CEUR-WS.org/Vol-2754/paper6.pdf

OAS DB: A Repository of Specifications to Support
OpenAPI Research

Alex Braha Stoll
University of Sao Paulo - USP
Sao Paulo - Brazil
alex.stoll@Qusp.br

Tosin Daniel Oyetoyan
HVL
Bergen - Norway
tosin.daniel.oyetoyan@hvl.no

Abstract

There are many specifications used to de-
scribe a Web API. One of the most popu-
lar ones is OpenAPI. This specification al-
lows one to describe all the resources that
can be accessed and manipulated through a
REST Web API. An OpenAPI specification
can be used to perform different kinds of
analysis and verification of the service imple-
menting the described API. A common chal-
lenge faced by researchers, however, is the
lack of a standard repository of samples. A
repository with annotated samples (e.g., anti-
patterns found in each specification) would be
a valuable resource because it would help re-
searchers and practitioners to verify new tools
and techniques aiming at OpenAPI specifica-
tions. Such a repository would also allow di-
rect comparison between different studies that
decide to employ it. This paper describes the
creation of a repository of annotated synthetic
(but realistic) OpenAPT samples.

1 Introduction

A popular choice when building Web systems and APIs
is to use the REST (Representational State Transfer)
architectural style. Introduced in 2000 [7], it aims to

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY

4.0).

Marcos Lordello Chaim
University of Sao Paulo - USP
Sao Paulo - Brazil
chaim@usp.br

Daniela Soares Cruzes
SINTEF
Trondheim - Norway
daniela.s.cruzes@sintef.no

improve the scalability, generality and independence
of the components of a software system.

The automatic verification of REST Web APIs is
still not a common practice due to the lack of a widely
accepted set of best practices and also the absence of
tools developed from the ground up to be used with
that particular architectural style (many of the avail-
able tools are adaptations of solutions created to han-
dle older architectures) [1]. Therefore, many checks
that may contribute to the quality and security of
these APIs are being done manually and in an incon-
sistent fashion (or are not even being done due to the
high cost of manual analysis).

Another challenge faced by researchers exploring
this area is the lack of a standard repository with Ope-
nAPI specification samples. The absence of such a
database forces researchers to diverge time from the
main objectives of their work into building datasets.
Besides that, it also makes the comparison between
different studies harder, since the datasets used are
generally different.

Considering all the aforementioned facts, it appears
to be important the creation of a repository of Ope-
nAPI samples to support researchers doing work in
this field. This repository of OpenAPI samples with
common defects found in real-world specifications may
facilitate studies analyzing and verifying OpenAPI
specs, which in turn may result in an increase in the
efficiency and efficacy of the studies. Besides that, by
supporting researchers who are developing tools and
techniques that are helpful in managing software evo-
lution, we believe we will also be making an indirect
but meaningful positive impact in this area as well.



This paper describes how such a repository of synthetic
and annotated OpenAPI samples could actually look
like.

To make it all clearer, let us consider a short exam-
ple of one such OpenAPI sample with an anti-pattern.
In REST APIs, a good practice is to disallow sensi-
tive information in the query string portion of a given
endpoint [8]. The reason for that is the lack of en-
cryption of the URI (which the query string is a part
of), even when a secure protocol like HTTPS is used.
Therefore, the inclusion of sensitive data in the query
string is an anti-pattern. Figure 1 illustrates an in-
stance of this anti-pattern. It shows an endpoint (/cus-
tomers/{ customer_token}) that includes a query string
parameter (customer_token) that holds sensitive data
(a token used to identify a user).

1 /customers/{customer_token}:

2 get:

3 summary: Allows a...

tags:

5 - customer

6 parameters:

- name: customer_token
in: path

9 required: true

10 description: A token...

11 schema:

12 type: string

Figure 1: OpenAPI Segment Including an Anti-

pattern

The rest of this paper is structured as follows: sec-
tion 2 offers the reader straightforward explanations of
the main concepts and technologies relevant to this pa-
per; section 3 briefly discusses relevant related works;
section 4 details the rationale and steps taken while
planning the proposal for OAS DB and building a
proof of concept of it; section 5 presents the outcomes
on the initial efforts put into building OAS DB; sec-
tion 6 discusses potential threats to the validity of this
work; and, finishing up, section 7 summarizes the re-
sults of this work in progress and also presents some
ideas for future developments.

2 Background
2.1 API and OpenAPI

Application Programming Interface (API) is a speci-
fied set of operations for programmatically interacting
with components of a software system. In particular,
a Web API is an interface that allows a web system to
receive requests from other systems. REST (Represen-
tational State Transfer) is one of the multiple architec-

tural styles that can be adopted when implementing a
Web API. Introduced in Roy Fielding’s doctoral thesis
[7], this architectural style defines a set of recommen-
dations with the objective of improving the scalability
of interaction between components, the generality of
interfaces and the independent deployment of compo-
nents. REST also aims to allow intermediary compo-
nents to reduce the latency of interactions, to enforce
security constraints and to also be able to encapsulate
legacy systems.

OpenAPI! is a specification that allows one to de-
scribe all the resources that can be accessed and ma-
nipulated through a REST Web API. An OpenAPI
specification offers a level of detail and formalism that
makes it possible not only to automatically deduce
properties about the Web API and the software system
exposing it, but also to automatically interact with the
APIL

2.2 REST Patterns and Anti-patterns

A REST pattern is a good practice that should be
followed when developing a REST API. On the other
hand, an anti-pattern is a bad practice that should
be avoided [3]. In the context of REST APIs, good
practices are generally the result of following the rec-
ommendations of the REST architectural style. As a
consequence, having anti-patterns in an API can be
detrimental to one or more software quality attributes
(e.g., an anti-pattern may cause a service to be harder
to maintain over time). One can find in the literature
collections of REST patterns and anti-patterns created
from surveys of academic works and industry practices
(e.g., see Brabra et al. [3]).

3 Related Work
3.1 OpenAPI Tools and Techniques

By reviewing the literature on REST APIs, one can
find research tackling issues around designing, testing
and analyzing APIs from different angles. In Petrillo
et al. [10], a catalog of 73 REST API best practices
is proposed; this same catalog is then used to assess
the maturity of popular and established REST APIs
of major cloud infrastructure providers. In Ed-Douibi
et al. [6], the effort is on automatically generating test
cases for REST APIs having as the sole requirement
a valid OpenAPI specification. The authors introduce
a tool capable of detecting different kinds of errors,
such as discrepancies between the data an API opera-
tion is supposed to return and the data that is actually
received from the system under test. As one last exam-
ple of work being conducted in the field, in the work of

Thttps://www.openapis.org/



Iversen [8] the main objective is to detect vulnerabili-
ties by analyzing - with static and dynamic techniques
- specifications describing a REST API.

This survey of the literature points to some interest-
ing facts. Most relevant to this work is the usage of dif-
ferent datasets in many related research projects. One
can argue that this is detrimental to advancements
in the field for two main reasons: first, researchers
are having to spent valuable time building their own
datasets; and, besides that, the usage of different data
makes the comparison between studies more challeng-
ing.

Efforts to build shared experimentation infrastruc-
ture seem to have yielded positive effects in other re-
search fields. In Do et al. [5], the many benefits
of having shared infrastructure for experimentation,
such as cost saving and accelerated improvement of
datasets (because different researchers are able to pro-
vide feedback and collaborate), are demonstrated. An-
other project that is worth mentioning is the Defects4J
repository. Containing hundreds of bugs from real-
world Java programs, it has been successfully shared
and improved by different research teams [9].

3.2 Existing API Collections

There do exist directories of APIs (e.g., RapidAPI?)
and even collections of OpenAPI specifications (e.g.,
APIs Guru®). However, these existing solutions are
not a good fit for researchers for two important rea-
sons.

The first one is the lack of annotations in the Ope-
nAPI samples, making it challenging for a researcher
to check the performance of a tool tested against these
existing solutions. Without annotated samples, it be-
comes labor intensive to produce metrics because one
has to manually analyze every specification touched by
the tool under assessment (e.g., to confirm true pos-
itives). The second reason is the fact that the focus
of these repositories is simply on creating OpenAPI
specifications for existing web services, without a con-
centrated effort (such as in the case of OAS DB) in
adding new samples that actually increase the diver-
sity of scenarios covered (both in terms of anti-patterns
contained in the repository and in terms of domains
covered by its samples).

4 Building a Proof of Concept of OAS
DB

The literature review described in section 3 allowed us
to become familiar with three essential facets of the dif-
ferent studies: the techniques being used, the datasets

2https:/ /rapidapi.com
Shttp://apis.guru

being employed and the most common issues found in
the APIs considered by each study. Having all this
information available, we set out to build a repository
of OpenAPI samples that would be immediately com-
patible with the reviewed studies or at least would be
employable after some adaptations to them.

We built the repository by creating a set of Ope-
nAPI specifications describing different kinds of syn-
thetic but realistic APIs. For example, one of our
samples describes the API for an e-commerce. Each
specification is accompanied by files containing meta-
data. These files allow one to quickly and automati-
cally check which anti-patterns or issues are present in
each specification.

We also intend to develop a tool capable of gen-
erating mock servers from the OpenAPI specification
samples that are part of the repository. These API
servers can be run in the researcher’s local machine
or be automatically deployed to a compatible cloud
provider.

Figure 2 shows an overview of OAS DB. As ex-
plained, each OpenAPI specification has a correspond-
ing annotation file. The specifications are also used to
generate the mock servers and it is possible to have
these API servers optionally deployed to a compatible
cloud provider.

OpenAPI specifications Annotation files

(YAML format) (JSON format)
P S
. .
L4 .
. .
e Local
Mock Server Environment

Generator Tool

Cloud Provider

Figure 2: Overview of OAS DB

4.1 Categories of Anti-patterns

To help us in having a diverse set of anti-patterns
present in OAS DB, we first devised a list of categories
to classify the different kinds of REST API bad prac-
tices. To create this set, we had as a foundation both
the classical attributes of software quality and also the
dimensions and groupings found during our review of



works exploring REST anti-patterns.

We classified each selected anti-pattern as belonging
to one or more of the following categories: compatibil-
ity, discoverability, understandability and security.

4.2 Anti-patterns Selection

As a proof of concept of OAS DB, we decided to choose
one anti-pattern for each category among the bad prac-
tices deemed most relevant and / or common in the
reviewed literature (see Brabra et al. [3], Ed-Douibi
et al. [6] and Petrillo et al. [10]). We also added anti-
patterns known to the authors (for example learned
through their experiences in the industry) when the
bad practice could also be supported by academic or
technical literature.

Figure 3 shows an example of a segment of Ope-
nAPI specification that contains an anti-pattern (Deep
path). This anti-pattern happens when an endpoint
includes unnecessary IDs. By unnecessarily requiring
the ID of a parent resource to manipulate a given ob-
ject, the developer makes the API more complex and
potentially harder to use. Besides that, it increases
the surface an attacker generating fake IDs has to try
and find authorization bugs in the underlying service
[2].

/orders/{order_id}/items/{item_id}:
get:
summary: Shows an item of a given order.
operationId: show_item
tags:
- items

Figure 3: Segment Including the Deep Path Anti-
pattern

4.3 Annotation Files

Each OpenAPI specification present in OAS DB is ac-
companied by a JSON (JavaScript Object Notation)
file. Each annotation file describes all anti-patterns
found in the associated specification, including the
line in the OpenAPI file responsible for each viola-
tion. These annotations provide a way for researchers
to automatically verify the efficacy of new techniques
and tools.

Figure 4 shows an example of an OAS DB anno-
tation file. The JSON key wiolations has a collection
of all the violations present in the corresponding Ope-
nAPI specification. For each violation, the following
data is available:

e type: this key holds the name of the anti-pattern
being described;

e categories: to which categories (e.g., security)
the anti-pattern belongs to;

e offender: the segment in the corresponding Ope-
nAPI specification to be blamed for the violation;

e location: the line in the corresponding specifica-
tion file where the violation is found.

"version": "oas-db-0.1",
"annotationTarget": "ecommerce.yml",
"violations": [
{
"type": "deep_path",
"categories": ["understandability", "security"],

"offender": "paths./orders/{order_id}/items/{item_id}",

"location": 43

Figure 4: Example of an OAS DB Annotation File

4.4 Automatic Generation of Mock Servers

OpenAPI specifications are rich enough to allow one
to generate a mock server capable of returning static
responses (i.e., the same fixed response independent of
the request parameters) for real HT'TP requests. OAS
DB will leverage that capacity and include a tool to
allow researchers to generate mock servers (and have
them running on their local machine) for the sample
APIs included in the repository. This tool will also
allow a researcher to deploy the mock server to any
cloud provider, as long as an OAS DB adapter for the
desired provider is available. We intend to include out-
of-the-box an adapter for the Amazon Web Services*
platform.

To generate the mock servers, we will leverage
the popular and mature Prism® open-source project.
Prism is implemented in the TypeScript programming
language and allows one to generate mock servers from
an OpenAPI specification versions 2 or 3. For the fea-
ture that will allow a researcher to deploy these gen-
erated mock servers, we will make use of Docker® con-
tainers.

We believe that mock server generation will prove
to be a very useful feature of OAS DB. As shown in dif-
ferent studies in the relevant literature (e.g., in Iversen
[8] and in Atlidakis et al. [1]), some anti-patterns can
only be detected when dynamic techniques are em-
ployed. In other words, this means that in many cases

4https://aws.amazon.com/
Shttps://github.com /stoplightio/prism
6https://www.docker.com/



statically analyzing an OpenAPI specification is not
enough to detect an issue and having a running server
capable of receiving and responding to HTTP requests
is essential.

5 Preliminary Results

OAS DB’ is a proof of concept of what we are envi-
sioning. As of the submission of this article, it has two
OpenAPI specifications (and one annotation file for
each specification), featuring five unique anti-patterns
(the ones listed in Table 1) and a few instances of these
types of bad practices across all specifications. Hav-
ing the purpose of being a proof of concept, it is not
the purpose of the current version of the repository
to have a large number of samples, but to provide us
with a sandbox for experimentation on the ideas here
discussed. We intend the finished version of OAS DB
to have dozens of samples, featuring many different
unique anti-patterns.

Table 1 lists all the anti-patterns present in the cur-
rent version of OAS DB, along with references in the
literature supporting their relevance.

Table 1: Anti-patterns in the Proof of Concept of OAS
DB

Anti-pattern name Supported by
Sequential integers
as resource ID [4]
Deep path 2]
Sensitive information in

the path or in the query string 8]
Inappropriate HTTP method 3
Lack of hypermedia support 3

6 Threats to Validity

Given the characteristics of this work, the main valid-
ity risk we face is its external validity. To mitigate this
danger, we selected anti-pattern categories and types
that are representative of both what is generally found
in datasets used in research and what one encounters
when examining real-world APIs (see Section 4). We
will continue to adopt this same strategy as OAS DB
grows.

7 Conclusion

In order to improve OAS DB, we plan to work on two
fronts. The first is to support a larger number of anti-
patterns and to have a greater amount of OpenAPI
samples. The selection of the next anti-patterns to be
supported will follow the same procedure described at

"https://github.com/alexbrahastoll/oas-db

Subsection 4.2. The second front is to start imple-
menting the tooling to generate mock API servers for
the samples contained in the repository (as described
at Subsection 4.4).

References

[1] V. Atlidakis, P. Godefroid, and M. Polishchuk.
“RESTler: Stateful REST API Fuzzing”. In:
2019 IEEE/ACM 41st International Conference
on Software FEngineering (ICSE). May 2019,
pp- 748-758. DOIL: 10.1109/ICSE.2019.00083.

[2] Vaggelis Atlidakis, Patrice Godefroid, and Ma-
rina Polishchuk. Checking Security Properties
of Cloud Services REST APIs. Tech. rep. Feb.
2019. URL: https : //www . microsoft . com/
en - us / research / publication / checking -
security-properties-of-cloud-services-
rest-apis/.

[3] H. Brabra et al. “On semantic detection of cloud
API (anti)patterns”. In: Information and Soft-
ware Technology 107 (2019), pp. 65-82.

[4] CVE-2015-8542. Available from MITRE, CVE-
ID CVE-2015-8542. Dec. 2015. URL: http://
cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-8542.

[5] Hyunsook Do, Sebastian G. Elbaum, and Gregg
Rothermel. “Supporting Controlled Experimen-
tation with Testing Techniques: An Infrastruc-
ture and its Potential Impact”. In: Empirical
Software Engineering 10.4 (2005), pp. 405-435.
DOI: 10.1007/s10664-005-3861-2.

[6] H. Ed-Douibi, J. L. Canovas Izquierdo, and J.
Cabot. “Automatic generation of test cases for
REST APIs: A specification-based approach”.
In: Proceedings - 2018 IEEE 22nd International
Enterprise Distributed Object Computing Con-
ference, EDOC 2018. Stockholm, Sweden, Oct.
2018, pp. 181-190. por: 10.1109/EDOC. 2018.
00031.

[7] Roy Fielding. “Architectural Styles and the De-
sign of Network-based Software Architectures”.
PhD thesis. University of California, Irvine,
2000.

[8] P.Iversen. “Specification-based security analysis
of REST APIs”. MA thesis. Norwegian Univer-
sity of Science and Technology, 2018.

9] R. Just, D. Jalali, and M.D. Ernst. “Defects4J:
A database of existing faults to enable controlled
testing studies for Java programs”. In: 2014,
pp. 437-440.



[10]

F. Petrillo et al. “Are REST APIs for cloud com-
puting well-designed? An exploratory study”.
In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 9936
LNCS (2016), pp. 157-170. por: 10.1007/978-
3-319-46295-0_10.



