem.

(2)¶

CostFunction

For each term in the objec�ve func�on, a CostFunction  is responsible for compu�ng a vector of
residuals and Jacobian matrices. Concretely, consider a func�on  that depends on
parameter blocks .

Then, given , CostFunction  is responsible for compu�ng the vector  and
the Jacobian matrices

class CostFunction { 
 public: 
  virtual bool Evaluate(double const* const* parameters, 
                        double* residuals, 
                        double** jacobians) = 0; 
  const vector<int32>& parameter_block_sizes(); 
  int num_residuals() const; 
 
 protected: 
  vector<int32>* mutable_parameter_block_sizes(); 
  void set_num_residuals(int num_residuals); 
}; 
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The signature of the CostFunction  (number and sizes of input parameter blocks and number of
outputs) is stored in CostFunction::parameter_block_sizes_  and CostFunction::num_residuals_

respec�vely. User code inheri�ng from this class is expected to set these two members with the
corresponding accessors. This informa�on will be verified by the Problem  when added with
Problem::AddResidualBlock() .

Compute the residual vector and the Jacobian matrices.

parameters  is an array of arrays of size CostFunction::parameter_block_sizes_.size()  and
parameters[i]  is an array of size parameter_block_sizes_[i]  that contains the  parameter block

that the CostFunction  depends on.

parameters  is never nullptr .

residuals  is an array of size num_residuals_ .

residuals  is never nullptr .

jacobians  is an array of arrays of size CostFunction::parameter_block_sizes_.size() .

If jacobians  is nullptr , the user is only expected to compute the residuals.

jacobians[i]  is a row-major array of size num_residuals x parameter_block_sizes_[i] .

If jacobians[i]  is not nullptr , the user is required to compute the Jacobian of the residual
vector with respect to parameters[i]  and store it in this array, i.e.

jacobians[i][r * parameter_block_sizes_[i] + c]  = 

If jacobians[i]  is nullptr , then this computa�on can be skipped. This is the case when the
corresponding parameter block is marked constant.

The return value indicates whether the computa�on of the residuals and/or jacobians was
successful or not. This can be used to communicate numerical failures in Jacobian computa�ons
for instance.

SizedCostFunction

If the size of the parameter blocks and the size of the residual vector is known at compile �me
(this is the common case), SizeCostFunction  can be used where these values can be specified as
template parameters and the user only needs to implement CostFunction::Evaluate() .

template<int kNumResiduals, int... Ns> 
class SizedCostFunction : public CostFunction { 
 public: 
  virtual bool Evaluate(double const* const* parameters, 
                        double* residuals, 
                        double** jacobians) const = 0; 
}; 

 

AutoDiffCostFunction

Defining a CostFunction  or a SizedCostFunction  can be a tedious and error prone especially
when compu�ng deriva�ves. To this end Ceres provides automa�c differen�a�on.

template <typename CostFunctor, 
       int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC. 
       int... Ns>          // Size of each parameter block 
class AutoDiffCostFunction : public 
SizedCostFunction<kNumResiduals, Ns> { 
 public: 
  AutoDiffCostFunction(CostFunctor* functor, ownership = TAKE_OWNERSHIP); 
  // Ignore the template parameter kNumResiduals and use 
  // num_residuals instead. 
  AutoDiffCostFunction(CostFunctor* functor, 
                       int num_residuals, 
                       ownership = TAKE_OWNERSHIP); 
}; 

 

bool CostFunction::Evaluate(double const  *const  *parameters, double *residuals, double **jacobians)
 

ith

∂residual[r]
∂parameters[i][c]

class SizedCostFunction  

class AutoDiffCostFunction  
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To get an auto differen�ated cost func�on, you must define a class with a templated operator()

(a functor) that computes the cost func�on in terms of the template parameter T . The autodiff
framework subs�tutes appropriate Jet  objects for T  in order to compute the deriva�ve when
necessary, but this is hidden, and you should write the func�on as if T  were a scalar type (e.g. a
double-precision floa�ng point number).

The func�on must write the computed value in the last argument (the only non- const  one) and
return true to indicate success.

For example, consider a scalar error , where both  and  are two-dimensional
vector parameters and  is a constant. The form of this error, which is the difference between a
constant and an expression, is a common pa�ern in least squares problems. For example, the
value  might be the model expecta�on for a series of measurements, where there is an
instance of the cost func�on for each measurement .

The actual cost added to the total problem is , or ; however, the squaring is
implicitly done by the op�miza�on framework.

To write an auto-differen�able cost func�on for the above model, first define the object

class MyScalarCostFunctor { 
  MyScalarCostFunctor(double k): k_(k) {} 
 
  template <typename T> 
  bool operator()(const T* const x , const T* const y, T* e) const { 
    e[0] = k_ - x[0] * y[0] - x[1] * y[1]; 
    return true; 
  } 
 
 private: 
  double k_; 
}; 

 

Note that in the declara�on of operator()  the input parameters x  and y  come first, and are
passed as const pointers to arrays of T . If there were three input parameters, then the third
input parameter would come a�er y . The output is always the last parameter, and is also a
pointer to an array. In the example above, e  is a scalar, so only e[0]  is set.

Then given this class defini�on, the auto differen�ated cost func�on for it can be constructed
as follows.

CostFunction* cost_function 
    = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>( 
        new MyScalarCostFunctor(1.0));              ^  ^  ^ 
                                                    |  |  | 
                        Dimension of residual ------+  |  | 
                        Dimension of x ----------------+  | 
                        Dimension of y -------------------+ 

 

In this example, there is usually an instance for each measurement of k .

In the instan�a�on above, the template parameters following MyScalarCostFunction , <1, 2, 2>

describe the functor as compu�ng a 1-dimensional output from two arguments, both 2-
dimensional.

By default AutoDiffCostFunction  will take ownership of the cost functor pointer passed to it, ie.
will call delete on the cost functor when the AutoDiffCostFunction  itself is deleted. However, this
may be undesirable in certain cases, therefore it is also possible to specify DO_NOT_TAKE_OWNERSHIP

as a second argument in the constructor, while passing a pointer to a cost functor which does
not need to be deleted by the AutoDiffCostFunc�on. For example:

MyScalarCostFunctor functor(1.0) 
CostFunction* cost_function 
    = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>( 
        &functor, DO_NOT_TAKE_OWNERSHIP); 

 

AutoDiffCostFunction  also supports cost func�ons with a run�me-determined number of
residuals. For example:
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CostFunction* cost_function 
    = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>( 
        new CostFunctorWithDynamicNumResiduals(1.0),   ^     ^  ^ 
        runtime_number_of_residuals); <----+           |     |  | 
                                           |           |     |  | 
                                           |           |     |  | 
          Actual number of residuals ------+           |     |  | 
          Indicate dynamic number of residuals --------+     |  | 
          Dimension of x ------------------------------------+  | 
          Dimension of y ---------------------------------------+ 

 

WARNING 1 A common beginner’s error when first using AutoDiffCostFunction  is to get the
sizing wrong. In par�cular, there is a tendency to set the template parameters to (dimension of
residual, number of parameters) instead of passing a dimension parameter for every parameter
block. In the example above, that would be <MyScalarCostFunction, 1, 2> , which is missing the 2
as the last template argument.

DynamicAutoDiffCostFunction

AutoDiffCostFunction  requires that the number of parameter blocks and their sizes be known at
compile �me. In a number of applica�ons, this is not enough e.g., Bezier curve fi�ng, Neural
Network training etc.

template <typename CostFunctor, int Stride = 4> 
class DynamicAutoDiffCostFunction : public CostFunction { 
}; 

 

In such cases DynamicAutoDiffCostFunction  can be used. Like AutoDiffCostFunction  the user must
define a templated functor, but the signature of the functor differs slightly. The expected
interface for the cost functors is:

struct MyCostFunctor { 
  template<typename T> 
  bool operator()(T const* const* parameters, T* residuals) const { 
  } 
} 

 

Since the sizing of the parameters is done at run�me, you must also specify the sizes a�er
crea�ng the dynamic autodiff cost func�on. For example:

DynamicAutoDiffCostFunction<MyCostFunctor, 4>* cost_function = 
  new DynamicAutoDiffCostFunction<MyCostFunctor, 4>( 
    new MyCostFunctor()); 
cost_function->AddParameterBlock(5); 
cost_function->AddParameterBlock(10); 
cost_function->SetNumResiduals(21); 

 

Under the hood, the implementa�on evaluates the cost func�on mul�ple �mes, compu�ng a
small set of the deriva�ves (four by default, controlled by the Stride  template parameter) with
each pass. There is a performance tradeoff with the size of the passes; Smaller sizes are more
cache efficient but result in larger number of passes, and larger stride lengths can destroy
cache-locality while reducing the number of passes over the cost func�on. The op�mal value
depends on the number and sizes of the various parameter blocks.

As a rule of thumb, try using AutoDiffCostFunction  before you use DynamicAutoDiffCostFunction .

NumericDiffCostFunction

In some cases, its not possible to define a templated cost functor, for example when the
evalua�on of the residual involves a call to a library func�on that you do not have control over.
In such a situa�on, numerical differen�a�on can be used.

 Note

TODO(sameeragarwal): Add documenta�on for the constructor and for
NumericDiffOp�ons. Update DynamicNumericDiffOp�ons in a similar manner.

class DynamicAutoDiffCostFunction  

class NumericDiffCostFunction  
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template <typename CostFunctor, 
          NumericDiffMethodType method = CENTRAL, 
          int kNumResiduals,  // Number of residuals, or ceres::DYNAMIC. 
          int... Ns>          // Size of each parameter block. 
class NumericDiffCostFunction : public 
SizedCostFunction<kNumResiduals, Ns> { 
}; 

 

To get a numerically differen�ated CostFunction , you must define a class with a operator()  (a
functor) that computes the residuals. The functor must write the computed value in the last
argument (the only non- const  one) and return true  to indicate success. Please see
CostFunction  for details on how the return value may be used to impose simple constraints on

the parameter block. e.g., an object of the form

struct ScalarFunctor { 
 public: 
  bool operator()(const double* const x1, 
                  const double* const x2, 
                  double* residuals) const; 
} 

 

For example, consider a scalar error , where both  and  are two-dimensional
column vector parameters, the prime sign indicates transposi�on, and  is a constant. The form
of this error, which is the difference between a constant and an expression, is a common pa�ern
in least squares problems. For example, the value  might be the model expecta�on for a
series of measurements, where there is an instance of the cost func�on for each measurement 

.

To write an numerically-differen�able class:CostFunc�on for the above model, first define the
object

class MyScalarCostFunctor { 
  MyScalarCostFunctor(double k): k_(k) {} 
 
  bool operator()(const double* const x, 
                  const double* const y, 
                  double* residuals) const { 
    residuals[0] = k_ - x[0] * y[0] + x[1] * y[1];
    return true; 
  } 
 
 private: 
  double k_; 
}; 

 

Note that in the declara�on of operator()  the input parameters x  and y  come first, and are
passed as const pointers to arrays of double  s. If there were three input parameters, then the
third input parameter would come a�er y . The output is always the last parameter, and is also
a pointer to an array. In the example above, the residual is a scalar, so only residuals[0]  is set.

Then given this class defini�on, the numerically differen�ated CostFunction  with central
differences used for compu�ng the deriva�ve can be constructed as follows.

CostFunction* cost_function 
    = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>( 
        new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^ 
                                                          |     |  |  | 
                              Finite Differencing Scheme -+     |  |  | 
                              Dimension of residual ------------+  |  | 
                              Dimension of x ----------------------+  | 
                              Dimension of y -------------------------+ 

 

In this example, there is usually an instance for each measurement of k.

In the instan�a�on above, the template parameters following MyScalarCostFunctor , 1, 2, 2 ,
describe the functor as compu�ng a 1-dimensional output from two arguments, both 2-
dimensional.

NumericDiffCostFunc�on also supports cost func�ons with a run�me-determined number of
residuals. For example:

e = k − yx′ x y
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CostFunction* cost_function 
    = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>( 
        new CostFunctorWithDynamicNumResiduals(1.0),               ^     ^  ^ 
        TAKE_OWNERSHIP,                                            |     |  | 
        runtime_number_of_residuals); <----+                       |     |  | 
                                           |                       |     |  | 
                                           |                       |     |  | 
          Actual number of residuals ------+                       |     |  | 
          Indicate dynamic number of residuals --------------------+     |  | 
          Dimension of x ------------------------------------------------+  | 
          Dimension of y ---------------------------------------------------+ 

 

There are three available numeric differen�a�on schemes in ceres-solver:

The FORWARD  difference method, which approximates  by compu�ng , computes
the cost func�on one addi�onal �me at . It is the fastest but least accurate method.

The CENTRAL  difference method is more accurate at the cost of twice as many func�on

evalua�ons than forward difference, es�ma�ng  by compu�ng .

The RIDDERS  difference method[Ridders]_ is an adap�ve scheme that es�mates deriva�ves by
performing mul�ple central differences at varying scales. Specifically, the algorithm starts at a
certain  and as the deriva�ve is es�mated, this step size decreases. To conserve func�on
evalua�ons and es�mate the deriva�ve error, the method performs Richardson extrapola�ons
between the tested step sizes. The algorithm exhibits considerably higher accuracy, but does so
by addi�onal evalua�ons of the cost func�on.

Consider using CENTRAL  differences to begin with. Based on the results, either try forward
difference to improve performance or Ridders’ method to improve accuracy.

WARNING A common beginner’s error when first using NumericDiffCostFunction  is to get the
sizing wrong. In par�cular, there is a tendency to set the template parameters to (dimension of
residual, number of parameters) instead of passing a dimension parameter for every parameter.
In the example above, that would be <MyScalarCostFunctor, 1, 2> , which is missing the last 2

argument. Please be careful when se�ng the size parameters.

Numeric Differentiation & LocalParameterization
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If your cost func�on depends on a parameter block that must lie on a manifold and the functor
cannot be evaluated for values of that parameter block not on the manifold then you may have
problems numerically differen�a�ng such functors.

This is because numeric differen�a�on in Ceres is performed by perturbing the individual
coordinates of the parameter blocks that a cost functor depends on. In doing so, we assume
that the parameter blocks live in an Euclidean space and ignore the structure of manifold that
they live As a result some of the perturba�ons may not lie on the manifold corresponding to the
parameter block.

For example consider a four dimensional parameter block that is interpreted as a unit
Quaternion. Perturbing the coordinates of this parameter block will violate the unit norm
property of the parameter block.

Fixing this problem requires that NumericDiffCostFunction  be aware of the LocalParameterization

associated with each parameter block and only generate perturba�ons in the local tangent
space of each parameter block.

For now this is not considered to be a serious enough problem to warrant changing the
NumericDiffCostFunction  API. Further, in most cases it is rela�vely straigh�orward to project a

point off the manifold back onto the manifold before using it in the functor. For example in case
of the Quaternion, normalizing the 4-vector before using it does the trick.

Alternate Interface

For a variety of reasons, including compa�bility with legacy code, NumericDiffCostFunction  can
also take CostFunction  objects as input. The following describes how.

To get a numerically differen�ated cost func�on, define a subclass of CostFunction  such that the
CostFunction::Evaluate()  func�on ignores the jacobians  parameter. The numeric differen�a�on

wrapper will fill in the jacobian parameter if necessary by repeatedly calling the
CostFunction::Evaluate()  with small changes to the appropriate parameters, and compu�ng the

slope. For performance, the numeric differen�a�on wrapper class is templated on the concrete
cost func�on, even though it could be implemented only in terms of the CostFunction  interface.

The numerically differen�ated version of a cost func�on for a cost func�on can be constructed
as follows:

CostFunction* cost_function 
    = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>( 
        new MyCostFunction(...), TAKE_OWNERSHIP); 

 

where MyCostFunction  has 1 residual and 2 parameter blocks with sizes 4 and 8 respec�vely.
Look at the tests for a more detailed example.

DynamicNumericDiffCostFunction

Like AutoDiffCostFunction  NumericDiffCostFunction  requires that the number of parameter blocks
and their sizes be known at compile �me. In a number of applica�ons, this is not enough.

template <typename CostFunctor, NumericDiffMethodType method = CENTRAL> 
class DynamicNumericDiffCostFunction : public CostFunction { 
}; 

 

In such cases when numeric differen�a�on is desired, DynamicNumericDiffCostFunction  can be
used.

Like NumericDiffCostFunction  the user must define a functor, but the signature of the functor
differs slightly. The expected interface for the cost functors is:

struct MyCostFunctor { 
  bool operator()(double const* const* parameters, double* residuals) const { 
  } 
} 

 

class DynamicNumericDiffCostFunction  



Since the sizing of the parameters is done at run�me, you must also specify the sizes a�er
crea�ng the dynamic numeric diff cost func�on. For example:

DynamicNumericDiffCostFunction<MyCostFunctor>* cost_function = 
  new DynamicNumericDiffCostFunction<MyCostFunctor>(new MyCostFunctor); 
cost_function->AddParameterBlock(5); 
cost_function->AddParameterBlock(10); 
cost_function->SetNumResiduals(21); 

 

As a rule of thumb, try using NumericDiffCostFunction  before you use
DynamicNumericDiffCostFunction .

WARNING The same cau�on about mixing local parameteriza�ons with numeric differen�a�on
applies as is the case with NumericDiffCostFunction .

CostFunctionToFunctor

class CostFunctionToFunctor  



CostFunctionToFunctor  is an adapter class that allows users to use CostFunction  objects in
templated functors which are to be used for automa�c differen�a�on. This allows the user
to seamlessly mix analy�c, numeric and automa�c differen�a�on.

For example, let us assume that

class IntrinsicProjection : public SizedCostFunction<2, 5, 3> { 
  public: 
    IntrinsicProjection(const double* observation); 
    virtual bool Evaluate(double const* const* parameters, 
                          double* residuals, 
                          double** jacobians) const; 
}; 

 

is a CostFunction  that implements the projec�on of a point in its local coordinate system
onto its image plane and subtracts it from the observed point projec�on. It can compute its
residual and either via analy�c or numerical differen�a�on can compute its jacobians.

Now we would like to compose the ac�on of this CostFunction  with the ac�on of camera
extrinsics, i.e., rota�on and transla�on. Say we have a templated func�on

template<typename T> 
void RotateAndTranslatePoint(const T* rotation, 
                             const T* translation, 
                             const T* point, 
                             T* result); 

 

Then we can now do the following,

struct CameraProjection { 
  CameraProjection(double* observation) 
  : intrinsic_projection_(new IntrinsicProjection(observation)) { 
  } 
 
  template <typename T> 
  bool operator()(const T* rotation, 
                  const T* translation, 
                  const T* intrinsics, 
                  const T* point, 
                  T* residual) const { 
    T transformed_point[3]; 
    RotateAndTranslatePoint(rotation, translation, point, transformed_point); 
 
    // Note that we call intrinsic_projection_, just like it was 
    // any other templated functor. 
    return intrinsic_projection_(intrinsics, transformed_point, residual); 
  } 
 
 private: 
  CostFunctionToFunctor<2,5,3> intrinsic_projection_; 
}; 

 

Note that CostFunctionToFunctor  takes ownership of the CostFunction  that was passed in to
the constructor.

In the above example, we assumed that IntrinsicProjection  is a CostFunction  capable of
evalua�ng its value and its deriva�ves. Suppose, if that were not the case and
IntrinsicProjection  was defined as follows:

struct IntrinsicProjection { 
  IntrinsicProjection(const double* observation) { 
    observation_[0] = observation[0]; 
    observation_[1] = observation[1]; 
  } 
 
  bool operator()(const double* calibration, 
                  const double* point, 
                  double* residuals) const { 
    double projection[2]; 
    ThirdPartyProjectionFunction(calibration, point, projection); 
    residuals[0] = observation_[0] - projection[0]; 
    residuals[1] = observation_[1] - projection[1]; 
    return true; 
  } 
  double observation_[2]; 
}; 

 



Here ThirdPartyProjectionFunction  is some third party library func�on that we have no control
over. So this func�on can compute its value and we would like to use numeric differen�a�on to
compute its deriva�ves. In this case we can use a combina�on of NumericDiffCostFunction  and
CostFunctionToFunctor  to get the job done.

struct CameraProjection { 
  CameraProjection(double* observation) 
     : intrinsic_projection_( 
           new NumericDiffCostFunction<IntrinsicProjection, CENTRAL, 2, 5, 3>( 
               new IntrinsicProjection(observation))) {} 
 
  template <typename T> 
  bool operator()(const T* rotation, 
                  const T* translation, 
                  const T* intrinsics, 
                  const T* point, 
                  T* residuals) const { 
    T transformed_point[3]; 
    RotateAndTranslatePoint(rotation, translation, point, transformed_point); 
    return intrinsic_projection_(intrinsics, transformed_point, residuals); 
  } 
 
 private: 
  CostFunctionToFunctor<2, 5, 3> intrinsic_projection_; 
}; 

 

DynamicCostFunctionToFunctor

DynamicCostFunctionToFunctor  provides the same func�onality as CostFunctionToFunctor  for cases
where the number and size of the parameter vectors and residuals are not known at compile-
�me. The API provided by DynamicCostFunctionToFunctor  matches what would be expected by
DynamicAutoDiffCostFunction , i.e. it provides a templated functor of this form:

template<typename T> 
bool operator()(T const* const* parameters, T* residuals) const; 

 

Similar to the example given for CostFunctionToFunctor , let us assume that

class IntrinsicProjection : public CostFunction { 
  public: 
    IntrinsicProjection(const double* observation); 
    virtual bool Evaluate(double const* const* parameters, 
                          double* residuals, 
                          double** jacobians) const; 
}; 

 

is a CostFunction  that projects a point in its local coordinate system onto its image plane and
subtracts it from the observed point projec�on.

Using this CostFunction  in a templated functor would then look like this:

struct CameraProjection { 
  CameraProjection(double* observation) 
      : intrinsic_projection_(new IntrinsicProjection(observation)) { 
  } 
 
  template <typename T> 
  bool operator()(T const* const* parameters, 
                  T* residual) const { 
    const T* rotation = parameters[0]; 
    const T* translation = parameters[1]; 
    const T* intrinsics = parameters[2]; 
    const T* point = parameters[3]; 
 
    T transformed_point[3]; 
    RotateAndTranslatePoint(rotation, translation, point, transformed_point); 
 
    const T* projection_parameters[2]; 
    projection_parameters[0] = intrinsics; 
    projection_parameters[1] = transformed_point; 
    return intrinsic_projection_(projection_parameters, residual); 
  } 
 
 private: 
  DynamicCostFunctionToFunctor intrinsic_projection_; 
}; 

 

class DynamicCostFunctionToFunctor  



Like CostFunctionToFunctor , DynamicCostFunctionToFunctor  takes ownership of the CostFunction

that was passed in to the constructor.

ConditionedCostFunction

This class allows you to apply different condi�oning to the residual values of a wrapped cost
func�on. An example where this is useful is where you have an exis�ng cost func�on that
produces N values, but you want the total cost to be something other than just the sum of these
squared values - maybe you want to apply a different scaling to some values, to change their
contribu�on to the cost.

Usage:

//  my_cost_function produces N residuals 
CostFunction* my_cost_function = ... 
CHECK_EQ(N, my_cost_function->num_residuals()); 
vector<CostFunction*> conditioners; 
 
//  Make N 1x1 cost functions (1 parameter, 1 residual) 
CostFunction* f_1 = ... 
conditioners.push_back(f_1); 
 
CostFunction* f_N = ... 
conditioners.push_back(f_N); 
ConditionedCostFunction* ccf = 
  new ConditionedCostFunction(my_cost_function, conditioners); 

 

Now ccf  ‘s residual[i]  (i=0..N-1) will be passed though the  condi�oner.

ccf_residual[i] = f_i(my_cost_function_residual[i]) 

 

and the Jacobian will be affected appropriately.

GradientChecker

This class compares the Jacobians returned by a cost func�on against deriva�ves es�mated
using finite differencing. It is meant as a tool for unit tes�ng, giving you more fine-grained
control than the check_gradients op�on in the solver op�ons.

The condi�on enforced is that

where  is the jacobian as computed by the supplied cost func�on (by the user) mul�plied
by the local parameteriza�on Jacobian,  is the jacobian as computed by finite differences,
mul�plied by the local parameteriza�on Jacobian as well, and  is the rela�ve precision.

Usage:

//  my_cost_function takes two parameter blocks. The first has a local 
//  parameterization associated with it. 
CostFunction* my_cost_function = ... 
LocalParameterization* my_parameterization = ... 
NumericDiffOptions numeric_diff_options; 
 
std::vector<LocalParameterization*> local_parameterizations; 
local_parameterizations.push_back(my_parameterization); 
local_parameterizations.push_back(nullptr); 
 
std::vector parameter1; 
std::vector parameter2; 
// Fill parameter 1 & 2 with test data... 
 
std::vector<double*> parameter_blocks; 
parameter_blocks.push_back(parameter1.data()); 
parameter_blocks.push_back(parameter2.data()); 
 
GradientChecker gradient_checker(my_cost_function, 
    local_parameterizations, numeric_diff_options); 
GradientCheckResults results; 
if (!gradient_checker.Probe(parameter_blocks.data(), 1e-9, &results) { 
  LOG(ERROR) << "An error has occurred:\n" << results.error_log; 
} 

class ConditionedCostFunction  
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NormalPrior

class NormalPrior: public CostFunction { 
 public: 
  // Check that the number of rows in the vector b are the same as the 
  // number of columns in the matrix A, crash otherwise. 
  NormalPrior(const Matrix& A, const Vector& b); 
 
  virtual bool Evaluate(double const* const* parameters, 
                        double* residuals, 
                        double** jacobians) const; 
 }; 

 

Implements a cost func�on of the form

where, the matrix  and the vector  are fixed and  is the variable. In case the user is
interested in implemen�ng a cost func�on of the form

where,  is a vector and  is a covariance matrix, then, , i.e the matrix  is the square
root of the inverse of the covariance, also known as the s�ffness matrix. There are however no
restric�ons on the shape of . It is free to be rectangular, which would be the case if the
covariance matrix  is rank deficient.

LossFunction

For least squares problems where the minimiza�on may encounter input terms that contain
outliers, that is, completely bogus measurements, it is important to use a loss func�on that
reduces their influence.

Consider a structure from mo�on problem. The unknowns are 3D points and camera
parameters, and the measurements are image coordinates describing the expected reprojected
posi�on for a point in a camera. For example, we want to model the geometry of a street scene
with fire hydrants and cars, observed by a moving camera with unknown parameters, and the
only 3D points we care about are the pointy �ppy-tops of the fire hydrants. Our magic image
processing algorithm, which is responsible for producing the measurements that are input to
Ceres, has found and matched all such �ppy-tops in all image frames, except that in one of the
frame it mistook a car’s headlight for a hydrant. If we didn’t do anything special the residual for
the erroneous measurement will result in the en�re solu�on ge�ng pulled away from the
op�mum to reduce the large error that would otherwise be a�ributed to the wrong
measurement.

Using a robust loss func�on, the cost for large residuals is reduced. In the example above, this
leads to outlier terms ge�ng down-weighted so they do not overly influence the final solu�on.

class LossFunction { 
 public: 
  virtual void Evaluate(double s, double out[3]) const = 0; 
}; 

 

The key method is LossFunction::Evaluate() , which given a non-nega�ve scalar s , computes

Here the conven�on is that the contribu�on of a term to the cost func�on is given by ,
where . Calling the method with a nega�ve value of  is an error and the
implementa�ons are not required to handle that case.

Most sane choices of  sa�sfy:

class NormalPrior  
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so that they mimic the squared cost for small residuals.

Scaling

Given one robus�fier  one can change the length scale at which robus�fica�on takes place,
by adding a scale factor  which gives us  and the first and second
deriva�ves as  and  respec�vely.

The reason for the appearance of squaring is that  is in the units of the residual vector norm
whereas  is a squared norm. For applica�ons it is more convenient to specify  than its square.

Instances

Ceres includes a number of predefined loss func�ons. For simplicity we described their unscaled
versions. The figure below illustrates their shape graphically. More details can be found in
include/ceres/loss_function.h .

Shape of the various common loss func�ons.

Given two loss func�ons f  and g , implements the loss func�on h(s) = f(g(s)) .
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(0)ρ′
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class TrivialLoss  

ρ(s) = s

class HuberLoss  
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class SoftLOneLoss  

ρ(s) = 2( − 1)1 + s
− −−−

√

class CauchyLoss  

ρ(s) = log(1 + s)

class ArctanLoss  

ρ(s) = arctan(s)

class TolerantLoss  

ρ(s, a, b) = b log(1 + ) − b log(1 + )e(s−a)/b e−a/b

class ComposedLoss  
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class ComposedLoss : public LossFunction { 
 public: 
  explicit ComposedLoss(const LossFunction* f, 
                        Ownership ownership_f, 
                        const LossFunction* g, 
                        Ownership ownership_g); 
}; 

 

Some�mes you want to simply scale the output value of the robus�fier. For example, you might
want to weight different error terms differently (e.g., weight pixel reprojec�on errors differently
from terrain errors).

Given a loss func�on  and a scalar , ScaledLoss  implements the func�on .

Since we treat a nullptr  Loss func�on as the Iden�ty loss func�on,  = nullptr : is a valid
input and will result in the input being scaled by . This provides a simple way of implemen�ng
a scaled ResidualBlock.

Some�mes a�er the op�miza�on problem has been constructed, we wish to mutate the scale
of the loss func�on. For example, when performing es�ma�on from data which has substan�al
outliers, convergence can be improved by star�ng out with a large scale, op�mizing the problem
and then reducing the scale. This can have be�er convergence behavior than just using a loss
func�on with a small scale.

This templated class allows the user to implement a loss func�on whose scale can be mutated
a�er an op�miza�on problem has been constructed, e.g,

Problem problem; 
 
// Add parameter blocks
 
CostFunction* cost_function = 
    new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>( 
        new UW_Camera_Mapper(feature_x, feature_y)); 
 
LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP); 
problem.AddResidualBlock(cost_function, loss_function, parameters); 
 
Solver::Options options; 
Solver::Summary summary; 
Solve(options, &problem, &summary); 
 
loss_function->Reset(new HuberLoss(1.0), TAKE_OWNERSHIP); 
Solve(options, &problem, &summary); 

 

Theory

Let us consider a problem with a single parameter block.

Then, the robus�fied gradient and the Gauss-Newton Hessian are

where the terms involving the second deriva�ves of  have been ignored. Note that  is
indefinite if . If this is not the case, then its possible to re-weight the
residual and the Jacobian matrix such that the robus�fied Gauss-Newton step corresponds to an
ordinary linear least squares problem.

Let  be a root of

Then, define the rescaled residual and Jacobian as

class ScaledLoss  
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In the case , we limit  for some small . For more details see [Triggs].

With this simple rescaling, one can apply any Jacobian based non-linear least squares algorithm to
robus�fied non-linear least squares problems.

LocalParameterization

In many op�miza�on problems, especially sensor fusion problems, one has to model quan��es
that live in spaces known as Manifolds , for example the rota�on/orienta�on of a sensor that is
represented by a Quaternion.

Manifolds are spaces, which locally look like Euclidean spaces. More precisely, at each point on
the manifold there is a linear space that is tangent to the manifold. It has dimension equal to the
intrinsic dimension of the manifold itself, which is less than or equal to the ambient space in
which the manifold is embedded.

For example, the tangent space to a point on a sphere in three dimensions is the two
dimensional plane that is tangent to the sphere at that point. There are two reasons tangent
spaces are interes�ng:

1. They are Euclidean spaces, so the usual vector space opera�ons apply there, which makes
numerical opera�ons easy.

2. Movement in the tangent space translate into movements along the manifold. Movements
perpendicular to the tangent space do not translate into movements on the manifold.

Returning to our sphere example, moving in the 2 dimensional plane tangent to the sphere
and projec�ng back onto the sphere will move you away from the point you started from but
moving along the normal at the same point and the projec�ng back onto the sphere brings
you back to the point.

Besides the mathema�cal niceness, modeling manifold valued quan��es correctly and paying
a�en�on to their geometry has prac�cal benefits too:

1. It naturally constrains the quan�ty to the manifold through out the op�miza�on. Freeing the
user from hacks like quaternion normaliza�on.

2. It reduces the dimension of the op�miza�on problem to its natural size. For example, a
quan�ty restricted to a line, is a one dimensional object regardless of the dimension of the
ambient space in which this line lives.

Working in the tangent space reduces not just the computa�onal complexity of the
op�miza�on algorithm, but also improves the numerical behaviour of the algorithm.

A basic opera�on one can perform on a manifold is the  opera�on that computes the result of
moving along delta in the tangent space at x, and then projec�ng back onto the manifold that x
belongs to. Also known as a Retrac�on,  is a generaliza�on of vector addi�on in Euclidean
spaces. Formally,  is a smooth map from a manifold  and its tangent space  to the
manifold  that obeys the iden�ty

That is, it ensures that the tangent space is centered at  and the zero vector is the iden�ty
element. For more see [Hertzberg] and sec�on A.6.9 of [HartleyZisserman].

Let us consider two examples:

The Euclidean space  is the simplest example of a manifold. It has dimension  (and so does
its tangent space) and  is the familiar vector sum opera�on.

A more interes�ng case is , the special orthogonal group in three dimensions - the space
of 3x3 rota�on matrices.  is a three dimensional manifold embedded in  or .

 on  is defined using the Exponen�al map, from the tangent space ( ) to the manifold.
The Exponen�al map  is defined as:

(x)f
~
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~
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ρ′−−√

1 − α

= (1 − α ) J(x)ρ′
−−

√
f(x) (x)f ⊤

∥f(x)∥2

2 + ≲ 0ρ′′∥f(x)∥2
ρ′ α ≤ 1 − ϵ ϵ

class LocalParameterization  

⊞

⊞

⊞ M TM

M

⊞(x, 0) = x, ∀x.

x

Rn n

⊞

⊞(x, Δ) = x + Δ

SO(3)

SO(3) R9 R3×3

⊞ SO(3) R3

Exp

http://ceres-solver.org/bibliography.html#triggs
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
http://ceres-solver.org/bibliography.html#hertzberg
http://ceres-solver.org/bibliography.html#hartleyzisserman


where,

Then,

The LocalParameterization  interface allows the user to define and associate with parameter
blocks the manifold that they belong to. It does so by defining the Plus  ( ) opera�on and its
deriva�ve with respect to  at .

class LocalParameterization { 
 public: 
  virtual ~LocalParameterization() {} 
  virtual bool Plus(const double* x, 
                    const double* delta, 
                    double* x_plus_delta) const = 0; 
  virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0; 
  virtual bool MultiplyByJacobian(const double* x, 
                                  const int num_rows, 
                                  const double* global_matrix, 
                                  double* local_matrix) const; 
  virtual int GlobalSize() const = 0; 
  virtual int LocalSize() const = 0; 
}; 

 

The dimension of the ambient space in which the parameter block  lives.

The size of the tangent space that  lives in.

LocalParameterization::Plus()  implements .

Computes the Jacobian matrix

in row major form.

local_matrix = global_matrix * jacobian

global_matrix  is a num_rows x GlobalSize  row major matrix. local_matrix  is a
num_rows x LocalSize  row major matrix. jacobian  is the matrix returned by
LocalParameterization::ComputeJacobian()  at .

This is only used by GradientProblem . For most normal uses, it is okay to use the default
implementa�on.

Ceres Solver ships with a number of commonly used instances of LocalParameterization . Another
great place to find high quality implementa�ons of  opera�ons on a variety of manifolds is the
Sophus library developed by Hauke Strasdat and his collaborators.

IdentityParameterization

A trivial version of  is when  is of the same size as  and

This is the same as  living in a Euclidean manifold.
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QuaternionParameterization

Another example that occurs commonly in Structure from Mo�on problems is when camera
rota�ons are parameterized using a quaternion. This is a 3-dimensional manifold that lives in 4-
dimensional space.

The mul�plica�on  between the two 4-vectors on the right hand side is the standard quaternion
product.

EigenQuaternionParameterization

Eigen uses a different internal memory layout for the elements of the quaternion than what is
commonly used. Specifically, Eigen stores the elements in memory as , i.e., the real part (

) is stored as the last element. Note, when crea�ng an Eigen quaternion through the constructor
the elements are accepted in  order.

Since Ceres operates on parameter blocks which are raw double  pointers this difference is
important and requires a different parameteriza�on. EigenQuaternionParameterization  uses the same
Plus  opera�on as QuaternionParameterization  but takes into account Eigen’s internal memory

element ordering.

SubsetParameterization

Suppose  is a two dimensional vector, and the user wishes to hold the first coordinate constant.
Then,  is a scalar and  is defined as

SubsetParameterization  generalizes this construc�on to hold any part of a parameter block constant
by specifying the set of coordinates that are held constant.

 Note

It is legal to hold all coordinates of a parameter block to constant using a SubsetParameterization .
It is the same as calling Problem::SetParameterBlockConstant()  on that parameter block.

HomogeneousVectorParameterization

In computer vision, homogeneous vectors are commonly used to represent objects in projec�ve
geometry such as points in projec�ve space. One example where it is useful to use this over-
parameteriza�on is in represen�ng points whose triangula�on is ill-condi�oned. Here it is
advantageous to use homogeneous vectors, instead of an Euclidean vector, because it can
represent points at and near infinity.

HomogeneousVectorParameterization  defines a LocalParameterization  for an  dimensional manifold
that embedded in  dimensional space where the scale of the vector does not ma�er, i.e., elements
of the projec�ve space . It assumes that the last coordinate of the -vector is the scalar
component of the homogenous vector, i.e., finite points in this representa�on are those for which
the scalar component is non-zero.

Further, HomogeneousVectorParameterization::Plus  preserves the scale of .

LineParameterization

This class provides a parameteriza�on for lines, where the line is defined using an origin point and a
direc�on vector. So the parameter vector size needs to be two �mes the ambient space dimension,
where the first half is interpreted as the origin point and the second half as the direc�on. This local
parameteriza�on is a special case of the Affine Grassmannian manifold for the case .

Note that this is a parameteriza�on for a line, rather than a point constrained to lie on a line. It is
useful when one wants to op�mize over the space of lines. For example,  dis�nct points in 3D
(measurements) we want to find the line that minimizes the sum of squared distances to all the
points.
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ProductParameterization

Consider an op�miza�on problem over the space of rigid transforma�ons , which is the
Cartesian product of  and . Suppose you are using Quaternions to represent the rota�on,
Ceres ships with a local parameteriza�on for that and  requires no, or IdentityParameterization

parameteriza�on. So how do we construct a local parameteriza�on for a parameter block a rigid
transforma�on?

In cases, where a parameter block is the Cartesian product of a number of manifolds and you have
the local parameteriza�on of the individual manifolds available, ProductParameterization  can be used
to construct a local parameteriza�on of the cartesian product. For the case of the rigid
transforma�on, where say you have a parameter block of size 7, where the first four entries
represent the rota�on as a quaternion, a local parameteriza�on can be constructed as

ProductParameterization se3_param(new QuaternionParameterization(), 
                                  new IdentityParameterization(3)); 

 

AutoDiffLocalParameterization

AutoDiffLocalParameterization  does for LocalParameterization  what AutoDiffCostFunction  does for
CostFunction . It allows the user to define a templated functor that implements the
LocalParameterization::Plus()  opera�on and it uses automa�c differen�a�on to implement the

computa�on of the Jacobian.

To get an auto differen�ated local parameteriza�on, you must define a class with a templated
operator() (a functor) that computes

For example, Quaternions have a three dimensional local parameteriza�on. Its plus opera�on
can be implemented as (taken from internal/ceres/autodiff_local_parameteriza�on_test.cc )

struct QuaternionPlus { 
  template<typename T> 
  bool operator()(const T* x, const T* delta, T* x_plus_delta) const { 
    const T squared_norm_delta = 
        delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2]; 
 
    T q_delta[4]; 
    if (squared_norm_delta > 0.0) { 
      T norm_delta = sqrt(squared_norm_delta); 
      const T sin_delta_by_delta = sin(norm_delta) / norm_delta; 
      q_delta[0] = cos(norm_delta); 
      q_delta[1] = sin_delta_by_delta * delta[0]; 
      q_delta[2] = sin_delta_by_delta * delta[1]; 
      q_delta[3] = sin_delta_by_delta * delta[2]; 
    } else { 
      // We do not just use q_delta = [1,0,0,0] here because that is a 
      // constant and when used for automatic differentiation will 
      // lead to a zero derivative. Instead we take a first order 
      // approximation and evaluate it at zero. 
      q_delta[0] = T(1.0); 
      q_delta[1] = delta[0]; 
      q_delta[2] = delta[1]; 
      q_delta[3] = delta[2]; 
    } 
 
    Quaternionproduct(q_delta, x, x_plus_delta); 
    return true; 
  } 
}; 

 

Given this struct, the auto differen�ated local parameteriza�on can now be constructed as

LocalParameterization* local_parameterization = 
    new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>; 
                                                      |  | 
                           Global Size ---------------+  | 
                           Local Size -------------------+ 

 

Problem
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Problem  holds the robus�fied bounds constrained non-linear least squares problem (1). To
create a least squares problem, use the Problem::AddResidalBlock()  and
Problem::AddParameterBlock()  methods.

For example a problem containing 3 parameter blocks of sizes 3, 4 and 5 respec�vely and two
residual blocks of size 2 and 6:

double x1[] = { 1.0, 2.0, 3.0 }; 
double x2[] = { 1.0, 2.0, 3.0, 5.0 }; 
double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 }; 
 
Problem problem; 
problem.AddResidualBlock(new MyUnaryCostFunction(...), x1); 
problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3); 

 

Problem::AddResidualBlock()  as the name implies, adds a residual block to the problem. It adds a
CostFunction , an op�onal LossFunction  and connects the CostFunction  to a set of parameter

block.

The cost func�on carries with it informa�on about the sizes of the parameter blocks it expects.
The func�on checks that these match the sizes of the parameter blocks listed in
parameter_blocks . The program aborts if a mismatch is detected. loss_function  can be nullptr ,

in which case the cost of the term is just the squared norm of the residuals.

The user has the op�on of explicitly adding the parameter blocks using
Problem::AddParameterBlock() . This causes addi�onal correctness checking; however,
Problem::AddResidualBlock()  implicitly adds the parameter blocks if they are not present, so

calling Problem::AddParameterBlock()  explicitly is not required.

Problem::AddParameterBlock()  explicitly adds a parameter block to the Problem . Op�onally it
allows the user to associate a LocalParameterization  object with the parameter block too.
Repeated calls with the same arguments are ignored. Repeated calls with the same double
pointer but a different size results in undefined behavior.

You can set any parameter block to be constant using Problem::SetParameterBlockConstant()  and
undo this using SetParameterBlockVariable() .

In fact you can set any number of parameter blocks to be constant, and Ceres is smart enough
to figure out what part of the problem you have constructed depends on the parameter blocks
that are free to change and only spends �me solving it. So for example if you constructed a
problem with a million parameter blocks and 2 million residual blocks, but then set all but one
parameter blocks to be constant and say only 10 residual blocks depend on this one non-
constant parameter block. Then the computa�onal effort Ceres spends in solving this problem
will be the same if you had defined a problem with one parameter block and 10 residual blocks.

Ownership

Problem  by default takes ownership of the cost_function , loss_function  and
local_parameterization  pointers. These objects remain live for the life of the Problem . If the user

wishes to keep control over the destruc�on of these objects, then they can do this by se�ng
the corresponding enums in the Problem::Options  struct.

Note that even though the Problem takes ownership of cost_function  and loss_function , it
does not preclude the user from re-using them in another residual block. The destructor takes
care to call delete on each cost_function  or loss_function  pointer only once, regardless of how
many residual blocks refer to them.

Op�ons struct that is used to control Problem .

Default: TAKE_OWNERSHIP

This op�on controls whether the Problem object owns the cost func�ons.

If set to TAKE_OWNERSHIP, then the problem object will delete the cost func�ons on
destruc�on. The destructor is careful to delete the pointers only once, since sharing cost
func�ons is allowed.

Default: TAKE_OWNERSHIP

class Problem::Options  

Ownership Problem::Options::cost_function_ownership  

Ownership Problem::Options::loss_function_ownership  



This op�on controls whether the Problem object owns the loss func�ons.

If set to TAKE_OWNERSHIP, then the problem object will delete the loss func�ons on
destruc�on. The destructor is careful to delete the pointers only once, since sharing loss
func�ons is allowed.

Default: TAKE_OWNERSHIP

This op�on controls whether the Problem object owns the local parameteriza�ons.

If set to TAKE_OWNERSHIP, then the problem object will delete the local parameteriza�ons on
destruc�on. The destructor is careful to delete the pointers only once, since sharing local
parameteriza�ons is allowed.

Default: false

If true, trades memory for faster Problem::RemoveResidualBlock()  and
Problem::RemoveParameterBlock()  opera�ons.

By default, Problem::RemoveParameterBlock()  and Problem::RemoveResidualBlock()  take �me
propor�onal to the size of the en�re problem. If you only ever remove parameters or residuals
from the problem occasionally, this might be acceptable. However, if you have memory to spare,
enable this op�on to make Problem::RemoveParameterBlock()  take �me propor�onal to the number
of residual blocks that depend on it, and Problem::RemoveResidualBlock()  take (on average)
constant �me.

The increase in memory usage is twofold: an addi�onal hash set per parameter block containing
all the residuals that depend on the parameter block; and a hash set in the problem containing
all residuals.

Default: false

By default, Ceres performs a variety of safety checks when construc�ng the problem. There is a
small but measurable performance penalty to these checks, typically around 5% of construc�on
�me. If you are sure your problem construc�on is correct, and 5% of the problem construc�on
�me is truly an overhead you want to avoid, then you can set disable_all_safety_checks to true.

WARNING Do not set this to true, unless you are absolutely sure of what you are doing.

Default: nullptr

A Ceres global context to use for solving this problem. This may help to reduce computa�on
�me as Ceres can reuse expensive objects to create. The context object can be nullptr, in which
case Ceres may create one.

Ceres does NOT take ownership of the pointer.

Default: nullptr

Using this callback interface, Ceres will no�fy you when it is about to evaluate the residuals or
Jacobians.

If an evaluation_callback  is present, Ceres will update the user’s parameter blocks to the values
that will be used when calling CostFunction::Evaluate()  before calling
EvaluationCallback::PrepareForEvaluation() . One can then use this callback to share (or cache)

computa�on between cost func�ons by doing the shared computa�on in
EvaluationCallback::PrepareForEvaluation()  before Ceres calls CostFunction::Evaluate() .

Problem does NOT take ownership of the callback.

 Note

Evalua�on callbacks are incompa�ble with inner itera�ons. So calling Solve with
Solver::Options::use_inner_iterations  set to true on a Problem  with a non-null evalua�on

callback is an error.

Ownership Problem::Options::local_parameterization_ownership  

bool Problem::Options::enable_fast_removal  

bool Problem::Options::disable_all_safety_checks  

Context *Problem::Options::context  

Evalua�onCallback *Problem::Options::evaluation_callback  

http://ceres-solver.org/nnls_solving.html#_CPPv4N5ceres6Solver7Options20use_inner_iterationsE


Add a residual block to the overall cost func�on. The cost func�on carries with it informa�on
about the sizes of the parameter blocks it expects. The func�on checks that these match the
sizes of the parameter blocks listed in parameter_blocks. The program aborts if a mismatch is
detected. loss_func�on can be nullptr, in which case the cost of the term is just the squared
norm of the residuals.

The parameter blocks may be passed together as a vector<double*> , or double*  pointers.

The user has the op�on of explicitly adding the parameter blocks using AddParameterBlock.
This causes addi�onal correctness checking; however, AddResidualBlock implicitly adds the
parameter blocks if they are not present, so calling AddParameterBlock explicitly is not required.

The Problem object by default takes ownership of the cost_func�on and loss_func�on pointers.
These objects remain live for the life of the Problem object. If the user wishes to keep control
over the destruc�on of these objects, then they can do this by se�ng the corresponding enums
in the Op�ons struct.

Note: Even though the Problem takes ownership of cost_func�on and loss_func�on, it does not
preclude the user from re-using them in another residual block. The destructor takes care to call
delete on each cost_func�on or loss_func�on pointer only once, regardless of how many
residual blocks refer to them.

Example usage:

double x1[] = {1.0, 2.0, 3.0}; 
double x2[] = {1.0, 2.0, 5.0, 6.0}; 
double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0}; 
vector<double*> v1; 
v1.push_back(x1); 
vector<double*> v2; 
v2.push_back(x2); 
v2.push_back(x1); 
 
Problem problem; 
 
problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, x1); 
problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, x2, x1); 
problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, v1); 
problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, v2); 

 

Add a parameter block with appropriate size to the problem. Repeated calls with the same
arguments are ignored. Repeated calls with the same double pointer but a different size results
in undefined behavior.

Add a parameter block with appropriate size and parameteriza�on to the problem. Repeated
calls with the same arguments are ignored. Repeated calls with the same double pointer but a
different size results in undefined behavior.

Remove a residual block from the problem. Any parameters that the residual block depends on
are not removed. The cost and loss func�ons for the residual block will not get deleted
immediately; won’t happen un�l the problem itself is deleted. If
Problem::Op�ons::enable_fast_removal is true, then the removal is fast (almost constant �me).
Otherwise, removing a residual block will incur a scan of the en�re Problem object to verify that
the residual_block represents a valid residual in the problem.

WARNING: Removing a residual or parameter block will destroy the implicit ordering, rendering
the jacobian or residuals returned from the solver uninterpretable. If you depend on the
evaluated jacobian, do not use remove! This may change in a future release. Hold the indicated
parameter block constant during op�miza�on.

ResidualBlockId Problem::AddResidualBlock(CostFunc�on *cost_func�on, LossFunc�on *loss_func�on, 
const  vector<double*> parameter_blocks)  

template <typename Ts...> ResidualBlockId Problem::AddResidualBlock(CostFunction* cost_function, LossFunction* loss

void Problem::AddParameterBlock(double *values, int size, LocalParameteriza�on
*local_parameteriza�on)  

void Problem::AddParameterBlock(double *values, int size)  

void Problem::RemoveResidualBlock(ResidualBlockId residual_block)  

void Problem::RemoveParameterBlock(const  double *values)  



Remove a parameter block from the problem. The parameteriza�on of the parameter block, if it
exists, will persist un�l the dele�on of the problem (similar to cost/loss func�ons in residual
block removal). Any residual blocks that depend on the parameter are also removed, as
described above in RemoveResidualBlock(). If Problem::Op�ons::enable_fast_removal is true,
then the removal is fast (almost constant �me). Otherwise, removing a parameter block will
incur a scan of the en�re Problem object.

WARNING: Removing a residual or parameter block will destroy the implicit ordering, rendering
the jacobian or residuals returned from the solver uninterpretable. If you depend on the
evaluated jacobian, do not use remove! This may change in a future release.

Hold the indicated parameter block constant during op�miza�on.

Allow the indicated parameter to vary during op�miza�on.

Returns true  if a parameter block is set constant, and false otherwise. A parameter block may
be set constant in two ways: either by calling SetParameterBlockConstant  or by associa�ng a
LocalParameterization  with a zero dimensional tangent space with it.

Set the local parameteriza�on for one of the parameter blocks. The local_parameteriza�on is
owned by the Problem by default. It is acceptable to set the same parameteriza�on for mul�ple
parameters; the destructor is careful to delete local parameteriza�ons only once. Calling
SetParameteriza�on with nullptr will clear any previously set parameteriza�on.

Get the local parameteriza�on object associated with this parameter block. If there is no
parameteriza�on object associated then nullptr is returned

Set the lower bound for the parameter at posi�on index in the parameter block corresponding
to values. By default the lower bound is -std::numeric_limits<double>::max() , which is treated by
the solver as the same as .

Set the upper bound for the parameter at posi�on index in the parameter block corresponding
to values. By default the value is std::numeric_limits<double>::max() , which is treated by the
solver as the same as .

Get the lower bound for the parameter with posi�on index. If the parameter is not bounded by
the user, then its lower bound is -std::numeric_limits<double>::max() .

Get the upper bound for the parameter with posi�on index. If the parameter is not bounded by
the user, then its upper bound is std::numeric_limits<double>::max() .

Number of parameter blocks in the problem. Always equals parameter_blocks().size() and
parameter_block_sizes().size().

The size of the parameter vector obtained by summing over the sizes of all the parameter
blocks.

Number of residual blocks in the problem. Always equals residual_blocks().size().

void Problem::SetParameterBlockConstant(const  double *values)  

void Problem::SetParameterBlockVariable(double *values)  

bool Problem::IsParameterBlockConstant(const  double *values)const  

void Problem::SetParameterization(double *values, LocalParameteriza�on *local_parameteriza�on)  

LocalParameteriza�on *Problem::GetParameterization(const  double *values)const  

void Problem::SetParameterLowerBound(double *values, int index, double lower_bound)  

−∞

void Problem::SetParameterUpperBound(double *values, int index, double upper_bound)  

∞

double Problem::GetParameterLowerBound(const  double *values, int index)  

double Problem::GetParameterUpperBound(const  double *values, int index)  

int Problem::NumParameterBlocks()const  

int Problem::NumParameters()const  

int Problem::NumResidualBlocks()const  



The size of the residual vector obtained by summing over the sizes of all of the residual blocks.

The size of the parameter block.

The size of local parameteriza�on for the parameter block. If there is no local parameteriza�on
associated with this parameter block, then ParameterBlockLocalSize  = ParameterBlockSize .

Is the given parameter block present in the problem or not?

Fills the passed parameter_blocks  vector with pointers to the parameter blocks currently in the
problem. A�er this call, parameter_block.size() == NumParameterBlocks .

Fills the passed residual_blocks vector with pointers to the residual blocks currently in the
problem. A�er this call, residual_blocks.size() == NumResidualBlocks.

Get all the parameter blocks that depend on the given residual block.

Get all the residual blocks that depend on the given parameter block.

If Problem::Op�ons::enable_fast_removal is true, then ge�ng the residual blocks is fast and
depends only on the number of residual blocks. Otherwise, ge�ng the residual blocks for a
parameter block will incur a scan of the en�re Problem  object.

Get the CostFunction  for the given residual block.

Get the LossFunction  for the given residual block.

Evaluates the residual block, storing the scalar cost in cost , the residual components in
residuals , and the jacobians between the parameters and residuals in jacobians[i] , in row-

major order.

If residuals  is nullptr , the residuals are not computed.

If jacobians  is nullptr , no Jacobians are computed. If jacobians[i]  is nullptr , then the
Jacobian for that parameter block is not computed.

It is not okay to request the Jacobian w.r.t a parameter block that is constant.

The return value indicates the success or failure. Even if the func�on returns false, the caller
should expect the output memory loca�ons to have been modified.

The returned cost and jacobians have had robus�fica�on and local parameteriza�ons applied
already; for example, the jacobian for a 4-dimensional quaternion parameter using the
QuaternionParameterization  is num_residuals x 3  instead of num_residuals x 4 .

apply_loss_function  as the name implies allows the user to switch the applica�on of the loss
func�on on and off.

 Note

int Problem::NumResiduals()const  

int Problem::ParameterBlockSize(const  double *values)const  

int Problem::ParameterBlockLocalSize(const  double *values)const  

bool Problem::HasParameterBlock(const  double *values)const  

void Problem::GetParameterBlocks(vector<double*> *parameter_blocks)const  

void Problem::GetResidualBlocks(vector<ResidualBlockId> *residual_blocks)const  

void Problem::GetParameterBlocksForResidualBlock(const  ResidualBlockId residual_block,
vector<double*> *parameter_blocks)const  

void Problem::GetResidualBlocksForParameterBlock(const  double *values, vector<ResidualBlockId>
*residual_blocks)const  

const CostFunc�on *Problem::GetCostFunctionForResidualBlock(const  ResidualBlockId
residual_block)const  

const LossFunc�on *Problem::GetLossFunctionForResidualBlock(const  ResidualBlockId
residual_block)const  

bool EvaluateResidualBlock(ResidualBlockId residual_block_id, bool apply_loss_func�on, double *cost,
double *residuals, double **jacobians)const  



If an EvaluationCallback  is associated with the problem, then its
EvaluationCallback::PrepareForEvaluation()  method will be called every �me this method is

called with new_point = true. This conserva�vely assumes that the user may have changed
the parameter values since the previous call to evaluate / solve. For improved efficiency, and
only if you know that the parameter values have not changed between calls, see
Problem::EvaluateResidualBlockAssumingParametersUnchanged() .

Same as Problem::EvaluateResidualBlock()  except that if an EvaluationCallback  is associated with
the problem, then its EvaluationCallback::PrepareForEvaluation()  method will be called every �me
this method is called with new_point = false.

This means, if an EvaluationCallback  is associated with the problem then it is the user’s
responsibility to call EvaluationCallback::PrepareForEvaluation()  before calling this method if
necessary, i.e. iff the parameter values have been changed since the last call to evaluate / solve.’

This is because, as the name implies, we assume that the parameter blocks did not change since
the last �me EvaluationCallback::PrepareForEvaluation()  was called (via Solve() ,
Problem::Evaluate()  or Problem::EvaluateResidualBlock() ).

Evaluate a Problem . Any of the output pointers can be nullptr. Which residual blocks and
parameter blocks are used is controlled by the Problem::EvaluateOptions  struct below.

 Note

The evalua�on will use the values stored in the memory loca�ons pointed to by the
parameter block pointers used at the �me of the construc�on of the problem, for example in
the following code:

Problem problem; 
double x = 1;
problem.Add(new MyCostFunction, nullptr, &x); 
 
double cost = 0.0; 
problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr); 

 

The cost is evaluated at x = 1. If you wish to evaluate the problem at x = 2, then

x = 2; 
problem.Evaluate(Problem::EvaluateOptions(), &cost, nullptr, nullptr, nullptr); 

 

is the way to do so.

 Note

If no local parameteriza�ons are used, then the size of the gradient vector is the sum of the
sizes of all the parameter blocks. If a parameter block has a local parameteriza�on, then it
contributes “LocalSize” entries to the gradient vector.

 Note

This func�on cannot be called while the problem is being solved, for example it cannot be
called from an IterationCallback  at the end of an itera�on during a solve.

 Note

If an Evalua�onCallback is associated with the problem, then its PrepareForEvalua�on
method will be called every�me this method is called with new_point = true .

bool EvaluateResidualBlockAssumingParametersUnchanged(ResidualBlockId residual_block_id, bool
apply_loss_func�on, double *cost, double *residuals, double **jacobians)const  

bool Problem::Evaluate(const Problem::EvaluateOp�ons &op�ons, double *cost, vector<double>
*residuals, vector<double> *gradient, CRSMatrix *jacobian)  

class Problem::EvaluateOptions  

http://ceres-solver.org/gradient_solver.html#_CPPv45SolveRKN21GradientProblemSolver7OptionsERK15GradientProblemPdPN21GradientProblemSolver7SummaryE
http://ceres-solver.org/nnls_solving.html#_CPPv4N5ceres17IterationCallbackE
http://ceres-solver.org/nnls_solving.html#_CPPv4N5ceres9CRSMatrixE


Op�ons struct that is used to control Problem::Evaluate() .

The set of parameter blocks for which evalua�on should be performed. This vector determines
the order in which parameter blocks occur in the gradient vector and in the columns of the
jacobian matrix. If parameter_blocks is empty, then it is assumed to be equal to a vector
containing ALL the parameter blocks. Generally speaking the ordering of the parameter blocks
in this case depends on the order in which they were added to the problem and whether or not
the user removed any parameter blocks.

NOTE This vector should contain the same pointers as the ones used to add parameter blocks
to the Problem. These parameter block should NOT point to new memory loca�ons. Bad things
will happen if you do.

The set of residual blocks for which evalua�on should be performed. This vector determines the
order in which the residuals occur, and how the rows of the jacobian are ordered. If
residual_blocks is empty, then it is assumed to be equal to the vector containing all the residual
blocks.

Even though the residual blocks in the problem may contain loss func�ons, se�ng
apply_loss_func�on to false will turn off the applica�on of the loss func�on to the output of the
cost func�on. This is of use for example if the user wishes to analyse the solu�on quality by
studying the distribu�on of residuals before and a�er the solve.

Number of threads to use. (Requires OpenMP).

EvaluationCallback

Interface for receiving callbacks before Ceres evaluates residuals or Jacobians:

class EvaluationCallback { 
 public: 
  virtual ~EvaluationCallback() {} 
  virtual void PrepareForEvaluation()(bool evaluate_jacobians 
                                      bool new_evaluation_point) = 0; 
}; 

 

Ceres will call EvaluationCallback::PrepareForEvaluation()  every �me, and once before it
computes the residuals and/or the Jacobians.

User parameters (the double* values provided by the us) are fixed un�l the next call to
EvaluationCallback::PrepareForEvaluation() . If new_evaluation_point == true , then this is a new

point that is different from the last evaluated point. Otherwise, it is the same point that was
evaluated previously (either Jacobian or residual) and the user can use cached results from
previous evalua�ons. If evaluate_jacobians  is true, then Ceres will request Jacobians in the
upcoming cost evalua�on.

Using this callback interface, Ceres can no�fy you when it is about to evaluate the residuals or
Jacobians. With the callback, you can share computa�on between residual blocks by doing the
shared computa�on in EvaluationCallback::PrepareForEvaluation()  before Ceres calls
CostFunction::Evaluate()  on all the residuals. It also enables caching results between a pure

residual evalua�on and a residual & Jacobian evalua�on, via the new_evaluation_point  argument.

One use case for this callback is if the cost func�on compute is moved to the GPU. In that case,
the prepare call does the actual cost func�on evalua�on, and subsequent calls from Ceres to
the actual cost func�ons merely copy the results from the GPU onto the corresponding blocks
for Ceres to plug into the solver.

vector<double*> Problem::EvaluateOptions::parameter_blocks  

vector<ResidualBlockId> Problem::EvaluateOptions::residual_blocks  

bool Problem::EvaluateOptions::apply_loss_function  

int Problem::EvaluateOptions::num_threads  

class EvaluationCallback  

void EvaluationCallback::PrepareForEvaluation(bool evaluate_jacobians, bool new_evalua�on_point)
 



Note: Ceres provides no mechanism to share data other than the no�fica�on from the callback.
Users must provide access to pre-computed shared data to their cost func�ons behind the
scenes; this all happens without Ceres knowing. One approach is to put a pointer to the shared
data in each cost func�on (recommended) or to use a global shared variable (discouraged; bug-
prone). As far as Ceres is concerned, it is evalua�ng cost func�ons like any other; it just so
happens that behind the scenes the cost func�ons reuse pre-computed data to execute faster.

See evaluation_callback_test.cc  for code that explicitly verifies the precondi�ons between
EvaluationCallback::PrepareForEvaluation()  and CostFunction::Evaluate() .

rotation.h

Many applica�ons of Ceres Solver involve op�miza�on problems where some of the variables
correspond to rota�ons. To ease the pain of work with the various representa�ons of rota�ons
(angle-axis, quaternion and matrix) we provide a handy set of templated func�ons. These func�ons
are templated so that the user can use them within Ceres Solver’s automa�c differen�a�on
framework.

Convert a value in combined axis-angle representa�on to a quaternion.

The value angle_axis  is a triple whose norm is an angle in radians, and whose direc�on is
aligned with the axis of rota�on, and quaternion  is a 4-tuple that will contain the resul�ng
quaternion.

Convert a quaternion to the equivalent combined axis-angle representa�on.

The value quaternion  must be a unit quaternion - it is not normalized first, and angle_axis  will
be filled with a value whose norm is the angle of rota�on in radians, and whose direc�on is the
axis of rota�on.

Conversions between 3x3 rota�on matrix with given column and row strides and axis-angle
rota�on representa�ons. The func�ons that take a pointer to T instead of a MatrixAdapter
assume a column major representa�on with unit row stride and a column stride of 3.

Conversions between 3x3 rota�on matrix with given column and row strides and Euler angle (in
degrees) rota�on representa�ons.

The {pitch,roll,yaw} Euler angles are rota�ons around the {x,y,z} axes, respec�vely. They are
applied in that same order, so the total rota�on R is Rz * Ry * Rx.

The func�on that takes a pointer to T as the rota�on matrix assumes a row major
representa�on with unit column stride and a row stride of 3. The addi�onal parameter
row_stride is required to be 3.

template<typename T> 
void AngleAxisToQuaternion(Tconst  *angle_axis, T *quaternion)  

template<typename T> 
void QuaternionToAngleAxis(Tconst  *quaternion, T *angle_axis)  

template<typename T, int row_stride, int col_stride> 
void RotationMatrixToAngleAxis(const  MatrixAdapter<const T, row_stride, col_stride> &R, T
*angle_axis)  

template<typename T, int row_stride, int col_stride> 
void AngleAxisToRotationMatrix(Tconst  *angle_axis, const  MatrixAdapter<T, row_stride, col_stride>
&R)  

template<typename T> 
void RotationMatrixToAngleAxis(Tconst  *R, T *angle_axis)  

template<typename T> 
void AngleAxisToRotationMatrix(Tconst  *angle_axis, T *R)  

template<typename T, int row_stride, int col_stride> 
void EulerAnglesToRotationMatrix(const T *euler, const  MatrixAdapter<T, row_stride, col_stride> &R)

 

template<typename T> 
void EulerAnglesToRotationMatrix(const T *euler, int row_stride, T *R)  

template<typename T, int row_stride, int col_stride> 



Convert a 4-vector to a 3x3 scaled rota�on matrix.

The choice of rota�on is such that the quaternion  goes to an iden�ty matrix and
for small  the quaternion  goes to the matrix

which corresponds to a Rodrigues approxima�on, the last matrix being the cross-product matrix
of . Together with the property that  this uniquely defines
the mapping from  to .

In the func�on that accepts a pointer to T instead of a MatrixAdapter, the rota�on matrix R  is
a row-major matrix with unit column stride and a row stride of 3.

No normaliza�on of the quaternion is performed, i.e. , where  is an orthonormal
matrix such that  and .

Same as above except that the rota�on matrix is normalized by the Frobenius norm, so that 
 (and ).

Rotates a point pt by a quaternion q:

Assumes the quaternion is unit norm. If you pass in a quaternion with  then you WILL
NOT get back 2 �mes the result you get for a unit quaternion.

With this func�on you do not need to assume that  has unit norm. It does assume that the
norm is non-zero.

where  is the Quaternion product between 4-vectors.

Cubic Interpolation

Op�miza�on problems o�en involve func�ons that are given in the form of a table of values, for
example an image. Evalua�ng these func�ons and their deriva�ves requires interpola�ng these
values. Interpola�ng tabulated func�ons is a vast area of research and there are a lot of libraries
which implement a variety of interpola�on schemes. However, using them within the automa�c
differen�a�on framework in Ceres is quite painful. To this end, Ceres provides the ability to
interpolate one dimensional and two dimensional tabular func�ons.

void QuaternionToScaledRotation(const Tq[4], const  MatrixAdapter<T, row_stride, col_stride> &R)  

template<typename T> 
void QuaternionToScaledRotation(const Tq[4], TR[3 * 3])  
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template<typename T> 
void QuaternionToRotation(const Tq[4], const  MatrixAdapter<T, row_stride, col_stride> &R)  

template<typename T> 
void QuaternionToRotation(const Tq[4], TR[3 * 3])  

R = IR′ det(R) = 1

template<typename T> 
void UnitQuaternionRotatePoint(const Tq[4], const Tpt[3], Tresult[3])  

result = R(q)pt

|q = 2|2

template<typename T> 
void QuaternionRotatePoint(const Tq[4], const Tpt[3], Tresult[3])  

q

template<typename T> 
void QuaternionProduct(const Tz[4], const Tw[4], Tzw[4])  

zw = z ∗ w

∗

template<typename T> 
void CrossProduct(const Tx[3], const Ty[3], Tx_cross_y[3])  

x_cross_y = x × y

template<typename T> 
void AngleAxisRotatePoint(const Tangle_axis[3], const Tpt[3], Tresult[3])  

y = R(angle_axis)x



The one dimensional interpola�on is based on the Cubic Hermite Spline, also known as the
Catmull-Rom Spline. This produces a first order differen�able interpola�ng func�on. The two
dimensional interpola�on scheme is a generaliza�on of the one dimensional scheme where the
interpola�ng func�on is assumed to be separable in the two dimensions,

More details of the construc�on can be found Linear Methods for Image Interpola�on by Pascal
Getreuer.

Given as input an infinite one dimensional grid, which provides the following interface.

struct Grid1D { 
  enum { DATA_DIMENSION = 2; }; 
  void GetValue(int n, double* f) const; 
}; 

 

Where, GetValue  gives us the value of a func�on  (possibly vector valued) for any integer  and
the enum DATA_DIMENSION  indicates the dimensionality of the func�on being interpolated. For
example if you are interpola�ng rota�ons in axis-angle format over �me, then DATA_DIMENSION = 3 .

CubicInterpolator  uses Cubic Hermite splines to produce a smooth approxima�on to it that can be
used to evaluate the  and  at any point on the real number line. For example, the
following code interpolates an array of four numbers.

const double x[] = {1.0, 2.0, 5.0, 6.0}; 
Grid1D<double, 1> array(x, 0, 4); 
CubicInterpolator interpolator(array); 
double f, dfdx; 
interpolator.Evaluate(1.5, &f, &dfdx); 

 

In the above code we use Grid1D  a templated helper class that allows easy interfacing between
C++  arrays and CubicInterpolator .

Grid1D  supports vector valued func�ons where the various coordinates of the func�on can be
interleaved or stacked. It also allows the use of any numeric type as input, as long as it can be safely
cast to a double.

Given as input an infinite two dimensional grid, which provides the following interface:

struct Grid2D { 
  enum { DATA_DIMENSION = 2 }; 
  void GetValue(int row, int col, double* f) const; 
}; 

 

Where, GetValue  gives us the value of a func�on  (possibly vector valued) for any pair of integers
row  and col  and the enum DATA_DIMENSION  indicates the dimensionality of the func�on being

interpolated. For example if you are interpola�ng a color image with three channels (Red, Green &
Blue), then DATA_DIMENSION = 3 .

BiCubicInterpolator  uses the cubic convolu�on interpola�on algorithm of R. Keys [Keys], to

produce a smooth approxima�on to it that can be used to evaluate the ,  and  at
any any point in the real plane.

For example the following code interpolates a two dimensional array.

const double data[] = {1.0, 3.0, -1.0, 4.0, 
                       3.6, 2.1,  4.2, 2.0, 
                       2.0, 1.0,  3.1, 5.2}; 
Grid2D<double, 1>  array(data, 0, 3, 0, 4); 
BiCubicInterpolator interpolator(array); 
double f, dfdr, dfdc; 
interpolator.Evaluate(1.2, 2.5, &f, &dfdr, &dfdc); 

 

class CubicInterpolator  

f n

f(x) (x)f ′

class BiCubicInterpolator  

f

f(r, c)
∂f(r,c)

∂r

∂f(r,c)

∂c

http://www.ipol.im/pub/art/2011/g_lmii/
http://ceres-solver.org/bibliography.html#keys


In the above code, the templated helper class Grid2D  is used to make a C++  array look like a two
dimensional table to BiCubicInterpolator .

Grid2D  supports row or column major layouts. It also supports vector valued func�ons where the
individual coordinates of the func�on may be interleaved or stacked. It also allows the use of any
numeric type as input, as long as it can be safely cast to double.


