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Several studies have been conducted to explore students’ understanding of the integral-area 
relationships, however, only a few focused on students’ metacognition in relation to this topic. In this 
study, students’ metacognitive knowledge, skills, and experiences in relation to an integral-area 
evaluation task are explored using semi-structured interviews and think-aloud protocol. The results 
show that several students developed monitoring strategies in relation to integral-area relationships; 
however, they do not use these strategies when solving integral-area tasks. The findings suggest that 
teachers and lecturers could use monitoring strategies more often when solving mathematical 
questions in class, and encourage students to use these strategies when solving problems. 
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Introduction 
Integral calculus is part of the upper secondary school and undergraduate university mathematics 
curriculum in many countries as a wide range of real-world problems require an understanding of 
integral calculus, including a range of contexts in physics and engineering (e.g., Thompson & 
Silverman, 2008). Many undergraduate and graduate courses in mathematics and the engineering 
sciences also rely heavily on parts of this topic (e.g., differential equations) (Czocher, Tague, & 
Baker, 2013).  Several studies have been conducted to explore students’ mathematical understanding 
of concepts within integral calculus such as the integral-area relationships (e.g., Jones, 2013; Sealey, 
2014; Thomas & Hong, 1996) and the Fundamental Theorem of Calculus (FTC) (e.g., Thompson, 
1994; Thompson, & Silverman, 2008). However, only a few studies (e.g., Radmehr & Drake, 2017, 
2019, 2020) have explored students’ metacognition in relation to integral calculus. Metacognition is 
“meta-level knowledge and mental action used to steer cognitive processes” (Jacobse & Harskamp, 
2012, p. 133). Previous studies (e.g., Radmehr & Drake, 2017, 2019; Dallas, 2014) have highlighted 
that metacognition “is a driving force in mathematical problem solving” (Czocher, 2018, p. 140); 
however, many students have not developed well their metacognition in relation to mathematical 
problem solving (e.g., Radmehr & Drake, 2017, 2019; Jacobse & Harskamp, 2012). In this study, we 
explore students’ metacognition in relation to an evaluation task related to integral-area relationships. 
We also investigate the differences that might exist between the metacognition of upper secondary 
and tertiary students in this regard. The research question explored here is: What metacognition do 
upper secondary and tertiary students reveal in relation to an integral-area evaluation task?  

Facets of metacognition 
Three facets of metacognition have been recognized in previous studies (Efklides, 2006, 2008): 
metacognitive knowledge, metacognitive skills, and metacognitive experiences. In this section, we 
describe these facets to frame the study. Metacognitive knowledge “is declarative knowledge stored 
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in memory” (Efklides, 2008, p. 278) about factors (i.e., persons, tasks, goals, and strategies) that 
influence cognitive activities (Efklides, 2006, 2008). The persons factor relates to how individuals 
complete or feel about different tasks. For example, you are more confident in finding an enclosed 
area with respect to the 𝑥-axis rather than the 𝑦-axis when both ways can be used for finding the area 
using integral calculus. The tasks factor relates to categories, relationships, features, and how different 
tasks work. For instance, your knowledge about how a question related to integral-area can be 
checked. The goals factor refers to the goals individuals pursue when engaging in different tasks (e.g., 
you solve your integral assignment questions to have a better understanding of the topic). Finally, the 
strategies factor consists of strategies that are used for problem-solving, and how, why, and when 
such strategies should be used (e.g., knowing in the questions related to integral-area, sketching the 
related graphs of functions will help to determine which method should be used) (Efklides, 2006, 
2008).  

Metacognitive skills are activities that are performed deliberately to help individuals control their 
cognitive activities (Efklides, 2006, 2008). These activities consist of task orientating, planning, 
monitoring, regulating, and evaluating (Efklides, 2006, 2008). For example, making a visualization 
when solving a mathematical problem can help with identifying how the problem can be solved. We 
need to highlight the difference between metacognitive knowledge and skills. Students might have 
developed their metacognitive knowledge in different ways; however, they are not using them when 
engaging in problem solving, indicating lack of their metacognitive skills. For instance, many 
students know drawing a graph will help in solving mathematical problems, indicating the presence 
of metacognitive knowledge; however, they might not use this strategy when solving mathematical 
problems, indicating lack of metacognitive skills.  

Metacognitive experiences are one’s awareness and feelings when engaging in a task and processing 
its information (Efklides, 2008). Metacognitive experiences include feelings of knowing, familiarity, 
confidence, satisfaction, and difficulty in relation to different tasks (e.g., I think I can solve this 
mathematical problem because I saw similar tasks before). It also comprises judgment of learning 
and the correctness of solutions, and estimating effort and time needed to spend on tasks (e.g., I think 
I can solve this mathematical problem in 15 minutes or I think I solved this question correctly) 
(Efklides, 2006, 2008).  

Integral-area relationships and definite integrals 
Several studies have focused on students’ understanding of integral-area relationships (e.g., Kiat, 
2005; Mahir, 2009; Sealey, 2014). These studies have reported that many students have difficulties 
in finding area using integral, for example, when the function is below the 𝑥-axis (e.g., Radmehr & 
Drake, 2019); or the graph of the integrand is not given to students (e.g., Kiat, 2005). For instance, 
Kiat (2005) reported that 55% of students could not set up the integrals correctly to find a shaded area 
in a task in which one of the curves was below and one was above the 𝑥-axis (Kiat, 2005). 
Furthermore, students’ understanding of why integral techniques should be used for finding enclosed 
area is limited (e.g., Thomas & Hong, 1996). Riemann sums and definite integrals, lim
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entail a number of important concepts (i.e., functions, limits, rate of change, and multiplication) 
(Sealey, 2014). Previous studies have reported understanding the definite integral as the limit of a 
sum is a difficult task for many students (e.g., Sealey, 2014). To develop a better understanding how 
students construct the concept of the Riemann integral, Sealey (2014) has designed a framework to 
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characterise students’ understanding of Riemann sums and the definite integral. Sealey (2014) has 
identified that understanding the product of 𝑓(𝑥)	and ∆𝑥 is the most complex part for students. 

Methods 
A multiple case study was used to explore students’ cognition and metacognition in relation to the 
integral calculus. Two cases were selected composed of a sample of students that were interviewed 
in 2014-2015 academic year. Case 1 is one of the top five universities in New Zealand and Case 2 is 
one of 11 colleges (upper secondary schools) in Wellington city, New Zealand. Nine students from 
Case 1 and eight students from Case 2 voluntarily participated in the study. All the college students 
were enrolled in a Year 13 calculus course, and the university students were enrolled in a single 
variable calculus course (designed for students of the Faculty of Science) when the data collection 
started. The students of Case 1 were enrolled in a mathematics, statistics, or physics major. 

The students participated in a one to one interview with the first author that lasted between 70 to 150 
minutes to explore their metacognition and mathematical understanding. Some students completed 
the interview in one session and some students in two sessions. In the interviews, nine tasks related 
to integral-area relationships and the FTC were given to students, and they also responded to 14 
questions related to their metacognitive knowledge. Students’ performance and their metacognitive 
experiences and skills in relation to seven of these tasks have been reported in Radmehr and Drake 
(2017, 2019), and their metacognitive knowledge in Radmehr and Drake (2020). Here, we report the 
results of the following evaluation task that have not described in those studies.  

Additionally, we have not explored how much of the metacognitive knowledge students possess about 
a mathematical topic, they have actually used when solving mathematical problems. In other words, 
this is our first attempt to compare students’ metacognitive knowledge with their metacognitive skills 
and experiences. The first example is designed based on a task from Kiat’s study (2005). Students 
may find an incorrect area for both examples if they do not sketch the graph of the curves. In addition, 
students who only focus on integration techniques and do not pay enough attention to the integral-
area relationship may also make mistakes.  

To explore students’ metacognition in relation to each facet of metacognition, different approaches 
have been proposed (Radmehr & Drake, 2018). To explore students’ metacognitive knowledge, a set 
of questions could be asked from students about what they would do when they face specific 
mathematics-related situations (Radmehr & Drake, 2018). The results in relation to one of these 
questions are presented in this paper: How do you check your answers when solving problems 
involving finding the area enclosed between curves?  

Concerning students’ metacognitive skills, students can be asked to verbalize their thought when they 
are solving mathematical problems using a think-aloud protocol (Radmehr & Drake, 2018; Dallas, 
2014; Jacobse & Harskamp, 2012). Then, their verbal thought can be analyzed using the rubrics 

Are these examples solved correctly? Please justify your answer.  

Example 1: Find if possible, the area between the curve 𝑦 = 𝑥' − 4𝑥 and the 𝑥-axis from	𝑥 = 0 to 
𝑥 = 5.                      ∫ (𝑥' − 4𝑥)𝑑𝑥 = [(
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designed for analyzing students’ metacognitive skills (see Jacobse & Harskamp, 2012; Veenman, 
Kerseboom, & Imthorn, 2000). For example, Veenman et al. (2000) suggested checking calculation 
and answer, reflecting on the final answer, and the learning experience as some of the activities that 
can indicate the presence of metacognitive skills. In this study, from different components of 
metacognitive skills, students’ monitoring strategies and making drawing in relation to the task were 
analyzed (when students were solving the evaluation task). These two are among the metacognitive 
activities important for successful mathematical problem solving (Jacobse & Harskamp, 2012). 

To explore students’ metacognitive experiences, two items from the Visualization and Accuracy 
instrument (Jacobse & Harskamp, 2012) were used. First, students read the task, and before solving 
it, were encouraged to answer the following question: How well do you think you can solve this 
problem? They could choose one of three following: I am sure I will solve this problem; I am not 
sure whether I will solve this problem correctly or incorrectly; or I am sure I cannot solve this 
problem. After selecting one of the choices, they were asked to provide a reason(s) for their choice. 
After working on the task, a similar question was asked: Rate your confidence for having found the 
correct answer. Students had similar choices (i.e., I am sure I solved this question correctly; I am not 
sure whether I solved this question correctly or incorrectly; I am sure I solved this question 
incorrectly), and they were encouraged to provide a reason(s) for their choice. 

Results 
In this section, first, students’ monitoring strategies in response to the metacognitive knowledge 
question are provided. Then, students’ pre-judgments, mathematical performances, metacognitive 
skills, and post-judgments in relation to the evaluation task are described. The university students are 
indicated by T and the college students with S. 

Students’ metacognitive knowledge in relation to integral-area relationships 

Students in Cases 1 and 2 mentioned different strategies for checking their answers in integral-area 
problems. Three strategies were domain-specific, including approximating the enclosed area using 
geometric shapes to find out whether the answer makes sense (T: 1, 3, 4, 6, 8, 9; S: 7, 8); checking 
the area is positive (T: 3, 9; S: 1, 5, 6); and checking the antiderivative by differentiating it (T: 3, 9; 
S: 1, 5, 6). The other monitoring strategies mentioned by students were general and can be used in 
different settings. The most common strategy for checking answers was going over calculations (T: 
1, 3, 4, 5, 6, 8; S: 2, 4, 5, 7). The other monitoring strategies mentioned by at least two students were: 
Using Wolfram alpha website to check answers (T: 3, 4, 5, 6, 7); checking answers with classmates 
(T: 4, 6; S: 6, 7); Using the answers at the end of the textbook (S: 2, 3, 4, 6); Using assignment 
solutions (T: 2, 3); and using a calculator to check answers/graph of curves (S: 3, 6). These findings 
show that approximating area using geometric shapes and also using online resources (e.g., Wolfram 
alpha) were more common within university students for checking answers. In contrast, college 
students relied more on solutions at the end of their textbook and standard calculators.   

Students’ metacognitive experiences (pre-judgments) in relation to the evaluation task 

In relation to the students’ pre-judgments, all the students thought they were able to do this task. 
However, only T5 identified that the first example was solved incorrectly and only two students (T: 
5, 9) identified the second had been solved incorrectly. Students made their judgments based on the 
familiarity of the examples (T: 1, 2, 4; S: 3, 5, 6), saying the integrals are “simple” and 
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“straightforward to integrate” (T: 2, 8; S: 7), and they knew how to solve these questions (T: 9; S: 2, 
4, 8). T5 made that judgment because she thought only one curve was involved in each example: 
“sure, in both questions, they are only one equation involved so it is not as tricky as the ones with 
more equations”. S1 made that judgment because he thought he did not need to graph the curves: 
“Also, I do not need to work out the formula from the graph”. Two students’ responses (T: 6, 7) 
related to the fact that the task involved evaluating. T7 said, “…easier to find someone wrong than to 
prove me right”, and T6 mentioned, “I think I can find any wrong steps” [in the solutions]. Finally, 
T3 thought he was able to complete the task as “nothing looks immediately wrong”. 

Students’ mathematical performance on the evaluation task 

As stated earlier, only T5 identified that the first example was solved incorrectly. For the second 
example, only two students (T: 5, 9) recognized it was solved incorrectly; however, three students (T: 
5, 7, 9) showed they had the conceptual knowledge that the integrand should be continuous on the 
interval being integrated. T5 showed that the area is diverging by using the improper integral. T9 
believed that if an integrand is not continuous at a given point, the calculation is not possible: “Why 
this work, I thought it will be something in the calculation that wouldn't work [sic]”. T7 sketched the 
graph of 𝑦 = &

("
 and said “we do not have the division by zero problem here”, indicating he did not 

notice that the function is undefined at zero. The remaining students only checked the integration and 
calculations, indicating procedural knowledge of the integral-area relationship. A lack of numerical 
proficiency was also observed whilst students were attempting to answer this question. For example, 
four students from Case 2 (S: 1, 4, 5, 6) used a calculator to check if the bounds were substituted 
correctly in the integrand, suggesting they were not confident with calculations such as 25×2 and *

!

)
. 

Moreover, S1 simplified *
!

)
− 2 × 5' as &'*

)
− 20, then asked to use a calculator to find the end result. 

Students’ metacognitive skills in relation to the evaluation task 

Regarding making a drawing to solve the task, only two students (T: 5, 7) made a drawing for this 
task. However, Radmehr and Drake (2019) showed that for more typical integral-area questions (e.g., 
“Please calculate the area enclosed between the curve enclosed between the curve 𝑥=𝑦'	and 𝑦 = 𝑥 −
2 in two ways. Which way is better to use? Why?” (p. 91)) many students try to draw the enclosed 
area.  T5 made a drawing for both parts of the question and solved the question correctly. T7 made a 
drawing for the second part, however, could not identify that the function was not defined at zero. 

In relation to checking calculations and answers, five students (T: 3; S: 1, 4, 5, 6) undertook some 
form of check. College students used their calculators to check their calculations, as mentioned above. 
T3 checked the calculation after he had solved the question, without using a calculator, to explore 
whether he had substituted the bounds in the antiderivative correctly, because the answers were 
negative. 

Students’ metacognitive experiences (post-judgments) in relation to the evaluation task 

In relation to the post-judgments, 15 students were sure they had solved the task correctly; however, 
only T5 judged the first example correctly, and only two students (T: 5, 9) judged the second example 
correctly. The other two students (T: 1, 2) were unsure if they had solved the task correctly because 
they obtained a negative area. In addition, T1 was unsure whether the antiderivative of &

("
 was /&

(
 or 
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not, indicating a lack of procedural knowledge for finding antiderivatives. The 15 students were sure 
for several reasons. 13 students (T: 3, 4, 6, 7, 9; S: 1, 2, 3, 4, 5, 6, 7, 8) made that judgment because 
they had the same answer (for one or both examples). T8 was “confident” with the way he checked 
the solutions of the examples. Three students (T: 5; S: 1, 5) were sure because they had found a 
different answer to that written in the task; however, S1 had found a wrong answer through a wrong 
calculation and S5 had an error relating to the integral-area relationships. 

Discussion and conclusion 
The paper adds to the literature in mathematics education in several ways. First, a literature search 
revealed that this is one of the first attempts in regards to exploring how much of the metacognitive 
knowledge students possess about a mathematical topic is actually used by them when solving 
mathematical problems. Secondly, only a few studies have explored students’ metacognitive 
knowledge, experiences, and skills in relation to upper secondary and tertiary mathematics (e.g., 
Radmehr & Drake, 2017, 2019), therefore, the findings could help mathematics education researchers 
to have a better understanding of students’ metacognition in relation to learning mathematics at the 
upper secondary and tertiary levels.  

In relation to students’ metacognitive knowledge, students highlighted several useful monitoring 
strategies that can be used for checking answers of certain types of integral-area questions. However, 
it seems some of the students in the sample did not develop these monitoring strategies. For instance, 
nine students did not refer to the approximating area using geometric shapes, and thirteen students 
did not mention differentiating antiderivative as a monitoring strategy in response to the interview 
question. Secondly, in relation to students’ metacognitive skills, when they engaged in the evaluation 
task, the students did not use these strategies, and therefore, most of them were unable to identify the 
mistakes in the examples. Only some of them checked their calculations without drawing the graphs. 
Teaching monitoring strategies could be considered as a key element of teaching mathematics, and 
ways in which students can check their solutions could be suggested to them (e.g., Goos, Galbraith, 
& Renshaw, 2002). The active role of the lecturers/teachers in posing questions like “how can we 
check this answer?”, then, discussing and modelling the use of appropriate strategies, more students 
might learn, and motivate to use monitoring strategies during solving mathematical problems (e.g., 
Schoenfeld, 1987). In addition, if teachers and lecturers use monitoring strategies more often when 
solving questions in class, and encourage students to do so as a part of their problem solving, these 
strategies might be used more often by students. Designing mathematical problem-solving tasks with 
metacognitive questions at each problem-solving phase (e.g., the post-judgment item), could also 
support developing students’ metacognition (Dallas, 2014). These activities could lead to fewer errors 
in solving mathematical problems, and students developing greater confidence in their mathematical 
understanding (Radmehr & Drake, 2019; Dallas, 2014).  

In relation to the metacognitive experiences, the fact that the task was an evaluation task did not 
negatively affect the confidence of students as they were all confident they could solve the question. 
Students’ pre-judgments show that most students based their judgment on familiarity with the 
integrand and knowing how to find antiderivatives, and not by focusing on the shape of the enclosed 
area. Most of the students did not make any drawing of the given curves, which resulted in most 
students being unable to find the mistake in the solution they were evaluating. This suggests that it 
might be useful for their lecturers and teachers to more strongly highlight the importance of drawing 
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curves for integral-area problems and help them focus on the enclosed area’s shape when trying to 
solve such questions. This might also help students to not over-simplify a problem. In this study, 
consistent with previous studies in relation to the integral-area relationships (e.g., Mahir, 2009), 
students’ procedural knowledge was better developed compared to conceptual knowledge. For 
instance, the fact that the integrand should be continuous was ignored by most students when solving 
the task. Also, a lack of algebraic manipulation skills and prior knowledge were observed for several 
students. These findings, also highlighted by previous studies (e.g., Kiat, 2005), suggesting several 
students would benefit from improving their algebraic manipulation and/or graph sketching prior to 
starting integral (Kiat, 2005). 
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